
Incomplete Information Models of Guilt Aversion

in the Trust Game∗

Giuseppe Attanasi
University of Strasbourg, BETA

Pierpaolo Battigalli
Bocconi University, IGIER

Elena Manzoni
University of Milan-Bicocca

Abstract

In the theory of psychological games it is assumed that players’ preferences on mate-
rial consequences depend on endogenous beliefs. Most of the applications of this theoretical
framework assume that the psychological utility functions representing such preferences are
common knowledge. But this is often unrealistic. In particular, it cannot be true in exper-
imental games where players are subjects drawn at random from a population. Therefore
an incomplete-information methodology is called for. We take a first step in this direction,
focusing on guilt aversion in the Trust Game. In our models, agents have heterogeneous
belief hierarchies. We characterize equilibria where trust occurs with positive probability.
Our analysis illustrates the incomplete-information approach to psychological games and can
help organize experimental results in the Trust Game.
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1 Introduction

The Trust Game is a stylized social dilemma whereby player A takes a costly action (in-
vestment) that generates a social return, and player B decides how to distribute the proceeds
between himself and A. Experimental work on the Trust Game has shown systematic and signif-
icant departures from the standard equilibrium prediction implied by the assumption of common
knowledge of selfish preferences (see Berg et al. 1995, Buskens & Raub 2013, Section III.A of the
survey by Cooper & Kagel 2013, and the references therein). Given the simplicity of this game,
such deviations are hard to explain as the result of bounded rationality. Charness & Dufwenberg
(2006) provide support for the hypothesis that the behavior of most subjects in the second-mover
role (B) is affected by aversion to letting down the first mover (A) relative to his expectations,
as in Dufwenberg’s (2002) model of marital investment. This is an instance of the “simple guilt”
model of belief-dependent preferences of Battigalli & Dufwenberg (2007). Recent experimental
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work corroborates this hypothesis (e.g., Reuben et al. 2009, Bellemare et al. 2011, Chang et al.
2011, Attanasi et al. 2013).1

Of course, when subjects’ preferences differ from the simple benchmark of selfish expected
payoff maximization, the assumption that such preferences are common knowledge is farfetched.
Therefore, it should be assumed that the game played in the lab is one with incomplete infor-
mation, even though the rules of the game (who plays when, information about previous moves
and material payoffs at terminal nodes) are made common knowledge in the experiment. This
is consistent with the high heterogeneity of behavior and beliefs found in most experiments on
other-regarding preferences (see Cooper & Kagel 2013). Our goal is to understand how such a
game is played with incomplete information about guilt sensitivity.

We analyze the Bayesian equilibria (Harsanyi, 1967-68) of two incomplete-information models
of guilt aversion in the Trust Minigame, a binary-choice version of the Trust Game similar to
the one analyzed by Charness & Dufwenberg (2006).2 A key feature of both models is that agents
playing in a given role hold heterogeneous beliefs about the type of the co-player, which implies
heterogeneous first- and second-order beliefs about actions. In the first model it is common
knowledge that player A, the “truster”, is selfish and only player B, the “trustee”, can feel guilt.
In the second model, instead, guilt sensitivity and beliefs about it do not depend on the role
played in the game (player A or player B). The first model is more tractable and it may be
appropriate for situations where the players come from different populations, e.g. when A is a
firm and B is a worker. The second model may be more appropriate for situations where the
subjects playing in roles A and B are drawn from the same population, as in most experiments.

However, even when players are drawn from the same population, it is not implausible to
assume that sensitivity to guilt is triggered only when playing in role B. This assumption
resonates with (i) the evolutionary psychology of emotions (e.g., Haselton & Ketelaar 2006),
which suggests that, when a single emotion (guilt) operates in a variety of different domains,
its effects are moderated by contextual cues; and with (ii) the conceptual act theory of emotion
(e.g., Barrett 2006), which posits that people experience an (in our case, anticipated) emotion
by categorizing an instance of affective feeling (anticipated disappointment of the other); with
this, it is plausible that the role played in the interaction is part of the categorization process.
Finally, the different responses to oxytocin of trusters and trustees (e.g., Kosfeld et al. 2005,
Zak et al. 2005), and findings in the animal literature on the reactivity of oxytocin to social
cues (e.g., Carter & Keverne 2002) provide some indirect evidence supporting the role-dependent
model of guilt aversion.3

Our approach finds its intellectual home in the theory of psychological games, that is, the anal-
ysis of games with belief-dependent preferences (Geanakoplos et al. 1989, Battigalli & Dufwen-
berg 2009; see also the introductory surveys by Dufwenberg 2006 and Attanasi & Nagel 2008).
To our knowledge, this is the first paper offering a fully-fledged Bayesian equilibrium analysis of

1See also Dufwenberg & Gneezy (2000) and Guerra & Zizzo (2004). Charness & Dufwenberg (2011) find
support for the “guilt-from-blame” model of Battigalli & Dufwenberg (2007), which assumes that i anticipates
guilt if he thinks that j is going to blame i for letting him down. Vanberg (2008) and Ellingsen et al. (2010)
question the guilt-aversion interpretation of pro-social behavior in the Trust Game.

2We coined the name “Trust Minigame” after the “Ultimatum Minigame” of Binmore et al. (1995), a binary-
choice version of the Ultimatum Game.

3On the one hand, higher levels of oxytocin in trustees are correlated (between subjects) with higher investment
by trusters and higher sharing (Zak et al. 2005, see also Zak 2008). According to the guilt-aversion model, oxytocin
can thus be interpreted as the transmitter from second-order beliefs (expected disappointment from not giving) to
the pro-social action. But in the case of trusters, higher levels of oxytocin are not correlated (between subjects)
with higher investment. And yet, Kosfeld et al. (2005) show that an exogenously induced increase in the oxytocin
level increases investment, which suggests that it is the difference between baseline and actual level of oxytocin
that affects pro-social behavior. We submit that the role of truster is a social cue that shuts down the link between
second-order beliefs and oxytocin levels (cf. Carter & Keverne 2002); thus, oxytocin differences between trusters
mainly reflect differences in baseline levels, not in second-order beliefs.
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guilt aversion.4

Our paper is related to Attanasi et al. (2013), who analyze experimentally the belief-
dependent preferences, behavior, and beliefs of subjects in the Trust Minigame. They show
that making the elicited belief-dependent preferences common knowledge between the subjects
of each matched pair significantly affects behavior and beliefs. This can be interpreted as a com-
parison between a psychological game with incomplete information (control) and a psychological
game with complete information (treatment). The theoretical comparison between treatment
and control draws on the analysis of our paper, which therefore helps organize the data of their
experiment.

Also, under mild assumptions about the empirical distribution of types, our analysis implies
the positive correlation between the second-order beliefs and pro-social action of B-subjects found
by Charness & Dufwenberg (2006). In the final discussion (Section 6), we comment extensively
on such correlation, and – more generally – on the relevance of our models for experiments.

As argued above, the assumption that interacting individuals have belief-dependent social
preferences naturally leads to an incomplete-information analysis. Therefore, we hope that our
paper may have a pedagogical value for applied theorists and experimental economists who are
interested in using psychological game theory to analyze social dilemmas. Indeed, we present
the more abstract methodological material on Bayesian equilibrium and psychological games in
Section 3 so that it can be easily extended and applied to different games.

The rest of the paper is structured as follows. Section 2 introduces the Trust Minigame with
guilt aversion. Section 3 provides the methodology to analyze psychological Bayesian games,
with a focus on the Trust Minigame with unknown guilt aversion. Section 4 puts forward and
analyzes a model with role-dependent guilt, where A is known to be selfish. Section 5 puts
forward and analyzes a model with role-independent guilt. Section 6 concludes with a discussion
of the empirical implications of our analysis and of the situations where it can be usefully applied.
Formal proofs are collected in the Appendix.

2 Guilt aversion in the Trust Minigame

We analyze models of the Trust Minigame where players have different sensitivities to guilt
feelings and incomplete information about the guilt sensitivity of the co-player. All the models
we consider are based on the game form with material payoffs depicted in Figure 1.

Ann Bob (2,2)

(1,1) (0,4)

Out

In Share

Keep

Figure 1: The Trust Minigame form with material payoffs

4Some papers analyze incomplete-information models of games with belief-dependent preferences; see, for
example, Caplin & Leahy (2004), Ong (2011) and Tadelis (2011). Unlike ours, none of these models features
heterogenous beliefs, which are instead allowed for by Battigalli et al. (2013). The latter paper analyzes the
cheap-talk game of Gneezy’s (2005) experiment under the assumption that the sender is affected by an unknown
sensitivity to guilt. This analysis is based on two rounds of elimination of non-best replies under mild assumptions
about heterogeneous beliefs.
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In the analysis of this game form, we denote players’ strategies as follows:

Strategy Notation

In I

Out O

Share if In S

Keep if In K

In order to investigate the effects of guilt feelings on behavior, we need to consider their first- and
second-order beliefs about strategies. We denote with αi player i’s first-order beliefs, and with
βi the second-order beliefs. Specifically, we use the notation described in the following table:5

Belief Notation Definition

Ann’s initial first-order belief αA PA[S]

Bob’s initial first-order belief αB PB[I]

A feature of Bob’s initial second-order belief β∅B EB[αA]

A feature of Bob’s conditional second-order belief βIB EB[αA|I]

Note that we distinguish between initial and conditional second-order beliefs of Bob, and we
refer to the features of such beliefs that are relevant in our analysis. Indeed, we assume below
that Bob’s choice depends on his expectation of Ann’s disappointment if he Keeps, which can be
written as a function of the expected value of Ann’s first-order belief. The second-order beliefs
of Ann will be introduced later as needed.

According to the model of simple guilt (Battigalli & Dufwenberg 2007), player i suffers from
guilt to the extent that he believes that he is letting the co-player −i down. In particular, player
i has belief-dependent preferences over material payoff distributions represented by the following
psychological utility function:

ui = mi − θi max{0,E−i[m−i]−m−i}, (1)

where mi is the material payoff of i, θi ≥ 0 is his guilt sensitivity, and max{0,E−i[m−i]−m−i}
measures the extent of the co-player’s disappointment given the co-player’s subjective beliefs.

We first assume that guilt sensitivity is role-dependent: Only the second mover can be
affected by guilt (θA = 0, θB ≥ 0), and this is common knowledge. Ignoring players’ beliefs
about parameters, the strategic situation can be represented by the following parametrized psy-
chological game:

Ann Bob (2, 2)

(1, 1) (0, 4− 2θBαA)

Out

In Share

Keep

Figure 2: The Trust Minigame with psychological utilities

Indeed, Ann can only be disappointed after terminal history (I,K), in which case the extent
of her disappointment is

max{0,EA[mA]−mA(I,K)} = 2 · αA + 0 · (1− αA)− 0 = 2αA,

5We use bold symbols to denote random variables. Since B does not know αA , this number is a random
variable from B’s point of view, and its expectation is EB [αA]. Similarly, we write EA[mA] for the expected
material payoff of A.
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where mi(z) denotes the material payoff of i at terminal history z ∈ {O, (I,K), (I, S)}. Thus,
the psychological utility at z = (I,K) of Bob (expressed as a function of Ann’s first-order belief
αA) is

uB(I,K, αA) = mB(I,K)− θB max{0,EA[mA]−mA(I,K)} = 4− 2θBαA.

Of course, when Bob evaluates his alternatives and chooses his optimal strategy, he compares the
utility from choosing S with the expected psychological utility from choosing K, which depends
on his second-order beliefs. As long as Bob initially assigns a strictly positive probability to I
(αB = PB[I] > 0), the comparison between strategy S and K can equivalently be made either
ex ante, or conditional on I, because the difference between the ex ante expected utilities of S
and K is proportional to the difference between the conditional expected utilities of S and K:

ESB[uB]− EKB [uB] = EB[uB(I, S,αA)− uB(I,K,αA)|I] · PB[I] = 2(θBβ
I
B − 1)αB. (2)

By definition, 0 ≤ βIB ≤ 1; thus, in an equilibrium with αB > 0, Bob Shares if αB > 0, θB > 1
and βIB > 1

θB
.

The assumption that only player B may be sensitive to guilt is removed in Section 5, where
we analyze a model with role-independent guilt.

3 Methodology: Bayesian psychological games

We are going to model incomplete information about θ using the methodology first proposed by
Harsanyi (1967-68), suitably extended to psychological games (see also Battigalli & Dufwenberg
2009, Section 6.2). We define type structures that implicitly determine the possible hierarchies
of subjective beliefs of the players.

Although our methodology is fully standard from the abstract theory perspective, it is not
widely used in applied theory. Therefore, it is useful to describe carefully the building blocks of
our approach. The main concepts are illustrated by a leading example.

A note on terminology We call “exogenous” a belief about an exogenous variable or
a parameter: A belief about θ is an exogenous first-order belief, a joint belief about θ and
exogenous first-order beliefs of the co-player is an exogenous second-order belief, and so on. We
call “endogenous” a belief about a variable that we try to explain, or predict, with the strategic
analysis of the game. In particular, a belief about strategies is an endogenous first-order belief,
a joint belief about strategies and endogenous first-order beliefs is an endogenous second-order
belief, and so on. We also call “endogenous” a joint belief about exogenous and endogenous
variables.

3.1 Type structures

We consider situations where the psychological utility functions of players A and B are de-
termined by parameters θA ∈ ΘA, θB ∈ ΘB known to A and B respectively. Formally, the
psychological utility of i is a parametrized function

ui : Θi × Z ×Hi ×H−i → R

where Z is the set of terminal histories (play paths) of the game, and Hi (H−i) is a space of
endogenous hierarchical beliefs of player i (−i).6 Since in our applications θi is the guilt sensitivity
parameter of player i, we call θi “guilt type.” When the parameter set Θi is a singleton, the

6See Geanakoplos et al. (1989) and Battigalli & Dufwenberg (2009). In the latter, Hi is a space of hierarchical
conditional beliefs.
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guilt type of i is common knowledge. In models with role-dependent guilt sensitivity, we have
ΘA 6= ΘB; in particular, we assume that ΘA is a singleton, because player A is commonly known
to be a selfish expected material-payoff maximizer, i.e. ΘA = {0}.

The subjective exogenous beliefs of A and B about each other’s private information and
exogenous beliefs are implicitly represented by a type structure, that is, a tuple

T = 〈N = {A,B}, (Θi, Ti,ϑi : Ti → Θi, τ i : Ti → ∆(T−i))i∈N 〉 .

Elements of Ti are called Harsanyi types, or simply types. A Harsanyi type specifies both the
guilt type (more generally, the utility function) and the exogenous beliefs of player i.7 Note that
we use bold symbols to denote functions interpreted as random variables, that is, functions
that depend on the state of the world (tA, tB). Function ϑi specifies the psychological utility
(guilt sensitivity) of type ti, and function τ i determines the exogenous beliefs of ti about the
utility and beliefs of the co-player −i. In particular, we explain below how each type ti in the
structure determines a whole hierarchy of exogenous beliefs for player i. Given a random variable
xi : Ti → Xi, we denote events about xi either directly as subsets of Ti, or according to the
convention which is common in statistics. For example, both ϑ−1i ([0, x]) and ϑi ≤ x denote the
set {ti : ϑi(ti) ≤ x}, that is, the event that the guilt type of i is at most x. We use whatever
notation is more convenient and transparent in the given context.

It may be assumed without essential loss of generality that the set of types is a Cartesian
product Ti = Θi×Ei, so that a type is a pair (θi, ei), and that beliefs about the co-player’s type
are determined only by the second element ei, also called epistemic type. In this case, function
ϑi is the projection map (θi, ei) 7→ ϑi(θi, ei) = θi, and function τ i depends only on ei, hence it
makes sense to write τ i(ei).

Once we append a type structure to the profile of parametrized utility functions, we obtain
a Bayesian psychological game:

Γ = 〈N = {A,B}, (Θi, ui : Θi × Z ×Hi ×H−i → R, Ti,ϑi : Ti → Θi, τ i : Ti → ∆(T−i))i∈N 〉 .

In this paper, we focus on Bayesian psychological games based on the Trust Minigame with guilt
aversion, that is, the game form of Figure 1 with parametrized utility functions given by eq. (1).

3.2 Higher-order exogenous beliefs

The exogenous first-order belief of a type ti is determined by the equation

p1
i (ti)[E

0
−i] = τ i(ti)[(ϑ−i)

−1(E0
−i)] (E0

−i ⊆ Θ−i Borel measurable).

For example, p1
A(tA) [{tB : ϑB(tB) > 2}] is the subjective probability assigned by type tA to the

event that the guilt sensitivity of B is more than 2. We can write this probability more compactly
as p1

A(tA) [ϑB > 2].
With this, we obtain a map (ϑi,p

1
i ) : Ti → Θi × ∆(Θ−i) for each i ∈ {A,B}. Then the

exogenous second-order belief of a type ti is determined by the equation

p2
i (ti)[E

1
−i] = τ i(ti)[(ϑ−i,p

1
−i)
−1(E1

−i)] (E1
−i ⊆ Θ−i ×∆(Θi) Borel measurable).

For example, p2
B(tB)

[{
tA : p1A(tA) [ϑB > 2] ≥ 1

2

}]
is the subjective probability assigned by type

tB to the event that A believes that ϑB > 2 is at least as likely as ϑB ≤ 2.
Proceeding this way, we can associate a hierarchy of exogenous beliefs with each type.

However, beliefs beyond the second order will not be used in the analysis below.

7All our models satisfy the following technical assumptions: For each player i, Ti is a compact metric space, the
set of Borel probability measures ∆(T−i) is endowed with the topology of weak convergence (hence it is compact
and metrizable), and the functions ϑi, τ i are continuous. This implies that the sets and functions we consider
satisfy the necessary measurability requirements.
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3.3 Leading example: exogenous beliefs

We illustrate these abstract concepts with an example, which is (essentially) a special case of our
model with role-dependent guilt. Suppose that it is common knowledge that A is selfish, whereas
B can either have a low guilt type θL < 1, or a high guilt type θH > 2; therefore, ΘA = {0} and
ΘB = {θL, θH}. The exogenous beliefs of each player i are determined by the epistemic type
ei ∈ Ei. Since player A has only one possible guilt type, the epistemic and Harsanyi types of A
coincide, and we can ease notation writing eA = tA. There is a continuum of epistemic types
on both sides. Specifically, we let eA = tA ∈ TA parametrize the subjective probability assigned
by A to the high-guilt type of B: tA = PtA [ϑB = θH ].8 Therefore, we let TA = EA = [0, 1].
Furthermore, we assume that the set of possible epistemic types of B is [0, 1] as well. This is just
a convenient parametrization. Thus TB = ΘB×EB = {θL, θH}× [0, 1].While the set of epistemic
types of A is easily seen to be isomorphic to the set of exogenous first-order beliefs of A, the
meaning of the epistemic types of B can only be understood by considering the belief maps and
unraveling the higher-order beliefs corresponding to each type.

The belief maps have the following features. All types of player A believe that the guilt
and epistemic type of B are statistically independent; furthermore, they hold the same marginal
belief about the epistemic type of B given by a strictly positive density function f : [0, 1] → R,
e.g., the uniform distribution f(eB) = 1. On the other hand, different epistemic types of B may
hold different beliefs about the type of A: The belief of each eB is given by a strictly positive
density function feB : [0, 1] → R. For illustrative purposes, we provide a simple specification of
the belief map eB 7→ feB :

feB (tA) =

{
1− eB, if 0 ≤ tA ≤ 3

4 ,
(1− eB) + 4eB, if 3

4 < tA ≤ 1,
(3)

for all tA, eB ∈ [0, 1]. In words, feB is a mixture of two distributions: epistemic type eB believes
that with probability eB the type of A is uniformly distributed on (34 , 1], and with probability
(1− eB) the type of A is uniformly distributed on [0, 1]. This implies that higher epistemic types
of B hold “higher beliefs” – in the sense of stochastic dominance – about tA.

To sum up, the belief maps τ i : Ti → ∆(T−i) (i ∈ {A,B}) satisfy

τA(tA)[ϑB = θH ∩ eB ≤ y] = τA(tA)[ϑB = θH ] · τA(tA)[eB ≤ y] = tA

∫ y

0
f(eB)deB,

and

τB(θB, eB)[tA ≤ x] =

∫ x

0
feB (tA)dtA,

for all tA, eB, x, y ∈ [0, 1], θB ∈ {θL, θH}.
All of the above is assumed to be common knowledge. This gives the type structure T and

a Bayesian psychological game Γ based on the Trust Minigame with guilt aversion.
Exogenous hierarchies of beliefs are relatively simple. In particular, beliefs about the guilt

type of A and beliefs about such beliefs are trivial, because A is commonly known to be selfish,
whereas the first- and second-order beliefs of, respectively, A and B about the guilt type of B
are

p1,H
A (tA) = p1

A(tA)[ϑB = θH ] = tA

and

p2
B(θB, eB)

[
p1,H
A ≤ x

]
= τB(θB, eB)[tA ≤ x] =

∫ x

0
feB (tA)dtA

8We often write PtA [·] instead of τA(tA)[·] to ease notation in the context of examples and models.
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for all tA ∈ TA, (θB, eB) ∈ TB, and x ∈ [0, 1]. For example, we can use eq. (3) to derive the
probability assigned by epistemic type eB to the event that A deems θH at least as likely as θL:

p2
B(θB, eB)

[
p1,H
A ≥ 1

2

]
= τB(θB, eB)

[
tA ≥

1

2

]
=

1 + eB
2

.

3.4 Equilibrium

A Bayesian equilibrium of the Trust Minigame with incomplete information is given by a
pair of measurable decision functions (σA : TA → {I,O},σB : TB → {S,K}) such that, for
each player i ∈ {A,B} and type ti ∈ Ti, choice σi(ti) maximizes i’s expected utility, given the
endogenous beliefs of type ti about the co-player’s choice and beliefs.9 Note that, in general,
this is a subjective notion of equilibrium, because players’ exogenous beliefs are not necessarily
derived from an objective distribution of types. For more on this, see subsection 3.8.

In a perfect Bayesian equilibrium, player B maximizes his conditional expected utility
upon observing I, with conditional beliefs computed by Bayes’ rule, if possible. Of course,
if σA(tA) = O for every tA, the conditional second-order belief βIB(tB) = EtB [αA|σA = I] can-
not be determined by Bayes’ formula, and we cannot rule out the possibility that βIB(tB) = 0,
hence σB(tB) = K, for every tB. This in turn implies that each type of A is certain of K
(αA(tA) = 0), which justifies σA(tA) = O for every tA. This explains the following remark:10

Remark 1 Every Bayesian psychological game based on the Trust Minigame with guilt aversion
has a perfect Bayesian equilibrium with σA(tA) = O and σB(tB) = K for all types tA and tB.

Having established this once and for all, the rest of the analysis is focused on non-degenerate
equilibria where a positive fraction of A’s types choose I. Under our assumptions on exogenous
beliefs, this implies that every type of B assigns positive probability to I. As we noticed in
Section 2, in this case ex ante maximization of psychological utility is equivalent to conditional
maximization (see eq. (2)); therefore, non-degenerate Bayesian equilibria are also perfect. When
A is commonly known to be selfish, such equilibria have another interesting feature: Since the
positive fraction of A’s types who choose I in equilibrium do this to maximize expected payoff,
upon observing I, player B must conclude that A chose I rationally, hence that A assigned at least
50% probability to S. In other words, in a non-degenerate equilibrium, each type tB is certain
conditional on I that αA ≥ 1/2: βIB(tB)[αA ≥ 1/2] = 1. This is exactly the same inference
imposed by forward-induction reasoning (see Dufwenberg 2002, and Section 5 of Battigalli &
Dufwenberg 2009). Hence, our focus on non-degenerate equilibria can also be motivated as a
forward-induction refinement. Indeed, some of our insights are solely based on a kind of step-
by-step forward-induction reasoning, while others need the fully-fledged Bayesian equilibrium
analysis.

9Such decision functions are often called “strategies.” We avoid this terminology for two reasons. First, we
are not studying a situation where player i decides how to play the game before being informed about his type;
rather, we study decisions of different agents playing in role i, where each agent is characterized by some type ti.
Second, we want to avoid confusion with the strategies of the Trust Minigame, such as “Share if In.”

10Remark 1 is an instance of a more general observation: Fix a game form with material payoffs and no chance
moves. Let G denote the corresponding complete-information game obtained when the game form and the fact
that players are selfish are common knowledge. Let Γ(G) denote any psychological game obtained from G by
adding to each player’s material payoff a (possibly null) guilt-aversion term, and possibly allowing for incomplete
information about guilt parameters. Then, every pure-strategy sequential equilibrium of the material-payoff game
G is also a perfect Bayesian equilibrium of the psychological game Γ(G). The intuition is that off the equilibrium
path players may believe that deviations occurred by mistake and hence do not signal expectations of high material
payoffs. Thus, the best reply at off-path information sets is to maximize one’s own expected material payoff. See
Battigalli & Dufwenberg (2007, Observation 2).
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3.5 Higher-order endogenous beliefs

It is important to understand how the type structure and decision functions σi generate the
players’ endogenous beliefs. We analyze psychological games where the utility of i (determined
by his guilt type θi) depends on what −i plans to do (−i’s strategy) and on the endogenous
first-order beliefs of −i. For example, the utility of each guilt type θB depends on B’s material
payoff – determined by the sequence of actions – and on the disappointment of A; the latter is
positive if A plans to choose I, carries out such plan, and then B replies with K; in this case,
A’s disappointment is determined by the first-order belief of A about the choice of B, that is,
the probability αA assigned by A to strategy S.

The latter probability is an endogenous first-order belief determined by the type of A and
the equilibrium decision function of B:

αA(tA) = τA(tA)[σB = S]. (4)

For player B (and the analyst), αA : TA → [0, 1] is a random variable. Type tB of player B
can compute his initial expectation of αA as follows:11

β∅
B(tB) = EtB [αA] =

∫
αA(tA)τB(tB)[dtA]. (5)

This initial second-order belief reflects how B reasons about the game before playing it.12

But B takes an action only if he observes I, therefore his choice depends on his second-order
belief conditional on I:

βIB(tB) = EtB [αA|σA = I] =
1

αB(tB)

∫
tA:σA(tA)=I

αA(tA)τB(tB)[dtA], if αB(tB) > 0, (6)

where αB(tB) = τB(tB)[σA = I] is the initial endogenous first-order belief of tB (cf. Section 2).
As the above equations illustrate, all the endogenous beliefs are implicitly determined by the

equilibrium decision functions σ = (σA,σB) given the type structure T . But, for the sake of
clarity, we will make the key features of endogenous beliefs explicit.

Besides endogenous first- and second-order beliefs, the type structure and decision functions
determine other random variables that will be used in our analysis (all written in bold). For
example, the random variable “material payoff of player i” is13

mi(tA, tB) =


mi(O), if σA(tA) = O,
mi(I,K), if σA(tA) = I, σB(tB) = K,
mi(I, S), if σA(tA) = I, σB(tB) = S,

and the random variable “psychological utility of player i” is

ui(tA, tB) = mi(tA, tB)− ϑi(ti) max{0,Et−i [m−i]−m−i(tA, tB)},

where, of course, in the computation of Et−i [m−i], type t−i assigns probability one to the choice
σ−i(t−i).

As in the leading example, we use models where the type set of player i can be factorized
as Ti = Θi × Ei, with the convenient parametrization Ei = [0, 1]. The second component of
ti = (θi, ei) – the epistemic type of player i – is a random variable from the point of view of
the co-player −i. Formally, this random variable is just the projection from Ti = Θi × Ei onto
Ei = [0, 1]: ei(tA, tB) = ei if and only if ti = (θi, ei) for some θi ∈ Θi. Thus, for example, [ei > x]
denotes the event that the epistemic type of i is higher than threshold x. Given this, we can
ease notation writing the belief maps as function of ei only, as in τ i(ei), αi(ei), βi(ei).

11Given a real-valued random variable x−i : T−i → R and a measure µ ∈ ∆(T−i), Eµ[x−i] denotes the expecta-
tion of x−i according to µ. To ease notation for the expectation of x−i according to the belief of type ti, we write
Eti [x−i] instead of Eτ i(ti)[x−i].

12Hence it is an interesting feature of beliefs that is worth eliciting in experiments. See the discussion in Section
6.

13Recall that mi(z) is the material payoff of player i at terminal history z.
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3.6 Leading example: equilibrium and endogenous beliefs

Under the simplifying assumptions of the example (see Section 3.3), there is a unique non-
degenerate equilibrium pair of decision functions (σA,σB) that can be determined with the
forward-induction argument mentioned in Section 3.4: Since in a non-degenerate equilibrium a
positive fraction of A-types choose I and each feB has full support on [0, 1], each epistemic type
eB assigns positive probability to I, that is,

αB(eB) =

∫
tA:σA(tA)=I

feB (tA)dtA > 0.

Hence, βIB(eB) is determined by Bayes’ rule (cf. eq. (6)):

βIB(eB) =
1

αB(eB)

∫
tA:σA(tA)=I

αA(tA)feB (tA)dtA.

A’s rationality implies14

σA(tA) =

{
O, if αA(tA) < 1

2 ,
I, if αA(tA) > 1

2 .

Therefore,

βIB(eB) = EeB

[
αA|αA ≥

1

2

]
≥ 1

2
.

B’s rationality implies

σB(θB, eB) =

{
K, if θBβ

I
B(eB) < 1,

S, if θBβ
I
B(eB) > 1.

Since θL < 1, θH > 2 and βIB(eB) ≥ 1/2, the choice of B is independent of the epistemic type
eB: B Keeps if selfish and Shares if prone to guilt feelings, that is,

σB(θB, eB) =

{
K, if θB = θL,

S, if θB = θH .

Therefore, the endogenous first-order belief of a type tA coincides with the exogenous one, that
is, the probability assigned to the high-guilt type of B:

αA(tA) = τA(tA)[ϑB = θH ] = tA,

and the decision function of A is

σA(tA) =

{
O, if tA <

1
2 ,

I, if tA >
1
2 .

Although in this example the fine details of higher-order beliefs do not matter, we derive the
endogenous second-order beliefs of B for illustrative purposes:

β∅
B(eB) = EeB [tA] =

∫ 1

0
tAfeB (tA)dtA,

βIB(eB) = EeB

[
tA|tA >

1

2

]
=

∫ 1
1
2
tAfeB (tA)dtA∫ 1
1
2
feB (tA)dtA

=
3 + 4eB

4(1 + eB)
,

where the last equality follows from eq. (3). Notice that the conditional second-order belief
βIB(eB) is increasing in eB. Such monotonicity is exploited in the equilibrium analysis of the
general model with many guilt types of Section 4.

14We can ignore knife-edge cases because beliefs about the co-player’s type are absolutely continuous.
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3.7 Harsanyi’s method and psychological games

There is a noteworthy difference between the definition of equilibrium in psychological games
with complete information and in Bayesian psychological games: In the former, it is necessary
to assume that endogenous beliefs of all orders are correct (see Geanakoplos et al. 1989, and
Battigalli & Dufwenberg 2009); in the latter, it is instead assumed that conjectures about the
co-players’ decision functions are correct, but there is no explicit condition concerning belief
hierarchies. In other words, the analysis of Bayesian psychological games just requires to apply
the equilibrium concept that was already on the shelves of standard game theory, whereas an
extension of the traditional definition of equilibrium is needed for the analysis of complete-
information psychological games. How can the two definitions be reconciled?

Following the method proposed by Harsanyi in his three-part article in Management Science
(1967-68), we posit a Bayesian game Γ and a profile of decision functions σ. The pair (Γ,σ)
is an interactive beliefs structure generating a description of the possible hierarchies of beliefs
about parameters (utility functions) and about choices, as illustrated in the leading example.
These hierarchies satisfy by construction all the necessary coherence conditions, given σ. In a
psychological game, if the profile of decision functions σ is a Bayesian equilibrium, the choice of
each type is a best reply to his belief hierarchy, and this is common belief; therefore, no further
condition has to be added to the definition of equilibrium. Unlike a Bayesian psychological game,
a complete-information psychological game does not come equipped with a type structure, hence
there seems to be no way to automatically unfold belief hierarchies starting from a profile of
strategies s.

Despite this, there is no substantial difference between the two equilibrium concepts; as a
matter of fact, one is a special case of the other. To see this, note that a complete-information
psychological game G can be interpreted as a trivial Bayesian game Γ with just one type for each
player. In this case, a profile σ of maps from types to strategies is just a profile of strategies s
in G. Hence, the unique type of each player i corresponds to the degenerate hierarchy of beliefs
whereby beliefs of all orders are correct: the first-order belief of i assigns probability one to s−i,
and higher-order beliefs assign probability one to the lower-order beliefs of co-players. Strategy
profile s is a Bayesian equilibrium if each player’s strategy is a best reply to the belief hierarchy
of this player’s unique type. Therefore, the profile of trivial maps σ = s and associated belief
hierarchies is an equilibrium of the trivial Bayesian game Γ if and only if it is an equilibrium of
G according to the complete-information definition.

However, Harsanyi’s methodology allows for a more flexible approach to complete-information
equilibrium: A type structure in the sense of Harsanyi may have so-called “redundant” types,
i.e., distinct types that nonetheless feature the same utility parameter and the same hierarchy
of beliefs about utility parameters. This means that a complete-information game G can be
equipped with a type structure T with multiple redundant types, thus obtaining a non-trivial
Bayesian game Γ = (G, T ). Even though all types in Γ have the same utility function and
hierarchical beliefs about utility functions, now an equilibrium profile σ can map different types
to different strategies. As a consequence, in a Bayesian equilibrium players may be uncertain
about the strategies and hierarchical beliefs about strategies of the co-players.15 In other words,
even if the utility functions are common knowledge and hence exogenous hierarchies of beliefs are
trivially unique, there may be multiple hierarchies of endogenous beliefs. If there are sequential
moves, this implies that players can change their mind about the co-players’ intentions as the
play unfolds on an equilibrium path, which is impossible according to the complete-information
equilibrium concepts of Geanakoplos et al. (1989) and Battigalli & Dufwenberg (2009).16

15With standard (i.e., belief-independent) preferences, this is equivalent to the subjective correlated equilibrium
concept (Brandenburger & Dekel 1987).

16See the notion of “polymorphic sequential equilibrium” of Battigalli et al. (2014).
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3.8 Actual distribution of types and predictions

We adapt to psychological games the general notion of Bayesian equilibrium of Harsanyi (1967-
68), which is inherently subjective, because players’ beliefs are not derived from an objective
distribution over types. In fact, our models do not assume that players know the objective
statistical distribution of types and derive their exogenous beliefs from such distribution.17 If
this were the case, different types could have different beliefs only if the types of A and B were
correlated, as in the case – for example – with assortative matching. But, under the random-
matching structure typical of lab experiments, the types of A and B are objectively independent,
with marginal probabilities given by the frequency distribution of types in the population from
which subjects are drawn at random. Hence, conditioning on one’s own type, a player can-
not learn anything about the type of the co-player. With this, in a Bayesian equilibrium, a
player’s first- and second-order beliefs about the co-player would be type-independent, contrary
to the findings of the experimental literature, which suggests instead that such beliefs are very
heterogeneous.18

We analyze equilibria of Bayesian games with subjective beliefs to allow for such heterogene-
ity. Hence, our equilibrium analysis does not have to posit an objective statistical distribution on
the type space. But, of course, such a distribution is necessary to derive statistical predictions.
This is apparent in our leading example: The relative frequency of the trusting strategy I and
of “optimistic” first-order beliefs (αA > 1/2) is just the fraction of A-agents in the population
who believe that the high guilt type θH is more likely than the low guilt type θL. The relative
frequency of the sharing strategy S coincides with the fraction of B-agents whose guilt type is
θH . Finally, the relative frequency of “optimistic” initial second-order beliefs (β∅B > 1/2) is the
fraction of B-agents who believe that with more than 50% probability A deems θH more likely
than θL.

A subtler question is whether we should expect to observe a positive correlation between
(conditional) second-order beliefs and the propensity to Share. It turns out that this is the case
if the guilt and epistemic components of B’s type are statistically independent.19 We extensively
comment on statistical predictions in Section 6.

4 Role-dependent guilt

We analyze a model that generalizes the example of Section 3.3: Player A is commonly known to
be a material payoff maximizer, but there are infinitely many possible guilt types of player B. If
the agents playing in role A and B are drawn at random from the same population, as in most
experiments, then we are assuming that the “potential” guilt sensitivity of an agent becomes an
actual tendency to live up to the other’s expectations only if this agent plays in the role of the
“trustee” B. See the discussion in the Introduction.

4.1 Type structure

Since player A is commonly known to be selfish, ΘA = {0}. The set of possible guilt types of
B is a closed interval ΘB = [θL, θH ] with 0 ≤ θL < 1 and θH > 2. The beliefs of each player i
about the type of the co-player −i are solely determined by the epistemic type ei ∈ Ei, with the
convenient parametrization Ei = [0, 1]. Therefore, TA = {0}×EA ∼= EA and TB = [θL, θH ]× [0, 1].

Each type of player A believes that the guilt and epistemic type of B are statistically inde-
pendent. We let eA = tA ∈ TA parametrize A’s subjective distribution over the guilt types of B:
PtA [ϑB < z] = GtA (z), where the cdf GtA : R→ [0, 1] has support [θL, θH ] and is continuous on

17In other words, we do not assume an “objective” common prior on the state space.
18See the references cited in the Introduction.
19This is just a sufficient condition for all models based on the Trust Minigame with guilt aversion.
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(θL, θH), and GtA(z) is continuous in tA for each z ∈ (θL, θH).20 The beliefs about ϑB of higher
types first-order stochastically dominate those of lower types:

t′A < t′′A ⇒ Gt′A(z) > Gt′′A(z), (7)

for all z ∈ [θL, θH) and t′A, t′′A ∈ [0, 1].
We also assume that there exist thresholds tA > 0 and t̄A < 1 such that every type tA < tA

believes that ϑB < 1 with more than 50% probability, and every type tA > t̄A believes that
ϑB > 2 with more than 50% probability:

tA := sup
{
tA : GtA(1) > 1

2

}
> 0,

t̄A := min
{
tA : GtA(2) ≤ 1

2

}
< 1.

(8)

By continuity of GtA(z) in tA and z, and the stochastic-order assumption (7), tA (resp., t̄A) is
the unique solution to GtA(1) = 1/2 (resp., GtA(2) = 1/2), and tA < t̄A.

The marginal beliefs of each type tA about the epistemic type of B are given by the same
continuous cdf F : R → [0, 1] with support [0, 1].21 The resulting belief function τA : TA →
∆(TB) satisfies

τA(tA)[ϑB ≤ z ∩ eB ≤ y] = GtA(z)F (y) (9)

for all tA, y ∈ [0, 1] and z ∈ [θL, θH ].
Each epistemic type eB of B has beliefs about A’s type given by a continuous cdf FeB : R→

[0, 1] with support [0, 1]. The resulting belief function τB : TB → ∆(TA) satisfies

τB(θB, eB)[tA ≤ x] = FeB (x), (10)

for all θB ∈ [θL, θH ] and eB, x ∈ [0, 1].22 Furthermore, we assume that the following stochastic-
order property holds: The conditional expectations EeB [tA|tA > x] are strictly increasing in
eB:

e′B < e′′B ⇒
1

1− Fe′B (x)

∫ 1

x
tAdFe′B (tA) <

1

1− Fe′′B (x)

∫ 1

x
tAdFe′′B (tA) (11)

for all e′B, e
′′
B ∈ [0, 1] and x ∈ [0, 1). Intuitively, this means that higher epistemic types of B have

higher beliefs about the (epistemic) type of A.23

All of the above is common knowledge. Since the beliefs of type (θB, eB) depend only on
the epistemic component eB, to ease notation, we write αB(eB), β∅

B(eB), βIB(eB) instead of,
respectively, αB(θB, eB), β∅

B(θB, eB), βIB(θB, eB), as we did in the leading example.

20GtA has support [θL, θH ] if it is strictly increasing on [θL, θH ], GtA (z) = 0 for z < θL , and GtA(z) = 1 for
z ≥ θH . We allow for atoms at θL and θH , as in the parametrized cdf

GtA(z) =


0, z < θL,

1− tA − ε+ ε z−θL
θH−θL , θL ≤ z < θH ,

1, z ≥ θH ,

which essentially gives back the leading example for ε small: PtA [ϑB = θH ] = tA, PtA [ϑB = θL] = 1− tA − ε.
21That is, F is strictly increasing on [0, 1] with F (0) = 1− F (1) = 0.
22Conditions (9)-(10) imply that there is no perception of false consensus. See the discussion in Section 6.
23This assumption holds if the epistemic types of B are ordered by hazard rate. When every cdf FeB is differen-

tiable with density feB , this can be expressed as follows:

e′B < e′′B ⇒
fe′′

B
(tA)

1− Fe′′
B

(tA)
<

fe′
B

(tA)

1− Fe′
B

(tA)

for all e′B , e
′′
B ∈ [0, 1] and tA ∈ [0, 1). See Shaked & Shantikumar (2007, pp. 16-17). Notice that this stochastic-

order property holds, but only weakly, in the leading example of Section 3.3.
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4.2 Equilibrium analysis

By Remark 1, there is a pooling equilibrium with no trust and no cooperation. Henceforth, we
study the non-degenerate equilibria, that is, those where a positive fraction of A-types choose In.
Our assumptions imply that all non-degenerate equilibria exhibit threshold decision functions
whereby higher types choose the pro-social action (the threshold types cannot be atoms, therefore
their choices are immaterial). We call such functions “monotone”:

Definition 2 Decision function σA is monotone (increasing) if there is a threshold t̂A ∈ [0, 1]
such that, for every tA,

tA < t̂A ⇒ σA(tA) = O,

tA > t̂A ⇒ σA(tA) = I.

Decision function σB is monotone (increasing) in θB if, for every eB ∈ [0, 1], there is a
threshold θ̂B(eB) ∈ [θL, θH ] such that, for every θB,

θB < θ̂B(eB)⇒ σB(θB, eB) = K,

θB > θ̂B(eB)⇒ σB(θB, eB) = S,

and it is monotone (increasing) in eB if, for every θB ∈ [θL, θH ], there is a threshold êB(θB)
such that, for every eB,

eB < êB(θB)⇒ σB(θB, eB) = K,

eB > êB(θB)⇒ σB(θB, eB) = S.

A non-degenerate equilibrium (σA,σB) determines the endogenous belief functions αA, β∅
B

and βIB as in eq. (4)-(5)-(6), so that σ−1A (I) has positive measure, σA(tA) is a best reply to
αA(tA) for all tA, and σB(θB, eB) is a best reply to βIB(eB) for all θB and eB.

The incentive conditions give

αA(tA) <
1

2
⇒ σA(tA) = O, (12)

αA(tA) >
1

2
⇒ σA(tA) = I,

2 < 4− 2θBβ
I
B(eB)⇒ σB(θB, eB) = K, (13)

2 > 4− 2θBβ
I
B(eB)⇒ σB(θB, eB) = S,

for all tA ∈ TA, (θB, eB) ∈ TB.

Proposition 3 Every non-degenerate equilibrium of the model given by (7)-(11) has the follow-
ing structure:

(a) σA is monotone with threshold t̂A ∈ [tA, t̄A], which is the unique solution to equation

αA(t̂A) =
1

2
,

where

αA(tA) =

∫
[0,1]

(
1−GtA

(
1/βIB(eB)

))
dF (eB)

for all tA ∈ [0, 1].
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(b) σB is monotone in θB with threshold function θ̂(eB) = 1/βIB(eB), and monotone in eB with
threshold function ê(θB) = (βIB)−1 (1/θB)).

(c) The endogenous beliefs of B satisfy

αB(eB) = 1− FeB (t̂A) > 0,

β∅
B(eB) = 1−

∫
[0,1]

∫
[0,1]

GtA
(
1/βIB(x)

)
dF (x)dFeB (tA),

βIB(eB) = EeB [αA|tA > t̂A] ≥ 1

2

for all eB ∈ [0, 1].

Proposition 3 characterizes the structure of all non-degenerate equilibria of the model. Such
equilibria have monotone decision functions. By condition (7), the higher the epistemic type of
A, the higher A’s belief that the guilt type of B is high. As higher guilt types of B have a higher
propensity to Share, A’s first-order belief is increasing in tA; hence, according to the incentive
condition (12), all epistemic types of A higher than t̂A choose In.

By (11), higher epistemic types of B hold higher second-order beliefs on the epistemic type
of A conditional on I. Since all epistemic types of A higher than t̂A choose In, βIB(eB) =
EeB [αA|tA > t̂A] is increasing in eB. Hence, incentive condition (13) implies that the decision
function of B is monotone both in θB and in eB. Such decision function is characterized by a
decreasing threshold function ê(θB), as shown in Figure 3.

θB

eB

1

1 2

K S
ê (θB)

Figure 3: Equilibrium choice of B

As anticipated in Section 3.4, our assumptions imply that non-degenerate equilibria are
the only ones consistent with forward-induction reasoning: Choice I signals that αA ≥ 1/2.
Therefore, βIB(eB) ≥ 1/2, and A predicts that all the types with θB > 2 would Share; thus,
αA(tA) ≥ PtA [ϑB > 2]. By assumption, PtA [ϑB > 2] > 1/2 for all tA ∈ (t̄A, 1]; hence, the
measure of the set of A−types trusting B is at least 1− t̄A > 0.

On the other hand, 1 − αA(tA) ≥ PtA [ϑB < 1]. By assumption, PtA [ϑB < 1] < 1/2 for all
tA ∈ [0, tA); hence, the measure of the set of A-types that do not trust B is at least tA > 0.
Therefore, there is heterogeneity of behavior and of endogenous beliefs among A-types. As for B,
heterogeneity of behavior is quite obvious from incentive condition (13), given that B forward
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inducts, and that there are types with θB > 2 and types with θB < 1. Heterogeneity of en-
dogenous beliefs follows from forward-induction reasoning and our assumptions about exogenous
beliefs.

5 Role-independent guilt

We now analyze a model of situations where the agents playing in role A and B are drawn from
the same population, as in most games played in the lab. If guilt aversion is not affected by
the role played in the game, the type structure must be symmetric. To anticipate, the main
difference with the model of Section 4 is that here also player A may experience guilt feelings
triggered by the expectation of B’s disappointment. This is related to other differences between
the assumed type structures.

Player B can only be disappointed after the terminal history O, in which case the extent of
his disappointment also depends on what he plans to do in the subgame, i.e., his strategy. To
derive B’s disappointment, first note that his expected material payoff is

EB[mB] =

{
1 · (1− αB) + 2 · αB, if sB = S,
1 · (1− αB) + 4 · αB, if sB = K.

Since mB(O) = 1 is the lowest material payoff for B, EB[mB] ≥ mB(O), and B’s disappoint-
ment after O is

max {0,EB[mB]−mB(O)} = EB[mB]− 1 =

{
αB, if sB = S,
3αB, if sB = K.

(14)

We can represent this strategic situation with a psychological game parametrized by the guilt
sensitivities θA and θB. To analyze such version of the Trust Minigame with guilt aversion, we
need to expand our notation about beliefs by introducing a feature of Ann’s second-order beliefs,
her expectation of Bob’s disappointment if she goes Out:

β̄A = EA [EB[mB]−mB(O)] .

The psychological game with role-independent guilt aversion is more easily represented in a
sort of reduced form where each player’s psychological utility depends on his own endogenous
second-order belief rather than the co-player’s endogenous first-order belief, as shown in Figure
4.24

Ann Bob (2, 2)

(1− θAβ̄A, 1) (0, 4− 2θBβ
I
B)

Out

In Share

Keep

Figure 4: The Trust Minigame with psychological utilities of A and B

24Here we use an observation by Battigalli & Dufwenberg (2009): A psychological utility function of the form
ui : Θi × Z × Hi × H−i → R can be replaced by a utility function ūi : Θi × Z × Hi → R inducing the same
best-reply correspondence, that depends only on the endogenous beliefs of i. As the example shows, this may
require replacing low-order initial beliefs of others with own higher-order conditional beliefs.
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5.1 Type structure

The possibility that both players can feel guilt complicates the analysis. Therefore we introduce
some restrictive assumptions on the type space in order to maintain tractability of the model. In
particular, while keeping the continuum of epistemic types on both sides, we now assume that
each player i’s guilt type can only take two values, low or high, i.e. θi ∈ {θL, θH}, with θL = 0
and θH > 1. As in the previous section, we assume that Ei = [0, 1], and that each epistemic
type of each player i believes that the guilt and epistemic types of player −i are independent.25

Specifically, we model the exogenous beliefs of both players as we did for player A in the leading
example of Section 3.3: ei parametrizes i’s subjective probability of the high-guilt type of the co-
player: τ i(θi, ei)

[
ϑ−i = θH

]
= ei. This implies that, for each i, ti = (θi, ei) ∈ {θL, θH}× [0, 1] =

Ti and that we can write τ i : [0, 1] → ∆
(
{θL, θH} × [0, 1]

)
. As a consequence, the endogenous

second-order beliefs of players A and B are independent of their guilt type. We also assume that
each type of each player has the same marginal beliefs about the epistemic type of the co-player
given by a continuous cdf F with support [0, 1]. Thus,

∀ei ∈ [0, 1],∀x, τ i(ei)[ϑ−i = θH ∩ e−i ≤ x] = eiF (x), (15)

where F is strictly increasing on [0, 1] and admits a density f . Note that here the epistemic type
of B parametrizes an exogenous first-order belief, i.e. B’s subjective probability that the guilt
type of A is high. By contrast, in the model of Section 4, there is only one possible guilt type of
A and eB parametrizes the exogenous second-order belief of B.

By eq. (15), i’s expectation of e−i is independent of ei, hence we write Eei [e−i] = E[e−i].
26

To simplify the exposition and avoid tedious discussions of subcases in the equilibrium analysis,
we assume that this expectation is not too low:

E[e−i] >
1

3
. (16)

5.2 Equilibrium analysis

Remark 1 applies to this model as well; hence, there is a pooling equilibrium with no trust
and no cooperation. Henceforth, we focus on the characterization of equilibria (σA,σB) such
that σ−1A (I) has positive measure, that is, the non-degenerate equilibria. The most important
difference with the model of Section 4 is that, here, choice I is not a clear signal of A’s trust,
because A’s guilt type may be high, and high-guilt type (θH , eA) may choose I in equilibrium even
if αA(eA) < 1/2, to avoid disappointing B. Specifically, eq. (14) shows that B’s disappointment
is maximal when he plans to Keep. Therefore, choice I may be interpreted as a signal that
A’s guilt type is high, A expects B to Keep, and goes In to prevent B’s disappointment. The
following result is a stark illustration of this phenomenon.

Proposition 4 In the model given by (15)-(16) the following is an equilibrium: σA(θL, eA) = O,
σA(θH , eA) = I, and σB(θL, eB) = σB(θH , eB) = K for all eA and eB, which yields the following
endogenous beliefs: αA (eA) = 0, β̄A (eA) = 3E[eB], αB (eB) = eB and β∅

B(eB) = βIB (eB) = 0
for all eA and eB.

The equilibrium described by Proposition 4 is structurally different from the non-degenerate
equilibria of Section 4: Here, every B-type Keeps and, despite this, high-guilt types of A choose
I, because the prospective guilt from disappointing B prevails over the monetary incentive. The
following proposition characterizes the other non-degenerate equilibria.

25In the model with role-dependent guilt this assumption holds trivially for the beliefs of B about A, because
there is only one possible guilt type of A.

26All expectations not indexed by the epistemic type ei are determined by the common marginal cdf F on
E−i = [0, 1].
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Proposition 5 In the model given by (15)-(16) the non-degenerate equilibria (σA,σB) with
heterogeneous behavior by B-types have the following structure: σB(θL, eB) = K for every eB,
the decision functions σA(θn, ·) (n ∈ {L,H}) are monotone increasing, σB(θH , ·) is monotone
decreasing, and the corresponding thresholds êLA, êHA and êHB , with 0 ≤ êHA < êLA ≤ 1 and 0 ≤
êHB < 1, are such that

(a)

êLA = min

{
1,

1

2F
(
êHB
)} ,

êHA > 0⇒ 1− θH β̄A(êHA ) = 2αA
(
êHA
)

and
αA (eA) = eAF

(
êHB
)
,

β̄A(eA) =
(
1− F

(
êLA
)) (

3− 2F
(
êHB
)
eA
)

+
(
F
(
êLA
)
− F

(
êHA
))

3E [eB]

−2
(
F
(
êLA
)
− F

(
êHA
))
eAF

(
êHB
)
E
[
eB|σB = S ∩ ϑB = θH

]
for every eA, hence αA (·) is increasing, and β̄A(·) is decreasing;

(b)

0 < êHB < 1⇒ βIB(êHB ) =
1

θH

and
αB(eB) =

(
1− F

(
êLA
))

+
(
F
(
êLA
)
− F

(
êHA
))
eB,

β∅
B(eB) = F (êHB )E[eA],

βIB(eB) = F (êHB )
(
E
[
eA|σA = I ∩ ϑA = θH

]
eB + E

[
eA|σA = I ∩ ϑA = θL

]
(1− eB)

)
for every eB, hence αB(·) is increasing, β∅

B(·) is constant, and βIB(·) is decreasing.

The equilibria of Proposition 5 are more similar to those of Section 4. In both models, higher
epistemic types of A are more confident that the guilt type of B is high and hence B would
Share. As for player B, βIB(eB) is decreasing in eB, and so is the decision function σB(θH , eB).
The reason why βIB(eB) is decreasing, unlike the model of Section 4 where it is increasing, is
that here eB parametrizes the first-order, not the second-order beliefs of B.27 A high (resp., low)
epistemic type of B thinks that A’s guilt type is likely to be high (resp. low). Therefore, high
eB’s tend to explain choice I as the result of A’s high guilt aversion despite the fact that αA is
low, whereas low eB’s think that A is selfish and explain I with a high αA.

6 Discussion

We finally discuss the relevance of our models for experimental work, and then we offer our
methodological perspective on the use of the Bayesian equilibrium concept.

27In Section 4 the exogenous first-order beliefs of B are trivial, because B knows that A is selfish.
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6.1 Empirical predictions

An equilibrium specifies actions, beliefs about actions (endogenous first-order beliefs) and beliefs
about beliefs about actions (endogenous second-order beliefs) for each type of each player. We
focused on non-degenerate equilibria of the Trust Minigame where a positive fraction of A-types
trust the second mover, B. Qualitative predictions about behavior and hierarchical beliefs about
behavior can be obtained assuming that the actual distribution of types satisfies some mild
assumptions.28 Such predictions can be used to organize experimental data.

Heterogeneity and correlations If the distribution of types has a rich support and the upper
bound on guilt aversion is sufficiently high, we should expect not only heterogeneous behavior,
but also heterogeneous hierarchical beliefs about behavior, with a large fraction of subjects who
exhibit intermediate beliefs.29 Furthermore, if the epistemic component of players’ types, ei, is
statistically independent of the guilt component, ϑi, then we should observe positive correlation
between pro-social actions and endogenous second-order beliefs, for player B and – in the case
of role-independent guilt – also for player A. Indeed, the willingness to choose the pro-social
action, in particular the willingness to Share of B, is an increasing function of the guilt type and
of the endogenous (conditional) second-order belief. In our model, the latter depends only on
the epistemic type. If epistemic and guilt types are statistically independent, then the pro-social
action must be positively correlated with the endogenous second-order belief. Without relying
on equilibrium analysis, Charness & Dufwenberg (2006) derive such positive correlation for B-
subjects (supported by the data) from the assumption that, in our notation, ϑB is statistically
independent of the conditional second-order belief βIB. This is consistent with our equilibrium
analysis, but instead of assuming independence between ϑB and the endogenous belief βIB, we
derive it from the independence between ϑB and eB , which are both exogenous.

Statistical independence between the guilt and epistemic components of types is a natural
benchmark. But it is also plausible to assume that, by a kind of false consensus effect (see Ross
et al. 1977), types with higher guilt aversion tend to have higher beliefs about the aversion to
guilt of the co-player. Adding such positive correlation to the model with role-independent guilt
yields a negative correlation between the conditional second-order beliefs of B-subjects and their
guilt type: high-guilt types of B tend to believe that the guilt type of A is high and to explain
A’s trust as a desire to not disappoint B rather than to obtain a higher material payoff. This
tends to decrease the correlation between the pro-social action and the conditional second-order
belief. On the other hand, when A is known to be selfish (role-dependent guilt), we may have
a different kind of false consensus: the higher the guilt type of B, the higher (in the stochastic
sense) his belief about A’s belief that B’s guilt type is high. In this case, positive correlation
between the guilt and epistemic components tends to strengthen the positive correlation between
the pro-social action and the conditional second-order belief.30

28Recall that our models specify interactive beliefs for each type, but are silent on the actual distribution of
types.

29Attanasi et al. (2013) instead implement in an experimental treatment a situation close to complete infor-
mation, hence one where the support of exogenous beliefs for each matched pair of subjects is very small. They
show that in this treatment endogenous beliefs tend to be extreme, as predicted by the complete information
theory, whereas in the control treatment (incomplete information) they are indeed heterogeneous and mostly have
intermediate values.

30The actual existence of a false consensus effect does not imply that players’ subjective beliefs must display a
perception of false consensus for the co-player. Such perceptions are modeled by the type structure. In our models
there is no perception of false consensus because of the twin assumptions that the belief maps do not depend on
the guilt component of players’ types, and that each player deems the epistemic component of the co-player type
to be independent of the guilt component. However, taking into account what we just said about the actual false
consensus effect, we can speculate about the effect of introducing the perception of false consensus in our models.
If, in the model with role-dependent guilt, we let A perceive a positive correlation between the guilt and epistemic
components of B’s type, the qualitative results do not change: now A expects high-guilt types of B to be even more
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Further analysis of beliefs The theoretical insights of our models can be used by experimen-
tal economists to extend the elicitation and analysis of players’ beliefs, design new experiments
and explain previous experimental results.

First of all, our theoretical analysis highlights the importance of beliefs that are not considered
in the experimental literature on the Trust Game, specifically, the second-order beliefs of A, and
the initial beliefs of B.31 The former are relevant when also A may be guilt averse: As discussed
above, the presence of such guilt aversion should yield a positive correlation between A’s second-
order beliefs and the propensity to go In. New experiments eliciting such beliefs could check for
such correlation, thus providing indirect evidence on the role dependence of guilt aversion. As
for B’s beliefs, choice should correlate with conditional beliefs, but also initial beliefs are relevant
because they reflect B’s strategic reasoning before playing the game.32

Our analysis also provides a potential explanation of why the conditional second-order beliefs
of B-subjects do not conform to the classical forward-induction argument: If A is known to be
selfish, then βIB = EB(αA|I) ≥ 1/2 because A goes In only if αA ≥ 1/2. But, as shown in Section
5, if A is perceived by B as potentially guilt averse, action In may be interpreted as a desire not
to disappoint B, hence it may well be the case that βIB < 1/2. Indeed, experimental data show
that a significant fraction of B-subjects hold such low conditional second-order beliefs.33

6.2 Applicability of subjective Bayesian equilibrium

Our use of Bayesian equilibrium to model behavior and endogenous beliefs in games with belief-
dependent preferences deserves discussion. Here we first explain why the traditional justification
that equilibrium is attained through learning does not apply, then we elaborate on our interpre-
tation of Bayesian equilibrium analysis.

Equilibrium and learning It is frequently argued that equilibrium analysis is appropriate to
organize data because agents learn equilibrium behavior by playing a game many times against
randomly matched co-players. But here we do not rely on such justification for several reasons.

First and most importantly, in so far as we aim at organizing experimental data, we must take
into account that in most experiments on the Trust Game and other social dilemmas subjects
play the game just once, or perhaps a few times, hence they cannot learn.

Second, as noted by Battigalli & Dufwenberg (2009), once behavior has stabilized in a recur-
rent game, strategy distributions should look like a self-confirming equilibrium, which may be
different from a Nash or Bayesian equilibrium if agents have belief-dependent preferences.

A third, related issue is that we use the general, subjective notion of Bayesian equilibrium,
because we assume that players do not know the objective distribution of types. Then, even
with standard preferences, Bayesian equilibrium is not the right tool to capture self-confirming
patterns of behavior. The reason is that Bayesian equilibrium postulates that players have correct
conjectures about the true (type-dependent) decision functions of co-players, but this assumption
can be justified by learning only in those rare situations where agents obtain sufficient information
feedback to correctly identify the actual decision functions. However, such fine information

cooperative because he expects them to hold on average higher endogenous second-order beliefs. On the other
hand, the effects of introducing a strong perception of false consensus in the model with role-independent guilt
are not clear: here higher guilt types of B should be expected to hold on average lower endogenous second-order
beliefs.

31See, e.g., Charness & Dufwenberg (2006), Ellingsen et al. (2010), Chang et al. (2011). More precisely, Chang
et al. (2011) elicit B’s first-order beliefs, though they do not use them in the analysis.

32The connection between strategic reasoning and hierarchies of initial beliefs in dynamic games is clarifed by
the literature on epistemic game theory. See Dekel & Siniscalchi (2015) and references therein.

33For example, in Charness & Dufwenberg (2006) – where the forward-induction threshold is 1/2 (7/10) in
treatments with 5-5 (7-7) outside option – only 42% (19/45) of B-subjects in the control treatment with 5-
5 outside option and only 31% (15/48) of B-subjects in the control treatment with 7-7 outside option have a
conditional second-order belief above the forward-induction threshold.
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feedback typically allows to also identify the distribution of types, which yields an objective
Bayesian-Nash equilibrium (cf. Dekel et al. 2004). When instead such strong assumptions about
information feedback do not hold and we model steady states of learning dynamics, beliefs about
parameters are not exogenous, as in subjective Bayesian equilibrium analysis, because they have
to be consistent with the long-run frequencies of observations implied – via information feedback
– by the frequencies of parameter values and choices (e.g., observations of realized monetary
payoffs).

To sum up, many experiments about social dilemmas are not designed so as to make subjects
choose recurrently, hence there cannot be any equilibrating process through learning. But even if
equilibrium analysis aims at organizing data about stabilized behavior in situations of recurrent
interactions, subjective Bayesian equilibrium is not the appropriate tool, and a different approach
is called for.

Equilibrium and strategic reasoning We instead use Bayesian equilibrium analysis to pro-
vide an orderly and consistent description of strategic reasoning in an incomplete information
environment without assuming that behavior has stabilized, for example because subjects play
just once. It has been shown that, if one drops – as we do – the assumption that exogenous
beliefs are derived from an objective distribution, then the Bayesian equilibrium assumption
that players hold correct conjectures about the co-players’ decision functions just ensures that
behavior and endogenous beliefs are consistent with common certainty of rationality, which is
characterized by incomplete-information rationalizability (Battigalli & Siniscalchi 2003).34 This
result refers to equilibrium outcomes encompassing all the subjective Bayesian equilibrium mod-
els based on a given game form with parametrized utility functions. But, of course, our specific
assumptions about exogenous beliefs yield equilibrium implications that go beyond mere ratio-
nalizability. Therefore we offer an analysis in between objective Bayesian-Nash equilibrium and
the most general notion of incomplete-information rationalizability. In particular, our discussion
of the model with role-dependent guilt emphasizes that some key results about non-degenerate
equilibria follow from a forward-induction logic: All the guilt types θB > 2 (those who would
Share if they were sure that αA ≥ 1/2) do indeed Share given A’s trusting action In, because
they rationalize such action and infer that αA ≥ 1/2.35 Predicting this, all the types of A who
assign more than 50% probability to ϑB > 2 play the trusting action. On the other hand, the
types who assign more than 50% probability to ϑB < 1 stay Out, because they understand that
all the guilt types with θB < 1 would Keep, independently of their beliefs. Given the hetero-
geneity of exogenous beliefs, forward induction is enough to imply heterogeneity of behavior and
of endogenous beliefs.

Our equilibrium analysis goes beyond these key insights, yielding monotone decision functions
and the correlations discussed in the previous subsection. Furthermore, in the model with role-
independent guilt, the forward-induction logic does not have such clear-cut implications, because
action In may be rationalized by a desire not to disappoint B rather than get a high monetary
payoff.

It would be interesting to further depart from traditional equilibrium analysis and explore a
rationalizability approach to guilt aversion in social dilemmas whereby some “natural” restric-
tions on beliefs are taken as given and commonly understood.36 Battigalli et al. (2013) use this
approach in the analysis of a cheap-talk sender-receiver game.

34This result relies on the existence of redundant types. Its earliest version is due to Brandenburger & Dekel
(1987), who analyzed subjective correlated equilibria of games with complete infomation.

35As we did in Sections 2-5, we use “Share”, “Keep”, “Out” and “In” both as action labels and as words in the
natural language

36See, e.g., Battigalli & Siniscalchi (2003) for such an approach to incomplete-information games with standard
preferences.
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Appendix

Proof of Proposition 3

The statement is implied by the following claims, which hold for every non-degenerate Bayesian
equilibrium (σA,σB) with endogenous belief functions αA, αB, β∅

B and βIB.

Claim 6 For all eB ∈ EB, βIB(eB) ≥ 1
2 .

Proof In a non-degenerate equilibrium, σA(tA) = I for a set of types with positive measure.
By assumption, for each eB, FeB has full support; hence PeB [σA = I] > 0 and βIB(eB) =
EeB [αA|σA = I] is well defined. Since σA(tA) = I only if αA(tA) ≥ 1

2 , then

βIB(eB) = EeB [αA|σA = I] ≥ EeB

[
αA|αA ≥

1

2

]
≥ 1

2
.

�

Claim 7 For every (θB, eB) ∈ TB with θB > 2, σB(θB, eB) = S.

Proof By Claim 6, βIB(eB) ≥ 1
2 ; therefore, θB > 2 implies 2 > 4 − 2θBβ

I
B(eB) and

σB(θB, eB) = S. �

Claim 8 For every tA > t̄A, σA(tA) = I.

Proof By definition of t̄A, if tA > t̄A then τA(tA)[ϑB > 2] > 1/2. By the stochastic-order
assumption (7), it follows that

tA > t̄A ⇒ αA(tA) = τA(tA)[σB = S] ≥ τA(tA)[ϑB > 2] >
1

2
.

Therefore, σA(tA) = I for every tA > t̄A. �

Claim 9 Decision function σB is monotone in θB with threshold θ̂(eB) = 1/βIB(eB) ≤ 2.

Proof Fix eB arbitrarily. By incentive condition (13),

σB(θB, eB) =

{
K, if θB < θ̂(eB),
S, otherwise,

where the threshold θ̂(eB) = 1/βIB(eB). By Claim 6, θ̂(eB) ≤ 2. �

Claim 10 Decision function σA is monotone with threshold t̂A ∈ [tA, t̄A], which is the unique
solution to equation ∫

[0,1]
GtA

(
1/βIB(eB)

)
dF (eB) =

1

2
. (17)

Proof By Claim 9,

αA(tA) = τA(tA)

[
ϑB >

1

βIB(eB)

]
=

∫
[0,1]

(
1−GtA

(
1/βIB(eB)

))
dF (eB).
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Therefore, by the stochastic-order assumption (7), t′A < t′′A implies

αA(t′A) =

∫
[0,1]

(
1−Gt′A

(
1/βIB(eB)

))
dF (eB)

<

∫
[0,1]

(
1−Gt′′A

(
1/βIB(eB)

))
dF (eB) = αA(t′′A).

Since αA(tA) ≤ 1/2 and αA(t̄A) ≥ 1/2, threshold t̂A is the unique solution t̂A ∈ [tA, t̄A] to eq.
(17). Incentive condition (12) implies that σA is monotone with threshold t̂A. �

Claim 10 implies that β∅
B(eB) = 1−

∫
[0,1]

∫
[0,1]GtA

(
1/βIB(x)

)
dF (x)dFeB (tA).

Claim 11 βIB is strictly increasing.

Proof By Claim 10 and the assumption that each FeB (·) is continuous and strictly increasing
on [0, 1],

βIB(eB) = EeB [αA|σA = I] = EeB [αA|tA > t̂A],

where t̂A is the threshold of Claim 10 and EeB [αA|tA > t̂A] is strictly increasing in eB by eq.
(11). �

Claim 12 Decision function σB is monotone in eB with threshold function ê(θB) = (βIB)−1 (1/θB).

Proof By Claims 9 and 11, βIB(eB) = 1/θ̂B(eB) is increasing, hence invertible. Thus,
incentive condition (13) implies that σB is monotone in eB with threshold function ê(θB) =
(βIB)−1 (1/θB). �

Claim 13 The endogenous first-order belief of B is

αB (eB) = 1− FeB (t̂A) > 0.

Proof Claim 10 implies that

αB (eB) = 1− FeB (t̂A).

The fact that t̂A ≤ t̄A, together with the assumptions that t̄A < 1 and that each FeB (·) is
continuous and strictly increasing on [0, 1] imply that αB (eB) > 0. �

�

Proof of Proposition 4

We must show that the candidate equilibrium where σA(θL, eA) = O, σA(θH , eA) = I, σB(θB, eB) =
K for all eA, θB, and eB satisfies the incentive constraints. These decision functions imply that
αA (eA) = 0 and αB (eB) = PeB

[
ϑA = θH

]
= eB for all eA and eB. Therefore,

βIB (eB) = β∅
B (eB) = 0

and

β̄A(eA) = EeA [EeB [mB]−mB(O)] = EeA [1−αB + 4αB − 1] = 3EeA [αB] = 3E [eB] > 1,

where we used the definition of βIB and Bayes’ rule, the definition of β̄A, eq. (14), and condition
(16).

The beliefs equations for A and the fact that θL = 0 and θH > 1 imply that incentive
condition (12) holds for every type of A, whereas incentive condition (13) holds for every type
of B because βIB = 0.

�
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Proof of Proposition 5

We start from the conjecture that a strictly positive fraction of A-types choose I and provide a
characterization of the equilibria that verify this property. We analyze the equilibrium decision
functions σA(θn, ·) : [0, 1] → {I,O}, σB(θn, ·) : [0, 1] → {S,K}, with n = H,L, and we show
that σA(θn, ·) is monotone increasing and σB(θn, ·) is monotone decreasing. We also provide a
characterization of some properties of the endogenous beliefs. We do so by proceeding through
a series of claims.

The observation that low-guilt types of B choose K (Remark 14) is used to prove that
σA(θL, ·) is monotone (Claim 15). Then, we show that in every non-degenerate equilibrium A’s
expectation of B’s disappointment, β̄A, is strictly positive (Claim 16). Next, we prove that
β̄A > 0 implies that B believes a high-guilt A to be strictly more likely to go In than a low-guilt
A (Claim 17). We use this implication to characterize the monotonicity of the endogenous beliefs
of B (Claims 18 and 19), and to prove that σB(θH , ·) is monotone decreasing (Claim 19). Next,
we prove that σA(θH , ·) is monotone (Claim 20).

Remark 14, Claim 15, and Claims 18-20 taken together lead to Proposition 5.

Remark 14 B’s incentive condition, characterized by eq. (13) also in this model, implies that
σB(θL, eB) = K for every eB.

Let µA be the common marginal belief of each type of A about the epistemic type of B, and
let EHSB =

{
eB : σB(θH , eB) = S

}
. The next claim shows that both A’s initial first-order belief

and his θL-decision function are increasing in his epistemic type.

Claim 15 For every eA,

αA (eA) = eAµA[EHSB ],

σA(θL, eA) =

{
I, if eA > êLA,
O, otherwise,

where êLA = min
{

1, 1
2µA[E

HS
B ]

}
∈
[
1
2 , 1
]
.

Proof Remark 14 and B’s incentive condition imply

[σB = S] = {(θB, eB) : θB = θH , θHβIB(eB) > 1}.

By assumption, τA(eA)[ϑB = θH ∩ eB ≤ y] = eAF (y) for each y. Therefore,

αA(eA) = τA(eA)[σB = S] = τA(eA)

[
ϑB = θH ∩ βIB >

1

θH

]
= eAµA[EHSB ],

which is increasing in eA. The incentive condition (12) for A when the guilt type is low implies

that êLA = min
{

1, 1
2µA[E

HS
B ]

}
; notice that êLA ∈

[
1
2 , 1
]
. �

Next note that, in a non-degenerate equilibrium, A necessarily expects to disappoint B by
going Out. Formally:

Claim 16 In every non-degenerate equilibrium, β̄A(eA) > 0 for each eA.

Proof In a non-degenerate equilibrium a positive fraction of A-types go In, i.e., the set{
eA : σA(θL, eA) = I

}
∪
{
eA : σA(θH , eA) = I

}
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has positive Lebesgue measure. Let µB denote the probability measure on EA = [0, 1] induced
by cdf F , an exogenous marginal belief of player B. To ease notation, let

ELIA =
{
eA : σA(θL, eA) = I

}
,

EHIA =
{
eA : σA(θH , eA) = I

}
.

A positive fraction of A-types go In and µB has full support, therefore µB[ELIA ] + µB[EHIA ] > 0.
Hence each epistemic type eB ∈ (0, 1) expects A to go In with positive probability:

αB(eB) = τB(eB)(σA = I|ϑA = θL)τB(eB)(ϑA = θL) + τB(eB)(σA = I|ϑA = θH)τB(eB)(ϑA = θH)

= µB[ELIA ](1− eB) + µB[EHIA ]eB > 0.

Therefore, for each epistemic type eB ∈ (0, 1),

EeB [mB] = 1 · (1−αB(eB)) + 2 ·αB(eB) > 1.

Since µA[(0, 1)] = 1, for each eA,

β̄A(eA) = EeA [max{0,EeB [mB]− 1}] > 0.

�

Claim 17 According to B’s beliefs, a high-guilt A is strictly more likely to go In than a low-guilt
A: µB[EHIA ] > µB[ELIA ]. Furthermore, whenever the conditional expectations EeB

[
eA|σA = I ∩ ϑA = θH

]
and EeB

[
eA|σA = I ∩ ϑA = θL

]
are well defined, they are independent of eB and satisfy

E
[
eA|σA = I ∩ ϑA = θH

]
=

1

µB[EHIA ]

∫
EHIA

eAdµB(eA) <

<
1

µB[ELIA ]

∫
ELIA

eAdµB(eA) = E
[
eA|σA = I ∩ ϑA = θL

]
.

Proof σA(θL, eA) = I iff 2µA[EHSB ]eA > 1, and σA(θH , eA) = I iff 2µA[EHSB ]eA > 1 −
θH β̄A(eA). Note that θH β̄A(eA) > 0 because θH > 1 by assumption, and β̄A(eA) > 0 by Claim
16. Since µB has full support,

µB[EHIA ]− µB[ELIA ] = µB[{eA : 1− θH β̄A(eA) < 2µA[EHSB ]eA ≤ 1}] > 0.

Recall that, according to B’s beliefs, ϑA and eA are independent. Therefore, for every
x ∈ [0, 1],

PeB [eA < x|σA = I ∩ ϑA = θL] = PeB [eA < x|eA ∈ ELIA ∩ ϑA = θL] = P[eA < x|eA ∈ ELIA ]

whenever the conditional probability is well defined (that is, for µB[ELIA ] > 0 and eB < 1). The
conditional probability P[eA < x|eA ∈ ELIA ] is independent of eB because it is determined by the
common marginal belief µB on EA = [0, 1] generated by cdf F :

P[eA < x|eA ∈ ELIA ] =
µB[{eA ∈ ELIA : eA < x}]

µB[ELIA ]
.

Similarly,

PeB [eA < x|σA = I ∩ ϑA = θH ] = P[eA < x|eA ∈ EHIA ] =
µB[{eA ∈ EHIA : eA < x}]

µB[EHIA ]
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whenever the conditional probability is well defined (that is, for eB > 0, since we know that
µB[EHIA ] > 0). Notice that ELIA = (êLA, 1] ⊂ EHIA ⊆ [0, 1]. Therefore, for each eB ∈ (0, 1),

E
[
eA|σA = I ∩ ϑA = θH

]
=

1

µB[EHIA ]

∫
EHIA

eAdµB(eA) <

<
1

µB[ELIA ]

∫
ELIA

eAdµB(eA) = E
[
eA|σA = I ∩ ϑA = θL

]
where the second conditional expectation is well defined if µB[ELIA ] > 0, i.e. if êLA < 1. �

Claim 18 The endogenous first-order belief of B is

αB(eB) = µB[ELIA ] + eB
(
µB[EHIA ]− µB[ELIA ]

)
,

which is strictly increasing in eB.

Proof The endogenous first-order belief of B is

αB(eB) = P[σA = I] = µB[ELIA ](1− eB) + µB[EHIA ]eB

= µB[ELIA ] + eB
(
µB[EHIA ]− µB[ELIA ]

)
.

Notice that αB is strictly increasing in eB given that µB[EHIA ] > µB[ELIA ], as shown in Claim
17. �

Claim 19 The endogenous second-order belief of B is such that

β∅
B(eB) = µA[EHSB ]E(eA),

which is constant, and

βIB(eB) = µA[EHSB ]
(
E
[
eA|σA = I ∩ ϑA = θL

]
(1− eB) + E

[
eA|σA = I ∩ ϑA = θH

]
eB
)

,

which is decreasing (strictly, if µA[EHSB ] > 0). Moreover, σB
(
θH , ·

)
is monotone decreasing,

that is

σB
(
θH , eB

)
=

{
S, if eB < êHB ,
K, otherwise,

where êHB satisfies the incentive conditions

êHB = 0 =⇒ βIB(êHB ) ≤ 1

θH
,

êHB ∈ (0, 1) =⇒ βIB(êHB ) =
1

θH
,

êHB = 1 =⇒ βIB(êHB ) ≥ 1

θH
.

Proof The endogenous second-order belief of B is independent of eB because, by assumption,
αA depends only on eA and each type of B has the same marginal belief µB (the measure
generated by cdf F ) on EB = [0, 1]. Specifically,

β∅
B(eB) = EeB [αA] = EeB (µA[EHSB ]eA) = µA[EHSB ]E(eA).

Given that βIB(eB) = EeB [αA|σA = I] and using Claims 15 and 17, we obtain

βIB(eB) = µA[EHSB ]EeB [eA|σA = I]

= µA[EHSB ]
(
E
[
eA|σA = I ∩ ϑA = θL

]
(1− eB) + E

[
eA|σA = I ∩ ϑA = θH

]
eB
)
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whenever the conditional probabilities are well defined. Therefore βIB(·) is decreasing in eB,
given that

∂βIB(eB)

∂eB
= µA[EHSB ]

(
E
[
eA|σA = I ∩ ϑA = θH

]
− E

[
eA|σA = I ∩ ϑA = θL

])
≤ 0

by Claim 17 (note that µA[EHSB ] may be zero). The incentive condition (13) for the high-guilt
type of B implies that he chooses S iff βIB(eB) > 1

θH
. Therefore, B’s decision function σB

(
θH , ·

)
is monotone decreasing in eB, and characterized by a threshold êHB that satisfies the incentive
conditions stated in this claim. �

Claim 20 The endogenous second-order belief of A is such that

β̄A(eA) = µB[ELIA ]
(
3− 2µA[EHSB ]eA

)
+ 3

(
µB[EHIA ]− µB[ELIA ]

)
E [eB]

−2
(
µB[EHIA ]− µB[ELIA ]

)
eAµA[EHSB ]E

[
eB|σB = S ∩ ϑB = θH

]
,

which is decreasing. Moreover σA
(
θH , ·

)
is monotone (increasing), that is

σA
(
θH , eA

)
=

{
I, if eA ≥ êHA ,
O, otherwise,

where êHA ∈ [0, 1) satisfies the following incentive conditions

êHA = 0 =⇒ 1− θH β̄A(êHA ) ≤ 2αA (eA) ,

êHA > 0 =⇒ 1− θH β̄A(êHA ) = 2αA (eA) .

Proof Remember that B’s disappointment depends on whether B plans to choose S or
K after I. Therefore, A’s expectation of B’s disappointment, β̄A(eA), depends on whether A
expects B to choose S or K:

β̄A(eA) = EeA [3αB|σB = K]PeA [σB = K] + EeA [αB|σB = S]PeA [σB = S] .

Decomposing expected values and taking into account that P
[
σB = S|ϑB = θL

]
= 0, we obtain

β̄A(eA) = E
[
3αB|σB = K ∩ ϑB = θL

]
P
[
σB = K|ϑB = θL

]
PeA

[
ϑB = θL

]
+E

[
3αB|σB = K ∩ ϑB = θH

]
P
[
σB = K|ϑB = θH

]
PeA

[
ϑB = θH

]
+E

[
αB|σB = S ∩ ϑB = θH

]
P
[
σB = S|ϑB = θH

]
PeA

[
ϑB = θH

]
.

Replacing probabilities with their specific expressions and using Claim 18, we obtain

β̄A(eA) = µB[ELIA ]
(
3 (1− eA) + 3(1− µA[EHSB ])eA + eAµA[EHSB ]

)
+
(
µB[EHIA ]− µB[ELIA ]

)
3E [eB] (1− eA)

+
(
µB[EHIA ]− µB[ELIA ]

)
eA3

(
1− µA[EHSB ]

)
E
[
eB|σB = K ∩ ϑB = θH

]
+
(
µB[EHIA ]− µB[ELIA ]

)
eAµA[EHSB ]E

[
eB|σB = S ∩ ϑB = θH

]
.

Now observe that, since the random variables eB and ϑB are independent, we can write

E [eB] = E
[
eB|ϑB = θH

]
=
(
1− µA[EHSB ]

)
E
[
eB|σB = K ∩ ϑB = θH

]
+ µA[EHSB ]E

[
eB|σB = S ∩ ϑB = θH

]
.

Regrouping terms in the expression of β̄A(eA), this simplifies to

β̄A(eA) = µB[ELIA ]
(
3− 2µA[EHSB ]eA

)
+ 3

(
µB[EHIA ]− µB[ELIA ]

)
E [eB]

−2
(
µB[EHIA ]− µB[ELIA ]

)
eAµA[EHSB ]E

[
eB|σB = S ∩ ϑB = θH

]
.
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Note that β̄A(·) is decreasing:

∂β̄A
∂eA

= −2µA[EHSB ]
(
µB[ELIA ] +

(
µB[EHIA ]− µB[ELIA ]

)
E
[
eB|σB = S ∩ ϑB = θH

])
≤ 0.

This completes the proof of the first part of the claim.
To show that σA

(
θH , ·

)
is monotone, we consider A’s incentive condition, that is, type

(θH , eA) of A chooses I when
2αA + θH β̄A(eA) > 1.

Recall that Claim 15 shows that αA = µA[EHSB ]eA; hence, the incentive condition can be rewrit-
ten as

2µA[EHSB ]eA + θH β̄A(eA) > 1.

Next, we show that either (i) the left-hand side (LHS) is increasing in eA, hence σA(θH , ·) is
monotone (increasing) or constant, or (ii) the LHS is larger than 1, hence σA(θH , ·) is constant
at I. Differentiating the LHS and using the expression for ∂β̄A/∂eA, we obtain:

2µA[EHSB ]+θH
∂β̄A
∂eA

= 2µA[EHSB ]
(
1− θH

(
µB[ELIA ] +

(
µB[EHIA ]− µB[ELIA ]

)
E
[
eB|σB = S ∩ ϑB = θH

]))
.

Therefore, the LHS is increasing iff

θH
(
µB[ELIA ] +

(
µB[EHIA ]− µB[ELIA ]

)
E
[
eB|σB = S ∩ ϑB = θH

])
≤ 1.

Suppose the LHS is strictly decreasing, that is

θH
(
µB[ELIA ] +

(
µB[EHIA ]− µB[ELIA ]

)
E
[
eB|σB = S ∩ ϑB = θH

])
> 1. (18)

Note that, by Claim 19, E [eB] ≥ E[eB|eB < êHB ] = E
[
eB|σB = S ∩ ϑB = θH

]
; therefore, we

obtain the following inequalities, which imply that the LHS is larger than 1:

θH β̄A(eA) ≥ θH
(
µB[ELIA ] +

(
µB[EHIA ]− µB[ELIA ]

)
E
[
eB|σB = S ∩ ϑB = θH

]) (
3− 2µA[EHSB ]eA

)
> 1.

In particular, the first inequality holds because the expression for β̄A(eA) and the fact that
E [eB] ≥ E

[
eB|σB = S ∩ ϑB = θH

]
imply that

θH β̄A(eA) ≥ µB[ELIA ]
(
3− 2µA[EHSB ]eA

)
+
(
µB[EHIA ]− µB[ELIA ]

)
3E
[
eB|σB = S ∩ ϑB = θH

]
−2
(
µB[EHIA ]− µB[ELIA ]

)
eAµ

H
AE
[
eB|σB = S ∩ ϑB = θH

]
=

(
µB[ELIA ] +

(
µB[EHIA ]− µB[ELIA ]

)
E
[
eB|σB = S ∩ ϑB = θH

]) (
3− 2µA[EHSB ]eA

)
.

The second inequality holds by eq. (18) and because
(
3− 2µA[EHSB ]eA

)
> 1.

Therefore,

σA
(
θH , eA

)
=

{
I, if eA ≥ êHA ,
O, otherwise,

where êHA ∈ [0, 1) satisfies the incentive conditions

êHA = 0⇒ 1− θH β̄A(êHA ) ≤ 2αA (eA) ,

êHA > 0⇒ 1− θH β̄A(êHA ) = 2αA (eA) .

�
Note that, given that the decision functions σB

(
θH , ·

)
, σA

(
θL, ·

)
and σA

(
θH , ·

)
are mono-

tone and described respectively by thresholds êHB , êLA and êHA , we have that

µA[EHSB ] = F (êHB ),

µB[ELIA ] = 1− F (êLA),

µB[EHIA ] = 1− F (êHA ).

28



This, together with Remark 14, Claim 15, and Claims 18-20 delivers the result stated in Propo-
sition 5.

�
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