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We analyze a notion of selfconfirming equilibrium with non-neutral ambi-

guity attitudes that generalizes the traditional concept. We show that the set

of equilibria expands as ambiguity aversion increases. The intuition is quite

simple: By playing the same strategy in a stationary environment, an agent

learns the implied distribution of payoffs, but alternative strategies yield pay-

offs with unknown distributions; increased aversion to ambiguity makes such

strategies less appealing. In sum, a kind of “status quo bias” emerges: In

the long run, the uncertainty related to tested strategies disappears, but the

uncertainty implied by the untested ones does not.

Keywords: Selfconfirming equilibrium, conjectural equilibrium, model

uncertainty, smooth ambiguity.

JEL classification: C72, D81.
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Chi lascia la via vecchia per la via nuova,

sa quel che perde ma non sa quel che trova1

In a situation of model uncertainty, or ambiguity, the decision maker does

not know the probabilistic model for the variables affecting the consequences of

choices. Such uncertainty is inherent in situations of strategic interaction. This

is quite obvious when such situations have been faced only a few times. In this

paper, we argue that uncertainty is pervasive also in games played recurrently

where agents have had the opportunity to collect a large set of observations and

the system has settled into a steady state. Such a situation is captured by the

selfconfirming equilibrium concept (also called conjectural equilibrium). In a

selfconfirming equilibrium (henceforth, SCE), agents best respond to confirmed

probabilistic beliefs, where “confirmed” means that their beliefs are consistent

with the evidence they can collect, given the strategies they adopt. Of course,

this evidence depends on how everybody else plays. We analyze SCE and

model uncertainty jointly and show that they are conceptually complementary:

The SCE conditions endogenously determine the extent of uncertainty, and

uncertainty aversion induces a kind of status quo bias that expands the set of

selfconfirming patterns of behavior.

The SCE concept can be framed within different scenarios. A benchmark

scenario is just a repeated game with a fixed set of players in which there are

no intertemporal strategic links between the plays. That is, the individuals

who play the game many times are concerned only with their instantaneous

payoff, and ignore the effects of their current actions on the other players’

future behavior; they simply best respond to their updated beliefs about the

current period strategies of the opponents. Although all our results apply

to this situation, our presentation is framed into the so called large popula-

tions (or Nash’s mass action) scenario: There is a large society of individuals

1Italian proverb “Those who leave the old road for a new one, know what they leave but
do not know what they will find.”
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who play recurrently a given game G, possibly a sequential game with chance

moves: for each player/role i in G (male or female, buyer or seller, etc.), there

is a large population of agents who play in role i. Agents are drawn at random

and matched to play G. Then, they are separated and re-matched to play G

with (almost certainly) different opponents, and so on. After each play of a

game in which he was involved, an agent obtains some evidence on how the

game was played. The accumulated evidence is the data set used by the agent

to evaluate the outcome distribution associated with each choice. Note, there

is an intrinsic limitation to the evidence that an agent can obtain: If the game

has sequential moves, he can observe at most the terminal node reached, but

often he will observe even less, e.g., only his monetary payoffs (and not those of

his opponents). Each agent is interested in the distribution of strategy profiles

adopted by the opponents with whom he is matched, because it determines

the expected payoffs of his alternative strategies. Typically, this distribution

is not uniquely identified by the long-run frequencies of the agent’s observa-

tions. This defines the fundamental inference problem he faces, and explains

why model uncertainty is pervasive also in steady states. The key difference

between SCE and Nash equilibrium is that, in a SCE, agents may have in-

correct beliefs because many possible underlying distributions are consistent

with the empirical frequencies they observe (see Battigalli and Guaitoli 1988,

Fudenberg and Levine 1993a, Fudenberg and Kreps 1995).

Partial identification of the true distribution and awareness of the possible

incorrectness of beliefs form the natural domain for ambiguity aversion. Yet,

according to the traditional SCE concept, agents are Bayesian subjective ex-

pected utility maximizers and hence ambiguity neutral. Here we modify the

notion of SCE to allow for non-neutral attitudes toward model uncertainty (see

Gilboa and Marinacci, 2013, for a recent review on the topic). The decision

theoretic work which is more germane to our approach distinguishes between

objective and subjective uncertainty. Given a set S of states, there is a set

Σ ⊆ ∆(S) of possible probabilistic models that the agent posits.2 Each model

2In this context, we call “objective probabilities” the possible probability models (distri-
butions) over a state space S. These are not to be confused with the objective probabilities
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σ ∈ Σ specifies the objective probabilities of states and, for each action a of

the decision maker, it determines a von Neumann-Morgenstern expected util-

ity evaluation U(a, σ); the decision maker is uncertain about the true model

σ (see Cerreia-Vioglio et al., 2013a,b). In our framework, a is the action, or

strategy, of an agent playing in role i, σ is a distribution of strategies in the

population of opponents (or a profile of such distributions in n-person games),

and Σ is the set of distributions consistent with the database of the agent.

Roughly, an agent is uncertainty averse if he dislikes the uncertainty about

U(a, σ) implied by the uncertainty about the true probability model σ ∈ Σ.

We interchangeably refer to such feature of preferences with the expression

“aversion to model uncertainty” or the shorter “ambiguity aversion.”

A now classical description of ambiguity aversion is the maxmin criterion of

Gilboa and Schmeidler (1989), where actions are chosen to solve the problem

maxa minσ U(a, σ). In this paper, we span a large set of ambiguity attitudes

using the “smooth ambiguity” model of Klibanoff, Marinacci and Mukerji

(2005, henceforth KMM). This latter criterion admits the maxmin criterion as

a limit case, and the Bayesian subjective expected utility criterion as a special

case.

In a “Smooth” SCE, agents in each role best respond to beliefs consis-

tent with their database, choosing actions with the highest smooth-ambiguity

value, and their database is the one that obtains under the true data gener-

ating process corresponding to the actual strategy distribution. The following

example shows how our notion of SCE differs from the traditional, or Bayesian,

SCE.

stemming from an Anscombe and Aumann setting. For a discussion, see Cerreia-Vioglio et
al. (2013b).
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MP 2 h2 t2

H2 4 0

T 2 0 4

MP 1 h1 t1

H1 2 1

T 1 1 2

1 + ε

•

O

1

(0 < ε < 0.5)

Figure 1: Matching Pennies with increasing stakes

In the zero-sum game3 of Figure 1, the first player chooses between an

outside option O and two Matching-Pennies subgames, say MP 1 and MP 2.

SubgameMP 2 has “higher stakes” thanMP 1: It has a higher (mixed) maxmin

value (2 > 1.5), but a lower minimum payoff (0 < 1). In this game, there is only

one Bayesian SCE outcome,4 which must be the unique Nash outcome: MP 2 is

reached with probability 1 and half of the agents in each population play Head.

But we argue informally that moderate aversion to uncertainty makes the low-

stakes subgame MP 1 reachable, and high aversion to uncertainty makes the

outside option O also possible.5 Specifically, let µ̄k denote the subjective

probability assigned by an ambiguity neutral agent in role 1 to hk, with k =

1, 2. Going to the low-stakes subgame MP 1 has subjective value max{µ̄1 +

1, 2 − µ̄1)} ≥ 1.5 and going to the high-stakes subgame MP 2 has subjective

value max{4µ̄2, 4(1 − µ̄2)} ≥ 2. Thus, O is never an ambiguity-neutral best

reply and cannot be played by a positive fraction of agents in a Bayesian

SCE. Furthermore, also the low-stakes subgame MP 1 cannot be played in a

Bayesian SCE. For suppose by way of contradiction that a positive fraction of

agents in population 1 played MP 1. In the long run, each one of these agents,

3The zero-sum feature simplifies the example, but it is inessential.
4We call “outcome” a distribution on terminal nodes.
5See Section III for a rigorous analysis.
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and all agents in population 2, would learn the relative frequencies of Head

and Tail. Since in a SCE agents best respond to confirmed beliefs, the relative

frequencies of Head and Tail should be the same in equilibrium, i.e., the agents

in population 1 playing MP 1 would learn that its objective expected utility

is 1.5 < 2 and would deviate to MP 2 to maximize their SEU. On the other

hand, for agents who are (at least) moderately averse to model uncertainty

and keep playing MP 1, having learned the risks involved with the low-stakes

subgame confers to reduced-form6 strategies H1 and T 1 a kind of “status quo

advantage”: The objective expected utility of the untried strategies H2 and T 2

is unknown, and therefore they are penalized. Thus, the low-stakes subgame

MP 1 can be played by a positive fraction of agents if they are sufficiently

averse to model uncertainty. Finally, also the outside option O can be played

by a positive fraction of agents in a SCE if they are extremely averse to model

uncertainty, as represented by the maxmin criterion.7 If an agent keeps playing

O, he cannot learn anything about the opponents’ strategy distribution, hence

he deems possible every distribution, or model, σ2. Therefore, the minimum

expected utility of H1 (resp. T 1) is 1 and the minimum expected utility of H2

(resp. T 2) is zero, justifying O as a maxmin best reply.8

The example shows that, by combining the SCE and ambiguity aversion

ideas, a kind of “status quo bias” emerges: In the long run, uncertainty about

the expected utility of tested strategies disappears, but uncertainty about the

expected utility of the untested ones does not. Therefore, ambiguity averse

agents have weaker incentives to deviate than ambiguity neutral agents. More

generally, higher ambiguity aversion implies a weaker incentive to deviate from

an equilibrium strategy. This explains the main result of the paper: The set

of SCE’s expands as ambiguity aversion increases. We make this precise by

adopting the “smooth ambiguity” model of KMM, which conveniently sepa-

6Hk (resp. T k) corresponds to the class of realization-equivalent strategies that choose
subgame MP k and then select Hk (resp. T k).

7As anticipated, the maxmin criterion is a limit case of the smooth one, therefore the
same result holds for very high degrees of ambiguity aversion.

8Note that we are excluding the possibility of mixing through randomization, an issue
addressed in Section IV.
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rates the endogenous subjective beliefs about the true strategy distribution

from the exogenous ambiguity attitudes, so that the latter can be partially

ordered by an intuitive “more ambiguity averse than” relation. With this, we

provide a definition of “Smooth” SCE whereby agents “smooth best respond”

to beliefs about strategy distributions consistent with their long-run frequen-

cies of observations. The traditional SCE concept is obtained when agents

are ambiguity neutral, while a Maxmin SCE concept obtains as a limit case

when agents are infinitely ambiguity averse. By our comparative statics result,

these equilibrium concepts are intuitively nested from finer to coarser: Each

Bayesian SCE is also a Smooth SCE, which in turn is also Maxmin SCE. Fi-

nally, we show how our results for Smooth SCE extend to other robust decision

criteria.

The rest of the paper is structured as follows. Section I gives the setup

and our definition of SCE. In Section II, the core of the paper, we present a

comparative statics result and analyze the relationships between equilibrium

concepts. Section III illustrates our concepts and results with a detailed anal-

ysis of a generalized version of the game of Figure 1. Section IV concludes the

paper with a discussion of some important theoretical issues and of the related

literature. In the main text we provide informal intuitions for our results. All

proofs are collected in the Appendix.

I. Recurrent games and selfconfirming equilib-

rium

A. Games with feedback

We consider a finite game played recurrently between agents drawn at random

from large populations, one population for each player role. The game may be

dynamic, but in this case we assume that the agents play its strategic form;

that is, they simultaneously and irreversibly choose a pure strategy, which is

then mechanically implemented by some device.
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The rules of the game determine a game form with feedback (I, (Si,Mi, Fi)i∈I),

where:

• I = {1, ...n} is the set of player roles, and we call “player i” the agent

who in a given instance of the game plays in role i ∈ I;

• Si is the finite set of strategies of i ∈ I; with this, we let S = Πi∈ISi and

S−i = Πj 6=iSj denote the set of all strategy profiles and of i’s opponents’

strategy profiles, respectively;

• Mi is a set of messages that player i may receive ex post (at the end of

the game);

• Fi : S →Mi is a feedback function.

For each player role i ∈ I, there is a corresponding population of agents.

Agents playing in different roles are drawn at random, hence independently,

from the corresponding populations, which do not overlap. Once the game

is played by the agents matched at random, the resulting strategy profile s

generates a message mi = Fi(s) for each player i ∈ I. This message encodes

all the information about play that player i receives ex post. This information

typically includes, but needs not be limited to, the material consequences of

interaction observed by i, such as his consumption. If the game is dynamic,

a player’s feedback is a function of the terminal node ζ(s) ∈ Z reached under

strategy profile s. In this case, Fi(s) = fi(ζ(s)) where fi : Z → Mi is the

extensive-form feedback function for player i.

Example 1 Three natural special cases are: For every i ∈ I and s ∈ S,

• Fi(s) = ζ(s), each player observes the terminal node (reached under the

realized strategy profile), that is, fi is the identity on Z;

• Fi(s) = g (ζ(s)), each player observes everybody’s material consequences

at the terminal node, that is, fi is the consequence function g;9

9The consequence function g : Z → Πi∈ICi associates profiles of consequences with
terminal nodes, where Ci denotes the set of all material consequences that player i may face
at the end of the game.
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• Fi(s) = gi (ζ(s)), each player observes his own material consequences at

the terminal node, that is, fi is the i-th projection of g. N

Note that, while in the first two cases all agents obtain the same feedback,

in the third one feedback is personal. We implicitly assume that player i knows

the feedback function Fi and remembers the strategy si he just played. Hence,

upon playing si and receiving message mi, he infers that the strategy profile

played by his opponents must belong to the set

{s−i ∈ S−i : Fi(si, s−i) = mi} = F−1
i,si

(mi),

where Fi,si : S−i → Mi denotes the section at si of the feedback function

Fi.
10 To streamline notation, and inspired by the important special cases in

which Fi = F does not depend on i, we write Fsi instead of Fi,si . With this,

every strategy si gives rise to an ex post information partition of the set of

opponents’ strategy profiles:

Fsi = {F−1
si

(mi) : mi ∈Mi}.

Example 2 In the game of Figure 1, assuming that player 1 observes only his

monetary payoff, the ex post information partition depends on s1 as follows:11

FO = {S2},

FH1 = FT 1 = {{h1.h2, h1.t2}, {t1.h2, t1.t2}},

FH2 = FT 2 = {{h1.h2, t1.h2}, {h1.t2, t1.t2}},

where a1.a2 denotes the strategy of player 2 that chooses action a1 ∈ {h1, t1}
(resp. a2 ∈ {h2, t2}) in subgame MP 1 (resp. MP 2). Summing up, Fs1 depends

on s1 and it never fully reveals the strategy played by the opponent. N

A game form with feedback (I, (Si,Mi, Fi)i∈I) satisfies own-strategy inde-

pendence of feedback if the ex post information partition Fsi is independent

10That is, Fi,si(s−i) = Fi(si, s−i) for every s−i ∈ S−i.
11We are coalescing realization-equivalent strategies of player 1.
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of si for every i ∈ I.12 This property is very strong and is violated in many

interesting cases. For example, the property fails whenever the strategic game

form is derived from a non trivial extensive game form where agents infer ex

post the terminal node reached, such as the game discussed above.

B. Players’ preferences

Next we describe agents’ personal features. We assume for notational simplic-

ity that all agents in any given population i have the same attitudes toward

risk and the same attitudes toward uncertainty (or ambiguity). The former

are represented, as usual, by a von Neumann-Morgenstern payoff function

Ui : S → R.

We say that game G has observable payoffs whenever the payoff of every player

only depends on his ex post information about play. Our main results rely on

this maintained assumption, which can be formalized as follows: For each

i ∈ I, each si ∈ Si, and every s′−i, s
′′
−i ∈ S−i such that Fsi

(
s′−i
)

= Fsi
(
s′′−i
)
,

we have

Ui(si, s
′
−i) = Ui(si, s

′′
−i).

Contrapositively, this means that, upon playing a fixed strategy and obtaining

different utilities, the agent would detect a difference in his opponents’ counter

strategies (receive a different feedback).13

We call game with feedback the tuple G = (I, (Si,Mi, Fi, Ui)i∈I) where

agents’ payoffs are specified.

For each i ∈ I, the attitudes toward uncertainty, or ambiguity attitudes, of

agents in population i are represented by a strictly increasing and continuous

function φi : Ui → R, where Ui = [mins∈S Ui(s),maxs∈S Ui(s)]. Suppose that

player i is uncertain about the true distribution σ−i ∈ ∆(S−i) of strategies in

12This property is called “non manipulability of information” by Battigalli, Gilli and
Molinari (1992) and Azrieli (2009), and “own-strategy independence” by Fudenberg and
Kamada (2011).

13Mathematically, this amounts to Fsi -measurability of each section Usi = Ui,si of Ui.
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the population of potential opponents,14 and that his uncertainty is expressed

by some prior belief µi with support on a posited subset Σ−i of ∆(S−i).
15

Then, the value to player i of playing strategy si ∈ Si is given by the KMM

smooth ambiguity criterion:

V φi
i (si, µi) = φ−1

i

(∫
suppµi

φi(Ui(si, σ−i))µi(dσ−i)

)
, (1)

where

Ui(si, σ−i) =
∑

s−i∈S−i

Ui(si, s−i)σ−i(s−i)

is the von Neumann-Morgenstern expected utility of si under σ−i, so that (1) is

a certainty equivalent expressed in utils. The standard Bayesian SEU criterion

V id
i (si, µi) =

∫
suppµi

Ui(si, σ−i)µi(dσ−i), (2)

corresponds to an affine φi;
16 while a robust criterion à la Gilboa and Schmei-

dler

V ω
i (si, µi) = min

σ−i∈suppµi
Ui(si, σ−i), (3)

can be obtained as a limit of (1) when the measure of ambiguity aversion

−φ′′i /φ′i converges pointwise to infinity (see KMM for details). Alternative

robust preferences are discussed in Section IV.

We call game with feedback and ambiguity attitudes a pair (G, φ), where G

is a game with feedback and φ = (φi)i∈I is a profile of ambiguity attitudes. We

adopt the conventional equality φi = ω for some or all i in order to encompass

preferences represented as in (3). Note that the latter preferences are fully

characterized by Ui and the set suppµi of opponents’ strategy distributions

14In games with three or more players, i is facing a profile of strategy distributions
(σj)j 6=i ∈ Πj 6=i∆(Sj). The random matching structure implies that the objective proba-
bility of strategy profile s−i is σ−i(s−i) =

∏
j 6=i σj(sj). Thus, σ−i ∈ ∆(S−i) is actually a

product distribution.
15The simplex ∆(S−i) in RS−i is endowed with the Borel sigma-algebra.
16Since this is by far the most well known functional form, the superscript “id”(which

stands for “identity function”) will sometimes be omitted.

12



that agent i deems plausible.

C. Partial identification

Next we describe how an agent who keeps playing a fixed strategy in a station-

ary environment can partially identify the opponents’ strategy distributions,

and, if payoffs are observable, he can learn – in the long run – the expected

payoff of the fixed strategy itself.

The probability of observing a given message mi for a player that chooses

si and faces populations of opponents described by σ−i is

σ−i ({s−i ∈ S−i : Fi (si, s−i) = mi}) = σ−i(F
−1
si

(mi)).

The corresponding distribution of messages σ−i ◦ F−1
si
∈ ∆ (Mi) is denoted

F̂si (σ−i). Therefore, if i plays the pure strategy si and observes the long-run

frequency distribution of messages νi ∈ ∆(Mi), then he can infer that the set

of (product) strategy distributions of the opponents that may have generated

νi is17 {
σ−i ∈ Πj 6=i∆(Sj) : F̂si (σ−i) = νi

}
.

If σ∗−i = Πj 6=iσ
∗
j is the true strategy distribution of his opponents, the

long-run frequency distribution of messages observed by i when playing si is

(almost certainly) the one induced by the objective distribution σ∗−i, that is,

ν∗i = F̂si
(
σ∗−i
)
.18 The set of possible distributions from i’s (long-run empiricist)

perspective is thus

Σ̂−i(si, σ
∗
−i) =

{
σ−i ∈ Πj 6=i∆(Sj) : F̂si (σ−i) = F̂si

(
σ∗−i
)}

=
{
σ−i ∈ Πj 6=i∆(Sj) : σ−i|Fsi = σ∗−i|Fsi

}
.

This is, the set of all product probability measures on S−i that coincide with

17With a slight abuse of notation we are identifying the product set Πj 6=i∆(Sj) with the
corresponding set of product distributions on S−i.

18As common in steady state analysis, we are heuristically relying on a law-of-large-
numbers argument.
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σ∗−i on the information partition Fsi : Although σ∗−i remains unknown, its

restriction to Fsi is learned in the limit.

The identification correspondence Σ̂−i(si, ·) is nonempty (since σ∗−i ∈ Σ̂−i(si, σ
∗
−i))

and compact valued; it is also convex-valued in two-person games. Our defi-

nition of Σ̂−i(si, σ
∗
−i) reflects the informal assumption that each agent in pop-

ulation i knows he is matched at random with agents from other populations.

Hence, he knows that – conditional on the true profile of strategy distributions

– the strategy played by the agent drawn from population j is independent

of the strategy played by the agent drawn from population k. Therefore,

Σ̂−i(si, σ
∗
−i) need not be convex in games with three or more players.19

If payoffs are observable, then i can learn their time average and, in the

long run, their expectation.20

Lemma 1 If payoffs are observable in the game with feedback G, then, for

every i, si, and σ∗−i,

Ui(si, σ−i) = Ui(si, σ
∗
−i) ∀σ−i ∈ Σ̂−i(si, σ

∗
−i).

In contrast, if a different strategy s′i 6= si is considered, the value of

Ui(s
′
i, σ−i) as σ−i ranges in Σ̂−i(si, σ

∗
−i) remains uncertain: The set {Ui(s′i, σ−i) :

σ−i ∈ Σ̂−i(si, σ
∗
−i)} is not, in general, a singleton.21 This is the feature that,

under ambiguity aversion, will generate a kind of status-quo bias in favor of

the strategy si that has been played for a long time.

As a matter of interpretation, we assume that each agent in population i

knows I, S, Mi, Fi, Ui, and φi, but he may not know F−i, U−i, and φ−i. In

Section IV we comment extensively on the limitations and possible extensions

of our framework.

19If we assumed total ignorance about the matching process, then the par-
tially identified set would be convex, as in the two person case: Σ̂−i(si, σ

∗
−i) ={

σ−i ∈ ∆(S−i) : F̂si (σ−i) = F̂si
(
σ∗−i
)}

.
20Again, by a law-of-large-numbers heuristic.
21Because Us′i : S−i → R is Fs′i -measurable and not, in general, Fsi-measurable.
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D. Selfconfirming equilibrium

Next we give our definition of selfconfirming equilibrium with non-neutral atti-

tudes toward uncertainty. Recall that we restrict agents to choose pure strate-

gies, so that “mixed” strategies arise only as distributions of pure strategies

within populations of agents.

Definition 1 A profile of strategy distributions σ∗ = (σ∗i )i∈I is a smooth self-

confirming equilibrium (SSCE) of a game with feedback and ambiguity attitudes

(G, φ) if, for each i ∈ I and each s∗i ∈ suppσ∗i , there is a prior µs∗i with support

contained in Σ̂−i(s
∗
i , σ

∗
−i) such that

V φi
i

(
s∗i , µs∗i

)
≥ V φi

i

(
si, µs∗i

)
∀si ∈ Si. (4)

The “confirmed rationality” condition (4) requires that every pure strategy

s∗i that a positive fraction σ∗i (s
∗
i ) of agents keep playing must be a best response

within Si to the “evidence,” that is, the statistical distribution of messages

F̂s∗i (σ
∗
−i) ∈ ∆(Mi) generated by playing s∗i against the strategy distribution

σ∗−i.

If all φi’s are affine, we obtain a definition of Bayesian selfconfirming equi-

librium (BSCE) that subsumes the earlier definitions of conjectural and self-

confirming equilibrium. Finally, we also consider the corresponding classical

(as opposed to Bayesian) case of maxmin selfconfirming equilibrium.

Definition 2 A profile of strategy distributions σ∗ = (σ∗i )i∈I is a maxmin

selfconfirming equilibrium (MSCE) of a game with feedback G if, for each

i ∈ I and each s∗i ∈ suppσ∗i ,

min
σ−i∈Σ̂−i(s∗i ,σ

∗
−i)
Ui (s

∗
i , σ−i) ≥ min

σ−i∈Σ̂−i(s∗i ,σ
∗
−i)
Ui (si, σ−i) ∀si ∈ Si. (5)

Formally, this definition is a special case of the previous one. In fact, an

MSCE is a SSCE of a game (G, φ) with φ ≡ ω under the additional assump-

tion that, for each s∗i played by a positive fraction of agents, the justifying
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prior µs∗i has full support on Σ̂−i(s
∗
i , σ

∗
−i). However, we state it separately

since this maxmin notion also admits a conceptually different, classical, sta-

tistical interpretation in which priors are absent and so agents are empirical

frequentists.

In Section III, we illustrate these definitions with a detailed analysis of a

generalized version of the game of Figure 1. Here we consider a more symmetric

example.

1\2 O2 H2 T2

O1 1, 1 1, 2 1, 2

H1 2, 1 4, 0 0, 4

T1 2, 1 0, 4 4, 0

Figure 2

Example 3 Figure 2 gives the reduced strategic form of a sequential game

where players unilaterally and simultaneously decide either to stop and get out

(Oi) or continue. If they both stop, they get 1 util each; if only one of them

does, the player who stops gets 1 util, the other player gets 2 utils; if they both

continue, next they play a Matching Pennies subgame. Suppose that each i

only observes his own payoff, that is, Fi(·) = Ui(·). Then, an agent who stops

cannot observe anything, while an agent who plays Head or Tails identifies the

strategy distribution of the population of opponents:

Σ̂−i(Oi, σ−i) = ∆(S−i) and Σ̂−i(Hi, σ−i) = Σ̂−i(Ti, σ−i) = {σ−i}

for every i ∈ {1, 2} and σ−i ∈ ∆(S−i). A necessary condition for σ∗ to be a

SCE is

σ∗i (Oi ) < 1 =⇒ σ∗−i(H−i) = σ∗−i(T−i), ∀i ∈ {1, 2},

because agents who do not stop identify the opponents’ distribution and have

to be indifferent between Head and Tail. Next note that stopping is never a

best response for an ambiguity neutral agent.

With this, it is easy to check that BSCE and NE coincide: Nobody stops and the
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two populations split evenly between Heads and Tails. But the set of SSCE’s

is much larger if agents are sufficiently ambiguity averse. Specifically, it can

be shown that the belief that minimizes the incentive for an ambiguity averse

agent to deviate from Oi is µi = 1
2
δH−i +

1
2
δT−i. That is, agents with such belief

think that either all agents in population −i play Head, or all of them play Tail,

and that these two extreme distributions are equally likely. Let φi(U) = U1/α

with α > 0 for each i. Then,

V φi
i (Hi, µi) = V φi

i (Ti, µi) =

(
1

2
41/α +

1

2
01/α

)α
≤ 1⇐⇒ α ≥ 2.

Therefore, if α < 2, then Oi cannot be a best reply to any prior, and so

SSCE = BSCE = NE; if α ≥ 2, then Oi is a best reply to µi, which is

trivially confirmed, and the necessary condition for a SCE is also sufficient:

SSCE = {σ∗ : ∀i ∈ {1, 2}, σ∗i (Oi ) < 1 =⇒ σ∗−i(H−i) = σ∗−i(T−i)}

= {σ∗ : ∀i ∈ {1, 2}, σ∗−i(H−i)(1− σ∗i (Oi )) = σ∗−i(T−i)(1− σ∗i (Oi ))}.

We conclude that if agents are sufficiently ambiguity averse, i.e. α ≥ 2, then

they may stop in a SSCE. N

As anticipated above and discussed in Section IV, our definition of Bayesian

SCE subsumes earlier definitions of conjectural and selfconfirming equilibrium

as special cases. Like these earlier notions of SCE, our more general notion

is motivated by a partial identification problem: The mapping from strat-

egy distributions to the distributions of observations available to an agent is

not one to one. In fact, if for each agent i identification is full – that is,

Σ̂−i(si, σ−i) = {σ−i} for all si and all σ−i – condition (4) is easily seen to

reduce to the standard Nash equilibrium condition Ui
(
s∗i , σ

∗
−i
)
≥ Ui

(
si, σ

∗
−i
)
.

In other words, if none of the agents features a partial identification problem,

we are back to the Nash equilibrium notion (in its mass action interpretation).
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II. Comparative statics and relationships

In this section, we compare the equilibria of games with different ambiguity

attitudes. This allows us to nest the different notions of SCE defined above.

We also identify a special case where they all collapse to Nash equilibrium.

A. Main result

Ambiguity attitudes are characterized by the weighting functions’ profile φ =

(φi)i∈I . We say that φi is more ambiguity averse than ψi if there is a concave

and strictly increasing function ϕi : ψi (Ui) → R such that φi = ϕi ◦ ψi (see

KMM).22 Game (G, φ) is more ambiguity averse than (G,ψ) if, for each i, φi is

more ambiguity averse than ψi. Game (G, φ) is ambiguity averse if it is more

ambiguity averse than (G, idU1 , ..., idUn), that is, if each function φi is concave.

Observe that we do not assume that the φi’s are concave. Therefore, our

comparison of ambiguity attitudes does not hinge on this assumption. In other

words, for the relation of being more ambiguity averse, it only matters that

profile φ be comparatively more ambiguity averse than profile ψ, something

that can happen even if both are ambiguity loving.

Building on the non ambiguity of the expected payoff of the long-run strat-

egy, established in Lemma 1, we can now turn to the main result of this paper:

The set of equilibria expands as ambiguity aversion increases.

Theorem 1 If (G, φ) is more ambiguity averse than (G,ψ), then the SSCE’s

of (G,ψ) are also SSCE’s of (G, φ). Similarly, the SSCE’s of any game with

feedback and ambiguity attitudes (G, φ) are also MSCE’s of G.

We provide intuition for this result in the Introduction. Now we can be

more precise: Let σ∗ be an SSCE of (G,ψ), the less ambiguity averse game,

and pick any strategy played by a positive fraction of agents, s∗i ∈suppσ∗i ;

then, there is a justifying confirmed belief µs∗i such that s∗i is a best reply to

22With the convention that φi = ω is more ambiguity averse than any ψi, and that if φi
is more ambiguity averse than ω then φi = ω.
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µs∗i given ψi, that is, V ψi
i (s∗i , µs∗i ) ≥ V ψi

i (si, µs∗i ) for all si. We interpret µs∗i
as the belief held in the long-run by an agent who keeps playing the long-

run strategy s∗i in the stationary environment determined by σ∗−i. Such agent

eventually learns the long-run frequencies of the (observable) payoffs of s∗i ;

therefore, the value of s∗i for this agent converges to its objective expected

utility U(s∗i , σ
∗
−i), independently of his ambiguity attitudes (cf. Lemma 1).

But the value of an untested strategy si 6= s∗i typically depends on ambiguity

attitudes and, keeping beliefs fixed, it is higher when ambiguity aversion is

lower, that is, V ψi
i (si, µs∗i ) ≥ V φi

i (si, µs∗i ). Therefore

V φi
i (s∗i , µs∗i ) = U(s∗i , σ

∗
−i) = V ψi

i (s∗i , µs∗i ) ≥ V ψi
i (si, µs∗i ) ≥ V φi

i (si, µs∗i )

for all si. This means that it is possible to justify σ∗ as an SSCE of the more

ambiguity averse game (G, φ) using the same profile of beliefs justifying σ∗ as

an SSCE of (G,ψ).

B. Relationships

Theorem 1 implies, that under observable payoffs,

(i) the set of BSCE’s of G is contained in the set of SSCE’s of every (G, φ)

with ambiguity averse players;

(ii) the set of SSCE’s of every (G, φ) is contained in the set of MSCE’s of G.

In other words, under observable payoffs and ambiguity aversion, it holds

that

BSCE ⊆ SSCE ⊆MSCE. (6)

The degree of ambiguity aversion determines the size of the set of selfconfirming

equilibria, with the sets of Bayesian and Maxmin selfconfirming equilibria

being, respectively, the smallest and largest one.23

23But note that the inclusions BSCE ⊆ MSCE and SSCE ⊆ MSCE do not require
ambiguity aversion. Furthermore, one can show that, in two-person games, BSCE ⊆ SSCE
independently of the ambiguity attitudes φ, due to the convex-valuedness of Σ̂−i(si, ·) in
this case (see Battigalli et al., 2011).
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It is well known that every Nash equilibrium σ∗ is also a Bayesian SCE.

The same relationship holds more generally for Nash and smooth selfconfirm-

ing equilibria (also when agents are ambiguity loving). Intuitively, a Nash

equilibrium is an SSCE with correct (hence confirmed) beliefs about strategy

distributions; since correct beliefs cannot exhibit any model uncertainty, they

satisfy the equilibrium conditions independently of ambiguity attitudes.

Lemma 2 If a profile of distributions σ∗ is a Nash equilibrium of a game

with feedback G, then it is a SSCE of any game with feedback and ambiguity

attitudes (G, φ).

Since the set NE of Nash equilibria is nonempty, we automatically obtain

existence of SSCE for any φ.24 In particular, we can enrich the chain of

inclusions in (6) as follows:

∅ 6= NE ⊆ BSCE ⊆ SSCE ⊆MSCE

under observable payoffs and ambiguity aversion.

The next simple, but instructive result establishes a partial converse. Recall

that G has own-strategy independent feedback if what each player can infer

ex post about the strategies of other players is independent of his own choice.

The following proposition illustrates the strength of this assumption.

Proposition 1 In every game with observable payoffs and own-strategy inde-

pendent feedback, every type of SCE is equivalent to Nash equilibrium:

NE = BSCE = SSCE = MSCE.

The intuition for this result is quite simple: The strategic-form payoff

function Ui(si, ·) : S−i → R is constant on each cell F−1
si

(mi) of the partition

Fsi = {F−1
si

(mi)}mi∈Mi
(observability of payoffs), but this partition is indepen-

dent of si (own-strategy independence of feedback). This means that, in the

long run, an agent does not only learn the objective probabilities of the payoffs

24Hence, we also obtain existence of MSCE, by Theorem 1.
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associated with his “status quo” strategy, but also the objective probabilities

of the payoffs associated with every other strategy. Hence, model uncertainty

is irrelevant and he learns to play the best response to the true strategy dis-

tributions of the other players/roles even if he does not exactly learn these

distributions.25

Further results about the relationship between equilibrium concepts can

be obtained when G is derived from a game in extensive form under specific

assumptions about the information structure (see Battigalli et al., 2011).

We conclude by emphasizing the key role played by payoff observability in

establishing the inclusions in (6). The following example shows that, indeed,

these inclusions need not hold when payoffs are not observable.

Example 4 Consider the zero-sum game of Figure 1 of the Introduction, but

now suppose that player 1 cannot observe his payoff ex post (he only remembers

his actions). For example, the utility values in Figure 1 could be a negative

affine transformation of the consumption of player 2, reflecting a psychological

preference of player 1 for decreasing the consumption of player 2 (not observed

by 1) even if the consumption of 1 is independent of the actions taken in this

game. Then, even if 1 plays one of the Matching Pennies subgames for a

long time, he gets no feedback: Under this violation of the observable payoff

assumption, Σ̂2 (s1, σ2) = ∆(S2) for all (s1, σ2). Since u1(O) = 1 + ε is larger

than the minimum payoff of each subgame, the outside option O is the only

MSCE choice of player 1 at the root. If φ1 is sufficiently concave, O is also

an SSCE choice (justified by a suitable prior). But, as already explained, O

cannot be an ambiguity-neutral best reply. Furthermore, it can be verified that

every strategy s1 is an SSCE strategy. Therefore,

BSCE ∩MSCE = ∅ and SSCE *MSCE

and so the inclusions of (6) here do not hold. N

25Related results are part of the folklore on SCE. See, for example, Battigalli (1999) and
Fudenberg and Kamada (2011).
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III. A parametrized example

In this section, we analyze the SCE’s of a zero-sum example parametrized

by the number of strategies. The zero-sum assumption is inessential, but it

simplifies the structure of the equilibrium set. The game is related to the

Matching Pennies example of the Introduction. We show how the SSCE set

gradually expands from the BSCE set to the MSCE set as the degree of am-

biguity aversion increases.

To help intuition, we first consider a generalization of the game of Figure

1: Player 1 chooses between an outside option O that yields n−1+ε utils (0 <

ε < 1/2) and n ≥ 2 Matching-Pennies subgames against player 2. Subgames

with a higher index k have “higher stakes,” that is, a higher mixed maxmin

value, but a lower minimum payoff (see Figure 3). The game of Figure 1

obtains for n = 2.

n− 1 + ε MP 1
MP k hk tk

Hk n+ 2(k − 1) n− k

T k n− k n+ 2(k − 1)

MP n

•1

O

. . . . . .

Figure 3: Fragment of zero-sum game

In this game, player 1 has (n+1)×2n strategies and player 2 has 2n strate-

gies. To simplify the notation, we instead analyze an equivalent extensive-form

game Γn obtained by two transformations. First, player 2 is replaced by a team

of opponents 2.1, ..., 2.n, one for each (zero-sum) subgame k. Second, the se-

quence of moves (k,Hk) of player 1 (go to subgame k then choose Head) –
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which is common to 2n−1 realization-equivalent strategies – is coalesced into

the single strategy Hk. Similarly, (k, T k) becomes T k. The new strategy set of

player 1 has 2n+1 strategies: S1 = {O,H1, T 1, ..., Hn, T n}. If player 1 chooses

Hk or T k, player 2.k moves at information set {Hk, T k} (i.e., without knowing

which of the two actions was chosen by player 1) and chooses between hk and

tk; hence S2.k = {hk, tk}. See Figure 4.

• 1

1 + ε • • • •2.1 2.1 2.2 2.2

2 1 1 2 4 0 0 4

O H1 T 1 H2 T 2

h1 t1 h1 t1 h2 t2 h2 t2

Figure 4: The case n = 2

We assume that players observe the terminal node, or – equivalently – that

the game has observable payoffs (cf. Example 2).

Although there are no proper subgames in Γn, we slightly abuse language

and informally refer to “subgame k” when player 1 chooses Hk or T k, giving

the move to opponent 2.k. The game Γn and the previously described game

have isomorphic sets of terminal nodes (with cardinality 4n+ 1) and the same

reduced normal form (once players 2.1, ..., 2.n of the second game are coalesced

into a unique player 2). By standard arguments, these two games have equiv-

alent sets of Nash equilibria, equivalent BSCE and MSCE sets, and equivalent

SSCE sets for every φ.26

26Each profile σ = (σ1, (σ2.k)nk=1) of the new n-person game can be mapped to an equiv-
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That said, consider the game with feedback Gn derived from extensive-form

game Γn under the assumption that the terminal node reached is observed ex

post (or that payoffs are observable). It is easily seen that, for every profile of

strategy distributions σ∗2 = (σ∗2.k)
n
k=1, it holds that27

Σ̂2(O, σ∗2) = Πn
k=1∆(S2.k), (7)

and

Σ̂2(Hk, σ∗2) = Σ̂2(T k, σ∗2) = {σ2 : σ2.k = σ∗2.k}. (8)

As a result, next we provide necessary SCE conditions that partially char-

acterize the equilibrium strategy distribution for player/role 1 and fully char-

acterize the equilibrium strategy distributions for the opponents.

Lemma 3 For every (Bayesian, Smooth, Maxmin) SCE σ∗ and every k =

1, ..., n,

σ∗1(Hk) + σ∗1(T k) > 0⇒ σ∗1(Hk)

σ∗1(Hk) + σ∗1(T k)
=

1

2
= σ∗2.k(h

k). (9)

Furthermore, for every (σ∗1, σ
∗
2) and σ̄∗1, if (σ∗1, σ

∗
2) is a (Bayesian, Smooth,

Maxmin) SCE, and suppσ∗1 = suppσ̄∗1, then (σ̄∗1, σ
∗
2) is also a (Bayesian,

Smooth, Maxmin) SCE.

Note that these necessary conditions do not restrict at all the set of strate-

gies that can be played in equilibrium: For every s1 ∈ {O,H1, T 1, ..., Hn, T n}
there is some distribution profile σ∗ such that σ∗1(s1) > 0 and (9) holds. The

alent profile (σ̄1, σ̄2) of the old two-person game and viceversa while preserving the equi-
librium properties. Specifically, (σ2.k)nk=1 is also a behavioral strategy of player 2 in the
two-person game, which corresponds to a realization-equivalent strategy distribution σ̄2 for
player 2. Similarly, any such distribution σ̄2 can be mapped to a realization-equivalent pro-
file (σ2.k)nk=1. As for σ1, for each s1 in the new game, the probability mass σ1(s1) can be
distributed arbitrarily among the pure strategies of the old two-person game that select the
corresponding sequence of moves (that is, either (O), or (k,Hk) or (k, T k)), thus obtaining
a realization-equivalent distribution σ̄1. In the opposite direction, every σ̄1 of the old game
yields a unique realization-equivalent σ1 in the new game, where σ1(s1) is the σ̄1-probability
of the set of (realization-equivalent) strategies that select the same sequence of moves as s1.

27For ease of notation, in this section we denote Σ̂−1 by Σ̂2.
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formal proof of the lemma is straightforward and left to the reader. Intuitively,

if subgame k is played with positive probability, then each agent playing this

subgame learns the relative frequencies of Head and Tail in the opponent’s pop-

ulation, and the best response conditions imply that a SCE reaching subgame

k with positive probability must induce a Nash equilibrium in this Matching-

Pennies subgame. Thus, the σ∗2-value to an agent in population 1 of playing

the “status quo” strategy Hk or T k (with σ∗1(Hk) + σ∗1(T k) > 0) is the mixed

maxmin value of subgame k, n− 1 + k/2. With this, the value of deviating to

another “untested” strategy depends on the exogenous attitudes toward model

uncertainty, and on the subjective belief µ1 ∈ ∆(Σ̂2(Hk, σ∗2)), which is only

restricted by σ∗2.k (eqs. (7) and (8)). As for the agents in roles 2.1, ..., 2.n, their

attitudes toward uncertainty are irrelevant, because, if they play at all, they

learn all that matters to them, that is, the relative frequencies of Hk and T k.

Suppose that a positive fraction of agents in population 1 play Hk or T k,

with k < n. By Lemma 3, in a SCE, the value that they assign to their

strategy is its von Neumann-Morgenstern expected utility given that opponent

2.k mixes fifty-fifty, that is, n − 1 + k/2. But, if they are ambiguity neutral,

the subjective value of deviating to subgame n is at least the mixed maxmin

value n− 1 + n/2 > n− 1 + k/2. Furthermore, the outside option O is never

an ambiguity-neutral best reply.28 This explains the following:

Proposition 2 The BSCE set of Gn coincides with the set of Nash equilibria.

Specifically,

BSCE = NE =

{
σ∗ ∈ Σ : σ∗1(Hn) = σ∗1(T n) = σ∗2.n(hn) =

1

2

}
.

Next we analyze the SSCE’s assuming that agents are ambiguity averse

in the KMM sense. The following preliminary result, which has some inde-

pendent interest, specifies the beliefs about opponents’ strategy distributions

that minimize the subjective value of deviating from a given strategy s1 to any

subgame j.

28Indeed, O is strictly dominated by every mixed strategy 1
2H

k + 1
2T

k.
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Lemma 4 Let φ1 be concave. For all j = 1, ..., n, µ1, ν1 ∈ ∆ (Πn
k=1∆(S2.k)),

if

mrg∆(S2.j)
ν1 =

1

2
δhj +

1

2
δtj ,

then

max{V φ1
1 (Hj, µ1), V φ1

1 (T j, µ1)} ≥ V φ1
1 (Hj, ν1) = V φ1

1 (T j, ν1).

Intuitively, an ambiguity averse agent dislikes deviating to subgame j the

most when his subjective prior assigns positive weight only to the highest

and lowest among the possible objective expected utility values, i.e., when

its marginal on ∆(S2.j) has the form xδhj + (1 − x)δtj . By symmetry of the

2×2 payoff matrix of subgame k, he would pick, within {Hk, T k}, the strategy

corresponding to the highest subjective weight (Hk if x > 1/2). Hence, the

subjective value of deviating to subgame j is minimized when the two Dirac

measures δhj and δtj have the same weight x = 1/2.

To analyze how the SSCE set changes with the degree of ambiguity aver-

sion of player 1, we consider the one-parameter family of negative exponential

weighting functions

φα1 (U) = −e−αU ,

where α > 0 is the coefficient of ambiguity aversion (see KMM p. 1865). Let

SSCE(α) denote the set of SSCE’s of (Gn, φ
α
1 , φ2, ...φn). To characterize the

equilibrium correspondence α 7→ SSCE(α), we use the following transforma-

tion of φα1 (U):

M(α, x, y) = (φα1 )−1

(
1

2
φα1 (x) +

1

2
φα1 (y)

)
.

By Lemma 4, this is the minimum value of deviating to a subgame character-

ized by payoffs x and y. The following known result states that this value is

decreasing in the coefficient of ambiguity aversion α, it converges to the mixed

maxmin value as α → 0 (approximating the ambiguity neutral case), and it

converges to the minimum payoff as α→ +∞.
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Lemma 5 For all x 6= y, M(·, x, y) is strictly decreasing, continuous, and

satisfies

lim
α→0

M (α, x, y) =
1

2
x+

1

2
y and lim

α→+∞
M (α, x, y) = min {x, y} . (10)

By Lemma 3, to analyze the SSCE(α) correspondence, we only have to

determine the strategies s1 that can be played by a positive fraction of agents

in equilibrium, or – conversely – the strategies s1 that must have measure zero.

Let us start from very small values of α, i.e., approximately ambiguity neutral

agents. By Lemmas 4 and 5, the subjective value of deviating to the highest-

stakes subgame n is approximately bounded below by n − 1 + n/2 > u1(O).

Therefore, the outside option O cannot be a best reply. Furthermore, suppose

by way of contradiction that Hk or T k (k < n) are played by a positive

fraction of agents. By Lemma 3, the value of playing subgame k is the vNM

expected utility n − 1 + k/2 < n − 1 + n/2. Hence all agents playing this

game would deviate to the highest-stakes subgame n. Thus, for α small,

SSCE(α) = BSCE. By Lemma 5, as α increases, the minimum value of

deviating to subgame n decreases, converging to zero for α → +∞. More

generally, the minimum value M(α, n−j, n+2(j−1)) of deviating to subgame

j converges to n−j for α→ +∞. Since n−j < u1(O) < n−1+k/2, this means

that, as α increases, it becomes easier to support an arbitrary strategy s1 as

an SSCE strategy. Therefore, there must be thresholds 0 < α1 < ... < αn such

that only the higher-stakes subgames k + 1, ...n can be played by a positive

fraction of agents in equilibrium if α < αn−k, and every strategy (including

the outside option O) can be played by a positive fraction of agents for some

α ≥ αn−k. In particular, for α sufficiently large, SSCE(α) coincides with the

set of Maxmin SCE’s, which is just the set

Σ∗ = {σ∗ ∈ Σ : eq. (9) holds}

of distribution profiles satisfying the necessary conditions of Lemma 3.29 To

29This characterization holds for every parametrized family of distributions that satisfies,
at every expected utility value Ū , properties analogous to those of Lemma 5, with α replaced
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summarize, by the properties of the function M(α, x, y) stated in Lemma 5, we

can define strictly positive thresholds α1 < α2 < ... < αn so that the following

indifference conditions hold

max
j∈{k+1,...,n}

M(αn−k, n− j, n+2(j−1)) = n−1+
k

2
, k = 1, ..., n−1, (11)

max
j∈{1,...,n}

M(αn, n− j, n+ 2(j − 1)) = n− 1 + ε, (12)

and SSCE(α) expands as α increases, making subgame k playable in equilib-

rium as soon as α reaches αn−k, expanding to MSCE and making the outside

option O playable as soon as α reaches αn. Formally:

Proposition 3 Let α1 < ... < αn be the strictly positive thresholds defined by

(11) and (12). For every α and k = 1, ...n− 1,

α < αn−k =⇒ SSCE(α) =
{
σ∗ ∈ Σ∗ : σ∗1({O,L1, T 1, ..., Hk, T k}) = 0

}
and

α < αn =⇒ SSCE(α) = {σ∗ ∈ Σ∗ : σ∗1(O) = 0} .

Furthermore ⋃
α≥αn−k

SSCE(α) = Σ∗ = MSCE,

and SSCE(α) = BSCE = NE if α < α1, while SSCE(α) = MSCE if

α ≥ αn.

IV. Concluding remarks and related literature

The SCE concept characterizes stable patterns of behavior in games played

recurrently. We analyze a notion of SCE with agents who have non-neutral

attitudes toward uncertainty about the true steady-state data generating pro-

cess. We showed that this uncertainty comes from a partial identification

by the coefficient of ambiguity aversion −φ′′1(Ū)/φ′(Ū).
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problem: The mapping from strategy distributions to the distributions of ob-

servations available to an agent is not one to one. We use as our workhorse

the KMM smooth-ambiguity model, which separates endogenous beliefs from

exogenous ambiguity attitudes. This makes our setup particularly well suited

to connect with the previous literature on SCE and to analyze how the set

of equilibria changes with the degree of ambiguity aversion. Assuming ob-

servability of payoffs, we show that the set of smooth SCE’s expands when

agents become more ambiguity averse. The reason is that agents learn the

expected utility values of the strategies played in equilibrium, but not those of

the strategies they can deviate to, which are thus penalized by higher ambigu-

ity aversion. This allows us to derive intuitive relationships between different

notions of SCE. Nash equilibrium is a refinement of all of them, which guar-

antees existence. All notions of SCE collapse to Nash equilibrium under the

additional assumption of own-strategy independence of feedback.

We develop our theoretical insights in the framework of population games

played recurrently, but similar intuitions apply to different strategic contexts,

such as repeated games, or dynamic games with a stationary Markov struc-

ture. Our insights are likely to have consequences for more applied work.

For example, the SCE and ambiguity aversion ideas have been applied in

macroeconomics to analyze, respectively, learning in policy making (see Sar-

gent, 1999, and the references in Cho and Sargent, 2008) and robust control

(Hansen and Sargent, 2008). Our analysis suggests that these two approaches

can be fruitfully merged. Fershtman and Pakes (2012) put forward a con-

cept of “experience based equilibrium” akin to SCE to provide a framework

for the theoretical and empirical analysis of dynamic oligopolies. They argue

that equilibrium conditions are, in principle, testable when agents beliefs are

determined (if only partially) by empirical frequencies, as in their equilibrium

concept and in SCE. Their model features observable payoffs because firms ob-

serve profits; therefore a version of our main result applies: Ambiguity aversion

expands the set of equilibria.

In the remainder of this section we consider some limitations and possible

extensions of our analysis, and we briefly discuss the related literature. We
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refer the reader to the working paper version (Battigalli et al. 2011) and to

Battigalli et al. (2014) for a more detailed discussion.

More on robust preferences It is well known that the smooth ambiguity

criterion corresponding to φi (t) = −e− t
α for all t ∈ R, with constant absolute

ambiguity aversion coefficient α > 0, can be written as

V φi
i (si, µi) = inf

νi�µi

(∫
suppνi

Ui (si, σ−i) νi(dσ−i) + αH (νi||µi)
)

.

Here H is the Kullback-Leibler divergence; thus the corresponding smooth

criterion is akin to the multiplier criterion of Hansen and Sargent (2001). This

suggests considering robust preferences of the form

V Φi
i (si, µi) = inf

νi�µi

(∫
suppνi

Ui (si, σ−i) νi(dσ−i) + Φi (νi||µi)
)

, (13)

where Φi is a generic divergence between priors, that is, a function

Φi : ∆ (∆ (S−i))×∆ (∆ (S−i))→ [0,∞]

such that Φi (·||µi) is convex and Φi (µi||µi) = 0 for every µi. Maccheroni,

Marinacci and Rustichini (2006) and Cerreia-Vioglio, Maccheroni, Marinacci

and Montrucchio (2013a) show how Φi (·||·) captures ambiguity attitudes in a

simple way: Φi is more ambiguity averse than Ψi if Φi (·||µi) ≤ Ψi (·||µi) for

every µi ∈ ∆ (∆ (S−i)). It can be shown that all results in Section II hold

when the smooth criterion (1) is replaced with the robust criterion (13).

Dynamic consistency and conditional beliefs To avoid dynamic con-

sistency issues, we assume that agents play the strategic form of the recurrent

game, i.e., an essentially simultaneous stage game. But when agents really play

a game with sequential moves, not its strategic form, they cannot commit to

any contingent plan. A strategy for an agent is just a plan that allows him to

evaluate the likely consequences of taking actions at any information set. The

plan is credible and can be implemented only if it prescribes, at each possible
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information set, an action that has the highest value, given the agent’s condi-

tional beliefs and planned continuation. The plans with this unimprovability

property are obtained by means of a “folding back” procedure on the subjec-

tive decision tree implied by the agent’s beliefs. We sketch how we can make

this precise in the context of the smooth-ambiguity model, and thus provide

a notion of dynamically consistent SSCE. Next we discuss the properties of

this concept. We assume that agents’ feedback functions satisfy ex post perfect

recall, that is, after playing the game agents remember the information sets

they crossed and the actions chosen at such information sets. For an in-depth

analysis with proofs of claims, see Battigalli et al. (2014).

Each agent in role i has a system of beliefs µi(·|·) about distributions

σ−i given by a prior µi ∈ ∆ (∆(S−i)) and a posterior µi(·|hi) at each in-

formation set hi of i. The predictive probability of reaching information set

hi – given that the agent chooses the actions leading to hi – is Pµi(hi) =∫
∆(S−i)

σ−i (S−i(hi))µi (dσ−i), where S−i(hi) denotes the set of strategy pro-

files s−i consistent with hi. If Pµi(hi) > 0, the posterior belief µi(·|hi) is derived

from the prior using Bayes rule;30 otherwise, µi(·|hi) is derived from µi(·|h̄i),
where h̄i is the information set closest to the root such that Pµi(hi|h̄i) > 0

(note, it may be h̄i = hi). Such system of beliefs yields a conditional prob-

ability system on S−i × ∆(S−i) given the collection of conditioning cylindri-

cal events S−i(h) × ∆(S−i) (cf. Battigalli and Siniscalchi, 1999). A plan

si is a sequential best reply to µi(·|·) if, at each information set hi of i, it

selects an action maximizing the KMM value V φi
i , given µi(·|hi) and the si-

continuation after hi. A profile of distributions σ∗ is a dynamically consistent

SSCE, for brevity SSCEDC , if each si with σ∗i (si) > 0 is a sequential best re-

ply to some µsi(·|·) such that the prior µsi satisfies the confirmation condition

suppµsi ⊆ Σ̂−i(si, σ
∗
−i).

By the dynamic consistency of SEU maximization, SSCEDC is realization-

30That is,

µi(E−i|hi) =
1

Pµi
(hi)

∫
E−i

σ−i (S−i(hi))µi (dσ−i)

for every Borel set E−i ⊆ ∆(S−i) .
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equivalent to SSCE if agents are ambiguity neutral. The reason is that an ex

ante SEU-optimal strategy can prescribe suboptimal actions only at informa-

tion sets that the agent subjectively deems impossible; given ex post perfect

recall, in a selfconfirming equilibrium, such information sets must be off the

equilibrium path.31 But, in general, SSCEDC outcomes may differ from SSCE

outcomes, because – as is well known32 – an ex ante optimal strategy of an

ambiguity averse agent may prescribe ex post suboptimal actions even at in-

formation sets the agent deems possible. If agents truly play the game in a

sequential fashion, SSCEDC is the relevant concept. Does a version of our

comparative statics result (Theorem 1) hold for SSCEDC? We can prove that,

in games where each player moves at most once on any path (e.g., the game of

Figure 4), if (G, φ) is more ambiguity averse than (G,ψ), then every SSCEDC

of (G,ψ) is also an SSCEDC of (G, φ). The main intuition for the result is

again a kind of status quo bias: By ex post perfect recall and observability

of payoffs, actions chosen at information sets on the equilibrium path are un-

ambiguous, whereas deviations may be perceived as ambiguous; hence, higher

ambiguity aversion penalizes deviations.33 We can show by example that the

comparative statics statement cannot be generalized as is to all games, but

we conjecture that a version of the result holds for outcome distributions.

Rationalizable selfconfirming equilibrium In a selfconfirming equilib-

rium, agents are rational and their beliefs are confirmed. If the game is com-

mon knowledge, it is interesting to explore the implications of assuming –

on top of this – common (probability-one) belief of rationality and confir-

mation of beliefs. Interestingly, the set of rationalizable SCE s thus obtained

may be a strict subset of the set of SCE’s consistent with common certainty

of rationality, which in turn may be a strict subset of the set of SCE’s.34

The separation between ambiguity attitudes and beliefs in the KMM smooth-

31As we discuss below, dynamic consistency makes a difference if beliefs are also assumed
to be rationalizable.

32See, e.g., Siniscalchi (2011).
33The proof, however, requires a non-trivial ancillary result.
34See Rubinstein and Wolinsky (1994) and Dekel, Fudenberg and Levine (1999). See also

the references to rationalizable SCE in Battigalli et al. (2011).
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ambiguity model allows, a relatively straightforward extension of this idea,

which yields a notion of rationalizable SSCE, and a notion of rationalizable

SSCEDC . For truly dynamic games, rationalizable SSCEDC excludes outcome

distributions that are allowed by either rationalizable SSCE, or mere SSCEDC ,

as pointed out in the early literature on selfconfirming equilibrium for the case

of ambiguity-neutral agents (e.g., Dekel, Fudenberg and Levine, 1999). The

reason is that rationalizable beliefs must assign probability zero to opponents’

strategies that prescribe suboptimal actions at information sets off the equi-

librium path. Hence, some “threats,” or “promises” that support SSCEDC

outcomes may be deemed non-credible according to rationalizable SSCEDC .

We can easily extend our comparative statics result to rationalizable SSCE.

As for rationalizable SSCEDC , we can prove a version of the result for games

where each player moves at most once (see Battigalli et al., 2014).

Mixed strategies In our analysis agents’ choice is restricted to pure strate-

gies. This means that we do not allow them to commit to arbitrary objective

randomization devices. The equilibrium concept obtained by allowing mixed

strategies is not a generalization of SSCE (or MSCE). This can be easily seen

in the game of Figure 1: If player 1 delegates his choice to an objective ran-

domization device that selects the high-stakes subgame MP 2 with probability

one and splits evenly the probability mass on Head and Tail, he guarantees

at least 2 utils in expectation. If this randomized choice were available, no

agent in population 1 would choose the outside option O or the low-stakes

subgame MP 1, and the unique SCE outcome would be the Nash outcome. In

general, we can define notions of smooth and Maxmin SCE whereby arbitrary

randomizations are allowed, and show that the set of Maxmin SCE’s is con-

tained in the set of Bayesian SCE’s. On the other hand, our result that under

observable payoffs BSCE ⊆ SSCE ⊆ MSCE holds also when agents choose

mixed strategies. We conclude that, if payoffs are observable and agents can

commit to delegate their choice of strategy to arbitrary randomization devices,

then ambiguity aversion does not affect the set of selfconfirming equilibrium
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distributions (though, of course, their rationales can be very different).35

The reason why we restrict choice to pure strategies is that credible ran-

domization requires a richer commitment technology than assumed so far.

This can be seen by focusing on simultaneous-moves games, where playing a

pure strategy simply means that an action is irreversibly chosen. But there

is a commitment issue in playing mixed strategies. Suppose that an agent in

population i believes that mixed strategy σ∗i is optimal. If this is true for an

ambiguity neutral (SEU) agent, then each action in the support of σ∗i is also

optimal, therefore σ∗i can be implemented by mapping each action in suppσ∗i

to the realization of an appropriate roulette spin and then choosing the action

associated with the observed realization. On the other hand, an ambiguity

averse agent who finds σ∗i optimal, need not find all the actions in suppσ∗i op-

timal within the simplex ∆(Si). Therefore, unlike an ambiguity neutral agent,

an ambiguity averse one has to be able to irreversibly delegate his choice to

the random device. At the interpretive level, we are not really assuming that

agents are prevented from using randomization devices: It may be the case

that agents in population i have a set Ŝi ⊂ Si of “truly pure” strategies and

that Si also includes a finite set of choices that are realization-equivalent to

randomizations over Ŝi.
36 But, if this is the case, such commitment technology

should be explicitly allowed by the rules of the game and represented in the

game form.

Learning and steady states Fudenberg and Levine (1993b) analyze agents’

learning in an overlapping generations model of a population game with sta-

tionary aggregate distributions. They show that steady-state strategy distribu-

tions approach a selfconfirming equilibrium as agents’ life-span increases. The

intuition is that agents learn and experiment only when they are young; when

the life-span is very long, the vast majority of agents has approximately settled

beliefs and choose stage-game best responses to such beliefs. The stationar-

ity assumption is a clever trick that allows using consistency and convergence

35See Section 6 in the working paper version (Battigalli et al., 2011).
36Of course, the definition of Fi has to be adapted accordingly, because Fi(si, s−i) is a

random message when si is a randomization device.
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results in Bayesian statistics about sampling from a “fixed urn” of unknown

distribution.

The separation between ambiguity attitudes and beliefs in the KMM model

allows us to analyze updating in a Bayesian fashion and attempt an extension

of this result to SSCE. Our conjecture is that, as the life-span increases, steady-

state strategy distributions should approximate a smooth SCE even faster,

because ambiguity averse agents stop experimenting sooner than ambiguity

neutral ones. This can be more easily understood if agents observe only their

own payoffs. In this case, choices that are perceived to give raise to uncertain

posterior beliefs coincide with those that are perceived as ambiguous, i.e.,

those that yield uncertain distributions of payoffs. Therefore the choices that

are worth experimenting with are exactly those that ambiguity averse agents

tend to avoid.

Related literature As we mentioned, our notion of SCE subsumes earlier

definitions due to Battigalli (1987) and Fudenberg and Levine (1993a) as spe-

cial cases.37 These earlier definitions assume SEU maximization and apply

to games in extensive form with feedback functions fi : Z → Mi defined on

the set of terminal nodes Z. We can fit this in our strategic-form framework

letting Fi(s) = fi(ζ(s)), where ζ : S → Z is the outcome function associat-

ing strategy profiles with terminal nodes. Battigalli (1987) allows for general

feedback functions fi with observable payoffs, but he considers only equilib-

ria where all agents playing in a given role have the same independent belief

about opponents. Fudenberg and Levine (1993a) assume that players observe

the terminal node reached (each fi is one-to-one). Since payoffs are determined

by endnodes, this implies that payoffs are observable.

We are not going to thoroughly review the vast literature on uncertainty

and ambiguity aversion, which is covered in a comprehensive recent survey

(Gilboa and Marinacci, 2013). We only mention that in the paper we rely

on the decision theoretic framework of Cerreia-Vioglio et al. (2013a,b), which

makes formally explicit the decision maker’s uncertainty about the true prob-

37See also Battigalli and Guaitoli (1988).
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abilistic model, or data generating process.

To the best of our knowledge, the paper most related to our idea of com-

bining SCE with non-neutral attitudes toward uncertainty is Lehrer (2012). In

this paper, a decision maker is endowed with a “partially specified probability”

(PSP), that is, a list of random variables defined on a probability space. The

decision maker knows only the expected values of the random variables, hence

he is uncertain about the true underlying probability measure within the set of

all measures that give rise to such values. Lehrer (2012) axiomatizes a decision

criterion equivalent to the maximization of the minimal expected utility with

respect to the set of probability measures consistent with the PSP. Then he

defines a notion of equilibrium with partially specified probabilities for a game

played in strategic form. Lehrer’s equilibrium is similar the one we obtain in

the “Maxmin” case,38 but his assumptions on information feedback eliminate

the “status-quo advantage” of equilibrium strategies. To better compare our

approach to Lehrer’s first note that, for each i and si, we have a PSP: The

probability space is (S−i, σ−i), the random variables are the indicator functions

of the different messages (ex post observations), and their expectations are the

objective probabilities of the messages given by distribution F̂si(σ−i) ∈ ∆(M).

However, in our paper, this PSP may depend on the chosen strategy si. Lehrer

assumes instead that the PSP depends only on σ−i, not on si; that is, he as-

sumes own-strategy independence of feedback (in n-person games he relies on

an even stronger assumption of separability of feedback across opponents). As

we noticed, when this strong assumption is coupled with the rather natural

assumption of observable payoffs, Nash equilibrium obtains. In other words,

once the two frameworks are made comparable, our Proposition 1 shows that

the intersection between the class of equilibria considered in the present pa-

per (where observability of payoffs is maintained) and those considered by

Lehrer (2012) only consists of Nash equilibria. Battigalli et al. (2012) char-

acterizes MSCE in greater detail according to the properties of information

38Lehrer considers mixed strategy equilibria and does not assume a population game
scenario. His equilibrium concept should be compared to the version of MSCE where any
mixed strategy is allowed, but all agents in a given role play the same strategy (see Battigalli
et al. 2011, Section 6).
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feedback, and provides a rigorous analysis of the relationship between MSCE

and Lehrer’s equilibrium concept.

Appendix

Proof of Lemma 1

Fix i ∈ I, si ∈ Si, and σ∗−i ∈ ∆ (S−i). Since payoffs are observable, the

payoff function Usi : S−i → R is Fsi-measurable, and therefore, for every

σ−i ∈ Σ̂−i(si, σ
∗
−i), we have

Ui(si, σ−i) =
∑

s−i∈S−i

Ui(si, s−i)σ−i(s−i) =

∫
S−i

Usiσ−i

=

∫
S−i

Usiσ−i|Fsi =

∫
S−i

Usiσ
∗
−i|Fsi

=

∫
S−i

Usiσ
∗
−i

=
∑

s−i∈S−i

Ui(si, s−i)σ
∗
−i(s−i) = Ui(si, σ

∗
−i),

as wanted. �

Proofs for Section II

Proof of Theorem 1 For every i ∈ I, si ∈ Si, (s∗i , σ
∗
−i) ∈ Si × ∆(S−i), µs∗i

with support in Σ̂−i(s
∗
i , σ

∗
−i), and every φi more ambiguity averse than ψi

V ψi
i (si, µs∗i ) ≥ V φi

i (si, µs∗i ) ≥ V ω
i (si, µs∗i ) ≥ min

σ−i∈Σ̂−i(s∗i ,σ
∗
−i)
Ui(si, σ−i). (14)

The last inequality is obvious because suppµs∗i ⊆ Σ̂−i(s
∗
i , σ

∗
−i). The central

inequality is also obvious if φi = ω, otherwise choose σ′−i ∈ suppµs∗i such that

Ui(si, σ
′
−i) = min

σ−i∈suppµs∗
i

Ui (si, σ−i) = V ω
i (si, µs∗i )
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now

V φi
i (si, µs∗i ) = φ−1

i

(∫
suppµs∗

i

φi(Ui(si, σ−i))µs∗i (dσ−i)

)

≥ φ−1
i

(∫
suppµs∗

i

φi(Ui(si, σ
′
−i))µs∗i (dσ−i)

)
= φ−1

i

(
φi(Ui(si, σ

′
−i))

)
= V ω

i (si, µs∗i ),

as desired. As for the first inequality of (14):

• if ψi = ω, then φi, being more ambiguity averse than ω, coincides with

ω, and the inequality is an equality;

• if ψi 6= ω and φi = ω, the inequality follows from the previous argument;

• if ψi 6= ω and φi 6= ω, then there exists a continuous concave and strictly

increasing function ϕi such that φi = ϕi◦ψi,39 by the Jensen’s inequality

we have

V ψi
i (si, µs∗i ) = ψ−1

i

(∫
suppµs∗

i

ψi(Ui(si, σ−i))µs∗i (dσ−i)

)

= (ψ−1
i ◦ ϕ−1

i ) ◦ ϕi

(∫
suppµs∗

i

ψi(Ui(si, σ−i))µs∗i (dσ−i)

)

≥ (ψ−1
i ◦ ϕ−1

i )

(∫
suppµs∗

i

(ϕi ◦ ψi)(Ui(si, σ−i))µs∗i (dσ−i)

)

= φ−1
i

(∫
suppµs∗

i

φi(Ui(si, σ−i))µs∗i (dσ−i)

)
= V φi

i (si, µs∗i ).

Now let σ∗ be a SSCE of the less ambiguity averse game (G,ψ). Fix i ∈ I,

and pick s∗i ∈ suppσ∗i , µs∗i with support in Σ̂−i(s
∗
i , σ

∗
−i) such that

s∗i ∈ arg max
si∈Si

V ψi
i (si, µs∗i ). (15)

39Note that φi, ψi : Ui → R are continuous and Ui is connected. Moreover, ϕi : ψi (Ui)→
R is increasing and such that φi = ϕi ◦ ψi. Therefore ϕi is continuous too.
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We want to show that

s∗i ∈ arg max
si∈Si

V φi
i (si, µs∗i ), (16)

which implies the first claim. Since payoffs are observable, by Lemma 1,

Ui(s
∗
i , σ−i) = Ui(s

∗
i , σ

∗
−i) for every σ−i ∈ Σ̂−i(s

∗
i , σ

∗
−i) ⊇ suppµs∗i . Thus

Ui(s
∗
i , σ

∗
−i) = V φi

i (s∗i , µs∗i ) = V ψi
i (s∗i , µs∗i ) = V ω

i (s∗i , µs∗i ) = min
σ−i∈Σ̂−i(s∗i ,σ

∗
−i)
Ui(s

∗
i , σ−i)

(17)

concluding the proof of the first part of the statement since, together with (15)

and (14), it delivers (16), in fact

V φi
i (s∗i , µs∗i ) = V ψi

i (s∗i , µs∗i ) ≥ V ψi
i (si, µs∗i ) ≥ V φi

i (si, µs∗i ) ∀si ∈ Si.

We now prove that all SSCE’s are MSCE’s. Let σ∗ be an SSCE of a game

(G,ψ). Fix i ∈ I, and pick s∗i ∈ suppσ∗i , µs∗i with support in Σ̂−i(s
∗
i , σ

∗
−i) such

that (15) holds. By (17), we have

min
σ−i∈Σ̂−i(s∗i ,σ

∗
−i)
Ui(s

∗
i , σ−i) = Ui(s

∗
i , σ

∗
−i) = V ψi

i (s∗i , µs∗i ),

thus (15) and (14) deliver

min
σ−i∈Σ̂−i(s∗i ,σ

∗
−i)
Ui(s

∗
i , σ−i) = V ψi

i (s∗i , µs∗i ) ≥ V ψi
i (si, µs∗i ) ≥ min

σ−i∈Σ̂−i(s∗i ,σ
∗
−i)
Ui(si, σ−i)

for all si ∈ Si, as wanted. �

Proof of Lemma 2 Fix a mixed strategy Nash equilibrium σ∗ of G. Pick

any i and pure strategy s∗i ∈suppσ∗i . Then Ui
(
s∗i , σ

∗
−i
)
≥ Ui

(
si, σ

∗
−i
)

for each

si ∈ Si. By definition, it holds σ∗−i ∈ Σ̂−i(s
∗
i , σ

∗
−i), hence, δσ∗

−i
is with support

in Σ̂−i(s
∗
i , σ

∗
−i). Since V φi

i

(
si, δσ∗

−i

)
= Ui (si, σ

∗
i ) for every weighting function

φi and si ∈ Si, it follows that σ∗ is an SSCE of (G, φ). �
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Proof of Proposition 1 Given the previous results, we only have to show

that every MSCE is a Nash equilibrium. Fix an MSCE σ∗, any player i and

any s∗i ∈suppσ∗i , then,

min
σ−i∈Σ̂−i(s∗i ,σ

∗
−i)
Ui(s

∗
i , σ−i) ≥ min

σ−i∈Σ̂−i(s∗i ,σ
∗
−i)
Ui(si, σ−i) ∀si ∈ Si.

By Lemma 1, observability of payoffs implies Ui(si, σ−i) = Ui(si, σ
∗
−i) for every

si and σ−i ∈ Σ̂−i(si, σ
∗
−i). Own-strategy independence of feedback implies

that, for each si, Fsi = Fs∗i hence

Σ̂−i(si, σ
∗
−i) =

{
σ−i ∈ Πj 6=i∆(Sj) : σ−i|Fsi = σ∗−i|Fsi

}
=

{
σ−i ∈ Πj 6=i∆(Sj) : σ−i|Fs∗

i
= σ∗−i|Fs∗

i

}
= Σ̂−i(s

∗
i , σ

∗
−i).

From the above equalities and inequalities we obtain, for each si,

Ui(s
∗
i , σ

∗
−i) = min

σ−i∈Σ̂−i(s∗i ,σ
∗
−i)
Ui(s

∗
i , σ−i) ≥ min

σ−i∈Σ̂−i(s∗i ,σ
∗
−i)
Ui(si, σ−i)

= min
σ−i∈Σ̂−i(si,σ∗

−i)
Ui(si, σ−i) = Ui(si, σ

∗
−i).

This shows that σ∗ is a Nash equilibrium. �

Proofs for Section III

Proof of Proposition 2. For any prior µ1, the ambiguity-neutral subjective

value of playing any Matching Pennies subgame k is

max{V1(Hk, µ1), V1(T k, µ1)}

= max

{
µ̄k1(hk)(n+ 2(k − 1)) + (1− µ̄k1(hk))(n− k),

µ̄k1(hk))(n− k) + (1− µ̄k1(hk))(n+ 2(k − 1))

}
≥ n− 1 +

k

2
> n− 1 + ε = u1(O),
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where n−1+k/2 is the mixed maxmin value of subgame k, µ̄k1 = mrgS2.k
µ̄1 and

µ̄1 is the predictive belief. Therefore O cannot be played by a positive fraction

of agents in a BSCE because it cannot be a best response to any predictive

belief µ̄1.40 Furthermore, no strategy Hk or T k with k < n can have positive

measure in a BSCE. Indeed, by (9), if sk1 ∈ {Hk, T k} has positive probability

in an equilibrium σ∗, then for every belief µ1 ∈ ∆(Σ̂2(sk1, σ
∗
2)), the value of sk1

is

V1(sk1, µ1) = U1

(
sk1, σ

∗
−{1,2.k} ×

(
1

2
hk +

1

2
tk
))

= n− 1 +
k

2
,

while the ambiguity-neutral value of deviating to subgame n is

max{V1(Hn, µ1), V1(T n, µ1)} ≥ n− 1 +
n

2
.

Therefore, eq. (9) implies σ∗1(Hn) = σ∗1(T n) = σ∗2.n(hn) = 1
2

in each BSCE σ∗.

It is routine to verify that every such σ∗ is also a Nash equilibrium. Therefore

BSCE = NE. �

The proof of Lemma 4 is based on the following lemma, where I is the unit

interval [0, 1] endowed with the Borel σ-algebra.

Lemma 6 Let ϕ : I→ R be increasing and concave. For each Borel probability

measure µ on I

max

{∫
I

ϕ (x)µ (dx) ,

∫
I

ϕ (1− x)µ (dx)

}
≥ 1

2
ϕ (1) +

1

2
ϕ (0) . (18)

Proof. Let
τ : I → I

x 7→ 1− x
.

Then ∫
I

ϕ (1− x)µ (dx) =

∫
I

ϕ (τ (x))µ (dx) =

∫
I

ϕ (y)µτ (dy)

40Recall that given a prior µi on a Borel subset Σ−i of ∆ (S−i), its predictive µ̄i is defined
by

µ̄i (s−i) =

∫
Σ−i

σ−i (s−i)µi (dσ−i) .
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where µτ = µ ◦ τ−1. In particular, for ϕ = idI it follows that 1−
∫
I
xµ (dx) =∫

I
yµτ (dy). Thus (18) becomes

max

{∫
I

ϕ (x)µ (dx) ,

∫
I

ϕ (x)µτ (dx)

}
≥ 1

2
ϕ (1) +

1

2
ϕ (0)

and either
∫
I
xµ (dx) ≥ 1/2 or

∫
I
yµτ (dy) ≥ 1/2. Next we show that for each

Borel probability measure ν on I such that
∫
I
xν (dx) ≥ 1/2∫

I

ϕ (x) ν (dx) ≥ 1

2
ϕ (1) +

1

2
ϕ (0) . (19)

Denote by F (x) = ν ([0, x]) and by G (x) =
(

1
2
δ0 + 1

2
δ1

)
([0, x]) . In particular,

F and G are increasing, right continuous, and such that F (1) = G (1) = 1,

moreover G (x) = 1/2 for all x ∈ [0, 1). Note that there exists x̄ ∈ (0, 1) such

that F (x̄) ≤ 1/2. By contradiction, assume F (x) > 1/2 for all x ∈ (0, 1),

then
1

2
≤
∫
I

xν (dx) =

∫ 1

0

(1− F (x)) dx <
1

2
,

a contradiction. Let x∗ = inf {x ∈ I : F (x) > 1/2}, then 0 < x̄ ≤ x∗ ≤ 1.

Therefore F (1) = G (1) = 1 and for each y ∈ (x∗, 1), F (y) ≥ F (x∗) ≥
1/2 ≥ G (y). For each y ∈ [0, x∗), F (y) ≤ 1/2 ≤ G (y). Finally, by the classic

Karlin-Novikoff (1963) result F second-order stochastically dominates G, that

is (19) holds for all increasing and concave ϕ. �

Proof of Lemma 4 Let x = σ2.k(h
k). Clearly U1(Hk, σ2) depends only on x

and we can write U1(Hk, x), and similarly for T k. Let ϕ (x) = φ1(U1(Hk, x)).

By symmetry of the payoff matrix, ϕ (1− x) = φ1(U1(T k, x)). Note that ϕ is

strictly increasing and concave. Let µ ∈ ∆(I) be the marginal belief about

x = σ2.k(h
k) derived from µ1. Recall that ν1 is a prior such that mrg∆(S2.j)

ν1 =
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1
2
δhj + 1

2
δtj . With this,

max{V φ1
1 (Hj, µ1), V φ1

1 (T j, µ1)}

= max

{
φ−1

1

(∫
I

ϕ (x)µ (dx)

)
, φ−1

1

(∫
I

ϕ (1− x)µ (dx)

)}
= φ−1

1

(
max

{∫
I

ϕ (x)µ (dx) ,

∫
I

ϕ (1− x)µ (dx)

})
and

V φ1
1 (Hj, ν1) = V φ1

1 (T j, ν1) = φ−1
1

(
1

2
ϕ (1) +

1

2
ϕ (0)

)
.

Hence, the thesis is implied by Lemma 6. �

Proof of Proposition 3 By Lemma 3, SSCE(α) is determined by the set

of pure strategies of player 1 that can be played by a positive fraction of

agents in equilibrium. Fix σ∗ ∈ Σ∗ , i.e., a distribution profile that satisfies

the necessary SCE conditions, and a strategy s1; σ∗1(s1) > 0 is possible in

equilibrium if and only if there are no incentives to deviate to any subgame

j. We rely on Lemma 4 to specify a belief µs11 ∈ ∆(Σ̂2(s1, σ
∗
2)) that minimizes

the incentive to deviate. Thus, s1 can be played in equilibrium if and only if

it is a best reply to µs11 . Specifically,

µO1 = ×nj=1

(
1

2
δhj +

1

2
δtj

)
∈ ∆(Σ̂2(O, σ∗2)) = ∆

(
Πn
j=1∆(Sj.k)

)
,

for each k = 1, ..., n− 1 and sk1 ∈ {Hk, T k},

µk1 = δ 1
2
hk+ 1

2
tk ×

(
×j 6=k

(
1

2
δhj +

1

2
δtj

))
belongs to ∆(Σ̂2(sk1, σ

∗
2)) = ∆

({
σ2 : σ2,k = 1

2
hk + 1

2
tk
})

. Given such beliefs,

the value of deviating from s1 to subgame j isM(α, n−j, n+2(j−1). Therefore,

O is a best reply to µO1 , and can have positive measure in equilibrium, if and

only if

n− 1 + ε ≥ max
j∈{1,...,n}

M(α, n− j, n+ 2(j − 1)). (20)
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By Lemma 5 there is a unique threshold αn > 0 that satisfies (20) as an

equality so that (20) holds if and only if α ≥ αn. Similarly, sk1 ∈ {Hk, Lk}
(k = 1, ..., n − 1) is a best reply to µk1, and can have positive measure in

equilibrium, if and only if

n− 1 +
k

2
≥ max

j∈{1,...,n}
M(α, n− j, n+ 2(j − 1)), (21)

where

max
j∈{1,...,n}

M(α, n− j, n+ 2(j − 1)) = max
j∈{k+1,...,n}

M(α, n− j, n+ 2(j − 1))

because, for all α > 0 and j ≤ k

M(α, n− j, n+ 2(j − 1)) < n− 1 +
j

2
≤ n− 1 +

k

2
.

By Lemma 5 there is a unique threshold αn−k > 0 that satisfies (21) as an

equality so that (21) holds if and only if α ≥ αn−k. Since M(·, x, y) is strictly

decreasing if x 6= y, the thresholds are strictly ordered: α1 < α2 < ... < αn. It

follows that, for each k = 1, ..., n− 1, σ∗({O,H1, T 1, ..., Hk, T k}) = 0 for every

σ∗ ∈ SSCE(α) if and only if α < αn−k, and every strategy has positive mea-

sure in some SSCE if α is large enough (in particular if α ≥ αn). Since the equi-

librium set in this case is Σ∗, which is defined by necessary SCE conditions, this

must also be the MSCE set. If α < α1, then σ∗({O,H1, T 1, ..., Hn−1, T n−1}) =

0 for each σ∗ ∈ SSCE(α); by Proposition 2, SSCE(α) = BSCE = NE in

this case. �
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