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1 Introduction

Consider the standard economic approach to dynamic decision making: At each time t an agent
must choose a feasible consumption plan ct to maximize the present (exponentially) discounted
utility from time t. When applied for example to consumption-saving choices, this decision prob-
lem underlies both Friedman (1957)’s Permanent Income and Modigliani’s Life-Cycle Hypothesis
(Modigliani-Brumberg (1954)).

A vast empirical evidence in experimental psychology indicates though that agents might
have a preference for present consumption that cannot be rationalized by preferences with
exponential discounting.1 Motivated by such evidence behavioral economists have suggested
an alternative specification of discounting, quasi-hyperbolic discounting.2 Such a specification
rationalizes the preference for present consumption documented by the experimental studies as
a form of time inconsistency of preferences.3

When preferences are time inconsistent, agents’ decisions are not only determined by ra-
tionality: At each time agents make decisions based on the expectations regarding their own
decisions in the future, which will be based on different preference orderings. Such expectations
must therefore be determined at equilibrium. The behavioral economics literature models dy-
namic decisions as a sequential game between different ‘selves’, each one choosing at a different
time, and it restricts the analysis to Markov perfect Nash equilibria.4

By considering only Markovian strategies of a game between present and future selves the
behavioral economics literature implicitly models agents as lacking any form of internal psy-
chological commitment or self-control. This is hardly justified. First of all, the experimental
evidence which contradicts exponential discounting has no implications for dynamic choice:
these experiments are explicitly designed to induce agents to reveal truthfully their subjective

∗Thanks to Antonio Rangel, Colin Camerer, Alessandro Lizzeri, Ariel Rubinstein, Aldo Rustichini, Andy
Schotter, Giorgio Topa.

1See, e.g., Ainsle (1992), (2001), Ainsle-Haslam (1992), Frederick-Loewenstein-O’Donoghue (2002) for com-
prehensive surveys.

2See Laibson (1996), O’Donoghue-Rabin (1999). Psychologists favor a related specification, hyperbolic dis-
counting; see e.g., Herrnstein (1961), de Villiers-Herrnstein (1976), and Ainsle (1992).

3Of course, quasi-hyperbolic discounting (or even, more generally, time inconsistency) is not the only possible
way to rationalize the experimental evidence. Rubinstein (2000) makes this point very effectively, by showing
how such evidence can be produced by relaxing rationality in the direction of a well-specified form of procedural
rationality. Also, the experimental evidence is consistent in principle with preferences over sets of actions, under
standard rationality assumptions; see Gul-Pesendorfer (2000).

4See the special issue of the Journal of Economic Perspectives, 2001, on the topic, and the references therein.
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discounting preferences without facing dynamic choice problems, and therefore are designed to
abstract from any dynamic commitment strategy which might result in self-control.5 More-
over, a vast theoretical and experimental literature in psychology in fact studies the problem of
dynamic choice, and identifies the various dynamic commitment strategies that agents use to
implement their objectives and goals.6 Finally, cognitive scientist have also made great progress
in the identification of the mechanisms of the human brain which shape high-level cognition,
cognitive control in general and self-control in particular.7

It is our contention therefore that dynamic choice of agents with time inconsistent preferences
cannot be properly understood without an explicit analysis of the agents’ dynamic commitment
strategies that take the form of will power and self-control. Moreover it is our understanding
that the experimental and the cognitive evidence on cognitive control overwhelmingly supports
a theory of dynamic decision making in which self-control arises from the competition and
the strategic interaction of different ‘functions’ within the ‘self’. This is in contrast with the
modelling strategy used in behavioral economics in which a single self controls all decisions at
each moment, but cannot commit future selves.

We first introduce a simple model of dynamic decision-making that is a variant of the basic
models used in the theoretical and empirical literature in the cognitive sciences studying ‘de-
layed responses’ and, more generally, cognitive control and high level cognition processes. In
such models cognitive control is a function of the pre-frontal cortex, the most recently evolved
component of the human brain, and arises from the competition between automatic and the
controlled processing pathways. Automatic processes are the basic mechanisms for processing
inputs or stimuli in humans as well as animals, and underlie classical conditioning and Pavlovian
responses. In a self-control environment, the automatic process would induce the agent towards
‘impulsive’, ‘uncontrolled’ actions. Controlled processes are instead based on the activation,
maintenance, and updating of active goal-like representations in order to influence cognitive
procedures. In a self-control environment, the controlled process would induce the agent to im-
plement a set of goals, determined independently of impulses or temptations associated with the
specific choice problem. The outcome of the competition between the automatic and controlled
processing pathways depends on the future expected rewards for the actions induced by these
two processing pathways. Automatic processes may be inhibited by the expectation of future
regret that would result from letting ‘temptations’ determine the consumption-saving choice
today.

Based on such a model of cognitive control, we develop a simple theory of dynamic de-
cision making for an environment in which agents face a conflict between present and future
utility, and which may require self-control for its resolution. We apply this model to a stan-
dard consumption-saving problem to derive its economic implications in terms of consumption
patterns. Agents trade-off ‘excessive’ immediate consumption with a saving rule requiring the
exercise of self-control for its implementation. In particular, the present bias in the model
derives from stochastic ‘temptations’ that affect the agents’ consumption-saving choice each pe-
riod. Self-control requires the conscious maintenance of attention on a specific goal, e.g., an
optimal consumption-saving rule, that is unaffected by temptations. Such a consumption-saving
rule, to be implemented, requires inhibitory connections that become stronger the higher is the
cognizance of expected regret for ‘impulsive’ and immediate consumption.

The behavior of an agent facing conflicting preference representations over his consumption-
saving choice in our model can be quite simply summarized: He actively maintains a simple

5The design of these experiments aims to ‘uncover natural spontaneous preferences’ (Ainsle, (2001), pg. 33),
that is, to ‘observe situations where the subject is not challenged to exercise self-control’ (Ainsle (1992), pg. 70).

6See e.g., Kuhl-Beckmann (1985) for a survey, and Gollwitzer-Bargh (1996) for a collection of essays on the
topic).

7See Miller-Cohen (2001), O’Reilly-Munakata (2000) for illuminating surveys.
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consumption-saving goal, a propensity to consume out of wealth which is independent of any
realized temptation; at times he allows temptations to affect his consumption-saving behavior by
letting the automatic choice prevail, if this choice does not perturb his underlying consumption-
saving plan too much and therefore does not have large permanent effects on his prescribed
wealth accumulation pattern. When evaluating the effects on their prescribed wealth accumu-
lation patterns of a deviation from their consumption-saving goal to accomodate a temptation,
agents do anticipate that such a temptation will in fact be followed by others, as will the devia-
tion, and the consumption-saving rule representing their goal will reflect such anticipation. We
claim that such behavior is quite naturally consistent with several common qualitative descrip-
tions in the psychological literature, which stress e.g., the importance of goal setting, mental
rules, and self-regulation in saving behavior8 .

We also derive some implications of our model of self-control with the aim of understanding
how changes in the external environment, e.g., the distribution of temptation, and differences
in the internal psychological characteristics of an agent, e.g., cognitive abilities like setting goals
and controlling attention, affect consumption-saving behavior. For instance, we show that an
environment with larger temptations on average is characterized by a higher probability that
self-control is exercised and temptations inhibited. On the other hand, in such an environment,
agents set for themselves less ambitious saving goals, that is they consume a larger fraction
of the accumulated wealth each time self-control is exercised and temptations inhibited. We
also show that an agent with lower cognitive control abilities, or, equivalently, an agent whose
attention is drawn by other important cognitive tasks, for instance an agent attempting to
control expenditures while exiting an important personal relationship, exercises instead self-
control less frequently, and furthermore, sets less ambitious savings goals for the times when he
does inhibit temptations: Stressful times are not conducive of self-control.

Finally, we study the issue of the ‘complexity’ of the consumption-saving goal agents set for
themselves. Psychologists in fact constantly remark that the ‘complexity’ of goals affects in a
fundamental manner the agents’ ability in self-regulating tasks in general and in self-control tasks
in particular.9 Suppose, according to this view, that a cognitive task is simpler to implement the
simpler are the goals that the task requires to be maintained active; e.g., because simple goals do
not require exclusive attention. In such an environment, we aim at characterizing under which
conditions an agent would gain from setting a simpler consumption-saving goal, e.g., a constant
saving rule, as opposed to a ‘complex’ goal, e.g., one that is contingent on the rate of return
on savings. We show that the simple consumption-saving plan is preferred to the complex plan,
not surprisingly, if it is cheap to maintain active, and much cheaper then the complex plan.
More interestingly, the simple plan tends to be preferred if rate of return is small enough, as in
this case self-control is of little use, and it is dominant choice for the agent to consume a large
fraction of his wealth each period. The simpler plan will also tend to be preferred, for instance,
if temptations grow large on average. This is because when temptations are large enough the
complex plan will optimally induce inhibition of the automatic processing most of the times,
and independently of the rate of return, and this behavior can be induced also by a simple plan.

A detailed discussion of the related literature on self-control, addiction, and visceral states
in behavioral economics is contained in Section 4.

2 A cognitive model of dynamic choice and control

In this section we introduce a simple model of a cognitive control task to outline the theoretical
and empirical literature in the cognitive sciences that will form the foundations of our analysis.

8See Thaler-Shefrin (1981) for a survey of the psychological evidence on such issues.
9See for instance Baumeister-Heatherton-Tice (1994), and Gollwitzer-Bargh (1996).
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Variants of such a model underlie many of the studies of ’delayed response’ in neurobiology
and cognitive psychology, and have been used extensively in behavioral, psychopharmacological,
and neuroimaging studies (e.g., by T. Braver and J. Cohen and co-authors; see Braver-Cohen
(2000) for an introduction and detailed references). More generally, this class of models is
at the core of recent developments in neurobiology aimed at developing a general integrated
theory of cognitive high level control based on the function of the prefrontal cortex ( see Braver-
Cohen-Servan Schreiber (1995), Desimone-Duncan (1995), O’Reilly (1999), O’Reilly-Munakata
(2000)).10 This theory is supported by a large and fast growing evidence on the biological
mechanisms by which the pre-frontal cortex controls high level cognition, as in the clinical
studies of brain lesioned patients (see Bechara-Damasio-Damasio-Anderson (1994), Bechara-
Tranel-Damasio-Damasio (1996), (1997)), and in functional imaging studies of the human brain
in experimental tasks (see Miller-Cohen (2001), Schultz (1998)).

Consider an agent facing a task consisting of a repeated series of decision trials. At the
beginning of the trial at t the agent is presented with a cue stimulus, at ∈ A. The cue is, after
a delay, followed by a probe, which requires an action xt in a set X which possibly depends on
xt−1. During the interval between the cue an the probe the agents faces random appearances
of distractor stimuli, st ∈ S. The utility payoff associated with the decision trial at t is received
by the agent at the end of the period, after the action choice xt. The payoff is independent of
distractions, st, and is denoted U(at, xt).

The interest of such decision task lies in considering the distractor stimulus as “tempting”
for the agent. The agent exercises self-control if he overrides the temptation, that is if his
choice coincides with the utility maximizing element in the choice set (that is independent
of the distraction). In other words, the decision problem is interesting only if the decision
procedure is not independent of st.

In the model, cognition and control arise from the competition of automatic and controlled
processing pathways activated by the cue at and the distractor stimulus st. Automatic pro-
cesses are performed by various sub-cortical areas of the brain which have been extensively and
successfully mapped by neurobiologists.11 In the model, after observing the distractor st, the
automatic pathway computes a “distorted” payoff map U I(at, xt, st), associating, for example,
a positive payoff to succumbing to temptation. The cue at and the distractor stimulus st also
activate a controlled processing pathway. Controlled processes are based on the activation,
maintenance, and updating of active goal-like representations in order to influence cognitive
procedures. Such representations are maps from expected future rewards (or future negative
rewards, e.g., regret) into actions. They are actively maintained in the prefrontal cortex, the
component of the brain that is also responsible for active memory representations.12 In our
model, the controlled processing pathway computes the expected utility payoff map U(at, xt),
for any choice xt ∈ X, and maintains the map active and ready in order to influence action.
Finally, a selective updating mechanism controls the activation of goals: if the representation of
the automatic pathway is successful in replacing the map U(at, xt) in active memory, the choice
of the agent will be xI ∈ arg max U I(at, xt, st); otherwise the agent will choose some x ∈ arg max

10The pre-frontal cortex is the most recently evolved area of the mammalian brain, and it is much more
developed in humans than in any animal species; see Krasnegor-Lyon-Goldman Rakic (1997), Finlay-Darlington-
Nicastro (2001).

11See e.g., Schultz-Dayan-Montague (1997).
12See Monsell-Driver (2000); also, see Miyake-Shah (1999) for related activation mechanisms in working mem-

ory.
Also, the areas of the brain specialized in representing and predicting future rewards and punishments are the

midbrain nuclei the ventral tegmental area (VTA) and the substantia nigra (see Schultz-Apicella-Romo-Scarnati
(1995) for neural recording studies and Bechara-Tranel-Damasio-Damasio (1996) for clinical studied of patients
with brain lesions).
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U(at, xt).
How does the brain determine which process is prevalent in decision making ? An ‘executive

function,’ or ‘supervisory attention system’ modulates the activation levels of the different com-
peting processing pathways. The biological processes which constitute the supervisory attention
system modulating the competition of automatic and controlled pathways are well documented
at the level of cognitive experiments. They rely on the action of a neuro-transmitter, dopamine,
in the frontal cortex which activates and inhibits different competing processing pathways. In-
hibitory inter-neurons are in fact an important component of the human brain, roughly 20% of
the total neurons; see Gabbot-Somogyi (1986).13

The updating mechanism regulates the content of representations in active memory. In-
hibitory connections are activated depending on expected future rewards, U(at, xt)−U(at, x

I),
and updating occurs if

U(at, x)− U(at, x
I) ≤ b

for some parameter b.14 If we interpret U(at, xt) as the agent ’s preferences, while U I(at, xt, st)
as his ’temporary’ preferences, then the activation of the updating mechanism is governed by
U(at, x)−U(at, x

I), the expected ‘regret’ from failing to self control and giving in to the temp-
tation. The parameter b is a measure of the costs of maintaining a representation in active
memory. Activation costs are induced by the severe biological limitations of the activation ca-
pacity of the cortex.15 If b = 0, “temporary” preferences have no effect on decision making, and
control is automatically induced.16

Suppose the utility function U is concave in x, for any at. Then the model has the general
straightforward implication that automatic processing is inhibited if x − xI is large enough
in absolute value, that is if the temptation has a large enough effect on choice. Perhaps not
surprisingly, given attention costs, small temptations are let go, and large ones are inhibited.
In summary then, in this model cognitive control is the active representation of goals for the
inhibition of distractions and temptations.17

Some of the implications of the self-control model described above can be matched with
results in the experimental psychology literature. Since activation costs b are related to the
activation capacity of the cortex, cognitive control should be harder to exercise and temptations
harder to inhibit when performing unrelated cognitive (hence attention demanding) tasks simul-
taneously. Mischel and coauthors have studied in great detail techniques that children use to

13See Braver-Cohen (2000) for computational models of the frontal cortex around the modulatory role of
dopamine; and Schultz (1998) for a survey of the imaging studies on the issue.

Striking evidence of the importance of the dopamine gating system in modulating the activation of differ-
ent controlling pathways can also be derived from the clinical and neurological observations of the behavior of
different psychiatric pathologies, like, e.g., Attention Deficit Hyperactivity Disorder (Barkley (1997)), schizophre-
nia (Cohen-Servan Schreiber (1992)), and various forms of drug addiction, non-chemical behavioral addictions,
cocaine dependence, and in general a large class of addictive, impulsive, and compulsive disorders (Gardner
(1999)).

14About 20% of the neurons of the human brain are inhibitory interneurons; .
15The operation of the prefrontal cortex by means of active representations is supported by the evidence of

sustained neural activity during delayed response task in the frontal lobes; see Cohen-Perlstein-Braver-Nystrom-
Noll (1997) and Prabhakaran-Narayanan-Zhao-Gabrieli (2000); for the limits in the activation capacity, see
Engel-Kane-Tuholski (1999), Just-Carpenter (1992).

16As a task becomes more practiced its reliance on controlled processing and on the prefrontal cortex is reduced,
and b can change over time; see e.g., Petersen-van Mier-Fiez-Raichle (1998), and Cohen-Dunbar-McClelland
(1990) for experimental evidence on the Stroop task (described later).

17Such a view of cognitive control, and self-control in particular, is also consistent with the classical view in
psychology. For instance, William James, concluding the analysis of ‘will’ in The Principles of Psychology, Holt,
1890, states: ‘effort of attention is thus the essential phenomenon of will’, and ‘the difficulty [of self-control] is
mental: it is that of getting the idea of the wise action to stay before your mind at all’ (pg. 1167; cited in
Shefrin-Thaler (1992)).
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block temptations and maintain a focus on the rewards of delayed gratification and have doc-
umented the difficulties arising with multiple simultaneous cognitive tasks (see Mischel-Mischel
(1983) and especially Mischel-Ebbeson (1970); but also Nisan-Koriat (1984)); relatedly, it is
a well documented fact that people find it harder to quit smoking or drinking during stress-
ful times, e.g., when needing exceptional concentration on a working or studying activity (see
Baumeister-Heatherton-Tice (1994). The model also implies that cognitive control, and self-
control in particular, should be easier to implement if associated with a simple and direct goal.
This implication is also supported by the evidence in experimental psychology; once again the
work of Mischel with children is a rich source of interesting examples (see Mischel-Patterson
(1978); see also Schweitzer-Sulzer Azaroff (1988)).18

The fundamental role of the prefrontal cortex in delayed response tasks and especially in self-
control is also supported by studies which have shown that lesions in the prefrontal cortex are
often associated to a ”syndrome of behavioral disinhibition” whereby patients act impulsively
and often in socially inappropriate manners (see Fuster (1989) and Stuss-Benson (1986)).

The simple self-control model introduced here can also be experimentally implemented in
a purely connectivist (that is, loosely, biologically founded) context, with a simple distributed
neural network.19 The model generates a wealth of empirical implications which have been
tested at the neurobiological level on agents performing a complex cognitive control task. While
a survey of this literature is outside of the scope of the present paper, we will briefly discuss
one such study as an example. Cohen-Dunbar-McClelland (1990) have simulated a version of
this model to match neuroimaging data of the activation pattern of the pre-frontal cortex of
subjects during a Stroop task experiment. The Stroop task (after the experiments by Stroop
in the 30’s) is the paradigmatic experiment in the study of delayed responses. The task consists
in naming the ink color of either a conflicting word or a non-conflicting word (e.g., respectively,
saying ‘red’ to the word ‘green’ written in red ink; and saying ‘red’ to the word ‘red’ written in
red ink). The standard pattern which is observed in this experiment is a higher reaction time for
conflicting than non-conflicting words. Moreover the reaction time is higher, in either case, than
the reaction time of a simple reading task; and the reading task reaction time is unaffected by
the ink color). The accepted interpretation of this results is that automatic processing (reading)
competes with and is dominated by the activation-based controlled processing (naming the ink
color) at a cost in terms of reaction time.20

3 Consumption-saving decisions

Self-control plays an important role in agents’ consumption-savings decisions. Ameriks-Caplin-
Leahy (2002) for instance identify different ‘propensities to plan’ across TIAA-CREF participant

18See also, e.g., Hayes Roth-Hayes Roth (1979), and Gollwitzer (1993) for evidence of the kind of personal
rules that agents rely upon during cognitive task; and Baumeister-Heatherton-Tice (1994) for a special emphasis
on self-regulation to avoid addictions.

19Moreover, a learning mechanism which is consistent with the biology of the human brain can be simulated
which learns to accurately predict U(at, x)−U(at, xI) in a repeated sequence of trials. The class of reinforcement
learning algorithms which successfully predicts expected rewards is called ”temporal differences,” and denoted
TD(λ); see Sutton-Barto (1998). TD(λ) algorithms are in fact consistent with neuroimaging data on firing of
VTA neurons in a delayed-response experiments; see Schultz–Apicella-Ljungberg (1993) for instance for data on
monkeys. This evidence more generally indicates that the prediction of future rewards is central in activation-
based processing in delayed response task: while in the first learning trials the VTA neurons fire when the reward
is delivered, after acquisition of the task VTA neurons fire when the stimulus is received, thereby consistently
predicting the reward; see Schultz (1998).

20Also, and consistently with this whole approach to cognition and delayed response, patients with frontal
impairment have difficulties with the Stroop task; see Cohen-Servan Schreiber (1992) and Vendrell-Junque-
Pujol-Jurado-Molet-Grafman (1995).
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households saving for retirement. Also, in Angeletos-Laibson-Repetto-Tobacman (2001)’s cal-
ibration exercises, hyperbolic discounting models match better than a standard exponential
discounting model the empirically observed large holdings of illiquid assets and costly liabilities,
like real estate and credit card debt. (The argument is straightforward: agents discounting the
future hyperbolically will commit the future selves, whenever possible, to their present consump-
tion plans; holding illiquid assets and costly liabilities, would serve this purpose and operate as
external commitment mechanisms.)21

As noted in the Introduction, in hyperbolic discounting models dynamic decisions are mod-
elled as a sequential game between different ‘selves’, each one choosing at a different time, and
it restricts the analysis to Markov perfect Nash equilibria; thereby implicitly modelling agents
as lacking any form of internal psychological commitment or self-control. It follows that, in this
class of models, agents can limit their preference bias for present consumption only by relying
on external commitment devices.

We are instead interested in studying the consumption-saving behavior induced by an agent’s
psychological, or internal commitment ability. In other words, we aim at identifying self-control
strategies in agents’ consumption-saving behavior. We model self-control as arising from the
competition of cognitive functions, and therefore as a specific cognitive control task of the
kind introduced in the previous section. We study the consumption-saving behavior in an
environment in which agents face a conflict between immediate consumption and a saving rule
which requires exercising self-control to be implemented. We do not endow the agents with
any external commitment mechanism, so that their consumption-saving behavior is governed
exclusively by self-control strategies.

Consider a dynamic economy, with time indexed by t = 0, 1, ...,∞. Let the consumer’s
momentary utility for ct units of the good at time t be denoted U (ct). The agent faces a
linear production technology, and the wealth accumulation equation is

kt+1 = atkt − ct (1)

where kt and ct denote respectively the agent’s wealth and consumption at time t; and at is
the productivity parameter at t. Since such technology is linear, it is optimal for the consumer
to adopt a linear consumption plan:

ct = λtatkt

where λt is the propensity to consume at time t, the consumer’s choice variable; the implied
accumulation equation for capital becomes

kt+1 = (1− λt) atkt

The productivity at is in general stochastic.

Assumption 1 The productivity at is i.i.d., takes values in (0,∞]), and has well-defined mean,
E(a) > 0.

The agent’s ”baseline” preferences for consumption at time t are represented by a utility
function U(ct). At any time t the agent observes a ”temptation”, zt. The effect of the temptation
is to generate a representation of “temporary” preferences at time t of the form:

U (ztc) .

21‘Christmas Clubs’ or specialized accounts, like ‘education accounts’, are other devices known to serve this
purpose (see Elster (1979)). Relatedly, a large experimental evidence has accumulated in psychology which
documents that subjects in self control experiments rely when possible upon external commitment devices; see
Gollwitzer-Bargh (1996) for a survey of such evidence; even pigeons learn to use such commitment devices, see
Ainsle (1974).
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To be interpreted as a temptation, such representation is characterized, under our assumptions,
by a higher perceived marginal utility of consumption at time t with respect to ”baseline”
preferences.

Assumption 2 The consumer’s utility for consumption, U (c) , is CES:

U (c) =
c1−σ

1− σ

with σ < 1.

In fact, with CES preferences, U (ztc) = (zt)1−σU(c), and σ < 1 guarantees that the marginal
utility of consumption increases with zt ≥ 1.22

Assumption 3 The temptation zt is i.i.d., takes values in [1,∞), and has well-defined mean,
E(z) > 1.

An agent in such an environment faces in each period a decision regarding consumption
and saving. He also faces an internal, or psychological conflict, in the sense that he is hit by
temptations which modify his underlying evaluation of the trade-off between consuming today
and in the future. The agent’s choice in the face of such conflict is the result of a cognitive
procedure which involves letting the conflicting preference representations compete in terms of
activation of different processing pathways. Activation is governed by the difference in expected
future rewards evaluated with respect to the underlying preference ordering that is independent
of temptations. It is the expected onset of regret that would result from giving in to temptations
that governs self-control. From a psychological viewpoint, an agent’s consumption-saving choice
in the face of conflicting preference representations is the result of his ability to formulate and
keep his attention centered on goals that are independent of temptations.

An agent at t observes at, his productivity parameter, which represents the characteristics
of the decision problem the agent faces at t. He also observes zt, the temptation he is facing
at t, which determines the marginal utility of present consumption of temporary preferences:
at and zt represent, respectively, the cue and the distraction that set the consumption-saving
decision procedure in motion at any time t.

An agent facing self-control problems does not solve a complete direct maximization problem.
Decision making arises from the interaction of different processing pathways in the brain. The
automatic processing pathway computes the desired consumption-saving rule, given at and zt,
as the propensity to consume λI

t which solves the following recursive problem:

V (at, kt, zt) = max
λ

(1− σ)−1 (ztλatkt)
1−σ + βEV (at+1, (1− λ)atkt, zt+1) (2)

The solution is denoted λI(at, kt, zt).
Following the inputs, that is the cue and the disturbance at and zt, the controlled pathway is

also initialized. Such a pathway disregards the temporary preference representations induced by
zt and also produces a consumption-saving rule in the form of a propensity to consume λt. Such
a consumption saving rule optimally trades off immediate consumption and future consumption

22Alternatively, and without major qualitative differences in our results, we could work with σ > 1 and
temptations zt < 1.

Also, we model temptations as a shock to the utility function rather than as a shock to the discount rate.
With CES preferences and a single commodity, as in our case, this hardly makes a difference, but the distinction
is important in more general models in which temptations can hit differently different goods, e.g., models with
addictive and normal goods.
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but in general depends on the results of the competition which determines the active pathway
at each future time t + τ , given at+τ and zt+τ . In particular, we assume that the controlled
pathway correctly anticipates the stochastic properties of temptations and the results of the
interaction and competition with automatic processes of consumption-saving in the future.23

We proceed by formally deriving the consumption-saving rule resulting from the activation
of the controlled processing pathway. Such pathway first computes the future value of the
consumption-saving plan, D (at+1, kt+1, zt+1) which depends on the active pathway at each
future time t + τ , given at+τ and zt+τ . If the temptation zt+τ were to be inhibited at all times
in the future, then the automatic pathway would have no role in the determination of the value
of the consumption plan, so that D (at, kt, zt) = D(at, kt), and we simply would have

D (at, kt) = max
λ

(1− σ)−1 (λatkt)
1−σ + βED (at+1, (1− λ)atkt) (3)

The resulting consumption-saving choice in this case coincides with the optimal consumption-
saving rule of an agent with exponential discounting at rate β.

In general however, temptation will not be inhibited at all future times, and at some fu-
ture times t, λI

t = λI(at, kt, zt) will be chosen. Suppose that, as in the previous section, the
results of the competition between pathways are determined by expected rewards. Suppose in
particular that the automatic pathway is only active if the future regret associated with the
temptation is smaller than an exogenous activation cost b(a, k), with the following simple func-
tional form: b(a, k) = b(atkt)1−σ. (We adopt this functional form to guarantee the stationarity
of the consumption-saving decision in order to simplify the problem.) In this case,, D(at, kt, zt)
is given by:

D(at, kt, zt) = max

[
U(λI

t atkt) + βE
[
D
(
at+1, at+1

(
1− λI

t

)
atkt, zt+1

)]
,

MaxλU (λatkt) + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]− b(atkt)1−σ

]
(4)

and λI
t = λI(at, kt, zt) is the policy function of program (2 ) (5)

Given the future value of the consumption plan, D (at+1, kt+1, zt+1) , the controlled processing
pathway computes the desired consumption-saving rule as the propensity to consume λt which
solves:

max
λ

U (λatkt) + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]

The resulting propensity to consume is independent of zt; let it be denoted λE(at, kt).
As we noted earlier, the expected rewards determine the results of the competition between

the automatic and the controlled processing pathways. This process, implicit in the determina-
tion of D(at, kt, zt) in (3-5), can be represented simply as follows. Given λI

t = λI(at, kt, zt) and
D(at, kt, zt), the expected regret associated with the temptation zt at time t, is

R(at, kt, zt) = MaxλU (λatkt) + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]

−U(λI
t atkt) + βE

[
D
(
at+1, at+1

(
1− λI

t

)
atkt, zt+1

)]
Inhibitory controls activate the controlled processing pathway if

R(at, kt, zt) > b(atkt)1−σ

23These anticipations rely on reinforcement learning procedures which have proven quite effective on similar
tasks in simulations (see footnote 19); see on the contrary Loewenstein-O’Donaghue-Rabin (2002) for evidence
from survey data regarding a ‘cold-to-hot empathy gap,’ that is a projection bias in predicting future utility.
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In summary, the present bias in the model derives from the stochastic temptation which
affects the computations of the automatic processing pathway. Self-control at time t coincides
with disregarding temptation zt in the decision process, and it requires the maintained activation
in memory of goals, that is of preferences independent of the temptation zt. Such a representation
is maintained by the force of the inhibitory connections linking the reward predictions and active
representation. These inhibitory connections therefore modulate the updating of the active
representations, and are stronger, the higher is the prediction of regret given (at, kt, zt).

3.1 Characterization and identification

In this section we characterize the behavior of an agent facing conflicting preference representa-
tions over his consumption-saving choice. We first study the consumption saving plan associated
with the automatic pathway, λI(at, , kt, zt). Given λI(at, , kt, zt) we solve for the future value
of the consumption-saving plan, D(at, kt, zt), and the consumption-saving plan associated with
the controlled processing pathway, λE(at, kt). The agent’s behavior is then determined at each
time t by the competition between pathways: the agent uses λI(at, , kt, zt) when he expects a
limited future regret, R(at, kt, zt) ≤ b(atkt)1−σ, while he inhibits the temptation zt and uses
λE(at, , kt) if R(at, kt, zt) > b(atkt)1−σ.

We proceed with the characterization of λI(at, , kt, zt). Let z̃t+τ = (at+τzt+τ )
σ−1

σ , for any
τ ≥ 1, z̃t = (zt+τ )

σ−1
σ , and γ ≡ β

−1
σ ; finally, let E(z̃) = E(z̃t+τ ).

Proposition 1 For any at, kt,
λI(at, kt, zt) = λI(zt)

Moreover, λI(zt) is increasing in zt, and can be solved for in closed form:

λI(zt) =
E (z̃)−1

1 + z̃t

γ + z̃t

γ

[
E(z̃)

γ−E(z̃)

] (6)

Given λI(at, kt, zt) = λI(zt), each agent’s consumption-saving plan is characterized by the
policy function of dynamic programming problem (5), which we now characterize.

Proposition 2 The value function D(at, kt, zt) defined by problem (5) exists. The consumption-
saving rule associated to the controlled processing pathway, λE(at, kt), is in fact a constant, λE.

Moreover, there exist a unique policy function of problem (5), λ(at, kt, zt), which has the
following properties: i) it is independent of (at, kt), that is λ(at, kt, zt) = λ(zt); ii) it has a
cut-off property, that is, there exists a λ such that

λ(zt) =
{

λI(zt) for λI(zt) ≤ λ

λE for λI(zt) > λ
(7)

An alternative related representation in terms of realized temptation can be derived as
follows. Automatic choice is inhibited at a time t for large enough realized temptation zt.

Proposition 3 There exist a z such that

λ(zt) =
{

λI(zt) for zt ≤ z

λE for zt > z
(8)
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The cut-off rule in terms of realized temptation follows from (7) by noting that λI(zt) in-
creases with zt, that is the propensity to consume associated with an automatic choice increases
with the intensity of the realized temptation (Proposition 1).

The behavior of an agent facing conflicting preference representations over his consumption-
saving choice in our model can be quite simply summarized: He actively maintains a simple
consumption-saving goal, a propensity to consume out of wealth which is independent of any
realized temptation, and is equal to λE ; at times he allows temptations to affect his consumption-
saving behavior by letting the automatic choice λI(zt) prevail, if this choice does not perturb
his underlying consumption-saving plan too much and therefore does not have large permanent
effects on his prescribed wealth accumulation pattern.

In fact such behavior is quite naturally consistent with several common qualitative descrip-
tions in the psychological literature, which stress e.g., the importance of goal setting, mental
rules, and self-regulation in saving behavior (see Thaler-Shefrin (1981) for a survey of this lit-
erature). Also, it is important to notice that our agents, when evaluating the effects on their
prescribed wealth accumulation patterns of a deviation from their consumption-saving goal to
accomodate a temptation, do anticipate that such a temptation will in fact be followed by oth-
ers, as will the deviation. This is in accordance with the many accounts in popular psychology
of agents’ motivations for rejecting temptations of the sort “if a fall for this I will fall for many
others;” in our terminology, the agent understands that he must impose to himself a stricter
cut-off rule.24

We now compare the consumption-saving plans which characterize behavior in our model of
self-control with the optimal consumption-saving plan of an agent who never faces temptations
{zt}∞0 , or that can inhibit them at no cost, b = 0. The consumption-saving plan chosen by
such an agent coincides with the policy function of a rational agent who discounts the future
exponentially, as in the standard economic theory of dynamic choice, and is determined by the
policy function of dynamic programming problem (3). It is straightforward to show that such
policy function is in fact a constant, independent of (at, kt); let it be denoted λ∗.

Proposition 4 Both automatic and controlled choice necessarily result in a bias favoring present
consumption over saving with respect to the consumption-saving decision of an agent who never
faces temptations

λI(zt) > λE > λ∗, for any zt.

We can furthermore compare the behavior induced by our formulation of self-control with
the behavior induced by the Markov perfect Nash equilibrium of the game of multiple succes-
sive selves, as in Laibson (1996) or O’Donogue-Rabin (1999), in the same consumption-saving
environment.

Formally, a Markov perfect Nash equilibrium of the game of successive selves with stochastic
temptations is represented by a consumption-saving rule λM (zt) solving the following fixed point
condition:

λM (zt) = argmaxλ(1− σ)−1 (ztλatkt)
1−σ + EVλM (z) ((1− λ)atkt, at+1, zt+1) , ∀zt (9)

where Vλ(z) (at, kt, zt), the value at t of present and future consumption induced by an arbitrary

24Of course the wording of these accounts are most often interpreted in the psychological literature, and in
the economic literature as well (see Benabou-Tirole (2000)), as indicating a sort of reputation mechanism which
agents uses to enforce self-control rules. Our interpretation has the advantage that it does not require to postulate
a mind composed of different selves endowed with asymmetric information. We discuss more in detail in Section
4 these different approaches to decision making.
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consumption-saving rule λ(z), is defined by

Vλ(z) (at, kt, zt) = (1− σ)−1 (ztλ(zt)atkt)
1−σ + E

∞∑
τ=t+1

βτ−t (zτλ(zτ )aτkτ )1−σ (10)

In this formulation, an agent at each time t chooses a consumption-saving rule which depends
on the realization of the temptation zt: he never exercises self-control and always lets go of the
temptation, that is, the higher the temptation the more he consumes; he anticipates though the
same behavior at equilibrium of all his future selves and sets his consumption-saving rule in the
present accordingly (such forward looking aspect of the equilibrium concept in facts exacerbates
his present bias in consumption). Formally,

Proposition 5 The Markov perfect Nash equilibrium consumption-saving plan, λM (zt) is in-
creasing in zt, and results in a bias favoring consumption over savings with respect to the plan
of an agent exercising self-control and, under our preference specification, even with respect to
the plan associated to automatic processing:

λM (zt) > λI(zt) > λE , ∀zt

It is interesting to note that the behavior of an agent who as in our model of self-control can
be formally distinguished from the behavior associated to the Markov perfect Nash equilibrium
of the game of multiple selves, even if the stochastic process driving temptations is not directly
observed, that, is with only data on consumption and wealth. This identification result follows
simply by exploiting the cut-off property of the consumption-saving plan which characterizes
self-control, and under minimal assumptions on the distribution of temptations zt. The behavior
both of an agent in our model of self-control and of an agent who plays the Markov perfect Nash
equilibrium of the game of successive selves can in fact be represented by a stochastic process
for the consumption-saving plan λt, induced by the stochastic process governing temptations.
If for instance the distribution of temptation is non-atomic, the equilibrium distribution of λt

associated to the Markov perfect Nash equilibrium will also in general be non-atomic, while
the distribution associated to behavior in our self-control model has a positive probability mass
associated to the lower bound of its support (which corresponds to λE). In other words, if the
agent behaves as we postulate in our model of self-control we should observe a positive fraction
of times a low consumption-saving plan λE , as opposed to a different value of λt at any t.25

3.2 Comparative statics

We turn now to some implications of our model of self-control in terms of comparative statics,
with the aim of understanding how changes in the external environment, e.g., the distribution
of temptation or the distribution of productivity shocks, and differences in the internal psy-
chological characteristics of an agent, e.g., cognitive abilities like setting goals and controlling
attention, affect consumption-saving behavior.26

We turn first to a series of comparative statics results regarding the dependence of λI(zt),
λE and λ on first order dominance changes of the distribution of zt, and at and on changes in

25This is of course just an illustration of a possible identification procedure, but different assumptions on the
distribution of zt give rise to different possible strategies to obtain the identification result from consumption
and wealth data.

26As already noted, different ‘propensities to plan’ have been documented by Ameriks-Caplin-Leahy (2002)
with survey data on retirement savings. The measure of ‘propensity to plan’ they introduce is designed to identify
psychological and cognitive aspects of behavior of the respondents, and is constructed from answers to questions
related to planning behavior, but not in self-control situations.
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b.27 We will then discuss the implications of these results for the general qualitative properties
of consumption-saving behavior.

We impose the following independence assumption which allows us to separate the produc-
tivity and temptation effects.

Assumption 4 The random variables at and zt are independent.

Expected future temptations as well as expected future productivity shocks affect automatic
choice, and the propensity to consume today when temptation is not inhibited, λI(zt).

Proposition 6 λI(zt), increases with increases, in the first order dominance sense, in the dis-
tribution of zt and in the distribution of at.

In other words, λI(zt), increases as a consequence of shifting probability weight into larger
values of zt or at.

Consider again the effect of a first order stochastic dominance change in the distribution of
zt, and of at, now on the propensity to consume in the event temptations are inhibited, λE .

Proposition 7 The propensity to consume associated with controlled processing, λE , increases
with an increase in the first order dominance sense, in the distribution of zt, and with an increase
in b; while it decreases with an increase in the first order dominance sense in the distribution of
at.

The intuition for the effect of an increase in the first order dominance sense in the distribution
of zt hinges on the change in the expected future value of the consumption-saving program, which
represents at the margin the value of savings. If a change in the distribution of temptations has
the effect of decreasing the expected future value of the consumption-saving program, then at
the margin an agent exercising self-control will save less and consume more in the present. This
is in fact the effect of an increase in the first order sense of the distribution of zt: the value of
the program is weakly decreasing in zt and hence an increase in the distribution of zt in the first
order sense shifts probability mass from realizations of temptations associated to higher values
of the program into realizations associated to lower values of the program, thereby decreasing
its expected value. Similarly, an increase in attention costs b reduces the expected future value
of the consumption-saving program, by making it more costly to exercise self-control, and hence
it reduces the marginal value of saving.

The case of a change in the distribution of productivity shocks is the opposite: an increase
in the first order dominance sense in the distribution of at increases the expected value of the
consumption-saving program, by improving the technological opportunities of the economy on
average in the future, and therefore has the effect of increasing the marginal value of saving and
saving itself in the present.

To identify more precisely the determinants of the stochastic process which regulates an
agent’s exercise of his cognitive self-control inhibitions we study also the comparative statics
properties of the cut-off λ. (Note that the properties of the cut-off z are qualitatively equivalent.)

27Consider two probability densities f and f ′ on a compact subset of <, X, and the associated cumulative
function, F and F ′. The density f ′ dominates in the first order stochastic sense the density f if

F ′(x) ≤ F (x), ∀x ∈ X.

An increase, in the first order dominance sense, of the distribution of x represents therefore a shift of probability
mass from the smaller realizations of x ∈ X to the larger (and, as a consequence, it increases the mean of the
distribution).
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We are able in this case to consider only infinitesimal changes in the first order stochastic sense
of the distributions of zt and at.28

Proposition 8 The cut-off λ is increasing in b, decreasing in a local (infinitesimal) increase in
the first order dominance sense in the distribution of zt, and increasing in a local (infinitesimal)
increase in the first order dominance sense in the distribution of at.

Other things equal, it is not surprising that an increase in the cost of inhibiting automatic
processing at any time t, and hence in the cost of exercising self-control, has the effect of
increasing the cut-off λ, that is, of rendering it less stringent. Perhaps it is more surprising that
an increase in the first order stochastic sense in the distribution of temptations makes instead
the cut-off more stringent. The intuition is that the cost of inhibiting automatic processing is
unvaried and equal to b, while the value of inhibiting is on average higher, since the distribution
of zt is shifted towards higher realizations of zt.29 Interestingly, the value of inhibiting automatic
processing decreases by shifting the probability mass towards more productive technology shocks,
and the cut-off λ is reduced as a consequence of such a change.

How then, in summary, are the general qualitative properties of consumption-saving behavior
affected e.g., by an increase in the first order stochastic sense of the distribution of temptation ?
And in particular, is the probability that self-control is exercised and automatic choice inhibited
in the course of the consumption-saving decision problem higher or smaller due to such a change
in the distribution of temptations ?

Proposition (3) implies that such probability coincides with the mass of the distribution of
zt on z > z. An increase in the first order dominance sense in the distribution of zt increases
therefore by definition the mass of the distribution of zt on z > z, for any z. Furthermore,
an increase in the first order dominance sense in the distribution of zt i) decreases the cut-
off λ by Proposition (7), and ii) increases λI(z), for any z. But both i) and ii) have the
effect of decreasing z. We conclude then that an increase in the first order dominance sense
in the distribution of zt increases the probability that self-control is exercised and automatic
choice inhibited. On the other hand, by Proposition 7 a local (infinitesimal) increase in the
first order dominance sense in the distribution of zt increases λE , i.e., the consumption when
self-control is exercised and automatic processing inhibited. We conclude that an agent facing
larger temptations in the future reacts by exercising self-control more often but at the same
time by consuming a higher fraction of his wealth even while controlling himself.

It is straightforward to examine also the effects of an increase in attention costs, b, on the
general qualitative properties of consumption-saving behavior. In this case in fact, the cut-
off z increases (λI(zt) is unaffected) and hence the probability that self-control is exercised
and automatic choice inhibited is lowered as an effect. Furthermore, an increase in b has, by
Proposition 7, the effect of increasing λE . An increase in b, therefore, has negative effects on
the agent’s ability to self-control and reduces the present consumption bias in all dimensions.

A local (infinitesimal) increase in the first order dominance sense in the distribution of at

increases the cut-off λ by Proposition (7), and it also increases λI(z), for any z; and therefore it

28Consider once more two probability densities f and f ′ on a compact subset of <, X, and the associated
cumulative function, F and F ′. Fix a density f ′ which dominates f in the first order stochastic sense, and
consider the distribution obtained by mixing f(x) with f ′(x):

g(x) = (1− α)f(x) + αf ′(x)

By an infinitesimal increase in the first order dominance sense in the distribution of x we mean an infinitesimal
increase dα > 0 evaluated at α = 0.

29In fact, a countervailing effect must be taken into account: the value of inhibiting automatic processing is
reduced by the increase in λE , see Proposition 7. But this effect is second order for infinitesimal changes in the
distribution of zt by the Envelope Theorem.
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decreases z; it has therefore an ambiguous effect on the probability that self-control is exercised
and automatic choice inhibited. The effect of such a change in the distribution of productivity
shocks on the consumption-saving plan in the event that automatic processing is in fact inhibited
is to increase savings in the present period (by Proposition 7).

3.3 Complexity of goals

The behavior of an agent facing conflicting preference representations over his consumption-
saving choice in our model, as we noted, involves maintaining actively a simple consumption-
saving goal. Such goal consists, in our analysis, in a propensity to consume out of wealth which is
independent of any realized temptation. Psychologists constantly remark that the determination
of the ‘complexity’ of the goals individuals set for themselves affects in a fundamental manner
their ability in self-regulating tasks in general and in self-control tasks in particular.30 But the
simple formulation the agent problem we have adopted, with linear production technology and
CES preferences, implies that the consumption-saving goal is in fact extremely simple: it is
constant over time, as it is in fact independent of the realization of the production shock at. It
can actually be expressed verbally as simple constant percent rule: ”Save λE × 100 percent of
your wealth each period.”

To study the issue of complexity of the goal agents set to themselves, we need to examine a
different formulation of the model, which gives rise potentially to more complex consumption-
savings plans in the event of self-control. As a way of illustration consider the following formu-
lation of technology, leaving preferences unchanged:

kt+1 = at (kt − ct) (11)

In this formulation, the shock at acts on net wealth kt− ct, rather than on initial period wealth,
kt, and therefore takes the interpretation of a rate of return on saving at t, rather than of a
productivity shock, as in the case of the technology studied in the previous section, equation (1).
The important difference is that in this formulation the value of controlling any temptation is
random, and proportional to the realization of at : If the return from saving is small, at is small,
and self-control is of little use. As a consequence, the consumption-saving plan depends on at;
let it be denoted λ(zt, at). Let also λI(zt, at) and λE(at), denote the propensities to consume
associated, respectively, to the automatic and the controlled pathways; let finally λ(at) denote
the cut-off which characterizes λ(zt, at).

Proposition 9 The propensity to consume λI(zt, at), and λE(at), and the cut-off λ(zt, at) are
all decreasing in at, for any zt.

We can therefore in this environment study the issue of the complexity of the goal λE(at),
with respect to any simpler goal represented by a constant consumption-saving plan over time,
that is a plan independent of at. Suppose in fact that the activation cost parameter, b, decreases
with the complexity of the goal to be maintained active. In particular, we interpret this to mean
that activation costs are lower to maintain active a constant consumption-saving, λE,simple,
than a fully contingent plan λE(at); and we take the constant plan λE,simple to coincide with
the optimal consumption-saving plan associated to cognitive control under the restriction that
it be independent of at at any time t. Our objective is to characterize under which conditions

30The books by Baumeister-Heatherton-Tice (1994), and Gollwitzer-Bargh (1996), for instance, discuss enor-
mous rich literatures on the topic. In the specific context of consumption-saving environment, Thaler-Shefrin
(1981) discuss evidence for the effectiveness of mental rules and other internal psychological mechanisms which
have the objective of reducing the complexity of the consumption-saving goals agents rely on to exercise self-
control.
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in the parameters an agent would gain from setting the simpler constant goal as opposed to the
‘complex’ goal, contingent on the state of the technology, at.31

Let the activation cost associated to the simple plan be denoted bsimple, and let the difference
in the cost parameters, that is the saving in activation costs per unit of wealth to maintain the
simpler plan active, be denoted ∆b.

Proposition 10 A simpler constant consumption-saving plan λE,simple tends to be preferred to
the complex plan λE(at) if in the limit, and other things equal, i) bsimple is small and ∆b large
enough, ii) the mean of at is small enough, and finally if iii) the mean of zt as well as ∆b are
large enough.

The simple consumption-saving plan is preferred to the complex plan, not surprisingly, if it
is cheap to maintain active, and much cheaper then the complex plan. More interestingly, the
simple plan is preferred if the mean of the stochastic rate of return, E(at), is small enough, that
is close to 0. In this case, since the support of the rate of return shocks is [0,∞), the variance
of at also tends to 0 and hence rate of return in the limit is degenerate, and concentrated on
0. But in this case self-control is useless, and it is a dominant choice for the agent to consume
all of his wealth each period. Therefore, the utility gain of conditioning the consumption-saving
plan on the realization of at vanishes.

The simple plan is also preferred if the mean of the stochastic process of temptations grows
large. This is because when temptations are large enough, in the limit, the complex plan will
optimally induce inhibition of the automatic processing all the times, independently of at, and
this behavior can be induced also by a simple plan. (The condition on ∆b is required as the
savings in terms of attention costs associated to the simple plan must of course also more
than compensate the loss of utility due to the non contingent plan by itself, once inhibition is
guaranteed at all times.)

4 Related literature, extensions, and discussion

The view that decision making arises from the interaction of automatic and cognitive processes,
or visceral and rational states, hot and cold states, is at least as old as the Bible; and it has
taken different forms and conceptualizations over the centuries, perhaps most notably in recent
times in psychoanalytic theory where it takes the form of the Ego and the Id (see Freud (1927).

A formal model exploiting such dichotomy in decision making has been introduced in eco-
nomics by Loewenstein (1996) in his pioneering analysis of the psychology of visceral influences
on behavior; Bernheim-Rangel (2001) also study the visceral/rational dichotomy in a model of
addiction which is more directly motivated by neurobiological evidence. The identification and
the modelling of the neural processes responsible for cognitive control, and especially of the
mechanism which modulates the competition of such processes, is the recent contribution of

31The constant consumption-saving plan is defined formally as follows:

λE,simple = argmaxλE
(
U (λatkt) + βDsimple (at+1, at+1 (1− λat) atkt, zt+1)

)
where

Dsimple(at, kt, zt) = max

[
U(λI

t atkt) + βE
[
D
(
at+1, at+1

(
1− λI

t at

)
atkt, zt+1

)]
,

MaxλE
(
U (λatkt) + βD (at+1, at+1 (1− λat) atkt, zt+1)− b(atkt)1−σ

) ](12)

and λI
t = λI(at, kt, zt) is the policy function of program (2 ) (13)
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cognitive sciences which we are introducing to study economic decision making and which char-
acterizes our approach. The foundations of our model of self-control lie in the explicit modelling
of cognitive processes introduced in Section 2 rather than in visceral/rational dichotomy per se.

Regret plays an important role in our cognitive model of self-control. In our formulation in
fact future expected regret, through a dopamine gating mechanism, regulates the competition
between automatic and controlled processing pathways, and essentially controls behavior. Regret
plays an important role also in Gul-Pesendorfer (2001)’s axiomatic analysis of self-control: the
preference representation they obtain contains a term which represents the preference for present
consumption and a term which limits such preference, which can be interpreted as psychological
regret. A more precise comparison of our work with Gul-Pesendorfer’s is though difficult because
of the different methodological foundations: in terms of cognitive processes in our study and in
terms of classical axiomatic theory in theirs.

Our approach to decision making in self-control environments, by exploiting the interaction
of different controlling pathways, could appear related to a multiple selves approach, in which
decisions result from the strategic interaction, at each time t, of different selves. In Thaler-
Shefrin (1981), for instance, choice results from the interaction of a planner self and a doer self.
The doer is impulsive and the planner exercises self-control, modelled as an explicit costly effort
which has the effect of changing the preferences of the doer, e.g., by building guilt. However,
a problem with all specifications of multiple selves is that they postulate a subdivision of the
brain into active symbolic and logic modules which have no parallel in the actual neurobiology
of the human brain. In the words of connectivist cognitive science, such specifications represent
homunculus-based theories of the mental process.32

Such critique of multiple selves models applies also to the standard behavioral specifications
of hyperbolic discounting models which postulate a game between multiple successive selves
and adopt an equilibrium concept, Markov perfect Nash equilibrium, which is conceptually
well-founded in principle only for interpersonal strategic interactions. Even more explicitly
homunculus-based are those theories of behavior, like Benabou-Tirole (2000), which exploit
information asymmetries across different selves and Bayesian inference methods in the strategic
interaction between the selves. In our set-up, on the contrary, the modulatory activity of the
executive function, it has been shown by the literature in cognitive sciences we cite in Section
2, may arise endogenously from the activation of the neural network; it does not require the
executive function to operate explicitly as a maximizing agent, an homunculus.

Several studies in economics have directly extrapolated evidence pertaining to the consump-
tion of addictive substances and to the behavior of addicted individuals to formulate a general
theory of consumption (examples are Loewenstein (1996) and Laibson (2001)). While addictive
behavior might be more properly considered a pathological phenomenon, and it is therefore
probably best studied distinctly from consumption,33 addictions do in fact reflect lack of self-
control, and as a consequence a theory of self-control should be naturally tested in terms of its
ability to understand addictions. In fact, we claim that the general model of cognitive control
we have adopted could have important implications in the study of addiction: different forms of
addiction would be associated to a specific pathology concerning the mechanism controlling the
competition of the different processing pathways, e.g., in the form of a difficulty in inhibiting
distractions and temptations. In our framework, and consistently with such an explanation of
addiction, we could model dependence from addictive substances as follows. Let At denote the

32Examples include also Fodor (1983)’s executive function, Minski (1985)’s society of minds, as well as Tooby-
Cosmides (92)’s specialized modules; see Monsell-Driver (2000) for a clear methodological discussion on the issues
involved in modelling controlled processes, and in particular on the homunculus fallacy.

33Even Baumeister-Heatherton-Tice (1996) conclude their encyclopedic analysis of self-regulation failures by
reminding the reader that such failures are ”the exception, not the rule”, pg. 263.
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indicator function of the activation of automatic choice, that is

At =
{

1 for λt = λI
t

0 for else

We can now construct an index Ψt which measures how often an agent lets automatic choice
overcome self control:

Ψt =
∑

τ<t At

t

Addiction in the model is then captured, e.g., if we let the activation cost b decrease with Ψt.
This would represent a complementary but different analysis than Bernheim-Rangel (2001)’s,

who study addiction as resulting from the interaction of a rational and visceral self. They
support their model with evidence from neurobiology, and identify in the misrepresentation
of hedonic experience when the brain operates in the hot mode the rationale of consumption
patterns which might lead to addiction. While the hot mode operation of the brain is triggered by
external cues, in their formulation, they do not consider any internal neurobiological mechanisms
which govern the operation mode of the brain (or, in our terminology, which modulate the
activation of different controlling pathways and hence the inhibition of temptations). Relatedly,
Laibson (2001) models addiction as arising from decisions automatically triggered by external
cues, with no space for cognitive control. While we do not doubt the relevance of cues or
temptations in inducing impulsive behavior and possibly leading to dependence on addictive
substances, it is our contention that the study of the brain mechanisms processing and possibly
inhibiting the representations that such cues induce is necessary to understand many important
phenomena of decision making and addictions e.g., why the same cues have different effects in
different persons and why the same cues have different effects on the same person in different
circumstances.

In fact the view that addictive substances operate directly on the mechanisms which reg-
ulate the competition of different processing pathways in the brain, that is, on the dopamine
gating system, has received recent empirical support in cognitive sciences. In particular, re-
cent neurobiological studies have postulated the existence of a possible generalized dopamine
hypofunctionality syndrome subsuming drug addiction, non-chemical behavioral addictions, co-
caine dependence, and in general a large class of addictive, impulsive, and compulsive disorders
(see Gardner (1999)). Indirect evidence of the importance of regulation of different process-
ing pathways can also be derived from the clinical and neurological observations regarding
various psychiatric pathologies. For instance, attention disorders (e.g., Attention Deficit Hy-
peractivity Disorder, ADHD, in school-aged children) have been associated with dysfunctions
of the dopamine-activated brain reward neuronal circuits (Barkley (1997)); and , Cohen-Servan
Schreiber (1992) have conceptualized the behavioral deficits associated with schizophrenia as
failures of cognitive control ‘due to the impaired ability to represent, maintain, and update
context information,’ and have shown that such deficits can be explained by a form of ‘noise’ in
the dopamine gating system.

In our model, self-control arises from the activation of controlled processing pathways. Why
aren’t the controlled processing pathways always active ? After all, this would allow the agent
never to give way to temptations which motivate behavior he will later regret. In our set-up
the controlled processing pathway is in fact always active if b = 0. On the contrary, when
b > 0, consumers save on the controlled processing pathway, by allowing at times automatic
processing to govern choice. We could speculate that the reason why the controlled processing
pathway is not always active during decision making, and an executive function modulates
the activation of different pathways, must represent an evolutionary adaptation in the face
of limitations in the computational ability of the brain and especially of active memory. For
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instance, consider the production-saving model with rate of return shocks, at; if the distribution
of such shocks has been characterized by a mean close to 0 (and hence by a small variance)
in early evolutionary times, brain connections in the prefrontal cortex to guarantee self-control
would have been of little fitness gain. We could therefore envision a sequence of adaptive
evolutionary steps whereby fast automatic processing, e.g., classical conditioning and Pavlovian
responses, evolved first in an environment in which storage naturally represented a second order
effect in terms of adaptiveness; and cognitive control evolved later in evolutionary history and
subject to the constraints imposed by the architecture of the mammal brain, possibly exploiting
the neurological connections for the operation of working memory in the prefrontal cortex. This
view, while speculative, is at least consistent with the developmental structure in brain evolution
(see e.g., Finlay-Darlington-Nicastro (2001)).

5 Conclusions

By considering only Markovian strategies of a game between successive selves, or by extrapo-
lating from the behavior of addicted individuals, the behavioral economics literature implicitly
models agents as lacking any form of internal psychological commitment or self-control in con-
sumption. But only when their frontal cortex is lesioned do agents display no self-control in
consumption. Yet patients with lesions in the frontal lobes display odd and impulsive behavior;
e.g., they might react to seeing a hammer and nails by hanging a picture on the wall, indepen-
dently of the social context in which they find themselves (see Lhermitte (1986)); or they might
eat enormous quantity of food immediately after claiming of not being hungry (see Pribram
(1984); quoted by Loewenstein (1996))).

We interpret our analysis of dynamic choice and self-control as introducing the functions of
the frontal cortex in behavioral economics. We conclude that, once neurological and psycholog-
ical pathologies are excluded, human behavior might be generally much more consistent with
standard dynamic choice theory than behavioral economists postulate.
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Appendix: Proofs
Proposition 1: Proof. The first order conditions of the maximization problems include:

zt (ztct)
−σ = βEV1 (atkt − ct, zt+1)

V1 (kt, zt) = atβEV1 (akt − ct, zt+1) = at (ztct)
−σ

zt

zt (ztct)
−σ = βE (zt+1ct+1)
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Let
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t atkt

then
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(
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I
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σ
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(
β
−1
σ

z
σ−1

σ
t

)
E
(
λI

t+1

(
1− λI

t

))
(at+1zt+1)

σ−1
σ
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σ
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σ

)
λI

t =
1

1 + z
σ−1

σ
t γ−1

(
E
(
λI

t+1

)
(at+1zt+1)

σ−1
σ

)−1 =
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(
E
(
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)
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σ−1
σ
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)
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σ−1
σ
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Define the random variable z̃t+τ = (αt+τzt+τ )
σ−1

σ , for any τ ≥ 0, where the sequence αt+τ

satisfies αt = 1, αt+τ = at+τ , for any τ ≥ 1. Let E(z̃t+τ ) = E(z̃).
We then guess for a solution of the form:

λI
t =

E(z̃)−1

1 + E
∑

s=t Πs
t z̃sγt−s−1

=
E(z̃)−1

1 + γ−1z̃t + γ−1z̃tE
∑

s=t+1 Πs
t+1γ

t+1−s−1

= E(z̃)−1

(
1 + γ−1z̃t + γ−1z̃tE

∑
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Πs
t+1γ

t+1−s−1

)−1

If the guess is correct,

20



EλI
t+1z̃t+1 = E

E(z̃)−1z̃t+1

1 + E
∑

s=t+1 Πs
t+1z̃sγt+1−s−1

= E

(
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=
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∑
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Πs
t+1z̃sγ

t−s
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Substitute into λI
t to check:

λI
t = E(z̃)−1

1+z̃tγ−1E
(
1+E

∑
s=t+1

Πs
t+1z̃sγt−s

)
= E(z̃)−1

1+z̃tγ−1+γ−1z̃tE
∑

s=t+1
Πs

t+1z̃sγt−s

(14)

We conclude that the guess is in fact correct. It follows that λI
t = λI(zt).

Proposition 2: Proof. Existence of the value function D(at, kt, zt) follows by Blackwell’s
Theorem by a standard argument. Moreover, it is straightfoward to show that D(at, kt, zt) is
increasing in (at, kt). Let the policy function be denoted λ(at, kt, zt). We will first show that
the policy function satisfies a cut-off rule, that is:

λ(at, kt, zt) ={
λI(zt) for λI(zt) ≤ λ(at, kt)
arg maxλ U (λatkt) + βE [D (at+1, at+1 (1− λ) atkt, zt+1)] for λI(zt) > λ(at, kt)

Then, we will show that the cut-off, hence the policy function, are independent of (at, kt).
The cut-off rule follows if we can show concavity of U (λatkt)+βE [D (at+1, at+1 (1− λ) atkt, zt+1)]

with respect to λ. Fix (at, kt). Concavity guarantees that

max
λ

U (λatkt) + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]

has a unique solution, λE , independent of the realization zt. It is also straightforward to see
that λI > λE , for zt > 1. It follows that there exists either a unique λ ≥ λE which solves

(1− σ)−1
(
λEatkt

)1−σ

+ βE
[
D
(
at+1, at+1

(
1− λE

)
atkt, zt+1

)]
− b(atkt)1−σ =

(1− σ)−1 (λatkt)
1−σ + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]

Let it be denoted λ. By construction, therefore,

∂

∂λ

[
(1− σ)−1 (λatkt)

1−σ + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]
]
≤ 0 at λ = λ

and λ is the cut-off for given (at,kt). Since (at,kt) are arbitrary in the argument, we can construct
in fact the cut-off λ(at, kt) of the statement.

We turn now to show the concavity of

U (λatkt) + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]

with respect to λ. It requires U ′′atkt + βE
[
at+1atkt

∂2

∂(kt+1)2
D(at, kt, zt)

]
< 0, and hence, in

turn, ∂2

∂(kt+1)2
D(at, kt, zt) < 0.
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Let qt = atkt. Choose arbitrary concave functions h, U : R+×R+ → R+ where R+ = [0,∞),
that is h, U take non-negative values. In particular, we can choose U = (1 − σ)−1c(1−σ), 0 <
σ < 1. Let the operator T defined as follows:

(Th) (qt; zt) = max

[
U(λI

t (at, zt)qt) + βE
[
h
(
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)
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]
(15)

To show that D(at, kt, zt) is concave, it suffices to show that the operator T preserves the
concavity of the map h. Let q = vq1

t + (1− v) q2
t . From concavity of U and h, it follows that:
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≥ max
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The latter follows from max (a + b, c + d) ≥ max (a, c, b, d) = max (max (a, c) ,max (b, d)) ≥ 0 if
a, b, c, d ≥ 0. Therefore,

(Th) (q; zt) ≥
[
v (Th) (q1

t ; zt)
]
+ (1− v) (Th) (q2

t ; zt) (16)

and (Th) (qt; zt) is concave.
We turn now to the independence of the policy function from (at, kt). The cut-off λ(at, kt).

solves equation
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Guess the following functional form for D(at, kt, zt):
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Then,
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M (zt) = max

[
(λI

t )
1−σ + βEM (zt+1) (at+1

(
1− λI

t

)
)1−σ

maxλ(λ)1−σ + βEM (zt+1) (at+1 (1− λ))1−σ − b

]
(17)

It follows that the policy function λ(zt) associated with the dynamic program (17) is also the pol-
icy function associated with the program (5), and hence is independent of (at, kt). Furthermore,
then, the cut-off is also independent of (at, kt), λ(at, kt) = λ.

The proof of Proposition 3 follows as a simple corollary of Propositions 1 and 2, and is
therefore left to the reader.
Proposition 4: Proof. Consider problem (3): its argmax is λ∗. By construction, λI(zt) = λ∗

when zt = 1 and E(z̃) = 1. Assumption 3 guarantees then that zt ≥ 1 and E(z̃) < E(ã). To
conclude then that λI(zt) ≥ λ∗, for any at, zt, it is sufficient to prove that λI(zt) is increasing
in zt and decreasing in E(z̃). That this is in fact the case can be shown from the closed form
solution for λI(zt) in Proposition (1).

By Proposition (2),

λE = arg max
λ

λ1−σ + βEM (zt+1) (at+1 (1− λ))1−σ (18)

The first order conditions of this maximization problem readily imply that λE decreases with
an increase of E

[
M (zt+1) (at+1)1−σ

]
. Moreover, it is straightforward to show that E

[
M (zt+1) (at+1)1−σ

]
decreases with b. But λ∗ equals λE for b = 0. We conclude that, for any b > 0, λE > λ∗.

Finally, λI(zt) > λE , for any zt > 1, follows from the characterization of M(zt) in Proposition
2.
Proposition 5: Proof.

We prove the statement, to simplify notation, for an economy with a deterministic technology,
at = a, for any t; the proof generalizes. Given an exogenous process λt = λ(zt), and letting

V (kt, t) = mtk
1−σ
t = (1− σ)−1 (λtakt)

1−σ + βtmt+1 ((1− λt) akt)
1−σ

we can solve for mt as follows:
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(
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]
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(
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]
E (λt+1)

1−σ

+E
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(
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) s−1∏
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The maximization problem of the agent at time t is therefore:

max
(λt−1zt−1akt−1)

1−σ

(1− σ)
+ βEmt ((1− λt−1) akt−1)

1−σ

and the first order conditions for the maximization include:

(λt−1zt−1akt−1)
−σ

zt−1akt−1 = (1− σ)−1
βEmt ((1− λt−1) akt−1)

−σ
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which can be written as:

λt−1 =
(

1 +
(
(zt−1)

σ−1 (1− σ)−1
βEmt

) 1
σ

)−1

. (19)

As a consequence, from (19),

dλt−1

dzt−1
= −

(
1 +

(
(zt−1)

σ−1 (1− σ)−1
βEmt

) 1
σ

)−2 1
σ

(
(zt−1)

σ−1 (1− σ)−1
βEmt

) 1=σ
σ

(
− (zt−1)

σ−2
βEmt

)
> 0,

that is, λM (zt) is increasing in zt.
Condition (19) is of course has the same form as the first order condition of the maximization

problem associated to automatic processing, (2), which defines λI(zt); the only difference is that
the expected future value of the program, Emt+1 is different. Let EmI

t+1 and EmM
t+1 denote,

respectively, the expected future value of the program evaluated at the solution of automatic
processing and at the Markov perfect Nash equilibrium. Note that EmM

t+1 < EmI
t+1, since

λI(zt) by definition maximizes mt = m(zt). But, (19) implies that

dλt

dEmt+1
< 0,

and therefore, λM (zt) > λI(zt), for any zt.
Proposition 6: Proof. An increase in the first order dominance sense in the distribution of zt

(respectively, in the distribution of at) increases by definition E(z) (resp. E(a)), and therefore
it decreases E(z̃). The statement then follows directly from the closed form solution for λI(zt)
in Proposition 1.
Proposition 7: Proof. Consider dynamic program (17) that, we have shown in the proof of
Proposition (2), characterizes λ(zt):

M (zt) = max

[
(λI

t )
1−σ + βEM (zt+1) (at+1

(
1− λI

t

)
)1−σ

maxλ λ1−σ + βEM (zt+1) (at+1 (1− λ))1−σ − b

]
(20)

The characterization of the cut-off rule in Proposition (2) implies that M (zt) is independent
of zt, for zt > z. Moreover M (zt) is decreasing in zt, for zt ≤ z. This is because

λI (zt) > arg max
λ

λ1−σ + βEM (zt+1) (at+1 (1− λ))1−σ, for any zt > 1

and
λ1−σ + βEM (zt+1) (at+1 (1− λ))1−σ

is concave in λ.
We conclude then that, other things equal, a first order stochastic dominance increase in the

distribution of zt, has the effect of decreasing EM (zt) ; an effect which cannot be undone by a
change in the cut-off without contradicting the definition of M(z) as a value function, equation
(20).

We pass now on to analyze the following problem

arg max
λ

(λ)1−σ + βEM (zt+1) (at+1 (1− λ))1−σ (21)
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which, by Proposition (2) is equivalent to problem

arg max
λ

U (λatkt) + βE [D (at+1, at+1 (1− λ) atkt, zt+1)]

which appears in the statement.
Assumption (4) guarantees the independence of at+1 and zt+1. Therefore problem (21) can

be written equivalently,

arg max
λ

(λ)1−σ + βEM (zt+1)E(a)1−σ (1− λ)1−σ

The first order conditions of this maximization problem readily imply that λ increases
with a decrease of EM (zt+1) , that is with a first order stochastic dominance increase in the
distribution of zt.

The same first order conditions imply that λ is increasing in of E (a)1−σ
, that is, with a first

order stochastic dominance increase in the distribution of at.
Proposition 8: Proof. Given b and EM (zt+1), and using Assumption 4, the cut-off λ is
determined by the following equation:

(λ)1−σ + βEM (zt+1) E(a)1−σ (1− λ)1−σ = (λE)1−σ + βEM (zt+1) E(a)1−σ
(
1− λE

)1−σ

− b

(22)
where λE = arg maxλ λ1−σ+βEM (zt+1) E(a)1−σ (1− λ)1−σ depends on b only through EM(zt+1).
From the definition of M(zt), equation (20), it follows in a straightforward manner that
EM (zt+1) is decreasing in b. Finally, since λ > λE by construction of the cut-off, in Proposi-
tion (2), and (λ)1−σ + βEM (zt+1)E(a)1−σ (1− λ)1−σ is concave in λ, it follows that (λ)1−σ +
βEM (zt+1) E(a)1−σ (1− λ)1−σ is in fact decreasing in λ at λ = λ. The Implicit Function the-
orem on (22) now implies that λ is locally increasing in b.

We pass now to characterize the effect of a infinitesimal increase in the first order dominance
sense in the distribution of zt. Let F (zt) denote the cumulative distribution of zt. Take a
distribution G(zt) which dominates F (zt) in the first order stochastic sense, and consider the
distribution obtained by mixing F (zt) with G(zt):

H(zt) = (1− α)F (zt) + αG(zt)

Recall that, by an infinitesimal increase in the first order dominance sense in the distribution
of zt we mean an infinitesimal increase dα > 0 at α = 0.

Since M(zt+1) is a continuous function, dα > 0 has an infinitesimal negative effect on
EM (zt+1) , that is dEM (zt+1) < 0.

Given b and EM (zt+1) the cut-off λ is determined by equation (22), where λE = arg maxλ λ1−σ+

βEM (zt+1) E(a)1−σ (1− λ)1−σ
. By the Envelope theorem, (λE)1−σ+βEM (zt+1)E(a)1−σ

(
1− λE

)1−σ

is unaffected by any infinitesimal change dEM (zt+1) .
Once again, since λ > λE by construction of the cut-off, in Proposition (2), and λ1−σ +

βEM (zt+1) E(a)1−σ (1− λ)1−σ is concave in λ, it follows that λ1−σ+βEM (zt+1) E(a)1−σ (1− λ)1−σ

is in fact decreasing in λ at λ = λ. The Implicit Function Theorem on (22) now implies that λ
is locally decreasing in EM(zt+1).

Finally, a similar argument proves that an increase in E(a )1−σ increases the the cut-off
λ. But, since the function f(x) = x1−σ is increasing in x for σ < 1, it follows then that an
infinitesimal increase in the first order dominance sense in the distribution of at has a positive
infinitesimal effect on E(a )1−σ.
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Proposition 9: Proof. We first solve in closed form for λI(at, zt). conditions of the maxi-
mization problem are:
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−σ = βatEV1 (at (kt − ct) , zt+1)
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σ

)
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)
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Define the random variable z̃t+τ−1 = γ−1
(
at+τ−1at+τz−1

t+τ−1zt+τ

) 1−σ
σ , for any τ ≥ 1. Let

E(z̃t+τ−1) = E(z̃) for τ ≥ 2.We then guess for a solution of the form:

λI
t =

1
1 + E

∑
s=t Πs

t (z̃s)
t+1−s =

1
1 + E (z̃t) + E (z̃t)
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t+1 (E(z̃))t+2−s

where E (z̃t) = γ−1 (atzt)
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σ E
(
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) 1−σ
σ .If the guess is correct,
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Substitute into λI
t to check:
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t z̃
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We conclude that the guess is in fact correct. It follows that, since z̃t contains at,that λI
t =

λI(zt, at).
In this economy, λ(at) solves:

M (zt, at) = max

[
(λI

t )
1−σ + βEM (zt+1, at+1) (at)1−σ

(
1− λI

t

)1−σ

maxλ λ1−σ + βEM (zt+1) (at)1−σ (1− λ)1−σ − b

]

and λt = λ(at) solves

(λt)
1−σ+βEM (zt+1) (at)1−σE(a)1−σ (1− λ)1−σ = (λE)1−σ+βEM (zt+1) (at)1−σE(a)1−σ

(
1− λE

)1−σ

−b

The statements follow from the analysis of these problems along the lines of Propositions
3-7.

We leave to the reader the straightforward proof of Proposition 10.
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