
Optimal Control and Filtering in Linear
Forward-Looking Economies: A Toolkit∗

Andrea Gerali† and Francesco Lippi‡

6 November 2002
COMMENTS WELCOME

Abstract

We provide algorithms to solve a linear-quadratic optimal control prob-
lem with commitment. By extending to the case of imperfect information a
procedure outlined in Ljungqvist and Sargent (2002), we make the results
of Svensson and Woodford (2000) easy to implement. We provide a Mat-
lab package that solves this class of models and analyzes their properties
using simulations, impulse response functions and other techniques, both
with commitment and discretion. A monetary policy application, based on
the “new-keynesian” model of Clarida, Gali and Gertler (1999), is used to
illustrate how the toolkit can be used.

JEL Classification Numbers: E5

Key Words: optimal control, filtering, commitment.

∗We thank Richard Dennis, Tom Sargent and seminar participants at Stanford University
and the Banca d’Italia for helpful comments. The views are personal and do not involve the
responsibility of the institutions with which we are affiliated.

†Research Department, Banca d’Italia, via Nazionale 91, 00184 Rome, Italy. E-mail:
gerali.andrea@insedia.interbusiness.it.

‡Research Department, Banca d’Italia, via Nazionale 91, 00184 Rome, Italy and CEPR.
E-mail: lippi.francesco@insedia.interbusiness.it.



1. Introduction

This paper presents a toolkit to easily solve for the optimal policy under commit-

ment and for the corresponding rational expectations equilibrium in a dynamic

linear-quadratic economy. The general framework adopted here allows for the

possibility that some state variables may be imperfectly observed. A closed-form

analytical solution for this class of models cannot be obtained in general, and the

problem must be solved numerically.

Svensson and Woodford (2000) already addressed this issue and character-

ized the solutions under two different equilibrium notions: discretion (recursive

Markov-perfect equilibrium) and commitment. But, in solving the commitment

case, they do not provide explicit algorithms to compute the solution.1 One pos-

sible computational strategy, then, is to resort to a standard algorithm used in

the optimal control literature which selects the stable (i.e. non-explosive) solution

among a class of candidate functions satisfying the first order conditions of the

problem (e.g. Söderlind, 1999).

This paper provides a simpler way to solve the commitment case that exploits

the recursiveness of the problem. By extending to the case of imperfect informa-

tion a procedure outlined in Ljungqvist and Sargent (2002), we make the results

of Svensson and Woodford (2000) easy to implement. Moreover, this procedure

yields a history-dependent representation of the optimal commitment policy, al-

lowing the control to be expressed as a function of its own lagged values. For

some purposes this may be more revealing than the usual policy representation

in terms of the unobservable costate variables. Finally, to make these findings

operational, we developed an easy-to-use software package written in Matlab (the

“Toolkit” in the following) which is distributed with the paper and can be used to

solve, simulate and analyze the dynamics of the economy, under both discretion

and commitment, using impulse response functions, stochastic simulations and

other standard tools.2

Our codes complement the set of routines provided by Söderlind in the sense

1More specifically, their paper does not provide algorithms to compute the optimal policy
and the state space law of motion under commitment (i.e. the matrices F,Φ, G,Γ, S and Σ in
their equations 3.1-3.3).

2The program and the accompanying user’s manual can be freely downloaded at
http://francesco-lippi.dadacasa.supereva.it or obtained from the authors upon request
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that we allow for a setup in which information may be imperfect, although we

retain the assumption that the private economy and the policy maker share the

same information (i.e. information is symmetric). The optimal Kalman filter for

this problem is computed and coded (again both for discretion and commitment).

The structure of the paper is the following. The next section describes the

setup. In Section 3 we adapt the results of Ljungqvist and Sargent (2002) to the

case of imperfect information and derive the algorithms to solve for the commit-

ment case. In Section 4 we present the algorithms to compute several objects of

interest in the analysis of the model (impulse response functions, unconditional

covariance matrices, value of the intertemporal loss function, etc.). We illustrate

the use of these algorithms in Section 5, where we put to work our Matlab package

to analyze a model economy by Clarida, Gali and Gertler (1999) as a practical

illustration of the simplicity with which a model can be solved and analyzed with

the Toolkit. Various appendices provides technical details about the tasks per-

formed by the Toolkit. A final section concludes.

2. The economy

This section summarizes the setup and notation (similar to Svensson and Wood-

ford [2000]) used to model a linear-quadratic economy with two agents, a gov-

ernment and an aggregate private sector, which are assumed to have the same

information. The economy is described by Xt+1
xt+1|t

 = A1
 Xt
xt

+A2
 Xt|t
xt|t

+Bit +
 Cu
0

ut+1, (2.1)

where Xt is a vector containing npd predetermined variables in period t (also

called natural state variables in the following), xt is a vector of nfw forward-

looking variables, i is a vector of nctl policy instruments, ut is a vector of nsk

structural shocks with mean zero and covariance Σ2u (nsk·nsk) and A1, A2, B,
Cu and 0 are matrices of appropriate dimension (the elements of 0 are all zeros).

For any variable zt, the notation zt|τ denotes the expectation E[zt | Iτ ] , i.e. the
rational expectation of zt with respect to the information It available in period t.

Let Yt represent the vector of target variables that enter the government cri-
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terion function,

Yt = C
1

 Xt
xt

+ C2
 Xt|t
xt|t

+ Ciit, (2.2)

where C1, C2 and Ci are matrices of appropriate dimension. Let the quadratic

form describing the period loss function be given by

Lt ≡ Y 0
tWYt (2.3)

whereW is a positive semidefinite matrix of weights. The government actions are

aimed at minimizing the intertemporal loss function

Λt = E[
∞X
τ=0

δτLt+τ | It] (2.4)

where δ ∈ (0, 1) is the intertemporal discount factor.
Finally, let the vector of nz observable variables Zt be given by

Zt = D
1

 Xt
xt

+D2

 Xt|t
xt|t

+ vt, (2.5)

where the “noise” vector vt is assumed to be iid with covariance matrix Σ2v and

uncorrelated with ut at all leads and lags . Information It in period t is

It ≡ {Zt, τ ≤ t; A1, A2, B, C1, C2, Ci, Cu, D1, D2,W, δ,Σ2u,Σ
2
v}.

3. Model solution with commitment

In the following we first review a conventional method used to characterize the

solution under commitment and complete information. We then illustrate an

alternative method discussed in Ljungqvist and Sargent (2002) that exploits the

recursive structure of the problem. Finally, we adapt the latter to the present

setting of incomplete information.

Under commitment the policy maker chooses a contingent policy plan at the

beginning of times (a sequence of policy functions). Once it is chosen, the plan

cannot be abandoned afterwards. With respect to the private sector, the policy

maker acts as a Stackelberg leader, taking into account the equations of motion
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of the forward looking variables xt as additional constraints in the problem he

solves.3

3.1. The “traditional” solution with complete information

For convenience of notation let us rewrite the transition law of the variables (2.1)

under complete information as follows:

Ψt+1 = AΨt +Bit + wt+1 (3.1)

where we stack the natural state variables (Xt) and the forward looking vari-

ables (xt) in the vector Ψ
0
t ≡ [X 0

t x
0
t] and, being under complete information, we

write A = A1 + A2. Notice that w0t+1 ≡ [(Cuut+1)0 (xt+1 − xt+1|t)0] includes the
expectational error incurred in substituting xt+1|t with xt+1 in the l.h.s. of (3.1).
In the literature, the usual way to solve for the commitment solution starts by

forming the Lagrangian for the problem (see Söderlind, 1999):

Lt = Et
∞X
τ=0

δτ
n
Y

0
t+τWYt+τ + 2δµ

0
t+τ+1[AΨt+τ +Bit+τ + wt+τ+1 −Ψt+τ+1]

o
(3.2)

The first order conditions are then used to eliminate the control it and obtain a

difference equation of the form:

GEt
 Ψt+1

µt+1

 = D
 Ψt

µt

 (3.3)

This difference equation in general admits an infinite number of (explosive)

solutions. To ensure that a stable solution is selected, i.e. one that satisfiesP∞
t=0 δ

tΨ0
tΨt < +∞, it is therefore necessary to impose a transversality condition.

The way this is usually done is by computing the real generalized Schur decom-

position of the matrices G and D, which allows the stable solution to be selected
as the one associated to the stable generalized eigenvalues (Klein’s method). The

stable solution is characterized by the feature that the multipliers and the state

3These equations are also referred to as “implementability constraint”. They typically consist
of the euler equations that describe the private sector optimizing behavior.
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variables are linked via the relationship:

µt = VΨt. (3.4)

which we will refer to as the “stabilizing condition”.

This “Lagrangian” approach leads naturally to the problem of having to search

for stable generalized eigenvalues in systems like (3.3) using a Schur decomposi-

tion. Although this is a very powerful technique that can be used to construct

solutions of any dynamic system in the form of (3.3), even if not coming directly

from an intertemporal optimization problem, it turns out to be not necessary in

our case.

3.2. An ingenious alternative way

The same solution can indeed be conveniently computed by exploiting the re-

cursive structure of the problem, as suggested in Ljungqvist and Sargent (2002).4

The first step of this approach involves solving an optimal linear regulator problem

(OLRP in the following) disregarding the special nature of the forward looking

variables xt and instead treating them as additional “states”. It begins by writing

the Bellman equation for the problem as follows:

Ψ0
tV

BΨt = min
it

n
Y

0
tWYt + δEt

h
Ψ0t+1V

BΨt+1 + 2µ
0
t+1(AΨt +Bit + wt+1 −Ψt+1)

io
(3.5)

where we explicitly keep track of the law of motion (3.1) via the vector of multipli-

ers µt. Algebraic manipulations of the first order conditions for this problem yield

a standard Riccati equation from which V B and F , the matrix associated with

the policy function it = FΨt, can be computed. The key insight of this method is

to show that the matrix V B of the value function of this problem and the matrix

V in (3.4) are actually the same matrix.5 This insight provides a convenient way

to compute a stable solution of (3.2), as V B can be computed from an ordinary

4Early references to this technique can be found in Currie and Levine (1985) and Backus
and Driffill (1986).

5For a derivation of the algorithms for the computation of F and V see pp.53-54 of Ljungqvist
and Sargent (2000,Chapter 4). The same chapter (pages 59-65) also illustrates the equivalence
between the value function V associated to the stable solution from the lagrangian formulation
(using the eigenvalue decomposition) and the one obtained from the Bellman equation.
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OLRP problem without having to compute G and D and the associated general-

ized Schur decomposition. In essence, the Bellman equation implicitly imposes a

transversality condition, and therefore immediately yields the stable solution.

Having found V , it is easy to characterize the rest of the solution. This is done

by partitioning the vector µt and rewriting the stabilizing condition (3.4) as:

µt ≡
 µX,t
µx,t

 =
 V11 V12

V21 V22

 Xt
xt

 (3.6)

The vector µt contains npd lagrange multipliers associated to the natural state

variables Xt and nfw multipliers associated to the implementability constraints

(the x variables). Since the xt can jump at time t, the multipliers µx,t associated

to them can actually be treated as “predetermined” variables, with the interpre-

tation of shadow prices measuring the cost in time t loss/utility terms incurred by

the optimizing agent in satisfying the implementability constraints. Mechanically,

they constitute an additional set of state variables (also called costate variables)

that can be used to represent the dynamics of the whole system under commit-

ment.

With this interpretation of the µx,t in mind, it is immediate to find a closed

form solution for the forward looking variables xt and the policy variable it in terms

of the predetermined variables of the model. Assuming that V22 is invertible,

rewrite the lower part of (3.6) to express the forward looking variables xt as a

function of Xt, and µx,t alone:

xt = −V −122 V21Xt + V
−1
22 µx,t (3.7)

Next, partition the matrix F of the policy function of the OLRP above to

conform to Xt and xt:

it = [F1 F2]

 Xt
xt

 (3.8)

and substitute expression (3.7) in it to obtain:

it = F
∗
1Xt + F

∗
2µx,t (3.9)
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where we defined:

F ∗1 ≡ F1 − F2(V22)−1V21
F ∗2 ≡ F2(V22)

−1

Now (3.7) and (3.9) are indeed the rational expectation solution for the forward

looking variables and the commitment solution for the policy variable as a function

of the predetermined state (Xt) and costate (µx,t) variables.

3.3. Adding incomplete information

In the presence of imperfect information, the problem is only marginally altered.

Setting up a lagrangian analogous to (3.2), and following the same steps under-

taken to obtain (3.4), one can show that the stable solution of the problem satisfies

a relationship of the form:

µt+1|t+1 = VΨt+1|t+1 (3.10)

When instead we follow the alternative route and write the Bellman equation for

this problem:

Ψ0
t|tV

BΨt|t = min
it
E
n
Y

0
tWY t+δ[Ψ

0
t+1V

BΨt+1+2µ
0
t+1(A

1
tΨt+A

2Ψt|t+Bit+wt+1−Ψt+1)] | I t
o

we obtain the following set of first order necessary conditions:

C 0iW
h
(C1 + C2)Ψt|t + Ciit

i
= −δB0µt+1|t

µt+1|t = V BΨt+1|t (3.11)

Applying the law of iterated expectations shows that (3.10) implies (3.11). There-

fore, the matrices V and V B appearing in the two expressions must be the same.6

The same logic applied in the derivation of the rational expectation solution

and the policy function discussed in the previous subsection applies here, except

6Note, however, that since (3.11) does not imply (3.10), the two sets of multipliers µt|t and
µt|t−1 are actually not necessarily the same. More precisely, the multipliers of the forward-

looking variables are the same
³
µx,t|t = µx,t|t−1

´
while those of the predetermined variables are

not (see the next footnote).
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that now the predetermined variables are Xt|t and µx,t. In Appendix A we derive
the relevant formulas:

xt = G1(Xt −Xt|t)−G∗1Xt|t +G∗2µx,t (3.12)

xt|t = −G∗1Xt|t +G∗2µx,t (3.13)

it = F ∗1Xt|t + F
∗
2µx,t (3.14)

together with the equations describing the dynamics of state (Xt) and costate

(µx,t) variables in terms of the primitive elements of the problem:
7

 Xt+1

µx,t+1

 =
 H 0

0 0

 Xt

µx,t

+
 MX 1 MX 2

Mµ 1 Mµ 2

 Xt|t
µx,t

+
 Cu
0

ut+1 (3.15)
as well as an expression for the measurement equation in terms of state and costate

variables:

Zt = LXt + [N1 N2]

 Xt|t
µx,t

+ vt (3.16)

To close the model, the value of Xt|t must be determined. Appendix B (fol-
lowing Svensson and Woodford, 2000) shows how to compute the optimal linear

projection for the natural state variables, Xt|t, using the Kalman filter. This yields
the recursive prediction algorithm:

Xt|t = Xt|t−1 +K[L(Xt −Xt|t−1) + vt] (3.17)

where

K ≡ PL0(LPL0 + Σ2v)
−1 (3.18)

where the matrix K is the steady-state gain matrix associated with the Kalman

filter and P is the covariance matrix of the one step ahead forecast error in Xt,

given by

cov(Xt −Xt|t−1) ≡ P = H[P −KLP ]H 0 + CuΣ2uC
0
u . (3.19)

It is sometimes convenient to express the optimal projection for Xt|t in terms

7Note from (3.15) that the costate variables µx,t+1 do not depend on period t+1 innovations,
i.e. they are measurable with respect to It. This observation is useful in the computation of the
Kalman filter (see Appendix B).
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of the innovations in the observable variable Zt, i.e. using the innovations repre-

sentation:

Xt|t = Xt|t−1 + U
h
Zt − Zt|t−1

i
(3.20)

where

U ≡ K(I +N1K)
−1.

4. Analyzing the model

Once a model has been solved numerically, the standard way to analyze it typ-

ically involves computing impulse response functions, looking at the covariances

of the main variables in the system, comparing the value of the intertemporal

loss function at different parametrizations and running dynamic simulations. The

Matlab Toolkit that comes with the present paper computes all of these objects.

In the following subsections we briefly sketch how we set them up, leaving the

details of the computations in the Appendices.

4.1. Impulse response functions

For the impulse response functions analysis it is convenient to rewrite equations

(3.12)-(3.15), the equations that summarize the dynamics of the entire system, in

a more parsimonious way as follows:

Qt+1 = ÂQt + B̂ξt+1 (4.1)

Jt = ĈQt + D̂ξt+1 (4.2)

where (4.3)

Qt ≡


Xt

Xt|t−1
µx,t

 , ξt ≡
 ut

vt−1



In vector Qt we stacked the minimum set of variables needed to achieve this

representation; ξt contains the original structural innovations in the system; Jt

instead can potentially contain all the variables of interest in the model. In the

Toolkit we decided to set J 0t = [X 0
t X

0
t|t x

0
t x

0
t|t i

0
t µ

0
xt], which means that the
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coefficient matrices bA, bB, Ĉ and D̂ have the following form:

Â ≡


(H+MX 1KL) MX 1(I −KL) MX 2

(H+MX 1)KL (H+MX 1)(I −KL) MX 2

MX 2KL Mµ 1(I −KL) Mµ 2

 , B̂ ≡

Cu MX 1K

0 (H+MX 1)K

0 Mµ 1K



Ĉ ≡



I 0 0

KL I −KL 0

G1−(G1+G∗1)KL −(G1+G∗1)(I −KL) G∗2
−G∗1KL −G∗1(I −KL) G∗2
F ∗1KL F ∗1 (I −KL) F ∗2
0 0 I


, D̂ ≡



0 0

0 K

0 −(G1+G∗1)K
0 −G∗1K
0 F ∗1K
0 0


.

A side product of writing the system this way is that it becomes very easy to

construct ”user-defined” variables, i.e. linear combination of the main variables in

the model, and to study them with the same tools employed in the analysis of the

original state-space variables. In fact, good model-building techniques recommend

to write a model in the most parsimonious way but, once the model is solved, it

is not uncommon to have to map the impact of the solution on variables not

originally included in the system.

The Toolkit does indeed allows the user to construct any number of such

variables. As an example, in Appendix C we show how to construct two user-

defined variables for the Clarida, Gali and Gertler (1999) model discussed in

Section 5.

4.2. The value of the intertemporal loss function

To compute the value of the intertemporal loss function Λt in (2.4) associated with

the optimal solution of the model we exploit the recursive nature of the problem

and its linear-quadratic structure.

Let us rewrite the optimal value of (2.4) in recursive form:

Λ∗t = L
∗
t|t + δΛ∗t+1|t (4.4)

where the asterisk indicates that the variables are to be evaluated at the solution

point. Since the period loss function is quadratic and the constraints are linear,

we know that Λ∗t will be a quadratic function of the “initial conditions”. But, with
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forward-looking variables entering the problem, the only relevant initial conditions

are those with respect to the variables that cannot jump, i.e. the predetermined

variables Xt|t (in expected terms) in the discretion case, augmented with the
costate variables µx,t in the commitment case. For this latter case, then, Λ∗t
admits a representation of the form Λ∗t ≡ S 0t|tV St|t + d, where we stack in the S
vector all the relevant predetermined (state and costate) variables, S 0t ≡ [X 0

t µ
0
xt],

and the matrix V and the scalar d are computed in Appendix D.

4.3. Computation of unconditional moments

The unconditional covariance matrices for the (estimated and true) state, costate,

forward-looking and user-defined variables can be easily computed once the model

is solved. Our strategy has been to find Σ2St|t first, and then derive all the other
covariance matrices as a function of this ”fundamental” one.

Let us rewrite the laws of motion for Xt and µxt (equations 3.15) in term of

the stacked vector S as follows:

St+1 = HH · St +MM · St|t + uut+1 (4.5)

where

HH ≡
 H 0

0 0

 , MM ≡
 MX 1 MX 2

Mµ 1 Mµ 2

 , uut+1 ≡
 Cuut+1

0


Σ2uu ≡

 CuΣ2uC 0u 0

0 0


and the matrices 0, the elements of which are all zeros, are of appropriate dimen-

sion.

Similarly, we can write the stacked version of the updating equation as8

St+1|t+1 = St+1|t +KK · (St+1 − St+1|t) + vvt+1 (4.6)

where

KK ≡
 KL 0

0 0

 , vvt+1 ≡
 Kvt+1

0


8To do this we use (3.17) and µxt+1|t+1 = µxt+1|t , which is implied by the fact that µx,t is

measurable with respect to the information at t− 1 (this is immediate from 3.15).
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Σ2vv ≡
 KΣ2vK

0 0
0 0


Combining the two equations above, we can express St+1|t+1 as a function of

St|t plus some noise and error terms:

St+1|t+1 = (HH +MM)St|t +KK ·HH(St − St|t) +KK · uut+1 + vvt+1 (4.7)

from which a recursive formula for Σ2St|t is easily obtained:

Σ2St+1|t+1 = (HH +MM)Σ2St|t(HH +MM)
0 + (4.8)

+(KK ·HH) cov(St − St|t) (KK ·HH)0 +KK ·Σ2uu ·KK 0 + Σ2vv

Notice that the covariance matrix of the contemporaneous prediction error in

St that appears in the above formula is given by:

cov

 (Xt −Xt|t)
(µx,t − µx,t|t)

 ≡ Pco =
 Po 0

0 0

 where Po ≡ cov(Xt −Xt|t) (4.9)

and the matrix Po is related to the matrix of the one step ahead forecast error

P (already computed in (3.19)) by the relationship Po = (I −KL)P . Therefore
we can solve (4.8) for the steady state (i.e. unconditional) value of Σ2St|t either by
iterating to convergence or by direct algebraic manipulation (Hamilton formula).

Appendix E shows how to compute the covariances of the other variables in

the model once Σ2St|t is known.

4.4. A detour: history-dependent representation of optimal policy

It is apparent from equations (3.14) and (3.15) that the optimal commitment pol-

icy has an inertial character induced by its dependence on the (history-dependent)

costate variables µx. This history dependence of policy under commitment can be

immediately visualized by a convenient policy representation that expresses the

dynamics of the control variables in terms of the observables.

Let F ∗+2 denote the pseudo-inverse of F ∗2 . Equation (3.14) for it−1 implies:

µx,t−1 = (F
∗+
2 )it−1 − (F ∗+2 F ∗1 )Xt−1|t−1 (4.10)
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Using (4.10) and the lower block of (3.15), µx,t =Mµ 1Xt|t+Mµ 2µx,t−1, we can
thus rewrite the policy function (3.14) as

it = Υ1it−1 +Υ2Xt|t +Υ3Xt−1|t−1 (4.11)

where

Υ1 ≡ F ∗2Mµ 2F
∗+
2

Υ2 ≡ F ∗1 + F
∗
2Mµ 1

Υ3 ≡ −F ∗2Mµ 2(F
∗+
2 F ∗1 )

Equation (4.11) offers a convenient history dependent representation of opti-

mal policy in terms of observables, i.e. lagged policy and states. As noted by

Woodford (1999), the optimal policy under commitment features “persistence”,

as captured by the coefficient Υ1. As is well known, such a feature is pervasive in

empirical studies of monetary policy, and it is sometimes explained in terms of a

postulated costly adjustment of the controls (e.g. interest rates). Under commit-

ment, instead, persistence arises naturally from the dependence of policy on the

costate variables.

5. Application: a “new synthesis” model

In the following, we use the algorithms derived above to analyze a version of

the sticky-price framework developed, among others, by Woodford (2000) and

Clarida, Gali and Gertler (1999). In that framework output (yt) and inflation

(πt) are determined, respectively, by a “dynamic IS” curve and a “Phillips curve”,

according to:9

yt = yt+1|t − σ[it − πt+1|t] + gt (5.1)

πt = δπt+1|t + k(yt − ȳt) + ut (5.2)

where ȳt denotes potential output as of period t (i.e. the output level that would

obtain under flexible prices), it the nominal interest rate, gt a demand shock and

9These equations are derived from the optimizing behavior of consumers (i.e. an intertem-
poral Euler equation) and price-setting monopoly firms facing a randomly staggered price ad-
justment mechanism as in Calvo (1983).
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ut a cost-push shock. The output gap is defined as the difference between actual

and potential output: yt − ȳt.
Following Clarida, Gali and Gertler (1999, CGG henceforth), we assume the

economy is subject to three types of shocks: demand (gt) and cost-push shocks

(ut) and potential output shocks , ŷt . They obey the following processes:

ȳt = γȳt−1 + ŷt 0 < γ < 1 (5.3a)

gt = µgt−1 + ĝt 0 < µ < 1 (5.3b)

ut = ρut−1 + ût 0 < ρ < 1 (5.3c)

where the innovations ŷt+1, ût+1 and ĝt+1 are uncorrelated, have zero mean and

standard deviation equal to σŷ, σu and σg,respectively. Let us assume the mea-

surable variables are given by:

ȳot = ȳt + θȳt (5.4a)

yot = yt + θyt (5.4b)

πot = πt + θπt (5.4c)

where the measurement errors θjt are iid. Finally, let the central bank period loss

function be:

Lt ≡ 1
2

h
(πt − π∗)2 + λy(yt − ȳt − x∗)2

i
(5.5)

which allows us to encompass some special cases of interest, as done theoretically

by Clarida, Gali and Gertler (1999).10

10Among these is the presence of a systematic inflation bias, x∗ > 0.
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5.1. System representation

The CGG model can be represented in terms of the system for the state and

forward looking variables (2.1) as:11



1

ȳt+1

ut+1

gt+1

yt+1|t
πt+1|t


=



1 0 0 0 0 0

0 γ 0 0 0 0

0 0 ρ 0 0 0

0 0 0 µ 0 0

0 −kσ
δ

σ
δ
−1 kσ

δ
+1 −σ

δ

0 k
δ

−1
δ

0 −k
δ

1
δ


| {z }

A1



1

ȳt

ut

gt

yt

πt


+



0

0

0

0

σ

0


| {z }
B

it+

 Cu

0(nfw,nsk)



ŷt+1

ût+1

ĝt+1


| {z }

ut+1

A2 = 0 and Cu =


0 0 0

1 0 0

0 1 0

0 0 1

 . yt and πt are forward looking variables and the

other four variables in the left hand side vector are natural (predetermined) state

variables. The objectives of the quadratic period loss function can be written as:

Yt ≡
 πt − π∗

yt − ȳt − x∗
=

 −π∗ 0 0 0 0 1

−x∗ −1 0 0 1 0


| {z }

C1



1

ȳt

ut

gt

yt

πt


+

 0
0


| {z }
Ci

it

W ≡ 1/2

 1 0

0 λy


and C2 = 0.

11This exact model was coded as a working example in our matlab package. The interested
reader can immediately see the mapping between the formulas in this section and the setup file
cgg setup.m.
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Table 5.1: Baseline parameter values
Parameters

δ γ ρ µ k σ λy x∗ π∗

.99 .7 .4 .3 .05 2.0 .25 0.0 0.0

Innovations (std)
σȳ σu σg
.005 .015 .015

Measurement Errors (std)
σθȳ σθy σθπ

10−8 10−8 10−8

The setup is closed by the specification of the measurement equation:


ȳot
yot
πot

=

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


| {z }

D1



1

ȳt

ut

gt

yt

πt


+


θȳt

θyt

θπt


| {z }

vt

and D2 = 0.

5.2. Commitment versus discretion with complete information

Once the model setup is coded and a specific parametrization is chosen, we use our

toolkit to solve for the rational expectations equilibrium under commitment and

under discretion.12 The parameters chosen for our benchmark example appear in

Table 5.1. We begin the example with the simpler case of complete information.13

This is done by assuming the measurement error is nil (“very small” numerically).

Under the first parametrization, we use the toolkit to solve the model under

both discretion and commitment assuming full information. The code computes

the asymptotic losses for the policy maker for each of these cases (0.029 under

commitment versus 0.035 under discretion). As is known, commitment yields

12See the companion Toolkit Manual and the model files cgg setup, cgg param for more details.
13Moreover, we assume throughout that the inflation and output-gap targets are zero. Since

the CGG model features a long-run non-neutrality, real outcomes in the model are not invariant
to these variables. The interested reader can quickly analyze these effects using the toolkit by
means of simulations.

16



Periods

0

0.5

1
From: cost_push_shock

To
: c

os
t-s

0

0.5

1

To
: c

os
t-s

|t

-0.4

-0.2

0

To
: o

ut

0

1

2

To
: i

nf

0

0.5

1

To
: i

-ra
te

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

To
: r

ea
l r

at
e

Figure 5.1: Cost-push shock with discretion

a superior welfare outcome even in the absence of a systematic inflation bias

because it allows the policy maker to achieve an improved short run tradeoff

between inflation and output stabilization (as in Section 4.2 of the CGG paper14).

The intuitive reason is that under commitment the optimal way to respond to a

positive cost-push shock involves reducing inflation expectations (hence current

inflation) by committing to tighten policy today and tomorrow. This plan is not

time consistent (i.e. cannot be implemented under discretion) as the policy maker

has an incentive not to adhere to that policy when tomorrow comes.

This key difference between discretion and commitment results in a markedly

different dynamic behavior of the economy. As argued by Woodford (1999a), the

optimal policy under commitment features history dependence. This feature is

apparent from the impulse response functions for the case of a cost-push shock.

14Our solution corresponds to what CGG call the “unconstrained optimum” under commit-
ment, as opposed to the “optimum” within a class of policy rules that is constrained to be a
linear function of state variables. The key difference is that the “unconstrained” optimum also
depends on the costate variables.

17



Periods

0

0.5

1

From: cost_push_shock
To

: c
os

t-s

-0.4

-0.2

0

To
: o

ut

-2

0

2

To
: i

nf

-0.5

0

0.5

To
: i

-ra
te

-1

-0.5

0

To
: m

u_
in

f

0 2 4 6 8 10 12 14 16 18 20
-0.05

0

0.05

To
: r

ea
l r

at
e

Figure 5.2: Cost-push shock with commitment

Figure 5.1 shows some effects of a (unitary) cost push shock under discretion. The

first two boxes describe the dynamic pattern of the true and estimated valued of

the shock itself (which has a serial correlation of ρ = .4). Obviously in this case

of complete information the estimated values coincide with the true ones. The

interest rate response to the cost push shock results in a policy tightening (fourth

box), and an associated output reduction (third box; since potential output is

unaffected by the cost push shock the output dynamics coincide with the output

gap dynamics). The bottom box pictures the response of the real interest rate

it − πt+1|t (a user-defined variable), which increase much less than the nominal
rate due to the contemporaneous increase in expected inflation. The dynamics of

the main macro variables (output, inflation, the interest rate) in this example are

inherited directly from the structural persistence of the cost push shock. As the

persistence parameter ρ becomes small, the dynamics of the policy response (and

all other macro effects) tend to vanish.

Figure 5.2 shows the corresponding effects for the commitment case. The
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Table 5.2: Moments of the main variables
Standard deviation of:

yt yt − ȳt πt it it − πt+1|t
Discretion .010 .005 .026 .015 .008
Commitment .018 .016 .023 .011 .008

dynamics of the cost shock are unchanged as its motion is exogenous. One major

difference with respect to discretion concerns output behavior (second box): under

commitment the output response is much more persistent than under discretion.

Stabilization of the cost push shock under the optimal policy prescribes a sequence

of policy contractions (in terms of the expected real rate it−πt+1|t, see the bottom
box in the figure) which bring down inflation expectations. These successive

increases in the real rate cause output to remain below trend for many more

periods than under discretion.

The fifth box of Figure 5.2 displays the behavior of the lagrange multiplier

associated to the inflation equation (a costate variable). Given the way the prob-

lem is written in (3.2), the value of this lagrange multiplier indicates the marginal

effect on the criterion function of relaxing the constraint. We can think of the

value of these multiplier as the utility cost for the policy maker of maintaining a

past announcement. It appears that from the second period onwards this variable

is non-zero, which indicates that the constraint is binding and, equivalently, that

promise-keeping is going to have an effect on policy (see 3.14).15

Inspection of the contemporaneous impact effect of a cost push shock on infla-

tion is smaller under commitment than under discretion (respectively 1.4 versus

1.6) and the same is true for the impact effect on the output gap (i.e. output since

potential output is unchanged; respectively -.28 versus -.33). Moreover, as shown

in Table 5.2 inflation volatility is smaller (and the output gap volatility greater)

under commitment than under discretion.

15A non-zero value of the multiplier also suggests the time-inconsistency of the optimal plan:
were the policy maker allowed to “reset” his announcements, it would face an incentive to ignore
past promises and choose a different policy.
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Table 5.3: Incomplete Information Setup
Measurement Errors (std)
σθȳ σθy σθπ

.01 .01 .01

5.3. The effect of imperfect information

This subsection introduces imperfect information, by adding noise to the mea-

surement block (5.4). This amounts to assuming that potential output, actual

output and inflation are subject to the measurement errors reported in Table 5.3.

With imperfect information, the policy maker uses the available information

to form an estimate about the true state of the economy (i.e. Xt|t). Figure 5.3
illustrates this case for a cost push shock under discretion. The first obvious

difference with respect to the complete information case of Figure 5.1 is that the

true pattern of the shock now differs from the one estimated by the policy maker,

as it appears from the two upper boxes in Figure 5.3. The signal extraction

problem (solved with the Kalman filter) leads the policy maker to learn only

gradually about the realization of the cost push shock: in the current setup,

after a unitary cost push shock (ut = 1) occurs, the contemporaneous estimate

of the shock by the policy maker is ut|t = 0.70. Naturally, the magnitude of

the forecast errors induced by imperfect information depends on the assumptions

about the properties of the fundamental processes (e.g. the persistence of the

various structural shocks g, u and y and the signal to noise ratios encoded in Σ2u
and Σ2v). For instance, if we double the amount of noise in the inflation equation

(i.e. raise σθπ from 0.1 to 0.2), the estimated value of the shock is much smaller

(ut|t = 0.38), as one would expect in the presence of more noise in the cost push
shock indicator, πot .

16

Through its effect on the expectations about the state of the economy (e.g.

Xt|t), imperfect information affects the dynamics of the forward-looking variables.
First, the policy response of it is less strong than in the full information case, as

16Several key objects produced by the filtering problem are computed by our MATLAB code,
such as the matrices P and Po corresponding, respectively, to the one-step ahead and contem-
poraneous forecast errors in Xt.
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Figure 5.3: Cost-push shock with discretion and imperfect information
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the perceived size of the cost push shock is smaller (compare the bottom box in

Figure 5.1 and 5.3).17 The response of output and of inflation is also muted in

comparison to the complete information case: output fall by 0.24 (versus 0.32)

while inflation increases by 1.4 (versus 1.6). This is due both to the policy response

and to the fact that the future expected values of the cost push shock are smaller

under incomplete information than under complete information, thus inducing the

private economy to expect a different pattern about future shocks and policy.

5.4. The macroeconomic consequences of unobservable potential output

We conclude this application by analyzing the effects of imperfect information

about potential output in the CGG model (under discretionary policy). Several

contributions of Orphanides (e.g. 2000, 2001) offer compelling evidence that po-

tential output estimates are very imprecise in real time. It is argued that basing

policy on the estimates of such an unobservable (and noisy) variable may be at

the root of important differences between policy based on real-time information

and the optimal policy under complete information. It is hypothesized that the

large negative shocks to potential output which occurred in the seventies were not

recognized in real time by policy makers, who instead perceived a negative output

gap and reacted to it by lowering rates. To formalize this argument within the

CGG model we compute the effects of a potential output shock in the presence

of, respectively, full and incomplete information. The difference in the dynam-

ics of the endogenous variables between these two settings measures the effect of

imperfect information.

Figure (5.4) shows the effect of a potential output shock with full informa-

tion. The interest rate adjusts in such a way that the dynamics of actual output

optimally replicate those of potential output (compare the fist two boxes in the

figure), e.g. the ”output gap” is nil. This policy poses no tradeoff between the

objectives of the policy maker, therefore inflation remains constant at its steady

state level (zero).

The same potential output shocks leads to different consequences under im-

perfect information, as shown in Figure (5.5). The first two boxes reveal that

17Due to the certainty equivalence feature of our problem, policy differences stemming from
imperfect information arise entirely from the estimates of the states as the coefficient F in the
the optimal control function (it = FXt|t) do not depend on the uncertainty.
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Figure 5.4: Potential output shock with full information and discretion
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Figure 5.6: Macro effects of imperfect information

the true shock is only partially identified by the policy maker in real time. Note,

moreover, that a negative cost push shock (third box) and a positive output gap

(fourth box) are perceived by the policy maker.

Figure (5.6) compares the dynamic response of interest rates output and infla-

tion under incomplete versus complete information. It appears that the interest

rate (both nominal and real) is relatively loose (i.e. is reduced by a smaller

amount) under incomplete information. This occurs because as potential output

is underestimated (with incomplete information) the policy maker’s perception of

how much the interest rate needs to be lowered is smaller than under complete

information (recall that the interest rate is proportional to the expected output

growth - see equation 5.1). Therefore, the interest rate under incomplete informa-

tion is tight in comparison to the full information benchmark (of about 25 basis

points in our example).18 As a consequence of different policy and expectations,

the dynamics of inflation and the output gap are also affected. The lower panel in

Figure (5.6) shows that, following a positive potential output shock, both inflation

18There is a second effect which goes in the opposite direction but is dominated under most
plausible parameter values. It arises because the perceived negative cost push (under incomplete
information) leads the policy maker to lower the interest rate (no effect under full information
since there is no cost push shock).
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and the output gap are lower than their full information counterpart (respectively

of about 0.1 and 0.6 percentage points).

6. Concluding remarks

Imperfect information, dynamics and expectations are key ingredients in several

problems faced by economic agents. Monetary policy is a classic example: deci-

sions are taken in the presence of considerable uncertainty about the true state of

the economy, facing a dynamic economy and a rational forward-looking public.19

Methods to compute a rational expectations equilibrium with commitment for a

linear quadratic problem involving these features are known at least since Backus

and Driffill (1986). The technicalities involved, however, might discourage a more

widespread application of such methods to the analysis of relevant economic phe-

nomena. This paper tried to bridge this difficulty by providing a set of algorithms,

and an associated implementation program, which allow rather involved optimal

control problems with filtering to be handled easily. A monetary policy applica-

tion drawn from the recent “new-keynesian” literature was used to illustrate how

a researcher can use the algorithms of this paper to analyze a model by means of

stochastic simulations and impulse responses.

19Other applications arise naturally in the field of industrial organization. Ljungqvist and
Sargent (2002) discuss the case of an oligopolist facing a fringe of small competitive firms, to
which imperfect information could be meaningfully added.
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A. Appendix: System dynamics under commitment

This appendix derives the representation of the predetermined state and costate
variables in eqns. (3.12) - (3.16).
To derive a solution for the forward looking variables, we start by considering

the partition of the stabilizing condition (3.6) in the main text; assuming V22 is
non-singular, the lower block of that partition implies the following relation:

xt|t ≡ G∗2µx,t −G∗1Xt|t (A.1)

where

G∗1 ≡ (V22)
−1V21

G∗2 ≡ (V22)
−1

Moreover, the lower block of (2.1) yields:

A121(Xt −Xt|t) +A122(xt − xt|t) = 0.

Using (A.1) and assuming invertibility of A122 yields the closed form solution
(3.12) for the forward-looking variables xt:

xt = G1(Xt −Xt|t)−G∗1Xt|t +G∗2µx,t (A.2)

where

G1 ≡ −(A122)−1A121.

Using (A.1) in (3.8) yields (3.14) with

F ∗1 ≡ F1 − F2(V22)−1V21
F ∗2 ≡ F2(V22)

−1

The upper partition of the stabilizing condition (3.6) yields:

µX,t = L∗1Xt|t + L
∗
2µx,t (A.3)

where

L∗1 ≡ V11 − V12G∗1
L∗2 ≡ V12G

∗
2.

The motion of the natural state variables can then be computed from the
upper block of (2.1) substituting for it, xt, xt|t using (3.14), (A.2) and (A.1) and
grouping terms. This yields

Xt+1 = HXt +MX 1Xt|t +MX 2µx,t + ut+1 (A.4)
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where

H ≡ A111 +A
1
12G1

MX 1 ≡ −A112(G1 +G∗1) +A211 − A212G∗1 +B1F ∗1
MX 2 ≡ (A112 +A

2
12)G

∗
2 +B1F

∗
2

Computing the motion of the costate variables µx is slightly more involved.
The relevant equations can be derived from the first order conditions with re-
spect to St and St|t of the Lagrangian formulation of the problem (the incomplete
information analogous of 3.2). They imply:

µt = δA0µt+1|t + C
0W 0Yt|t (A.5)

where

A ≡ A1 +A2

C ≡ C1 + C2

Let us define the matrices

CWC = C 0W 0C ≡
"
CXWC

CxWC

#

CWCi = C 0W 0Ci ≡
"
CXWCi

CxWCi

#

A ≡
"
AX

Ax

#

which are partitioned in row-blocks that conform to X and x (indexed, respec-
tively, by the superscripts X and x). Recalling that µ0 = [µ0X µ

0
x], and using the

lower block of (A.5) and (2.2) yields

µxt = δ
h
A012µX,t+1|t +A

0
22µx,t+1

i
+ CXWCSt|t + C

x
WCi

it (A.6)

Equation (A.3) and (2.1) imply

µX,t+1|t = L
∗
1[A

XSt|t +B1it] + L∗2µx,t+1. (A.7)

Plugging (A.7) in (A.6), collecting terms and rearranging yields

µx,t+1 = Σµx,t + ΓSt|t = Σµx,t + Γ1Xt|t + Γ2xt|t
where

Σ ≡ [δA012L
∗
2 +A

0
22]
−1

Γ ≡ −Σ[
³
δA012L

∗
1A

X + CxWC

´
+
³
δA012L

∗
1B1 + C

x
WCi

´
F ∗]
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where Γ is partitioned in column blocks (Γ = [Γ1 Γ2]) conform to X and x. Using
(A.1) to substitute for xt|t yields the law of motion for µx

µx,t+1 = Mµ 1Xt|t +Mµ 2µx,t (A.8)

where

Mµ 1 ≡ Γ1 − Γ2G
∗
1

Mµ 2 ≡ Σ+ Γ2G
∗
2

Equations (A.8) and (A.4) provide the representation of the system (3.15) used
in the main text.
Finally, using (A.2), (A.1), (A.2) in (2.5) to write the measurement equations

in terms of Xt, Xt|t and µx,t yields:

Zt = LXt + [N1 N2]

"
Xt|t
µx,t

#
+ vt

where

L ≡ D1
1 +D

1
2G1

N1 ≡ D2
1 −D1

2(G1 +G
∗
1)−D2

2G
∗
1

N2 ≡ (D1
2 +D

2
2)G

∗
2

which is equation (3.16) in the main text.

B. Appendix: The Kalman filter

Below we report the basic steps in the derivation of Kalman filter (3.18)-(3.19).
Define the one step ahead forecast errors in Xt and Zt:

X̃t ≡ Xt −Xt|t−1
Z̃t ≡ Zt − Zt|t−1

Let us express the optimal linear forecast of Xt as a function of the new informa-
tion at time t (since X̃t is by definition orthogonal to the information at t− 1, we
know that the this is the form of an optimal linear predictor), as follows

Xt|t = Xt|t−1 +K[L(Xt −Xt|t−1) + vt] (B.1)
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where the matrix K(npd,nz) has to be determined. Note that (3.15) and (3.16) allow
us to write

Z̃t = Zt − (L+N1)Xt|t−1 −N2µx,t
= LX̃t +N1K(LX̃t + vt) + vt

where we used that µx,t is measurable with respect to the information at t − 1
(this is immediate from 3.15). The above defines a measurement equation:

Z̃t = NX̃t + τ t (B.2)

where

N ≡ (I +N1K)L

τ t ≡ (I +N1K)vt

in terms of the innovation as of time t in both the observables and the state
variables. Algebraic manipulation of (3.15) after substituting equation (B.1) for
Xt|t yields

X̃t+1 = TX̃t + ωt+1 (B.3)

where

T ≡ H(I −KL)
ωt+1 ≡ Cuut+1 −HKvt

The equation for the states (B.3) and the measurement equation (B.2) allow us
to derive an optimal predictor X̃t using the Kalman filter. By the Kalman filter
the optimal (contemporaneous) projection of X̃t on Z̃t, denoted X̃t|t is given by
(See Ljungqvist and Sargent, 2000, Chapter 21)

X̃t|t = K̃Z̃t

where

K̃ ≡ PN 0(NPN 0 + Σ2τ )
−1 (B.4)

where we used the covariance matrices of ωt+1, τ t,

Σ2ω ≡ CuΣ
2
uC

0
u + (HK)Σ

2
v(HK)

0

Σ2τ ≡ (I +N1K)Σ
2
v(I +N1K)

0.

The matrix P is the covariance matrix of the one step ahead forecast error in
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Xt+1 which, from (B.3), is given by

cov(Xt+1 −Xt+1|t) ≡ P = TPT 0 + Σ2ω (B.5)

We have to find an expression to link K and K̃. Algebraic manipulation of
the state motion for Xt and Zt implies:

K̃ = K(I +N1K)
−1 (B.6)

Substituting the expression for Σ2τ , T and N in (B.4) and plugging the resulting
expression in (B.6) yields (3.18) in the main text. Substituting for Σ2ω, T and K
into (B.5) yields (3.19) in the main text.

C. Appendix: User-defined variables in the CGG model

In the following, we show how to construct a vector of “user defined” variables in
the Toolkit. Once such a vector is defined, the user can compute impulse response
functions, simulations, as well as the moments of these variables, which are often
of interest in the analysis of a model.
We set up the Toolkit so that a user defined variable, yt, can be expressed as

a linear function of the variables in the vector J 0t ≡ [X 0
t X

0
t|t x

0
t x

0
t|t i

0
t µ

0
x,t] and/or

of their one-step ahead projection J 0e,t ≡ [X 0
t+1|t x

0
t+1|t i

0
t+1|t µ

0
x,t+1]. Therefore:

yt ≡ F̂ Jt + F̂e Je,t (C.1)

Hence, the definition of a user defined variable only requires the specification of
the row vectors F̂ and F̂e which select the appropriate components of yt from Jt
and Je,t. Using (3.15) and (3.12) it is then simple to express the vector yt as a
function of Jt only, by noting that

Je,t = ÊJt

where

Ê =


0
0
0
0|{z}
Xt

H+MX 1

−G∗1(H+MX 1) +G
∗
2Mµ 1

F ∗1 (H+MX 1) + F
∗
2Mµ 1

MX 2

0
0
0
0

0
0
0
0

0
0
0
0| {z }

xt xt|t it

MX 2

−G∗1MX 2+G
∗
2Mµ 2

F ∗1MX 2+F
∗
2Mµ 2

Mµ 2


where the column-blocks of zeros conform to the size of the Jt elements indicated
below the curly bracket. Impulse response analysis for the variables in this vector

30



are then readily computable via (C.1) and (4.2), i.e. from20

yt = (F̂ + F̂eÊ)Jt = Ĥ · (ĈQt + D̂ξt+1) (C.2)

where

Ĥ ≡ F̂ + F̂eÊ

As an example of two user defined variables, consider the definition of the
real rate and the output gap in the CGG model discussed in Section 5. To write
the output gap (yt − ȳt) as the first variable in the column vector of user defined
variables we shall define:

F̂ ≡

0 -1 0 0| {z }
Xt

0(1,npd)| {z }
Xt|t

1 0|{z}
xt

0(1,nfw+nctl+nfw)| {z }
xt|t it µxt



F̂e ≡

0(1,npd+nfw+nctl+nfw)| {z }
Xt+1|t xt+1|t it+1|t µxt+1


where the labels below the vector elements indicate to which elements of Jt these
elements conform (npd, nfw and nctl indicate, respectively, the number of pre-
determined, forward looking and control variables).21 Since no forward looking
terms enter the definition of the output gap the F̂e vector is just a zero (of ap-
propriate dimension). Forward looking terms instead enter the ex-ante real rate
(it − πt+1|t) definition through the expected inflation term. To write the real rate
for the CGG example we shall define

F̂ ≡

0(1,2∗npd+2*nfw)| {z }
Xt Xt|t xt xt|t

1|{z}
it

0(1,nfw)| {z }
µxt



F̂e ≡

0(1,2∗npd)| {z }
Xt+1|t

0 -1|{z}
xt+1|t

0(1,nfw+nctl+nfw)| {z }
it+1|t µxt+1

 .
20In the numerical implementation of this feature, the Toolkit computes the Ĥ matrix once

F̂ and F̂e are defined by a user. The yt variables are then stacked as the last elements in
the (new) column vector of responses J̃ 0t ≡ [J 0t y0t] (i.e. the usual Jt variables plus the new
user defined variables). The Toolkit then computes the impulse responses using the augmented

system J̃t = C̃Qt + D̃ ξt+1, where the matrices C̃ ≡
·
Ĉ

ĤĈ

¸
and D̃ ≡

·
D̂

ĤD̂

¸
(as from C.2).

21To compute the expected output gap, yt|t − ȳt|t, one should position the ones so that they
pick the corresponding expected elements in the Jt vector.
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D. Appendix: The value of the intertemporal loss function

Below it is shown how to compute the matrix V and the scalar d that characterize
the quadratic expression of the intertemporal loss function derived in subsection
4.2.
Under commitment, the optimal value of (2.4) admits a representation of the

form Λ∗t ≡ S 0t|tVcSt|t + dc, where we stack in the S vector all the relevant state
and costate variables, S 0t ≡ [X 0

t µ
0
x,t],and the matrix Vc and the scalar dc are to be

determined.22 Substituting this expression in (4.4) we obtain:

S 0t|tVcSt|t + dc = L∗t|t + δEt
n
S 0t+1|t+1VcSt+1|t+1 + dc

o
(D.1)

Our strategy to identify Vc and dc is to expand the right hand side of (D.1)
using the formulas that define the solution under commitment. In order to do
that, we first need to express targets Y and period losses in terms of St and St|t.
Simple algebra (using (3.14), (A.1) and (A.2) into (2.2)) yields

Yt = C̄1St|t + C̄2(St − St|t) (D.2)

where

C̄1 ≡
h
(C11 + C

2
1 )− (C12 + C22)G∗1 + CiF ∗1 (C12 + C

2
2 )G

∗
2 + CiF

∗
2

i
C̄2 ≡

h
C11 + C

1
2G1 0

i
and the matrix 0 has zero elements and is conformable to Y and S. This allows
the period losses L∗t|t to be rewritten as

L∗t|t = S 0t|tC̄ 01WC̄1St|t + Et
n
(St − St|t)0C̄ 02WC̄2(St − St|t)

o
. (D.3)

Next, let us rewrite the term Et
n
S 0t+1|t+1VcSt+1|t+1 + dc

o
in (D.1) in terms of

Stand St|t. Substituting (D.3) and (4.7) into the right hand side of (D.1) and
collecting terms, we obtain a quadratic expression in St|t plus a scalar on both
sides of the resulting equation. Therefore, we derive the following two identities
from which Vc and dc can be computed:

Vc = C̄ 01WC̄1 + δ(HH +MM)0Vc(HH +MM) (D.4)

dc =
1

1− δ

h
tr(w1cPco) + δ tr(w2cPco) + δ tr(w3cΣ

2
uu) + δ tr(w4cΣ

2
vv)
i
(D.5)

22The computation of losses under discretion is derived in a completely analogous way (basi-
cally replacing the equations for S (state and costate variables) with equations for X ; details
are available from the authors upon request).
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where w1c = C̄ 02WC̄2, w
2
c = (HH)0(KK)0Vc(KK)(HH), w3c = (KK)0VcKK and

w4c = Vc. Pco is the covariance matrix of the contemporaneous prediction error in
St as defined in (4.9).

E. Appendix: Computation of unconditional moments

The unconditional covariance matrix of St|thas been computed in the main text.
Here we briefly sketch how to compute the other main covariance matrices. To
compute the unconditional covariance matrix for the state vector St, note that
the identity St = St|t + (St − St|t) and the fact that E(St − St|t)S 0t|t = 0 , imply:

Pco ≡ cov(St − St|t) = Σ2St − Σ2St|t (E.1)

which shows that Σ2St can be immediately computed once Pco and Σ
2
St|t are known.

Next, using equations (3.12) and (3.13) the forward looking variables xt can
be compactly expressed in terms of the St variables as:

xt = Ḡ(St − St|t) + Ḡ∗St|t
where

Ḡ ≡ [G1 0nfw,nfw], Ḡ
∗ ≡ [−G∗1 G∗2]

which allows the covariance matrices of the forward looking variables xt and xt|t
to be computed:

Σ2xt|t ≡ E0(xt|tx0t|t) = Ḡ
∗Σ2St|tḠ

∗0

Σ2xt ≡ E0(xtx
0
t) = ḠPcoḠ

0 + Σ2xt|t

E.1. Moments of the user-defined variables

From equation (C.2) we can easily infer an expression for the unconditional co-
variance matrix of yt, cov(yt) ≡ E(yty0t)−E(yt)E(y0t):

cov(yt) = Ĥ
h
ĈE(QtQ

0
t)Ĉ

0 + D̂E(ξtξ
0
t)D̂

0 − ĈE(Qt)E(Q0t)Ĉ 0
i
Ĥ 0

where the only unknown is E(QtQ
0
t) which can be computed directly using Q

0s
definition (4.1) and the moments in Σ2St .
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