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Abstract

In this paper, we provide an axiomatic foundation for the value-based version of the Drift
Di¤usion Model (DDM) of Ratcli¤ (1978), a successful model that describes two-alternative
speeded decisions between consumer goods.
Our axioms present a test for model misspeci�cation and connect the externally observable

properties of choice with an important neurophysiological account of how choice is internally
implemented.
We then extend our axiomatic analysis to multi-alternative choice under time pressure. In

a nutshell, we show that binary DDM comparisons of the alternatives, paired with Markovian
exploration of the consideration set, approximately lead to softmaximization.

A successful model to describe two-alternative speeded decisions between consumer goods is
the value-based version of the Drift Di¤usion Model (DDM) of Ratcli¤ [53]. Here we provide an
axiomatic foundation for the DDM and a simple way to elicit its parameters from behavioral data.
When eye-tracking data are also available, our characterization allows to test the Metropolis-

DDM algorithm, a recent multi-alternative extension of the DDM due to Cerreia-Vioglio et al.
[14], and to identify its parameters.
The use of the DDM to describe value-based decisions, pioneered by Busemeyer and Townsend

[10] in the case of choice under uncertainty, has been extensively studied by Krajbich et al. [32] and
[34] and by Milosavljevic et al. [44] for consumer goods, and has been recently neurophysiologically
motivated by Shadlen and Shohamy [63] in terms of sequential sampling from memory. By now,
the DDM is a paradigm for choice between pairs fa; bg of alternatives. It explains a wide range
of behavioral and neurobiological data, it has a compelling neurophysiological interpretation, and
it is optimal in terms of sequential sampling.1 It has also been shown to successfully describe a
wide range of purchasing decisions �from snacks to consumer electronics, from household items
to mobile apps.2

Speci�cally, given two alternatives, a and b, this neuro-computational algorithm assumes that
decisions are made by accumulating noisy information about them over time, until the net evidence

1See, e.g., Bogacz et al. [7], Hare et al. [29], Ratcli¤ et al. [54] and [55], and Fudenberg et al. [26].
2See, e.g., Roe et al. [60], Krajbich et al. [32] and [34], Milosavljevic et al. [44], Clithero [17], and Chiong et al.

[16].
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in favor of one exceeds a prespeci�ed threshold, �, at which point the favored alternative is selected.
The presence of noise in the accumulation of information implies that choice between the same
pair of alternatives does not always terminate at the same time and does not always lead to the
same outcome. More formally, the DDM describes how linear evidence accumulation with white
Gaussian noise generates the random variables decision time, DTa;b, and decision outcome, DOa;b,
for choice in a two-alternative set fa; bg.

Fig. a: Six realizations of the Drift Di¤usion Model.

The DDM naturally captures speed-accuracy tradeo¤s: lower thresholds � produce faster but
less accurate responses, whereas higher thresholds � produce more accurate but slower responses.
This feature is particularly relevant for choice under time pressure: empirical evidence con�rms
the intuition that higher pressure induces lower thresholds.3

Our main contribution is providing necessary and su¢ cient conditions on the observables �
that is, on choice frequencies and decision times �that guarantee that the agent behaves �as if�
implementing the DDM. In the tradition of psychophysics, these conditions are called �axioms�
and can be seen both as an empirical test of the model and as a measurement tool for its parame-
ters.4 The twist of our approach is combining the choice frequency and decision time components
into an axiomatic characterization. Both these observables are at the heart of most psychophysical
theories (see, e.g., Luce [36] and [37]). Yet, while the former has been studied in great axiomatic
detail under the name of �random choice�, the latter has not been analyzed from this perspective,
with the exceptions of the recent Echenique and Saito [20] and Alos-Ferrer et al. [2].
Beyond falsi�ability of the DDM theory and a better understanding of its behavioral impli-

cations, an important experimental advantage of our main representation theorem is that it does
not require a parameter �tting routine, but allows to elicit the agent�s utility function and de-
cision threshold directly from behavioral data. Also, our framework can be immediately applied
to common experimental setups in which each participant contributes only a moderate amount
of data and the error rate is low �see Wagenmakers et al. [70], Lerche and Voss [35], and van
Ravenzwaaij et al. [56].
Finally, our axiomatization extends beyond two-alternative choice modeling. Indeed, we show

that it permits to test the multi-alternative choice procedure under time pressure of Cerreia-Vioglio
et al. [14] and to elicit its parameters. In so doing, we also generalize their Metropolis-DDM
algorithm to allow for the formation of consideration sets. Because of the importance of these sets

3See, e.g., Busemeyer and Townsend [10], Milosavljevic et al. [44], Karsilar et al. [31], and the discussion in
Ortega and Stocker [48].

4Classical references are Luce [36] and Luce and Suppes [38].
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in economics and marketing,5 this generalization is another relevant contribution of the present
paper.
The literature on the DDM is vast but non-axiomatic. We refer readers to the reviews of

Fehr and Rangel [25] and Ratcli¤ et al. [55]. Webb [71] studies the relation between the DDM
(and bounded accumulation models, in general) and random utility models. The optimality of
the DDM in terms of sequential sampling is analyzed by Gold and Shadlen [28] and Bogacz et
al. [7] in the classical case, and by Fudenberg et al. [26] and Epstein and Ji [22] in the Bayesian
case. An identi�cation result similar to ours is independently obtained by the recent Chiong et
al. [16], who adopt the DDM as a structural model to analyze the e¤ects of advertisement in app
purchasing behavior.
The extension of the DDM to menus of N > 2 alternatives is a non-trivial issue and di¤erent

generalizations, with signi�cantly di¤erent behavioral and neurobiological properties, have been
proposed. See, e.g., Roe et al. [60], Usher and McClelland [68], Anderson et al. [3], McMillen and
Holmes [43], Bogacz et al. [8], Ditterich [18], Krajbich and Rangel [33], and Reutskaja et al. [57].
In most of these models, the choice task is assumed to simultaneously activate N accumulators,
each of which is primarily sensitive to one of the alternatives and integrates evidence relative to
that alternative. Choices are then made based on absolute or relative evidence levels. In contrast,
the Metropolis-DDM algorithm of Cerreia-Vioglio et al. [14] builds on sequential activation of
2 accumulators and Markovian exploration of the menu of alternatives. This feature makes the
Metropolis-DDM algorithm more realistic in view of both the available eye-tracking evidence �
see, e.g., Russo and Rosen [62] and Russo and Leclerc [61] � and of the known limitations of
working memory �see, e.g., Luck and Vogel [39] and Vogel and Machizawa [69]. The same feature
allows for model-testing and permits parameters�elicitation by analyzing binary comparisons only.
These comparisons are the most studied in many �elds of decision theory and their quantitative
and experimental analysis is consequently well developed.
The paper is organized as follows: Section 1 is a short and self contained exposition of the

value-based Drift Di¤usion Model. Section 2 characterizes the DDM via observables; speci�cally,
it provides a �psychometric axioms if and only if DDM� representation theorem and studies
its consequences. Section 3 discusses the relation between theoretical choice probabilities and
empirical choice frequencies; in particular, it shows that the DDM representation is robust to
situations in which data are either scarce or noisy. Section 4 extends the characterization of
Section 2 from the DDM to the Metropolis-DDM algorithm of Cerreia-Vioglio et al. [14]; it also
generalizes the latter to allow for the formation of consideration sets. Section 5 presents several
simulations and discusses the numerical convergence properties of the Metropolis-DDM algorithm.
Appendix A contains the proofs of our results and some additional material.

1 The DDM for value-based decisions

Let A be a choice set consisting of at least three distinct alternatives. The DDM is a model of
binary comparison between a �xed pair of alternatives a and b in A. According to this model, noisy
evidence about the alternatives is accumulated until it reaches some threshold � > 0, at which
point a decision is taken. Speci�cally, either alternative is selected as soon as the net evidence
in its favor attains level �. In a neurophysiological perspective, the comparison of a and b is
assumed to activate two neuronal populations whose activities (�ring rates) provide information

5See, e.g., Shocker et al. [64], Roberts and Nedungadi [59], Peter and Olson [50], Eliaz and Spiegler [21],
Masatlioglu et al. [42], Hauser [30], Manzini and Mariotti [41], Gaynor et al. [27], and Caplin et al. [11].
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for the two alternatives. Denote their mean activities by u (a) and u (b), and assume that each
experiences instantaneous independent white noise �uctuations modeled by uncorrelated Wiener
processes Wa and Wb. Evidence accumulation in favor of a and b is then represented by the two
Brownian motions with drift Va (t) � u (a) t+ �Wa (t) and Vb (t) � u (b) t+ �Wb (t), respectively.6

With this,

� the net evidence in favor of a against b is given, at each t > 0, by the di¤erence

Za;b (t) � Va (t)� Vb (t) = [u (a)� u (b)] t+ �
p
2 W (t)

where W is the Wiener process (Wa �Wb) =
p
2;

� the comparison ends when Za;b (t) reaches either the barrier � or ��; so, the decision time
is the random variable

DTa;b � min ft : Za;b (t) = � or Za;b (t) = ��g

� when the comparison ends (at random time DTa;b), the agent selects a if the upper barrier
� has been reached, and selects b otherwise; so, the decision outcome is the random variable

DOa;b �
(
a if Za;b (DTa;b) = �

b if Za;b (DTa;b) = ��

The probability of choosing a from fa; bg is thus

Pa;b � P [DOa;b = a]

and its explicit logistic formula

Pa;b =
1

1 + e�
�
�2
[u(a)�u(b)]

(1)

can already be found in Ratcli¤ [53]. Of course, Pb;a = 1 � Pa;b. In particular, the choice of an
inferior alternative, a if u (a) < u (b) or b if u (b) < u (a), is called an error. Its probability is the
error rate

ERa;b � min fPa;b; Pb;ag =
1

1 + e
�
�2
ju(a)�u(b)j

and so the probability of a correct choice is

PCa;b � 1� ERa;b = max fPa;b; Pb;ag =
1

1 + e�
�
�2
ju(a)�u(b)j

The explicit formulas of the distribution of DTa;b and of its moments are also well known (see the
appendix). For example, its mean is

DTa;b � E [DTa;b] =
�

u (a)� u (b) tanh
� [u (a)� u (b)]

2�2
= �

2PCa;b � 1
ju (a)� u (b)j (2)

(replaced with its limit �2=2�2 when u (a) = u (b)). As intuitive, it increases with the amount of
net evidence required to decide, as well as with the payo¤ proximity of the alternatives.

6See, e.g., Bogacz et al. [7] and Fudenberg et al. [26].
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In some cases the alternatives a and b may play di¤erent roles, say b is the status quo or the
incumbent solution of a decision problem. The amount of net evidence required to maintain b, call
it �, may then be di¤erent (typically smaller) from the amount of net evidence � required to switch
to a. In these cases, it is necessary to replace �� with �� in the expressions of DTa;b and DOa;b,
and formulas (1) and (2) should be modi�ed accordingly. Our multi-alternative generalization of
the DDM can be extended to these �asymmetric barriers�cases (see the appendix).
For later reference, we call P = [Pa;b]a;b2A the stochastic choice matrix and DT =

�
DTa;b

�
a;b2A

the decision time matrix induced by the DDM. More generally, we call (stochastic) choice matrix
any quasi-positive matrix eP such that ePa;b+ ePb;a = 1 for all a 6= b in A and (decision) time matrix
any quasi-positive symmetric matrix.

1.1 Normalizations

Notice that the parameters fuaga2A, �, and � are de�ned up to a common positive scalar multiple.
If all of them are multiplied by a constant � > 0, the predictions of the DDM are unchanged. For
instance, choosing � = 1=� amounts to normalize the noise � of the Brownian motions fVaga2A
and to replace � with 1, u with û = u=�, and � with �̂ = �=�.7

A di¤erent normalization, typical of the mathematical psychology literature, consists in setting
� = 1, which obviously corresponds to � = 1=�.
Finally, observe that u is actually cardinally unique, that is, de�ned up to positive scalar

multiplication and translation by an additive constant. This follows from the fact that the drift
of the Brownian motion Za;b only depends on the di¤erence u (a) � u (b). For example, in a
neurophysiological perspective, it may be desirable to normalize the range of u to [0; 100]. This
leads to the transformation

u 7! 100

maxa2A u (a)�mina2A u (a)

�
u�min

a2A
u (a)

�
In this case, both � and � must be multiplied by 100 and divided by maxA u�minA u, accordingly.

2 Observability and measurement

In terms of external observability of the DDM, assume that the analyst can observe the agent�s
choices between pairs (a; b) several times. These observations produce empirical choice frequencies
P oa;b = 1 � P ob;a and empirical mean decision times DT

o

a;b = DT
o

b;a for all a 6= b in A. Formally,
we call observables any pair

�
P o;DT

o�
consisting of a stochastic choice matrix P o and a decision

time matrix DT
o
.

Example 1 With three alternatives, the matrices are24 � P oa;b P oa;c
P ob;a � P ob;c
P oc;a P oc;b �

35 and

24 � DT
o

a;b DT
o

a;c

DT
o

b;a � DT
o

b;c

DT
o

c;a DT
o

c;b �

35
The elements on the diagonal, which are conceptually meaningless, can be arbitrarily speci�ed.

7This is the normalization that we will adopt, when we do not consider the generic expression. Another
normalization of noise, popular in behavioral experiments, corresponds to �

p
2 = 0:1 and it determines a choice of

� =
p
2=20� (see Section 5).
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Here the superscript �o� stands for �observable� (or �observed�). For instance, ERoa;b �
min

�
P oa;b; P

o
b;a

	
is the observed (experimental) error rate, while ERa;b � min fPa;b; Pb;ag is the

DDM (theoretical) error rate. In what follows we use two additional psychological measurements:
the probability of a correct choice

PCoa;b � 1� ERoa;b = max
�
P oa;b; P

o
b;a

	
and the ease of comparison

ECoa;b � log
PCoa;b
ERoa;b

= logit PCoa;b

that is, the log-odds of a correct choice.8 The use of these quantities dates back to classical
psychometrics (Fechner [24], Thurstone [67], Luce [36], and Rasch [52]) and the relation between
them is self explanatory:

Fig. b: Relation between probability of correct choice PCoa;b and ease of comparison EC
o
a;b.

In words, easier choice problems are more likely to elicit correct responses than harder ones.9

In particular, PCoa;b, measures �how accurate�the comparison is: it ranges between 1=2 (no
accuracy, choice is completely random) and 1 (maximum accuracy, choice is deterministic). It is
convenient to normalize it to 0 and formally de�ne accuracy of comparison as

ACoa;b � PCoa;b �
1

2

Instead, ECoa;b describes ease of comparison as the probabilistic distance log PC
o
a;b � log ERoa;b

between correct responses and errors. Notice that jlog p� log qj actually de�nes a distance between
probabilities which is characterized by a simple set of properties (see Baucells and Heukamp [6]).10

Next we show that the DDM is characterized by simple veri�able conditions on observables,
stated as axioms.

Axiom 1 (Positivity) Choice is a stochastic and time consuming process:

P oa;b > 0 and DT
o

a;b > 0

for all distinct a and b in A.

8Ease of comparison was originally called �degree of easiness�by Rasch [52]. Also recall that the log-odds of an
event that occurs with probability p are given by logit p = log p� log (1� p).

9See the discussion of Alos-Ferrer et al. [2] on the psychometric function.
10See also Proposition 9 in the appendix.
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This axiom of Luce [36] is where psychophysics departs from microeconomics, which assumes
instantaneous and deterministic choice.

Axiom 2 (Product rule) Violations of transitivity are only due to noise:

P oa;bP
o
b;cP

o
c;a = P

o
a;cP

o
c;bP

o
b;a

for all distinct a, b, and c in A.

To interpret this axiom, observe that P oa;bP
o
b;cP

o
c;a is the probability of observing the agent

choose c from fa; cg, then b from fb; cg, and a from fa; bg, while P oa;cP oc;bP ob;a is the probability of
observing the agent choose b from fa; bg, then c from fb; cg, and a from fa; cg. Thus, the product
rule asserts that the intransitive cycles

a! c! b! a and a! b! c! a

must be observed with the same probability. In other words, they are equally likely �mistakes�.
Indeed, the product rule is equivalent to transitivity in the noiseless case when P oa;b = 1 if a is
strictly preferred to b, P oa;b = 1=2 if they are indi¤erent, and P

o
a;b = 0 otherwise.

11

Luce and Suppes [38, p. 341] show that, together with positivity, the product rule characterizes
the Luce model of binary choice (see Luce [36, ch. 1-2]).

Axiom 3 (Invariance) Accuracy is proportional to mean decision time and ease of comparison:

DT
o

a;bEC
o
a;b

ACoa;b
=
DT

o

a;cEC
o
a;c

ACoa;c

for all distinct a, b, and c in A.

That is, there exists a constant � > 0 such that

DT
o

a;b = �
ACoa;b
ECoa;b

for all a 6= b in A

Thus, the axiom has an (obviously) equivalent interpretation: mean decision time is directly
proportional to accuracy and inversely proportional to ease of comparison.12

The next theorem, our �rst main contribution, shows that observables can be explained by the
DDM if and only if they satisfy the previous axioms.

Theorem 1 Let
�
P o;DT

o�
be the observables. The following are equivalent:

(i) P o and DT
o
satisfy positivity, the product rule, and invariance;

(ii) there exist a function u : A ! R and two coe¢ cients � > 0 and � > 0 such that P o = P
and DT

o
= DT.

In this case, �̂ = �=� is unique and û = u=� is unique up to an additive constant. In particular,

�̂ =

s
DT

o

a;b

2

ECoa;b
ACoa;b

and û (a)� û (b) =
logitP oa;b

�̂
(3)

for all distinct a and b in A.

This theorem has several noteworthy consequences. First, the identi�cation of �̂ and û allows
for inter-agent and intra-agent comparative statics.13 For instance, one can say that agent 1 is
�more re�ective� than agent 2 if and only if �̂1 > �̂2,14 or that agent 1 is �more risk averse�
11Notice that the noiseless choice matrix violates positivity, unless all alternatives are indi¤erent.
12See the discussion of Alos-Ferrer et al. [2] on the chronometric function.
13See also Chiong et al. [16, Lemma 1].
14Even when they have di¤erent utility functions û1 and û2, but provided they are choosing in the same conditions.
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than agent 2 if and only if the certainty equivalents corresponding to û1 are smaller than those
corresponding to û2.15

Second, this theorem guarantees that the function u is cardinally unique and that, given u,
the coe¢ cients � and � are both unique. Beyond its obvious theoretical interest, this fact also
provides additional tests for the DDM, when the analyst has a richer database. For example, if
instead of empirical mean decision times DT

o

a;b, empirical distributions FDToa;b of decision times

where available, those could be used to compute DT
o

a;b, for all a 6= b in A. If P o and DT
o
do not

satisfy point (i) of Theorem 1, then no DDM can rationalize the data; otherwise, the only possible
rationalizing DDM (with � = 1) is the one with parameters �̂ and û given by (3), brie�y denoted
DDM(û; �̂). This does not mean that DDM(û; �̂) is the true model, but rather that it is the only
DDM candidate. Testing the latter hypothesis is now simple: it amounts to verify whether the
observed distributions FDToa;b can be generated by DDM(û; �̂), and the theoretical distributions
FDTa;b are known in closed form (see the appendix).
Finally, Theorem 1 shows that utility di¤erences are cardinally measured jointly by choice

probabilities and decision times. In this regard, the next proposition shows that either of the
two observables is su¢ cient to ordinally measure such di¤erences. In reading it, recall that DTa;b
stochastically dominates DTa0;b0 if and only if

P [DTa;b > t] � P [DTa0;b0 > t] for all t > 0

That is, at each time t, ongoing deliberation between alternatives a and b is more likely than
ongoing deliberation between a0 and b0. In other words, choice between a and b is more time
consuming than choice between a0 and b0.

Proposition 2 Given a function u : A ! R and two coe¢ cients � > 0 and � > 0, if a 6= b and
a0 6= b0 belong to A, then the following conditions are equivalent:

(i) ju (a)� u (b)j � ju (a0)� u (b0)j;

(ii) ERa;b � ERa0;b0;

(iii) DTa;b � DTa0;b0;

(iv) DTa;b stochastically dominates DTa0;b0.

The mathematical novelty of this proposition is the equivalence of point (iv) with the remain-
ing points (i), (ii), and (iii). The equivalence of the �rst three points highlights a signi�cant
feature of the value-based DDM: two pairs of alternatives present the same absolute di¤erence in
intensity of stimuli if, and only if, they generate the same discrimination error if, and only if, their
discrimination time is on average the same. This means that, under the DDM assumptions, the
measurement of these di¤erences either by error rates à la Fechner �see, e.g., Luce [36, Ch. 2]
and Falmagne [23, Ch. 4] �or by decision times à la Cattel [12] actually coincide. In this way,
two of the historically most important hypotheses of classical psychophysics are reconciled.
At the same time, it is easy to see that this result is peculiar to the DDM with symmetric

barriers �� and �. As soon as asymmetric barriers �� and � are considered, the only surviving
relation is the trivial: (iv) implies (iii).16 Another speci�c feature of the symmetric DDM, with
important algorithmic consequences (see Drugowitsch [19]), is the following.

15Even when they have di¤erent thresholds �̂1 and �̂2, but provided choice between lotteries is observed.
16See Echenique and Saito [20] and Alos-Ferrer et al. [2] for a general revealed-preference approach to ordinal

measurement of utility di¤erences through response times.

8



Proposition 3 Given a function u : A! R and two coe¢ cients � > 0 and � > 0, if a 6= b belong
to A, then DTa;b and DOa;b are independent random variables.

3 Robustness of the DDM

Even if data were actually generated by a DDM, the observables
�
P o;DT

o�
of the previous section

would perfectly match the theoretical DDM predictions
�
P;DT

�
� that is, they would satisfy

Axioms 1 to 3 �if and only if empirical frequencies matched limit frequencies. Thus, Theorem
1 describes what we would see if we had abundant and very accurate data. In this section, we
investigate what happens when the product rule (Axiom 2) and invariance (Axiom 3) are violated,
either because of the quantity/quality of available data or because of model misspeci�cation.
Positivity is assumed to hold by restricting the analysis to pairs of alternatives for which choice
is not deterministic.17

We �rst investigate violations of the product rule. To simplify the form of the robustness
bounds, it is convenient to consider log-odds

`oa;b � log
P oa;b
P ob;a

= logitP oa;b for all a 6= b in A

instead of choice frequencies, so that the product rule can be written as

`oa;b = `
o
a;c + `

o
c;b (4)

for all distinct a, b, and c in A.18 In this perspective, a violation of the product rule amounts to
the strict positivity of

max
a 6=b6=c

��`oa;b � `oa;c � `oc;b�� = " (5)

In the next lemma we show that, if the observable choice matrix P o violates the product rule by
", there exists an approximating choice matrix eP that satis�es the product rule and is "=4 close
to P o in the supnorm.

Lemma 4 Let the observable P o satisfy positivity. If the product rule is violated by " in the sense
of equation (5), then the choice matrix eP de�ned by

ePa;b � 1

1 + e�èa;b for all a 6= b in A

where èa;b � jAj�1Pc2A
�
`oa;c + `

o
c;b

�
, satis�es positivity, the product rule, and is such that���P oa;b � ePa;b��� � "=4

for all a 6= b in A.
17As pointed out by Busemeyer and Townsend [10], extensive evidence shows that individuals often make di¤erent

choices when confronted with the same set of options repeatedly within the same experimental session and without
any outcome feedback. For recent accounts of this evidence, we refer to Agranov and Ortoleva [1], Fudenberg et
al. [26], and Alos-Ferrer et al. [2]. For deliberate randomization, see Cerreia-Vioglio et al. [13].

To ease terminology, we say that matrix eP = h ePa;bi
a;b2A

satis�es positivity if ePa;b > 0 for all a 6= b in A.
18The convention `oa;a = 0 for all a in A will be adopted, when needed.
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We can now de�ne ease of comparison, fEC, and accuracy of comparison, fAC, for the approxi-
mating eP as we did for the observable P o and for the theoretical P . The next lemma helps us to
separate violations of the product rule and violations of invariance.

Lemma 5 Let the observables
�
P o;DT

o�
satisfy positivity and the product rule. Then, invariance

is satis�ed if and only if

DT
o

a;b

fECa;bfACa;b = DToa;c
fECa;cfACa;c (6)

for all distinct a, b, and c in A.

Property (6) is then called quasi-invariance. In particular, in Theorem 1 we can replace
invariance with quasi-invariance. Therefore, a violation of invariance which is not related to a
violation of the product rule amounts to strict positivity of

max
a6=b
c 6=d

�����DToa;b fECa;bfACa;b �DToc;d
fECc;dfACc;d

����� = � (7)

In reading the following robustness result, recall that both " and � are readily computable from
the observables because the matrices `o, è, eP , fEC, and fAC are all easily derived from P o.

Theorem 6 Let the observables
�
P o;DT

o�
satisfy positivity. If the product rule and invariance

are violated by " and � in the sense of equations (5) and (7), then there exist a function u : A! R
and two coe¢ cients � > 0 and � > 0 such that��P oa;b � Pa;b�� � "=4 and

��DToa;b �DTa;b�� � �=4
for all a 6= b in A. In this case, ~� = �=� and ~u = u=� can be chosen as follows

~� =

vuut 1

jAj (jAj � 1)
X
a 6=b

DT
o

a;b

2

fECa;bfACa;b and ~u (a)� ~u (b) = logit ePa;b
~�

(8)

all a 6= b in A. Moreover, eP = P .
In a nutshell, " and � violations of the axioms in the data correspond to "=4 and �=4 errors in

the approximation of the data themselves by a DDM.

Remark 1 One may wonder how the result changes if � is replaced by the gross measure of
violation of invariance given by

max
a6=b
c 6=d

����DToa;bECoa;bACoa;b
�DToc;d

ECoc;d
ACoc;d

���� = 
 (9)

where observed ease of comparison and accuracy, ECo and ACo, instead of their �product-rule-
compliant�versions, fEC and fAC, are considered. Proposition 8 in the appendix shows that changes
are minor, but formulas become less neat because 
 is a¤ected by both violations of invariance and
of the product rule, while � is una¤ected by the latter.

Summing up, small violations of the axioms correspond to proportionally small errors in the
DDM description of behavior. Moreover, as it happens in the �exact� case, the approximating
parameters can be directly derived from behavioral data �see (16) in the appendix.
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4 An application: the Metropolis-DDM algorithm

In this section, we present an application of the previous analysis to multi-alternative choice under
time pressure. Here A represents the set of available alternatives and an exogenous time
limit t is imposed on agents. For example, they might have to choose one of the following 9
available snacks in 4 seconds:

Fig. c-1: Menu of nine available snacks.

Our analysis of this problem is based on the Metropolis-DDM algorithm of Cerreia-Vioglio et
al. [14]. We explain the algorithm in this section, however we refer the reader to [14] for an in-
depth discussion of the algorithm and of its relations with the literature. The novel contributions
of the present section consist, �rst, in showing how the axioms we introduced so far allow to study
multi-alternative choice environments and, second, in generalizing the original Metropolis-DDM
algorithm to allow for the formation of consideration sets. For example, our agent might restrict
his attention to the subset C of available sweet snacks:

Fig. c-2: Consideration set of six sweet snacks.

Formally, given a set A of available alternatives, a consideration set is a subset C of A consisting
of the items among which a consumer actually chooses in a given decision episode. These sets are
central in marketing,19 where their formation is assumed to be the �rst step in a two-step decision
process (the second step being the choice of an alternative from the consideration set). For this
reason, as Ringel and Skiera [58] write, they are �the ultimate arbiters of the competition�among
brand managers, whose objective is to maximize the chances that their products belong to these
sets.20

19See the review of Shocker et al. [64], Roberts and Nedungadi [59] where an issue of the International Journal
of Research in Marketing on this topic is foreworded, and the more recent Hauser [30], or Peter and Olson [50] for
a textbook treatment.
20More recently, consideration sets have also attracted attention in economics. See, e.g., Eliaz and Spiegler [21],

Masatlioglu et al. [42], Manzini and Mariotti [41], Gaynor et al. [27], and Caplin et al. [11].
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Before describing the Metropolis-DDM algorithm, we recall some eye-tracking experimental
�ndings (in italics) on multi-alternative choice under time pressure that inspired it,21 along with
(in roman) the corresponding �ingredient�of the algorithm itself.

F1 Multi-alternative choice procedures are composed primarily of sequential pairwise compar-
isons, in which actual evaluative processing takes place.

We describe these pairwise comparisons via the Drift Di¤usion Model with utility u : A! R,
threshold �, and di¤usion coe¢ cient 1, brie�y denoted DDM(u; �).

F2 Increases in time pressure lead to acceleration of information processing, often at the cost of
accuracy.

We allow the threshold � to depend on the deadline t.

F3 Search strategies and consideration sets are adapted to time constraints and a¤ected by vi-
sual saliency, and agents do not eliminate alternatives after they are rejected in a previous
pairwise comparison.

We describe consideration sets by a partition C of A; for example, C = f�sweet snacks�, �salty
snacks�g. This partition may depend on the time constraint t. Moreover, we denote by Q (a j b)
the probability of considering a new alternative a for comparison with the temporary solution b.
This probability is allowed to vary with t too.

F4 Agents�exploration of menus is driven by the similarity and proximity of available alterna-
tives, that is, on their perceptual distance.

This �nding suggests a simple parametric form for Q that, although not necessary for our
analysis, is intuitive and performs well in simulations:

Q (a j b) =

8>><>>:
1

jAj � 1
1

d (a; b)�
if a 6= b

1�
P

c 6=b
1

jAj � 1
1

d (c; b)�
if a = b

Here d is a perceptual distance (that is, a symmetric function) between alternatives such that
mina 6=b d (a; b) = 1 and maxa 6=b d (a; b) � 1; it captures both physical proximity and subjective
similarity. The exponent � 2 (0;1) is an exploration aversion parameter. When � is very large,
the agent basically regards as close only the nearest neighbors of the temporary solution b; instead,
when � is very small, all the considered alternatives are regarded as, essentially, equally distant.
For example, in the case of our 9 snacks, a simple perceptual distance is given by

d (a; b) =

8>>><>>>:
0 if a = b
1 if a and b are adjacent and are either both sweet or both salty
2 if a and b are not adjacent and are either both sweet or both salty
1 if one is sweet and the other salty

21See Russo and Rosen [62], Russo and Leclerc [61], Nowlis [47], Pieters and Warlop [51], Chandon et al. [15],
Krajbich et al. [32], Krajbich and Rangel [33], Reutskaja et al. [57], Milosavljevic et al. [45], and Karsilar et al.
[31].
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Since this distance takes into account the sweet/salty partition, so does the corresponding transi-
tion probability matrix Q. This example also highlights the fact that d (a; b) is necessarily in�nite
if a belongs to a di¤erent consideration set than b.22

F5 The initial �xation is random and independent of value.23

Our �nal ingredient is thus an initial probability distribution � on A, which may depend on t
as well.

Together, all our ingredients suggest the following decision procedure. When a menu A and
a deadline t are given, our agents �rst select a sub-menu C of A and an initial element b in C
according to the consideration sets�partition C and the initial distribution �. Then, they consider
an alternative solution a in C with probability Q (a j b), and compare it to b via DDM(u; �). If
proposal a is judged superior to incumbent b, then a becomes the new incumbent and another
proposal c in C is considered and compared to a via DDM(u; �); otherwise, b maintains its
incumbent status and another proposal is considered and compared. This sequential exploration
and comparison continues until the time t available to decide expires and the incumbent solution
is chosen from the consideration set C.

Before formally describing this decision procedure, a couple of remarks are in order. First,
it is important to observe that the axioms of the previous sections, together with the eye-
tracking detection of binary comparisons, make these assumptions testable and their parameters
quanti�able. Therefore, it is the analysis of the �rst part of this paper that makes empirically
relevant what we propose here (see also Section 4.1 below).
Second, note that the nature of consideration sets that we propose is both set-theoretic and

probabilistic. Intuitively, a partition C of A consists of consideration sets if, once a set C 2 C is
selected by the agent, then:

1. any element of C can be considered (with strictly positive probability),

2. no element outside C can be considered.

Now, if the agent explores alternatives according to transition matrix Q, this means that given
any C in C and any item c in C:

1. starting from c it is possible to reach any element inside C in a �nite number of transitions,

2. starting from c it is impossible to reach any element outside C in a �nite number of transi-
tions.

In sum, the partition C must coincide with the partition of communicating classes determined
by the exploration matrix Q.24

22See the discussion below on the identi�cation of the consideration sets in C and the communicating classes of
Q.
23But possibly dependent on consideration sets and visual saliency.
24Speci�cally, given any c 2 C, if a =2 C, there is no �nite sequence c = a0; a1; :::; an = a such that

n�1Y
k=0

Q (ak+1 j ak) > 0, in particular Q (a j c) = 0 for all a =2 C In contrast, if a 2 C, such a �nite sequence

exists, in particular a0; a1; :::; an 2 C. See Norris [46, Ch. 1].
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We are now ready to present our multi-alternative choice model, a generalization of the
Metropolis-DDM algorithm of Cerreia-Vioglio et al. [14]. In reading it, notice that the parti-
tion C of A into consideration sets does not appear explicitly in the pseudo-code: once an initial
element b has been drawn according to �, the algorithm is constrained to run within the commu-
nicating class C of b determined by Q, until it terminates. Nonetheless, in light of the discussion
above, one should see � as the composition of its marginal �C on C and its conditionals f�CgC2C.
With this, the selection of the initial element b synthesizes the selection of a consideration set C
according to �C and the subsequent selection of b from C according to �C .

Metropolis-DDM Algorithm

Input: Given t > 0, set � = �t, Q = Qt, and � = �t.

Start: Draw a from A according to �:

� set s0 = 0,

� set b0 = a.

Repeat: Draw a from A according to Q (� j bn) and compare it to bn via DDM(u; �):

� set sn+1 = sn +DTa;bn,

� set bn+1 = DOa;bn,

until sn+1 > t.

Stop: Set b� = bn.

Output: Choose b� from A.

This algorithm can be seen as a parsimonious variation of the standard optimal search algo-
rithm that takes into account the presence of time pressure. In the standard algorithm, agents
begin by selecting an initial element b in A, then at each iteration they compare an incumbent
and a proposal, and discard permanently the rejected alternative, until the menu is exhausted.
Here, the presence of a deadline may lead to the formation of consideration sets, and the possibil-
ity of mistakes makes it inadvisable to eliminate proposals that have been rejected in a previous
comparison. Nonetheless, the sequential �explore-and-compare� logic of the two procedures is
similar.
By implementing the Metropolis-DDM algorithm, the probability of selecting a as a new best

candidate given the current incumbent b is

Mt (a j b) = Qt (a j b)Pa;b for all a 6= b in A

The transition probabilityMt (a j b) combines the stochasticity of the proposal mechanismQt(a j b)
and that of the acceptance/rejection rule Pa;b (which also depends on t via �t). Therefore, after n
iterations of the repeat-until loop, the probability of b being the incumbent is the b-th component
of the row vector �tM

n
t . The next result shows that the limiting behavior of this sequence turns

out to be classical softmaximization, conditional on the communicating classes determined by Q.
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Theorem 7 Let u : A ! R be a function, �t > 0 a coe¢ cient, and Qt a symmetric stochastic
A� A matrix. Then, Mt is reversible with respect to the multinomial logit distribution

p
(u;�t)
A (a) =

e�tu(a)P
b2A e

�tu(b)
for all a in A

and, given any probability distribution �t on A,

limn!1 �tM
n
t =

X
C2Ct

�t (C) p
(u;�t)
C

where Ct is the partition of A into its communicating classes with respect to Qt.25
In particular, if Qt is irreducible, then Mt is irreducible, aperiodic, and

lim
n!1

�tM
n
t = p

(u;�t)
A

If Qt is irreducible,26 the Metropolis-DDM algorithm thus approximates the multinomial logit
(or softmax) distribution p(u;�t)A , irrespective of the initial distribution �t. Otherwise, the algorithm
selects a consideration sub-menu C of A and approximates the conditional multinomial logit there.
Remarkably, this result continues to hold when asymmetric barriers ��t and �t are considered:
as shown in the appendix, the lower barrier ��t does not a¤ect the stationary distribution.
Beyond the mathematical novelty, the conceptual innovation of the algorithm presented above

relative to the original Metropolis-DDM is allowing the exploration strategy �in particular, the
consideration sets�structure �to depend on the time constraint. This is potentially relevant in
today�s marketplaces, in which consumers have immense choice sets, life styles dramatically reduce
deliberation times, choice behavior is easily observable (e.g., through cellphone cameras, even at
the eye-tracking level).
Last but not least, the parameters u and �t of the limit multi-alternative choice distribution

appearing in Theorem 7 are those that govern the pairwise comparisons that lead to it, and are
thus identi�ed by Theorems 1 and 6. We discuss next their elicitability from eye-tracking data
and the implications of this fact in terms of testability of the Metropolis-DDM algorithm.

4.1 Eye-tracking and axioms to test the algorithm

Eye-tracking data come in the form of �xation sequences, say

x0 � x1 � x2 � x3 � � � �

In the eye-tracking practice,27 re�xation subsequences x � y � x (or x � y � x � y, ...) are
hypothesized to correspond to pairwise comparisons, while the appearance of a new alternative z,
leading to x� y � x� z (or x� y � x� y � z, ...), relates to exploration. Therefore, by tracking
the choice behavior of an agent and detecting re�xation subsequences, it is possible to use the
axioms of the previous Sections 2 and 3 to check whether his pairwise comparisons are consistent
with the DDM and to elicit the corresponding parameters.
Speci�cally, the re�xations between alternatives a and b present the analyst with the quantities

P oa;b and DT
o

a;b. At this point, Theorems 1 and 6 allow her to establish if the DDM is a plausible

25As usual, pC is the conditional of pA given C. That is, pC (a) = e�tu(a)=
P

c2C e
�tu(c) if a 2 C, and pC (a) = 0

otherwise.
26This is the case considered by Cerreia-Vioglio et al. [14].
27See the review of Orquin and Mueller Loose [49].
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description of the agent�s binary choice behavior. If this is the case, the observables
�
P o;DT

o�
also identify, by (3) and (8), candidate utility and threshold for binary choice. These utility and
threshold can then be compared with the ones that better describe the softmax approximation of
the agent�s choice distribution from A (also observable) and to test the validity of the Metropolis-
DDM algorithm as a description of the choice process.

5 Approximation errors and simulations

Theorem 7 shows that the stationary distribution of the sequence of incumbents generated by
the Metropolis-DDM algorithm within each consideration set C is the softmax pC = p

(u;�t)
C . At

the same time, the algorithm is stopped at time t after a number of iterations which is random
because of the stochastic duration DTa;b of each iteration (in which b is the incumbent and a is
the proposal). Moreover, di¤erent iterations have di¤erent average duration, as described by (2)
and Proposition 2. As a consequence, the softmax approximation of the output of the algorithm is
a¤ected by a systematic bias due to the fact that some comparisons take longer than others and,
therefore, some alternatives are more likely than others to be the incumbent at any given time.
Heuristically, as the number of iterations increases, the fraction of clock-time in which b is the

incumbent and a is the proposal is directly proportional to:

� the probability of b being the incumbent and a the proposal, which is approximately pC (b)Qt (a j b),

� the average clock-time it takes to compare a and b, which is DTa;b.

Thus, the long run bias in the softmax approximation is given by

pC (b)| {z }
softmax

�

P
a2Cnfbg

pC (b)Qt (a j b)DTa;b

P
c2C

 P
a2Cnfcg

pC (c)Qt (a j c)DTa;c

!
| {z }

time-adjusted softmax

The simulations below show that this bias is in general small, yet present, and that it vanishes as
the deadline t becomes less stringent and the evidence threshold �t more demanding.28

To illustrate, we use the parameters of the DDM elicited by Milosavljevic et al. [44]. In
particular, they assume � =

p
2=20, consider 5 equally spaced utility levels and calibrate their

values and thresholds under high and low time pressure by studying data from 750 choices made
by each subject. They �nd that utility values are una¤ected by time pressure, while thresholds
are a¤ected. After renormalizing their data so that �̂ = 1 (see Section 1.1), we obtain

� a range for û = u=� of [0; 7:071],

� values of �̂ = �=� of 0:849 and 1:442 under high and low time pressure, respectively.

Next we simulate the behavior of the Metropolis-DDM algorithm based on these parameters
with 5 alternatives, corresponding to the 5 equally spaced utility values 0; 1:768; 3:535; 5:303; 7:071.

28This informal argument can be made precise for a broader class of algorithms: the technical details on time-
correction of stationary distributions of stopped algorithms are formally studied in Baldassi et al. [5].
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The �rst four plots describe the following combinations of thresholds and time pressure levels

threshold

time pressure
Small Large

High t = 4 �̂ = 0:849 t = 4 �̂ = 1:442

Low t = 12 �̂ = 0:849 t = 12 �̂ = 1:442

The cases of high time pressure with large threshold (t = 4 and �̂ = 1:442) and low time
pressure with small threshold (t = 12 and �̂ = 0:849) are not motivated by the evidence of
Milosavljevic et al. [44]. They are computational experiments about an agent who is re�ective
(no matter the time constraint) and another one who is, instead, impulsive (again, no matter
the time constraint). Our simulations show that the Metropolis-DDM algorithm (orange curve)
almost perfectly converges to the time-adjusted softmax (green curve) and well approximates
softmax (blue curve), except when time pressure is high and the threshold is large.29 The empirical
distribution generated by the Metropolis-DDM algorithm is obtained by running it 10; 000 times
for each time pressure/threshold pair.30

Fig. d: Simulations of Metropolis-DDM for di¤erent parameters�settings.

29In this case, binary comparisons are too slow for the algorithm to converge, but note that the di¤erence between
softmax and time-adjusted softmax remains small.
30The code we used is available at https://github.com/carlobaldassi/MetropolisDDM_python.
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Our �nal set of simulations shows that numerical convergence is not seriously a¤ected by the
presence of asymmetric barriers. In the plots below, the Metropolis-DDM algorithm is simulated
in the cases of high time pressure with small acceptance threshold (left) and low time pressure
with large acceptance threshold (right). Varying the rejection threshold � both above and below
� has little-to-no e¤ect on the empirical distribution generated by 10; 000 runs of the algorithm.

Fig. e: Simulations of Metropolis-DDM with asymmetric barriers.

The standard error bars for each of the simulations in this section turned out to be thinner
than the plotted curves themselves, and are therefore omitted.
To sum up, using physiologically calibrated values of the parameters, these simulations show

that the algorithm converges to the time-adjusted softmax, relatively fast and irrespective of the
symmetry of barriers. Moreover, the latter adjustment is very close to classical softmax.

6 Conclusions

This article is a bridge between decision theory and computational neuroscience, with relevant
consumer choice implications.
In the �rst part of the paper we provide an axiomatic foundation for the value-based Drift

Di¤usion Model of binary choice and we show how it reconciles the principles of psychophysical
discrimination of Fechner and Cattel.
In a nutshell, the behavioral substrate of the DDM consists of three requirements.

Positivity: Choice is a time consuming and noisy process.

Product rule: Violations of transitivity are due to noise.

Invariance: Accuracy is directly proportional to mean decision time and ease of comparison.

Our representation allows to elicit the utilities of alternatives and the other DDM parameters
from data, instead of postulating utilities and �tting the remaining parameters of the DDM itself.
We also show that such elicitation is robust to the quality of data.
In the second part of the paper we show how our axiomatization of the DDM allows to test an

extended version of the Metropolis-DDM algorithm of Cerreia-Vioglio et al. [14] that allows for
the formation of consideration sets, and to elicit its parameters.
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As remarked by the very recent Stine et al. [65], one of the challenges that the �eld of cognitive
neuroscience faces is the identi�cation of a subject�s decision-making strategy from behavioral
observations alone. This paper is part of a project aimed at tackling this challenge. The DDM
we characterized here is the computational workhorse of the neuroscience of decision making (see
Ratcli¤ et al. [55] and Stine et al. [65]). We are currently exploring the extension of the present
analysis to alternative models.
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A Proofs and related material

A.1 Observability and measurement

Proof of Theorem 1 (i) implies (ii). De�ne the observed odds for a against b as

Roa;b �
P oa;b
P ob;a

for all a 6= b in A. By positivity and the de�nition of observables, we have that Roa;b > 0, for all
a 6= b in A. Arbitrarily choose c 2 A, set v (c) � 0 and

v (a) � logRoa;c (10)

for all a 6= c in A. Then, for all a 6= b in A n fcg, by the product rule, we have

Roa;b = R
o
a;cR

o
c;b =

Roa;c
Rob;c

= ev(a)�v(b)

and direct application of (10) delivers the same result for a = c 6= b and for b = c 6= a. Then

P oa;b = 1=
�
1 +

�
Roa;b

��1�
implies

P oa;b =
1

1 + e�[v(a)�v(b)]

for all a 6= b in A.
Tedious veri�cation shows that invariance guarantees that

DT
o

a;b

ECoa;b
ACoa;b

= DT
o

a0;b0
ECoa0;b0

ACoa0;b0
(11)

for all a 6= b and all a0 6= b0 in A. 31

31And not only if a0 = a as the axiom requires.
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Now arbitrarily choosing a0 6= b0 in A, and setting

�2 � DToa0;b0
ECoa0;b0

2ACoa0;b0
= DT

o

a0;b0

log

�
1� 1

1+ejv(a0)�v(b0)j
1

1+ejv(a0)�v(b0)j

�
1� 2

1+ejv(a0)�v(b0)j

= DT
o

a0;b0
ejv(a

0)�v(b0)j + 1

ejv(a0)�v(b0)j � 1 jv(a
0)� v(b0)j (12)

and u (a) � v (a) =� for all a in A, it follows that, for all a 6= b in A,

P oa;b =
1

1 + e�[v(a)�v(b)]
=

1

1 + e��[u(a)�u(b)]
= Pa;b

and

DT
o

a;b = �2
ejv(a)�v(b)j � 1
ejv(a)�v(b)j + 1

1

jv (a)� v (b)j = �
2 e
�ju(a)�u(b)j � 1
e�ju(a)�u(b)j + 1

1

� ju (a)� u (b)j

=
�

ju (a)� u (b)j
e�ju(a)�u(b)j � 1
e�ju(a)�u(b)j + 1

=
�

ju (a)� u (b)j tanh
�
� ju (a)� u (b)j

2

�
=

�

u (a)� u (b) tanh
�
� [u (a)� u (b)]

2

�
= DTa;b

where the �rst equality is a consequence of (11) and (12). Thus (ii) holds for the DDM with
parameters u, � = 1, and �.
Verifying that (ii) implies (i) is simple and so omitted for brevity.
Finally, if (ii) holds, by (1), we have that, for all a 6= b in A,

logitP oa;b = logitPa;b = log
Pa;b
Pb;a

= log

1

1 + e�
�
�2
[u(a)�u(b)]

1

1 + e�
�
�2
[u(b)�u(a)]

=
�

�2
[u (a)� u (b)] = �

�

hu
�
(a)� u

�
(b)
i

and the second part of (3) follows; the �rst part is a consequence of

DT
o

a;b = DTa;b =
�

u (a)� u (b) tanh
�
� [u (a)� u (b)]

2�2

�
=

�

ju (a)� u (b)j tanh
�
� ju (a)� u (b)j

2�2

�
=

�̂

jû (a)� û (b)j tanh
 
�̂ jû (a)� û (b)j

2

!
= �̂

21� 2 1

1+e�̂jû(a)�û(b)j

�̂ jû (a)� û (b)j
= �̂

22ACoa;b
ECoa;b

as wanted. �

Proof of Propositions 2 and 3 For notational convenience, we begin with the latter. Arbitrarily
choose u 2 RA, � > 0 (� = 1), and a; b 2 A. Let � = u (a) � u (b). Since we will repeatedly use
the results of the Handbook of Brownian Motion of Borodin and Salminen [9], henceforth HBM,
we adopt their notation. Speci�cally, setting � = �=

p
2 and z = �=

p
2,

Za;b (s)p
2

= �s+W (s)
HBM
= W (�)

s

DTa;b = min fs : jZa;b (s)j = �g = min
�
s :
��W (�)

s

�� = z	 HBM
= H�z;z

DOa;b =

8>><>>:
a if

Za;b (DTa;b)p
2

=
�p
2

b if
Za;b (DTa;b)p

2
= � �p

2

=

8<: a if W (�)
H�z;z

= z

b if W (�)
H�z;z

= �z
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With this, their Equation 3.0.2 (p. 233) shows that

P [H�z;z 2 dt] = e�
�2t
2

�
e��z + e�z

�
ssz;2z (t) dt (13)

where ssz;2z (t) is de�ned on p. 451 of HBM. Their Equation 3.0.4(b) (p. 233) yields

P
h
W

(�)
H�z;z

= z
i
=

e�z

e��z + e�z

while Equation 3.0.6(b) (p. 233) gives

P
h
H�z;z 2 dt;W (�)

H�z;z
= z
i
= e�ze�

�2t
2 ssz;2z (t) dt = P [H�z;z 2 dt]P

h
W

(�)
H�z;z

= z
i

This proves that DTa;b and DOa;b are independent random variables, because DTa;b = H�z;z and
DOa;b only depends on whether W

(�)
H�z;z

= z or W (�)
H�z;z

= �z.
As to the equivalence between points (i)-(iv) of Proposition 2, by (13), the density of DTa;b is

fDTa;b (t) =
�e�

�2t
4

p
�t3=2

cosh

�
��

2

� 1X
k=�1

(1 + 4k) e�
�2

4t
(1+4k)2 8t 2 (0;1) (14)

but, for all q 2 (0; 1),
P1

k=�1 (1 + 4k) q
1
4
(1+4k)2 = 4

p
q
P1

n=0 (�)
n (2n+ 1) qn(n+1) = #01 (0; q) =2

where #1 is the �rst Jacobi theta function. Thus setting y = j�j, we have

fDTa;b (t) = f (t; y) = e
� y2t

4 cosh

�
�y

2

�
1

2
p
�

�

t3=2
#01

�
0; e�

�2

t

�
8t 2 (0;1)

which is continuous and bounded, as a function of (t; y), on every rectangle Tx � Y = (0; x) �
[0;max

A
u�minA u] with x 2 (0;1).

Now, for each (�xed) x 2 (0;1), the distribution function of DTa;b is

FDTa;b (x) = F (x; y) =

Z x

0

f (t; y) dt

and it is continuous on Y because f (t; y) is continuous and bounded on Tx � Y . Moreover,

@f

@y
(t; y) =

y

2

�
�

y
tanh

�
�y

2

�
� t
�
f (t; y) 8 (t; y) 2 Tx � int (Y )

is continuous and bounded too.
Di¤erentiation under the integral sign is then possible, and it shows that, for all y 2 int (Y ),

@F

@y
(x; y) =

Z x

0

@f

@y
(t; y) dt =

y

2

Z x

0

�
DTa;b � t

�
fDTa;b (t) dt

For x < DTa;b the integrand is positive, and so is @F=@y. While, for x � DTa;bZ x

0

�
DTa;b � t

�
fDTa;b (t) dt =

Z DTa;b

0

�
DTa;b � t

�
fDTa;b (t) dt+

Z x

DTa;b

�
DTa;b � t

�
fDTa;b (t) dt

�
Z DTa;b

0

�
DTa;b � t

�
fDTa;b (t) dt+

Z 1

DTa;b

�
DTa;b � t

�
fDTa;b (t) dt = 0

where, in the second line, inequality holds because the integrand of the second summand is neg-
ative and the �nal equality holds because

R1
0

�
DTa;b � t

�
fDTa;b (t) dt = E

�
DTa;b �DTa;b

�
, and
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again @F=@y is positive. Summing up, for each (�xed) x 2 (0;1), F (x; y) is continuous on
[0;max

A
u�minA u] and di¤erentiable on (0;maxA u�minA u) with respect to y, and positivity

of the derivative yields monotonicity (for �xed x, with respect to y = ju (a)� u (b)j).
But this shows that if ju (a)� u (b)j � ju (a0)� u (b0)j, then FDTa;b (x) � FDTa0;b0 (x) for all

x 2 (0;1), that is, DTa;b stochastically dominates DTa0;b0.
Then (i) implies (iv). On the other hand, if DTa;b stochastically dominates DTa0;b0, then

obviously DTa;b � DTa0;b0, so that (iv) implies (iii). Moreover, DTa;b � DTa0;b0 implies

�

j�j tanh
�
� j�j
2

�
=
�

�
tanh

�
��

2

�
� �

�0 tanh

�
��0

2

�
=

�

j�0j tanh
�
� j�0j
2

�
whence j�j � j�0j because (�=y) tanh (�y=2) is strictly decreasing, for �xed � > 0, and y 2 [0;1);
but �in turn �this implies

ERa;b =
1

1 + e�j�j
� 1

1 + e�j�0j
= ERa0;b0

and (iii) implies (ii). Finally, (ii) implies (i) because

1

1 + e�j�j
= ERa;b � ERa0;b0 =

1

1 + e�j�0j
=) j�j � j�0j

As wanted. �

A.2 Robustness of the DDM

Proof of Lemma 4 Recall the convention `oa;a = 0 for all a 2 A. Set

v (a) =
1

jAj
X
c2A

`oac

for all a 2 A, and
"ab =

1

jAj
X
d2A

(`oab � `oad � `odb)

for all a 6= b in A. Notice that the summands corresponding to d = a and d = b are zero, therefore

j"abj =
1

jAj

�����X
d2A

(`oab � `oad � `odb)
����� � jAj � 2

jAj "

Moreover

(v (a)� v (b)) + "ab =
1

jAj
X
d2A

`oad �
1

jAj
X
d2A

`obd +
1

jAj
X
d2A

(`oab � `oad � `odb)

(since `obd = �`odb) =
1

jAj
X
d2A

`oad +
1

jAj
X
d2A

`odb +
1

jAj
X
d2A

(`oab � `oad � `odb) = `oab

whence
P oa;b =

1

1 + e�`
o
ab
=

1

1 + e�(v(a)�v(b))�"ab

Notice that eP in the statement is de�ned by
ePa;b = 1

1 + e�jAj
�1P

c2A(`oa;c+`oc;b)
=

1

1 + e�(v(a)�v(b))
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thus ���P oa;b � ePa;b��� = ���� 1

1 + e�(v(a)�v(b))�"ab
� 1

1 + e�(v(a)�v(b))

����
for all a 6= b in A. But the derivative of the logistic function (1 + e�x)�1 is always positive and
has maximum value 1=4 (at 0). By the Mean Value Theorem,���� 1

1 + e�(v(a)�v(b))�"ab
� 1

1 + e�(v(a)�v(b))

���� � 1

4
j"abj �

1

4
"

for all a 6= b in A. The rest is trivial. �

Remark 2 Lemma 4 shows that, if P o is a choice matrix that satis�es positivity, and the product
rule is violated by " in the sense of equation (5), then setting

v (a) =
1

jAj
X
c2A

`oac

for all a 2 A, it follows that ����P oa;b � ev(a)

ev(a) + ev(b)

���� � "=4
for all a 6= b in A. This can be seen as a robust version of Theorem 48 of Luce and Suppes [38,
p. 350].

Proof of Lemma 5 If the observables
�
P o;DT

o�
satisfy positivity and the product rule. Then

è
a;b = jAj�1

X
c2A

�
`oa;c + `

o
c;b

�
= jAj�1

X
c2A

`oa;b = `
o
a;b

therefore ePa;b = 1

1 + e�`
o
a;b
= P oa;b 8a; b 2 A

and, a fortiori, fECa;b = ECoa;b and fACa;b = ACoa;b, for all a 6= b in A. Showing equivalence of
quasi-invariance with invariance. �

Proof of Theorem 6 Choose v and eP like in the proof of Lemma 4. Consider the ��ctitious�
observables

� eP ;DTo� and notice that, by Lemma 4, � eP ;DTo� satisfy positivity and the product
rule, but they fail invariance by �. In fact, quasi-invariance would require

k (a; b) = DT
o

a;b

fECa;bfACa;b 8 (a; b) 2 A2 : a 6= b (15)

to be constant. Notice that k (a; b) � 0 by positivity of
� eP ;DTo� and k is not constant because � >

0 (quasi-invariance is violated by �). By Ordinary Least Squares, the best constant approximation
� of the function k is the mean

� =
1

jAj (jAj � 1)
X
a 6=b

DT
o

a;b

fECa;bfACa;b
Now consider the DDM with

~� �
p
�=2 and ~u � v=~� and ~� � 1 (16)
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The choice probabilities induced by this DDM are

Pa;b =
1

1 + e�~�(~u(a)�~u(b))
=

1

1 + e�(v(a)�v(b))
= ePa;b

and hence, by Lemma 4, ��P oa;b � Pa;b�� � "=4
for all a 6= b in A. Moreover, by (15) and (2),

��DToa;b �DTa;b�� =
�����k (a; b) fACa;bfECa;b � ~�2 1

v (a)� v (b) tanh
�
v (a)� v (b)

2

������
but fACa;bfECa;b =

max
�

1
1+e�(v(a)�v(b))

; 1
1+e�(v(b)�v(a))

�
� 1

2

log

 
max

�
1

1+e�(v(a)�v(b))
; 1

1+e�(v(b)�v(a))

�
1�max

�
1

1+e�(v(a)�v(b))
; 1

1+e�(v(b)�v(a))

�
! =

1
1+e�(v(a)�v(b))

� 1
2

v (a)� v (b)

and
1

v (a)� v (b) tanh
�
v (a)� v (b)

2

�
= 2

1
1+e�(v(a)�v(b))

� 1
2

v (a)� v (b)
Therefore ��DToa;b �DTa;b�� =

������k (a; b)� 2~�2�
1

1+e�(v(a)�v(b))
� 1

2

v (a)� v (b)

�����
(since 2~�

2
= �) �

�����
1

1+e�(v(a)�v(b))
� 1

2

v (a)� v (b)

�����maxc 6=d
jk (c; d)� �j

� 1

4
max
x 6=y
c 6=d

jk (x; y)� k (c; d)j = �

4

for all a 6= b in A. �

Proposition 8 Let the observables
�
P o;DT

o

a;b

�
satisfy positivity. If the product rule and invari-

ance are violated by " and 
 in the sense of equations (5) and (9), respectively, then, setting

~� =

vuut 1

jAj (jAj � 1)
X
a 6=b

DT
o

a;b

2

ECoa;b
ACoa;b

and ~u (a)� ~u (b) = logit ePa;b
~�

and ~� = 1

and considering the DDM with these parameters, it follows��P oa;b � Pa;b�� � "=4 and
��DToa;b �DTa;b�� � �

2~�
2
+ 

� "
20| {z }

violations of the product rule "6=0

+



4|{z}
violations of invariance

for all a 6= b in A.

Proof Choose v and eP like in the proof of Lemma 4. Consider the ��ctitious� observables� eP ;DTo� and notice that, by Lemma 4, they satisfy positivity and the product rule, but fail
invariance by 
. In fact, invariance would require

ko (a; b) = DT
o

a;b

ECoa;b
ACoa;b

8 (a; b) 2 A2 : a 6= b
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to be constant. Notice that ko (a; b) � 0 by positivity of
�
P o;DT

o�
and ko is not constant because


 > 0 (invariance is violated by 
). By Ordinary Least Squares, the best constant approximation
�o of the function ko is the mean

�o =
1

jAj (jAj � 1)
X
a 6=b

DT
o

a;b

ECoa;b
ACoa;b

Now consider the DDM with

~� �
p
�o=2 and ~u (a)� ~u (b) � v (a)� v (b)

~�
and ~� � 1

Clearly,

Pa;b =
1

1 + e~�(~u(a)�~u(b))
= ePa;b

and hence ��P oa;b � Pa;b�� � "=4
for all a 6= b in A. Moreover, by the arguments we used in the proofs of Lemma 4 and Theorem 6,

��DToa;b �DTa;b�� =

�����ko (a; b)
1

1+e�(v(a)�v(b))�"ab
� 1=2

(v (a)� v (b)) + "ab
� 2~�2

1
1+e�(v(a)�v(b))

� 1=2
(v (a)� v (b))

�����
�

�����ko (a; b)
1

1+e�(v(a)�v(b))�"ab
� 1=2

(v (a)� v (b)) + "ab
� ko (a; b)

1
1+e�(v(a)�v(b))

� 1=2
(v (a)� v (b))

�����
+

�����ko (a; b)
1

1+e�(v(a)�v(b))
� 1=2

(v (a)� v (b)) � 2~�
2|{z}

=�o

1
1+e�(v(a)�v(b))

� 1=2
(v (a)� v (b))

�����
� jko (a; b)j

�����
1

1+e�(v(a)�v(b))�"ab
� 1=2

(v (a)� v (b)) + "ab
�

1
1+e�(v(a)�v(b))

� 1=2
(v (a)� v (b))

�����| {z }
violations of the product rule "ab 6=0

+



4|{z}
violations of invariance

Since the modulus of the �rst derivative of

1
1+e�x � 1=2

x

is always smaller than 1=20, then��DToa;b �DTa;b�� � �
2~�

2
+ 

� "
20| {z }

violations of the product rule "6=0

+



4|{z}
violations of invariance

for all a 6= b in A. �

A.3 The Metropolis-DDM algorithm

Proof of Theorem 7 In the proof we assume

Pa;b =

8>><>>:
1� e��[u(a)�u(b)]

1� e�(�+�)[u(a)�u(b)] if u (a) 6= u (b)

�

�+ �
if u (a) = u (b)

2 (0; 1) (17)
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thus allowing for asymmetric lower and upper barriers, �� < 0 and � > 0, respectively.
The explicit form of M =Mt (the subscript t will be omitted throughout) is

Mba =M (a j b) =
(
Q (a j b)Pa;b if a 6= b

1�
P

c2AnfbgQ (c j b)Pc;b if a = b
(18)

and this allows to show that M is a bona �de stochastic matrix.
Next we show that M is reversible with respect to pA = p

(u;�)
A . Let a 6= b in A.

� If u (a)� u (b) 6= 0, then

M (a j b) pA (b) =
Q (a j b)P
x2A e

�u(x)
� e

�u(b) � e��u(a)+�u(b)+�u(b)
1� e�(�+�)[u(a)�u(b)]

=
Q (b j a)P
x2A e

�u(x)
� e

�u(a) � e��u(b)+�u(a)+�u(a)
1� e�(�+�)[u(b)�u(a)] =M (b j a) pA (a)

because Q is symmetric and

e�u(b) � e��u(a)+�u(b)+�u(b)
1� e�(�+�)[u(a)�u(b)] =

e�u(a) � e��u(b)+�u(a)+�u(a)
1� e�(�+�)[u(b)�u(a)]

� Else u (a)� u (b) = 0, that is, u (a) = u (b), then

M (a j b) pA (b) = Q (a j b)
�

�+ �

e�u(b)P
x2A e

�u(x)

= Q (b j a) �

�+ �

e�u(a)P
x2A e

�u(x)
=M (b j a) pA (a)

because Q is symmetric.

Since M (a j b) pA (b) =M (b j a) pA (a) also if a = b, then reversibility holds.

It is then easy to see that, if Q is irreducible, thenM is irreducible and aperiodic. In turn this
implies that pA is its stationary distribution and therefore �Mn ! pA as n!1 for all � 2 �(A)
(see Madras [40, Ch. 4]).32

If instead Q is reducible, since it is symmetric then all communicating classes are closed (see
Norris [46, Ch. 1]). In fact, if Qa1a2Qa2a3 : : : Qam�1am > 0, then Qamam�1Qam�1am�2 : : : Qa2a1 > 0
and a1 ! am implies am ! a1. Rearrange the alternatives so that the communicating classes are

A1 = f1; :::; jA1jg ; A2 = fjA1j+ 1; :::; jA1j+ jA2jg ; : : : ; AK = fjAj � jAK j+ 1; :::; jAjg

Notice that given any class Ak and any b 2 Ak, then Q (a j b) = Qba = 0 for all a =2 Ak,33

thus for all the rows belonging to Ak the only nonzero elements are in columns belonging to Ak
(and also the converse is true by symmetry). That is, Q = diag (Q1; : : : ; QK) is a block diagonal
matrix; moreover, by de�nition of communicating classes all the Qk are irreducible (stochastic
and symmetric). Now by (18) also M = diag (M1; : : : ;MK) is block diagonal. By the �rst part

32As usual, �(A) is the set of all probability distributions on A.
33Otherwise, we would have b 2 Ak and b! a, which by closure would imply a 2 Ak, a contradiction.
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of this proof, each of the Mk�s is aperiodic, irreducible, with stationary distribution given by the
restriction pk of pAk to Ak. Then (see again Madras [40, Th. 4.2])

Mn
k !

26664
pk
pk
...
pk

37775 � �k 8k = 1; :::; K

now let � =
�
�1 �2 � � � �K

�
2 �(A) with �k 2 RjAkj+ for all k = 1; :::; K. Given any

k = 1; :::; K, since �k�k is the linear combination of the rows of �k with weights given by �k,

�kM
n
k ! �k�k = �k1pk + �k2pk + � � �+ �kjAkjpk = � (Ak) pk

therefore, by block-multiplication,

�Mn =
�
�1M

n
1 �2M

n
2 � � � �KM

n
K

�
!
�
� (A1) p1 � (A2) p2 � � � � (AK) pK

�
and so �Mn (a)!

KX
k=1

� (Ak) pAk (a) for all a in A. As wanted. �

A.4 Probabilistic distances

Baucells and Heukamp [6], introduce the idea of risk distance of an event E, that has probability
p, from certainty (that may be represented by any event that has probability 1, say 
). Formally,
a risk distance is a function

h : (0; 1] ! [0;1)
p 7! h (p)

such that:

D1 h (1) = 0, that is, the distance of certainty from itself is zero;

D2 h is continuous and strictly decreasing, that is, smaller probabilities are farther from cer-
tainty;

D3 h (p1p2) = h (p1) + h (p2) for all p1; p2 in (0; 1], that is, if event E is determined by the
independent realization of events E1 (which occurs with probability p1) and E2 (which
occurs with probability p2), then its distance from certainty is the sum of the distances.

The resulting Cauchy�s logarithmic equation admits solution

h (p) = �� log p = � jlog 1� log pj 8p 2 (0; 1]

where � is a strictly positive multiplicative constant.34 In order to underline the fact that h (p) is
a distance between event E and certainty 
, let us write

h (p) = h (p; 1) 8p 2 (0; 1]

Now, a reasonable assumption for the distance between event E and a generic event F (which
occurs with probability q) is that such distance be symmetric and una¤ected by conditioning
both events on the realization of a third independent event G (which occurs with probability r).
Formally,
34See [6, Proposition 2]. Also notice that formally the de�nition of risk distance coincides with that of uncertainty

measure of event E in Information Theory (see, e.g., Ash [4]), but the conceptual di¤erence is clear.
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D4 h (p; q) = h (q; p) for all p; q in (0; 1];

D4 h (p; q) = h (rp; rq) for all p; q; r in (0; 1].

Proposition 9 Let h : (0; 1] � (0; 1] ! [0;1) and set h (p) = h (p; 1) for all p 2 (0; 1]. The
following conditions are equivalent:

(i) h satis�es D1�D5;

(ii) there exists � > 0 such that h (p; q) = � jlog p� log qj for all p; q in (0; 1].

In this case h is a bona �de distance on (0; 1].

Before entering the proof�s details notice that, for � = 1, we have

h (p; q) = h

�
q
p

q
; q1

�
= h

�
p

q
; 1

�
= h

�
p

q

�
0 < p � q � 1

In the perspective of Baucells and Heukamp [6], this has a simple intuition. In fact, if E has
probability p, F has probability q, and E � F , the distance of E from certainty conditional on F
having occurred is

h (Pr (E j F )) = h
�
Pr (E)

Pr (F )

�
= h

�
p

q

�
= � log p

q

Proof (i) implies (ii). By [6, Proposition 2], it follows that

h (p; 1) = �� log p

for some � > 0. Now if 0 < p � q � 1, by D5,

h (p; q) = h

�
q
p

q
; q1

�
= h

�
p

q
; 1

�
= �� log p

q
= � jlog q � log pj

D4 allows to draw the same conclusion if 0 < q � p � 1.
Verifying that (ii) implies (i) is simple and so omitted for brevity. �

Normalize again � = 1. Now consider a discrimination task (e.g., the choice between a and b),
and denote by S the event �the task is completed successfully�(e.g., the superior alternative is
chosen). In this case, the probability of success is Pr (S) and the error rate is Pr (Sc). Thus the
distance between success and failure is

jlog (Pr (S))� log (Pr (Sc))j = logit (Pr (S))

that is, the �degree of easiness�of Rasch [52].
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