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Abstract

We show that a probability measure on a metric space X has full support if and only if

the set of all probability measures that are absolutely continuous with respect to it is dense

in the set P (X) of all probability measures on X. We illustrate the result through a general
version of Laplace method, which in turn leads to a general stochastic convergence result to

global maxima.

1 Introduction

Intuitively, a probability measure � on a metric space X has full support if �anything is possible�,

formally, if every nonempty open set has positive probability. These measures are important in

global optimization because they allow algorithms �such as Simulated Annealing �to explore the

entire space,1 and in epistemic game theory because they capture the notion in quotes above �

when a player is reasoning about unknown opponents.2

Clearly, when X is �nite the probability measure � has full support if and only if the set

P� (X) of all probability measures that are absolutely continuous with respect to � coincides with
the set P (X) of all probability measures. Here we show that, on a metric space X, a probability
measure � has full support if and only if P� (X) is dense in P (X).
Since the assumption of full support amounts to (strict) positivity on nonempty open sets, our

result sheds light on the notion of strict positivity of a probability measure in the in�nite case.

�Simone Cerreia-Vioglio, and Fabio Maccheroni and Massimo Marinacci gratefully acknowledge the �nancial

support of ERC (grants SDDM-TEA and INDIMACRO, respectively).
1See, e.g., Romeijn and Smith (1994) and Hiriart-Urruty (1995).
2See, e.g., De Bruin (2010) and Dekel and Siniscalchi (2014).

1



In a functional analysis perspective, it can be regarded as a characterization of strictly positive

continuous linear functionals in the dual pair hCb (X) ; ca (X)i.
To illustrate this result, we prove a general version of Laplace method. Speci�cally, if � is a

full support measure on the compact metrizable space K and u 2 C (K), then

vn =
1

n
log

Z
K

enu(x)d� (x)! v = max
x2K

u (x)

By variational methods we show that, when the maximizer xu of u on K is unique, to the sequence

fvng corresponds a sequence f�ng of measures onK that eventually concentrates on xu. Moreover,

if K is contained in a re�exive and separable normed space, the sequence of the barycenters of �n
weakly converges to xu.

2 Setup and preliminaries

We adopt the notation of Aliprantis and Border (2006, henceforth AB) to which we refer for

general background. Let X be a topological space. We denote by C (X) (resp., Cb (X)) the vector

space of all continuous (resp., continuous and bounded) functions f : X ! R, by B (X) the Borel
sigma-algebra of X, and by P (X) the set of all Borel probability measures on B (X) with the
topology � (P (X) ; Cb (X)) of weak convergence.
Given any � 2 P (X), we denote by P� (X) (resp., P?� (X)) the collection of all � 2 P (X)

that are absolutely continuous with respect to � (resp., that have continuous and bounded density

with respect to �), and by `� : Cb (X)! R the positive linear functional `� (f) =
R
X
fd�.

De�nition 1 The support of � 2 P (X), denoted by supp�, is (if it exists) a closed subset of X
with �-null complement and such that � (G) > 0 for all open subsets G of X having nonempty

intersection with it.

The probability measure � has full support if supp� = X, that is, � (G) > 0 for all nonempty

open subsets G of X.

If X is the dual of a separable normed space (for example, a re�exive and separable normed

space), we endow it with the weak* topology and consider the Borel sigma-algebra generated by

this topology. With this topology, compact sets are metrizable and their closed and convex hulls

are compact too.3 The next basic result is a slight modi�cation of Proposition 1.1 of Phelps (2001).

Proposition 1 Let X be the dual of a separable normed space. If � 2 P (X) has bounded support,
then there exists a unique element m 2 X such that

h�;mi =
Z
X

h�; xi d� (x) (1)

3Because of the Alaoglu Theorem and of Theorem 6.30 of AB.
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for all linear and continuous functionals � : X ! R.

The element m, called barycenter of �, belongs to the closed and convex hull of supp�. When

X is Rn, the barycenter of a Borel probability measure � on Rn that has bounded support is easily
seen to be the vector m =

R
X
xd� (x).

3 Main result

We state and prove our main result. The equivalence between points (i) and (iv), i.e., between

the strict positivity of � and `�, is essentially known and reported here for completeness and

perspective.

Theorem 1 Let X be a metric space. The following conditions are equivalent for � 2 P (X):

(i) � has full support X;

(ii) cl (P?� (X)) = P (X);

(iii) cl (P� (X)) = P (X);

(iv) `� is strictly positive, i.e.,
R
X
fd� > 0 for all 0 6= f 2 C+b (X).

Proof If X is a singleton, the statement is trivial. Let us assume that X contains more than one

point.

(i) implies (ii). We �rst show that ��x 2 cl (P?� (X)) for all �x 2 X. Let �x 2 X, and, for each

n 2 N, consider the sets Bn and Cn de�ned by

Bn =

�
x 2 X : d (x; �x) � 1

n

�
and Cn =

�
x 2 X : d (x; �x) � 2

n

�
.

Both sets are closed and clearly Bn\Cn = ?. If n is large enough, say for all n � �n, both sets are
nonempty because there exists x 6= �x in X. By the Urysohn Lemma (e.g., [1, Theorem 2.46]), it

follows that for each n � �n there exists 'n 2 Cb (X) such that 'n (X) � [0; 1], 'n (Bn) = 1, and
'n (Cn) = 0. Since �x 2 supp� and 'n (�x) = 1,4 it follows that

kn =

Z
X

'nd� > 0 8n � �n:

Now, for each n � �n, set  n = 'n=kn and de�ne the measure �n : B ! R by �n (B) =
R
B
 nd�.

Notice that �n 2 P?� (X) because  n 2 Cb (X).
We next show that �n ! ��x. De�ne Sn = fx 2 X : d (x; �x) � 2=ng for all n � �n. Notice that

Scn � Cn so that 1 =
R
Sn
 nd� +

R
Scn
 nd� =

R
Sn
 nd� = �n (Sn) for all n � �n. Consider an open

subset G of X. We have two cases:
4E.g., [1, Lemma 12.16].
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1. �x 62 G. It follows that lim inf �n (G) � 0 = ��x (G).

2. �x 2 G. For n � �n large enough, say n � �m, we have that Sn � G. Then, for all n � �m,

�n (G) � �n (Sn) � 1, yielding that lim inf �n (G) � 1 = ��x (G).

In both cases, lim inf �n (G) � ��x (G) holds. Since G was an arbitrarily chosen open subset of

X, by the Portmanteau Theorem (e.g., [1, Theorem 15.3]) it follows that �n ! ��x.

Since �x was arbitrarily chosen in X, we have that f�xgx2X � cl (P?� (X)). Since P?� (X) is
convex, then cl (P?� (X)) is closed and convex, it follows that cl (P?� (X)) � cl

�
co
�
f�xgx2X

��
. But

co
�
f�xgx2X

�
is dense in P (X) (e.g., [1, Theorem 15.10]), we conclude that P (X) � cl (P?� (X)) �

cl
�
co
�
f�xgx2X

��
= P (X).

(ii) implies (iii). This follows from P?� (X) � P� (X).

(iii) implies (iv). By contradiction, assume that cl (P� (X)) = P (X) and `� is not strictly
positive. In this case, there exists g 2 C+b (X) n f0g such that

R
X
gd� = 0. Consider the open

set G = fx 2 X : g (x) > 0g 6= ?. Since
R
X
gd� = 0, then � (fx 2 X : g (x) > 0g) = 0, that is,

� (G) = 0. Consider �x 2 G. Since cl (P� (X)) = P (X), there exists a net f��g � P� (X) such that
�� ! ��x. For each �, since �� is absolutely continuous with respect to �, we have that �� (G) = 0.

Since �� ! ��x, by the Portmanteau Theorem, we have that 0 = lim inf �� (G) � ��x (G) = 1, a

contradiction.

(iv) implies (i). By contradiction, assume that `� is strictly positive and there exists a nonempty

open subset G of X with � (G) = 0. Consider �x 2 G. By the Urysohn Lemma, and since Gc is

closed and nonempty, there exists ' 2 Cb (X) such that ' (X) � [0; 1], ' (�x) = 1, and ' (x) = 0
for all x 2 Gc. Since ' 2 C+b (X) n f0g, it follows that

0 < `� (') =

Z
X

'd� =

Z
G

'd�+

Z
Gc
'd� = 0;

a contradiction. �

Finally, observe that the result depends only on the topology of X, so we could have used the

term metrizable, rather than metric, throughout.

Remark 1 As customary in the Mathematical Finance literature, let Pe� (X) be the collection of
all � 2 P (X) that are equivalent with respect to � and notice that cl (Pe� (X)) = cl (P� (X)).
This implies that in point (iii) above we could have replaced P� (X) with Pe� (X). In this way,
our implication (i) =) (iii) extends Lemma 5.6 of Burzoni, Frittelli, and Maggis (2016). In that,

our results apply to a general metrizable space, thus allowing to generalize some of their �ndings

relative to arbitrage theory under uncertainty.

Similarly, P?� (X) can be replaced with Pe?� (X) = Pe� (X) \ P?� (X) in point (ii) above.
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4 Illustration: Laplace method

Consider the optimization problem

max
x

u (x) sub x 2 K (2)

where u : X ! R is a continuous function and K is a compact and metrizable set.

Laplace method is a fundamental method to �nd maximum values and maximizers of this

general optimization problem. For this reason, it plays an important role in many applications

(see, e.g., Parpas and Rustem, 2009, for an introductory overview and some relevant references).

To illustrate the scope of our main result, here we establish a general abstract version of this

classic method. A related result appears in Hwang (1980), though in a di¤erent setup and with

an altogether di¤erent approach.

In the statement we denote by w
=) the � (P (X) ; Cb (X))-convergence and by �x the Dirac

probability measure concentrated on a point x 2 X.

Theorem 2 Let X be a topological space, u : X ! R a continuous function, � a Borel probability
measure with compact and metrizable support K, and fsng � (0;1) a divergent sequence. Then

1

sn
log

Z
X

esnud�! max
K

u as n!1 (3)

Moreover, if u has a unique maximizer xu in K,5 then

�n
w
=) �xu as n!1 (4)

where �n is, for each n 2 N, de�ned by

�n (B) =

R
B
esnud�R

X
esnud�

8B 2 B (X) (5)

Proof It is su¢ cient to prove our result when fsng is increasing. First assume K = X, that

is, X is compact and metrizable, and � has full support. In this case, � (P (X) ; Cb (X)) =
� (P (X) ; C (X)) is the relative weak* topology on P (X), and P (X) is compact and metrizable
with respect to it (see Theorems 14.15 and 15.11 of AB). Denote

R (�k�) =
( R

X
d�
d�
log
�
d�
d�

�
d� if �� �

1 else

the relative entropy of any � in P (X) with respect to � (see Chapter 1.4 of Dupuis and Ellis,
1997, henceforth DE).

5A simple condition that ensures such uniqueness on convex sets is the strict quasi-concavity of u.
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For each n 2 N, set fn = �snu and observe that, by Proposition 1.4.2 of DE,

� log
Z
X

e�fnd� = min
�2P(X)

�
R (�k�) +

Z
X

fnd�

�
and the minimum of this variational formula is uniquely attained at the element �n of P (X) given
by

�n (B) =

R
B
e�fn(x)d� (x)R

X
e�fn(y)d� (y)

for all Borel subsets B of X. Recalling our substitution

� 1
sn
log

Z
X

esnud� =
1

sn

�
� log

Z
X

e�fnd�

�
=
1

sn
min

�2P(X)

�
R (�k�)� sn

Z
X

ud�

�
= min

�2P(X)

�
1

sn
R (�k�)�

Z
X

ud�

�
For each n 2 N, the function Fn : P (X)! (�1;1] de�ned by

Fn (�) =
1

sn
R (�k�)�

Z
X

ud� 8� 2 P (X)

is weak* lower semicontinuous on P (X) (see Lemma 1.4.3 of DE and Proposition 1.9 of Dal Maso,
1993; henceforth, DM). Moreover, the sequence fFng is decreasing and pointwise converges to

F1 (�) = �domR(�k�) (�)�
Z
X

ud� 8� 2 P (X) (6)

By Proposition 5.7 of DM, this sequence �-converges to the weak* lower semicontinuous envelope

sc� F1 of F1. Since U : � 7!
R
X
ud� is continuous and everywhere �nite on P (X), by Proposition

3.7 and Example 3.4 of DM�
sc� F1

�
(�) =

�
sc� �domR(�k�)

�
(�)�

Z
X

ud� = �cl(domR(�k�)) (�)�
Z
X

ud�

For each � 2 P?� (X), d�=d� is bounded and continuous, hence there exists k � 0 such that

0 � d�=d� � k and so

�1
e
� d�

d�
log

�
d�

d�

�
� k2 =) R (�k�) <1 =) � 2 domR (�k�)

Therefore P?� (X) � domR (�k�) and so, by Theorem 1, P (X) = cl (P?� (X)) � cl (domR (�k�)) =
P (X). Summing up, Fn �-converges to �

R
X
ud�. By Theorem 7.4 of DM, this implies

lim
n!1

min
�2P(X)

�
1

sn
R (�k�)�

Z
X

ud�

�
= min

�2P(X)

�
�
Z
X

ud�

�
= � max

�2P(X)

�Z
X

ud�

�
= �max

x2X
u (x)
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But, for all n 2 N we have

min
�2P(X)

�
1

sn
R (�k�)�

Z
X

ud�

�
= � 1

sn
log

Z
X

esnud�

So, (3) holds.

Moreover, if u has a unique maximizer xu in X, then U has �xu as its unique maximizer. In

fact, if � 2 P (X) n f�xug, then � (X n fxug) > 0, and soZ
X

ud�xu �
Z
X

ud� =

Z
X

(u (xu)� u (x)) d� (x)

=

Z
fxug

(u (xu)� u (x)) d� (x) +

Z
Xnfxug

(u (xu)� u (x)) d� (x) > 0

since the �rst summand is null, the second is strictly positive.6 Since P (X) is compact, the
sequence Fn is equi-coercive (see De�nition 7.6 of DM); in addition, it �-converges to �U with

unique minimum point �xu in P (X). For each n, the probability measure �n is a minimizer for
Fn in P (X). By Corollary 7.24 of DM, �n weak* converges to �xu .

In the general case, consider the compact and metrizable space K, the continuous function

w = ujK , and the Borel probability measure � = �jK . It is easy to show that � has full support

on K. In fact, if O is a nonempty open subset of K, there exists an open subset G of X such

that ? 6= O = G \ K = G \ supp�; by de�nition of support, it follows � (G) > 0, but then

� (O) = � (G \ supp�) = � (G \ supp�) + � (G \ (supp�)c) = � (G) > 0. The previous part of

the proof implies
1

sn
log

Z
K

esnwd� ! max
K

w as n!1

But s�1n log
R
X
esnud� = s�1n log

R
K
esnwd� for all n 2 N and maxK u = maxK w, thus (3) holds.

Moreover, if u has a unique maximizer xu in K, again by the previous part of the proof we

can consider the sequence f�ng of probability measures de�ned by

�n (L) =

R
L
esnwd�R

K
esnwd�

8n 2 N

for all Borel subsets L of K, and have that, given any g 2 C (K),Z
K

gd�n ! g (xu) as n!1

But for each f 2 Cb (X), fjK 2 C (K) and
R
X
fd�n =

R
K
fjKd�n for all n 2 N, then the sequence

f�ng, de�ned by (5), � (P (X) ; Cb (X))-converges to �xu . �
6
R
Xnfxug (u (x

u)� u (x)) d� (x) = 0 would imply � (fx 2 X n fxug : u (xu)� u (x) > 0g) = 0, a contradiction

because u (xu)� u (x) > 0 for all x 2 X n fxug, thus fx 2 X n fxug : u (xu)� u (x) > 0g = X n fxug.

7



If X is the dual of a separable normed space and is endowed with the weak* topology, then

the boundedness of the support of � is equivalent to its compactness, and �as we observed in the

previous section �each �n has a barycentermn in the weak* closed and convex hull of K = supp�.

Next proposition shows that these barycenters weak*-converge to the maximizer. Here w
�
* denotes

weak*-convergence. The simple proof is left to the reader.

Proposition 2 Let X be the dual of a separable normed space. Under the assumptions of Theorem

2, we have

mn
w�
* xu as n!1 (7)

where mn is, for each n 2 N, the barycenter of �n.

In particular, ifX is a separable and re�exive Banach space, then its weak and weak* topologies

coincide and so mn weakly converges to xu. Clearly, the sequence of barycenters is included in K

if this set is convex.

When X is Rn, ` is a Borel measure, and K 6= ? is a compact set such that ` (G \K) 2 (0;1)
for all open subsets G of Rn having nonempty intersection with it, we have

1

sn
log

1

` (K)

Z
K

esnu(x)d` (x)! max
K

u as n!1 (8)

and, if xu is the unique maximizer of u on K,

mn =

R
K
esnu(x)xd` (x)R

K
esnu(y)d` (y)

! xu (9)

This convergence in Rn has been �rst established by Pincus (1968, 1970) (see Hiriart-Urruty, 1995,
p. 22). The weak* convergence (7) thus substantially generalizes his results.
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