
On the equality of Clarke and Greenberg-Pierskalla differentials∗

Simone Cerreia-Vioglioa Fabio Maccheronia Massimo Marinaccia Luigi Montrucchiob

aDepartment of Decision Sciences and IGIER, Università Bocconi
bCollegio Carlo Alberto, Università di Torino

June 2021

Abstract

We study the relations for quasiconcave and continuous functions between the two important notions

of Clarke and Greenberg-Pierskalla differentiability. As an application, we generalize the classic Roy’s

identity of consumer theory.

1 Introduction

Since the seminal studies of de Finetti [21] and Fenchel [22], quasiconvex analysis has been the subject of

active research.1 Starting with the paper of de Finetti [21], this field has been deeply influenced by economic

theory. In keeping with this tradition, our purpose here is to relate two notions of differentiability that have

been proven useful in both quasiconvex analysis and economic theory: Greenberg-Pierskalla differentiability

and Clarke differentiability.2 Specifically, we study a continuous and quasiconcave function g defined on an

open convex subset of a normed vector space X. Our main result, Theorem 1, shows that if g is Clarke

differentiable at x and 0 /∈ ∂Cg (x), then the Greenberg-Pierskalla superdifferential at x coincides with the

weak*-closure of the cone generated by the Clarke superdifferential at x. In particular, Corollary 1 shows that

the closure is no longer necessary when the Clarke directional derivative is finite. As a further consequence,

Corollary 4 establishes a differential characterization of quasiconcavity a la Arrow and Enthoven [3] for

Clarke differentiable functions.

The next part of the paper, Section 4, studies a few related issues. In particular, Theorem 2 shows

that continuous and quasiconcave functions are directionally Lipschitzian, a nice regularity property. This

theorem builds on a result of Crouzeix on the monotonicity of quasiconcave functions with respect to a

specific cone. As an application of Theorems 1 and 2, in Theorem 3 we extend to our quasiconcave setting

the classic max-formula of convex analysis (an envelope theorem in the economics jargon). In this part,

we also formulate a version of our main result that replaces Clarke superdifferentials with other types of

superdifferentials. In the last section, Section 5, we derive general versions of the classic Roy’s identity of

consumer theory: this was actually one of the original motivations of the present paper.

∗We thank for the financial support the European Research Council (grants SDDM-TEA and INDIMACRO) and the
Ministero dell’università e della ricerca (grant 2017CY2NCA). First Draft: November 2015.

1We refer the reader to Penot [32] for a survey. See also Crouzeix [13], [15], and [16], Martinez-Legaz [28] and [29], and
Penot and Volle [34].

2A stark difference with convex analysis is the presence of different types of dualities as well as different notions of differen-
tiability. See, for example, Komlosi [27], Penot [31], and Cerreia-Vioglio et al. [9].
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1.1 Related literature

There are already few papers dealing with the relation between the Greenberg-Pierskalla differential and

the cone generated by the Clarke differential. Penot [31, Propositions 25 and 26] implicitly proved the

equality under the assumption of Clarke differentiability: this would yield our Corollary 1. Differently, our

main results cover the more general class of Clarke-Rockafellar differentiable functions. Daniilidis et al. [19,

Proposition 7 and Corollary 12] provided a result on an inclusion, but the Clarke subdifferential is replaced

by a larger class of abstract subdifferentials, defined axiomatically according to [5]. This kind of extension

will be discussed in Section 4.3.

More recently Kabgani and Soleimani-damaneh in [26] studied the relationship between convexificators

and the Greenberg-Pierskalla subdifferentials and proved that the two cones coincide, under the hypotheses

that X is finite dimensional and the functional g is locally Lipschitz and Clarke regular at the point x: see

[26, Theorem 3.7-(iii)]. Such a result has to be compared with our Corollary 1 in which we show that such

an equality still holds under weaker assumptions.

2 Preliminaries

Throughout the paper, g : C → R denotes a real-valued function defined on a nonempty convex subset C of

a normed space X, with norm dual X∗. An exception is Section 5, in which the vector space X is placed in

duality with a space X∗.

2.1 Greenberg-Pierskalla

An important notion of differential in quasi-convex analysis is due to Greenberg and Pierskalla [23].

Definition 1 The Greenberg-Pierskalla superdifferential of a function g : C → R at a point x ∈ C is

∂GP g (x) = {ξ ∈ X∗ : y ∈ C and 〈y, ξ〉 ≤ 〈x, ξ〉 =⇒ g (y) ≤ g (x)} .

This notion has an ordinal nature:3 if f : Im g → R is strictly increasing, then

∂GP g (x) = ∂GP (f ◦ g) (x) .

So, it is a notion well suited for quasiconcave functions. Next we list some of its properties.

1. ∂GP g (x) is a convex cone, not necessarily containing the origin 0.4

2. 0 ∈ ∂GP g (x)⇐⇒ ∂GP g (x) = X∗ ⇐⇒ x is a global maximizer, i.e., g (x) ≥ g (y) for every y ∈ C.

3. ∂GP g (x) ∩ −∂GP g (x) = ∅ ⇐⇒ 0 /∈ ∂GP g (x).

4. If ∂GP g (x) 6= ∅ for all x ∈ C, then g : C → R is quasiconcave.

5. ∂GP g (x) 6= ∅ if C is open and g is quasiconcave and lower semicontinuous at x.

Points 1-3 are elementary, while point 4 will be shown later (Corollary 4). Point 5 is easily obtained

through a separation theorem.

Recall that a function is radially continuous if its restrictions over linear segments are all continuous.

3A property is ordinal when it is satisfied by a function and by all its strictly increasing transformations.
4A subset A of a vector space is a cone if ξ ∈ A and λ > 0 imply λξ ∈ A.
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Lemma 1 Let C be open and g either lower semicontinuous or radially continuous. If ξ ∈ ∂GP g (x), then

for all y ∈ C,
〈y, ξ〉 < 〈x, ξ〉 =⇒ g (y) ≤ g (x) . (1)

Moreover, if ξ 6= 0, then the converse also holds.

Proof The main implication trivially follows by definition of ∂GP g (x). As for the converse, assume that

ξ 6= 0. We only need to show that if 〈y, ξ〉 = 〈x, ξ〉, then g (y) ≤ g (x). Since ξ 6= 0, there exists some z ∈ X
such that 〈z, ξ〉 > 0. Consider the sequence of points yn = y − tnz with tn ↓ 0. We have yn ∈ C for n

suffi ciently large. Clearly, 〈yn, ξ〉 = 〈y, ξ〉 − tn 〈z, ξ〉 < 〈x, ξ〉. It follows that g (yn) ≤ g (x). If g is lower

semicontinuous, by passing to the limit we have g (y) ≤ lim infn g (yn) ≤ g (x), which is the desired property.

Similarly, if g is radially continuous then, by passing to the limit, g (yn) = g (y − tnz) ≤ g (x) yields again

g (y) ≤ g (x). �

Point 3 implies that ∂GP g (x) ∪ {0} is a pointed convex cone provided 0 /∈ ∂GP g (x). The next property

is then easily proved.

Proposition 1 Under the hypotheses of Lemma 1, if 0 /∈ ∂GP g (x) then

∂GP g (x) ∪ {0} =
{
ξ ∈ X∗ : ∀y ∈ L̃x, 〈y − x, ξ〉 ≥ 0

}
.

where L̃x is the strict superlevel set (g > g (x)).

In words, −∂GP g (x) ∪ {0} is the (weak*-closed) normal cone to the convex set L̃x = (g > g (x)).

The Greenberg-Pierskalla superdifferential has the following dual version: the Greenberg-Pierskalla sub-

differential of a function g : C → R at a point x ∈ C is

∂GP g (x) = {ξ ∈ X∗ : y ∈ C and 〈y, ξ〉 ≥ 〈x, ξ〉 =⇒ g (y) ≥ g (x)} .

There is a simple duality relation:

∂GP g (x) = −∂GP (−g) (x) . (2)

Remark In the literature there are many variants of the Greenberg-Pierskalla subdifferential. All of them
are closely related to normal cones of superlevel sets. For instance, property (1) defines the so called star-

superdifferential (see [31] and [35]). Another variant is Crouzeix’s tangential cone (see [14]).

2.2 Clarke

If g : C → R is continuous and C is open, the Clarke lower (directional) derivative g↓ (x; ·) : X → [−∞,∞]

of g at x is defined by:

g↓ (x; y) = lim
ε↓0

lim inf
x′→x
t↓0

sup
‖y−y′‖<ε

g (x′ + ty′)− g (x′)

t
∀y ∈ X. (3)

The function g↓ permits to introduce an important notion of superdifferential.5

5The directional derivative g↓(x; ·) is related to the Clarke tangent cone of hypo g at the point (x, g (x)). It was introduced by
Rockafellar [37] to generalize an earlier notion given by Clarke [10] and [11]. For this reason, the Clarke-Rockafellar terminology
is often used. The function g↓ may assume several expressions. In particular, (3) relies on the continuity of g (see [40, Proposition
3.2.3]). Comprehensive studies can be found in [12] and [40].
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Definition 2 The Clarke superdifferential of a function g : C → R at a point x ∈ C is defined by

∂Cg (x) =
{
ξ ∈ X∗ : 〈y, ξ〉 ≥ g↓ (x; y) for all y ∈ X

}
. (4)

The set ∂Cg (x) is a, possibly empty, weak*-closed convex subset of X∗ (see [37, Theorem 4 and p. 276]).

The dual notion of Clarke upper derivative g↑ (x; ·) : X → [−∞,∞] at x ∈ C is defined by

g↑ (x; y) = lim
ε↓0

lim sup
x′→x
t↓0

inf
‖y−y′‖<ε

g (x′ + ty′)− g (x′)

t
∀y ∈ X.

The Clarke subdifferential is then ∂Cg (x) =
{
ξ ∈ X∗ : ∀y ∈ X, 〈y, ξ〉 ≤ g↑ (x; y)

}
. We have the simple

relations:

g↑ (x; y) = − (−g)
↓

(x; y) and ∂Cg (x) = −∂C (−g) (x) . (5)

3 Main result

The next theorem, our main result, relates the Greenberg-Pierskalla and Clarke superdifferentials.

Theorem 1 Let C be open and g continuous and quasiconcave. Then,

∂Cg (x) ⊆ ∂GP g (x) ∪ {0} ∀x ∈ C.

Moreover,

cone∗∂Cg (x) = ∂GP g (x) ∪ {0} (6)

provided 0 /∈ ∂Cg (x) 6= ∅.6

The additional hypothesis for (6) is needed: for the quasiconcave function g (t) = 3
√
t we have ∂Cg (0) = ∅

and ∂GP g (0) = (0,∞), while for the function g (t) = −t+ we have 0 ∈ ∂Cg (0) = [−1, 0] and ∂GP g (0) = R
and so cone∗∂Cg (x) is strictly included in ∂GP g (x) ∪ {0}.

Theorem 1 has been formulated through the superdifferential ∂Cg (x). Later, it will be shown that

under our assumptions the Clarke superdifferential and subdifferential coincide (Corollary 5). So, (6) can be

replaced by the equivalent relation cone∗∂Cg (x) = ∂GP g (x) ∪ {0}.

Proof We divide the proof in three steps.

(i) We first show that

∂Cg (x) ⊆ ∂GP g (x) ∪ {0} ∀x ∈ C.

If ξ = 0, this inclusion is trivially true. So, let 0 6= ξ ∈ ∂Cg (x) and y ∈ C such that 〈y, ξ〉 < 〈x, ξ〉. That is,
〈y − x, ξ〉 = α < 0. By (4), g↓ (x; y − x) ≤ α < 0.

By the definition (3), there exist sequences xn → x, zn → y − x, and tn ↓ 0 such that g (xn + tnzn) −
g (xn) < 0 and tn < 1 for n large enough. Setting yn = zn+xn, we have yn → y and g (tnyn + (1− tn)xn) <

g (xn). Since g is quasiconcave, we have

g (xn) > g (tnyn + (1− tn)xn) ≥ min {g (yn) , g (xn)} .

Hence, g (xn) > g (yn). By continuity, letting n → ∞, we get g (x) ≥ g (y). Lemma 1 then implies that

ξ ∈ ∂GP g (x), as desired.

6Given a nonempty subset K of X∗, we define by coneK the set of vectors λξ where λ ≥ 0 and ξ ∈ K. The set cone∗K is
its weak*-closure. This notion of generated cone is an abuse of terminology because, compared to our notion of cone, it allows
for λ = 0. Yet, when K is a closed cone, then K = coneK, which is the relevant case for us.
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(ii). Point (i) implies cone ∂Cg (x) ⊆ ∂GP g (x)∪ {0}. By Proposition 1, ∂GP g (x)∪ {0} is a weak*-closed
convex cone. Therefore, cone∗∂Cg (x) ⊆ ∂GP g (x) ∪ {0}.
(iii). We need to show (6), that is, cone∗∂Cg (x) = ∂GP g (x) ∪ {0}. Suppose, by contradiction, that

cone∗∂Cg (x) is strictly included in ∂GP g (x) ∪ {0}, namely, there exists 0 6= ξ̄ ∈ ∂GP g (x) such that ξ̄ /∈
cone∗∂Cg (x). By the Strong Separating Hyperplane Theorem (see, e.g., [39, Theorem 3.4]), there exist

y1 ∈ X and γ ∈ R such that 〈
y1, ξ̄

〉
< γ < 〈y1, ξ〉 ∀ξ ∈ cone∗∂Cg (x) .

As 0 ∈ cone∗∂Cg (x), it follows that γ < 0. Moreover, as γ < 〈y1, λξ〉 holds for all λ > 0 and ξ ∈ cone∗∂Cg (x),

we have that 〈y1, ξ〉 ≥ 0 holds over cone∗∂Cg (x). Hence,〈
y1, ξ̄

〉
< γ < 0 ≤ 〈y1, ξ〉 ∀ξ ∈ cone∗∂Cg (x) .

In particular, 〈
y1, ξ̄

〉
< γ < 0 ≤ 〈y1, ξ〉 ∀ξ ∈ ∂Cg (x) .

On the other hand, the set ∂Cg (x) is nonempty, weak*-closed and convex, with 0 /∈ ∂Cg (x). By the

Strong Separating Hyperplane Theorem (see, e.g., [39, Theorem 3.4]), there exist a vector ȳ ∈ X and η ∈ R
such that 〈ȳ, ξ〉 ≥ η > 0 for all ξ ∈ ∂Cg (x).

Setting z = y1 + εȳ, we have 〈z, ξ〉 = 〈y1, ξ〉 + ε 〈ȳ, ξ〉 ≥ εη for all ξ ∈ ∂Cg (x). Consequently, for ε > 0

suffi ciently small, we have 〈
z, ξ̄
〉
< γ < 0 < εη ≤ 〈z, ξ〉 ∀ξ ∈ ∂Cg (x) .

By [37, Theorem 4 and p. 276], g↓ (x; z) = inf {〈z, ξ〉 : ξ ∈ ∂Cg (x)}. Hence,
〈
z, ξ̄
〉
< γ < 0 < δ ≤ g↓ (x; z),

where δ = εη. In view of definition (3), it holds

g↓ (x; z) ≤ lim
ε↓0

lim inf
t↓0

sup
‖z−z′‖<ε

g (x+ tz′)− g (x)

t
.

Therefore, there exists a sequence zn → z and tn ↓ 0 such that, eventually,

g (x+ tnzn)− g (x)

tn
>
δ

2
.

Hence, it eventually holds 〈
zn, ξ̄

〉
< γ < 0 < δ/2 ≤ g (x+ tnzn)− g (x)

tn
. (7)

But, this is a contradiction. Indeed, since g (x+ tnzn) > g (x), it follows that
〈
x+ tnzn, ξ̄

〉
>
〈
x, ξ̄
〉
, as ξ̄ is

a Greenberg-Pierskalla superdifferential at x. Namely,
〈
zn, ξ̄

〉
> 0, which contradicts (7). We conclude that

cone∗∂Cg (x) = ∂GP g (x) ∪ {0}, i.e., (6) holds. �

The dual of Theorem 1 for quasiconvex functions can be easily established via the duality relations (2)

and (5). More interestingly, next we present an important corollary in which the closure of the cone is no

longer necessary.

Corollary 1 Let C be open and g continuous and quasiconcave. If at a point x ∈ C the Clarke lower

derivative g↓ (x; y) of g is finite for all y ∈ X, then

cone ∂Cg (x) = ∂GP g (x) ∪ {0}

provided 0 /∈ ∂Cg (x). In particular,

∂GP g (x) = {λξ : λ > 0 and ξ ∈ ∂Cg (x)} .
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Locally Lipschitz functions around x are an important class of functions satisfying the finiteness condition

for the lower derivative. For these functions, directional derivatives can be expressed via the original Clarke

directional derivatives g0 and g0, that is, g↑ (x; y) = g0 (x; y) and g↓ (x; y) = g0 (x; y), where g0 (x; y) =

lim supx′→x, t↓0 [g (x′ + ty)− g (x′)] /t.

Proof From [37, Corollary 2, p. 275] it follows that in this case the superdifferential ∂Cg (x) is nonempty

weak*-compact and convex. It remains to check that the cone generated by ∂Cg (x) is weak*-closed. To

show this, we prove a more general fact. We show that if D is a nonempty and weak*-compact subset of

X∗ which does not contain 0, then coneD is weak*-closed. Thus, consider a net {ξα}α∈A ⊆ coneD such

that ξα → ξ in X∗. By definition of coneD, there exists {λα}α∈A ⊆ [0,∞) and
{
ξ̄α
}
α∈A ⊆ D such that

ξα = λαξ̄α for all α ∈ A. Since D is weak*-compact, it follows that there exists a subnet
{
ξ̄αβ
}
β∈B and

ξ̄ ∈ D such that ξ̄αβ → ξ̄. Since 0 /∈ D, then ξ̄ 6= 0 and there exists ẑ ∈ X such that
〈
ẑ, ξ̄
〉
> 0. Since also

ξαβ → ξ and ξ̄αβ → ξ̄, we have that

λαβ
〈
ẑ, ξ̄αβ

〉
=
〈
ẑ, λαβ ξ̄αβ

〉
=
〈
ẑ, ξαβ

〉
→ 〈ẑ, ξ〉 and

〈
ẑ, ξ̄αβ

〉
→
〈
ẑ, ξ̄
〉
> 0.

The latter fact implies that
〈
ẑ, ξ̄αβ

〉
is eventually strictly positive. This yields that eventually λαβ can be

written as λαβ
〈
ẑ, ξ̄αβ

〉
/
〈
ẑ, ξ̄αβ

〉
, proving that

λαβ =
λαβ

〈
ẑ, ξ̄αβ

〉〈
ẑ, ξ̄αβ

〉 → 〈ẑ, ξ〉〈
ẑ, ξ̄
〉 def

= λ̄.

Since each λαβ is nonnegative, we have that λ̄ ≥ 0. Moreover, we also have that

λαβ ξ̄αβ = ξαβ → ξ and λαβ ξ̄αβ → λ̄ξ̄.

Since the limit is unique, we can conclude that ξ = λ̄ξ̄ ∈ coneD. Since 0 /∈ ∂Cg (x), the rest of the statement

trivially follows. �

An immediate consequence of this corollary is the following description of the cone ∂GP g (x)∪ {0} when
the function is concave. Here ∂FM denotes the usual Fenchel-Moreau superdifferential of convex analysis.

Corollary 2 Let C be open and g continuous and concave. If 0 /∈ ∂FMg (x), then

cone ∂FMg (x) = ∂GP g (x) ∪ {0} .

In particular, ∂GP g (x) = {λξ : λ > 0 and ξ ∈ ∂FMg (x)}.

Proof The function g is locally Lipschitz, so Corollary 1 applies. Moreover, the Clarke superdifferential
coincides with the superdifferential ∂FMg (x) of convex analysis. �

When g is strictly differentiable (in the full limit sense) at x, ∂Cg (x) is a singleton (and in particular

weak*-compact). The only element of ∂Cg (x) is denoted by ∇g (x).7 The next corollary is a direct conse-

quence of Corollary 1. Later, a more general result will be proved. In Proposition 3, we will show that (8)

holds even if C fails to be open and g is merely Gateaux differentiable (cf. also (22) below).

Corollary 3 Let C be open and g continuous and quasiconcave. If g is strictly differentiable at x ∈ C, with
∇g (x) 6= 0, then

∂GP g (x) = {λ∇g (x) : λ > 0} . (8)

7See Rockafellar [36, Proposition 4 and p. 340].
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The next corollary presents a differential characterization of quasiconcavity that generalizes the one

established by Arrow and Enthoven [3] for differentiable functions.8

Corollary 4 Let C be open and g continuous. If 0 6∈ ∂Cg (x) 6= ∅ for every x ∈ C, then the following

statements are equivalent:

(i) g is quasiconcave;

(ii) for each x ∈ C and ξ ∈ ∂Cg (x),

g (y) > g (x) =⇒ 〈y, ξ〉 ≥ 〈x, ξ〉 ; (9)

(iii) ∂GP g (x) 6= ∅ for all x ∈ C.

For another characterization through the quasimonotonicity property of the superdifferential, we refer to

Aussell et al. [5].

Proof (i) implies (ii). Let ξ ∈ ∂Cg (x) and x ∈ C. By Theorem 1, we have that ξ ∈ ∂GP g (x). In view of

Lemma 1, condition (9) is just the property that characterizes the nonnull elements of ∂GP g (x).

By Lemma 1 and since 0 6∈ ∂Cg (x) 6= ∅ for all x ∈ C, (ii) trivially implies (iii). It remains to prove that
(iii) implies (i). For any λ ∈ R, denote by L̃λ the open superlevel set (g > λ). We can assume ∅ 6= L̃λ 6= C

which are trivial cases. Pick a vector ξx ∈ ∂GP g (x) for every x ∈ C and consider the open half-space

H+ (x) = {y ∈ X : 〈y − x, ξx〉 > 0}. Clearly, L̃λ ⊆ C ∩
[⋂

x∈C\L̃λH
+ (x)

]
. On the other hand x /∈ H+ (x)

for all x ∈ C. Hence, L̃λ = C ∩
[⋂

x∈C\L̃λH
+ (x)

]
and so L̃λ is convex. We conclude that g is quasiconcave.

�

4 Extensions and refinements

4.1 Directionally Lipschitzian functions

In general, the relation between the two directional derivatives g↑ and g↓ is rather diffi cult to establish. Yet,

Rockafellar [36] and [37] isolates a class of functions, termed directionally Lipschitzian, for which this relation

is easier to study.

Definition 3 A continuous function g : C → R is directionally Lipschitzian at x ∈ C with respect to y ∈ X
if

inf
ε>0

lim sup
x′→x, t↓0

sup
‖y−y′‖<ε

g (x′ + ty′)− g (x′)

t
<∞. (10)

We say that g is directionally Lipschitzian at x if there is at least a direction y along which g is directionally

Lipschitzian at x. It is well known that if g is directionally Lipschitzian at x with respect to y = 0, then g

is locally Lipschitz around x.

Rockafellar [37, Theorems 3 and 6] shows, inter alia, that g↑ (x; y) = −g↓ (x;−y) for all y ∈ X and so

∂Cg (x) = ∂Cg (x), whenever g is directionally Lipschitzian at x. Moreover, he establishes several criteria

that guarantee that a function g is directionally Lipschitzian at a point x (cf. [37, Proposition 4]).

Thanks to an elegant result of Crouzeix [17, Theorem 3.1], we can show that quasiconcave functions are

directionally Lipschitzian. For completeness, we first provide a proof of Crouzeix’s result (see also Crouzeix

et al. [18, Proposition 4]).

8See also Komlosi [27, Theorem 10.4] for a characterization in terms of Dini derivatives, as well as Hadjisavvas [24] for
further characterizations related to the quasiconcavity of the subdifferential operators.
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Lemma 2 Let C be open and g continuous and quasiconcave. If x0 /∈ argmaxC g, then there exist an open

convex neighborhood V (x0) of x0 and a nonempty, open, and convex cone K such that 0 6∈ K and for each

x, y ∈ V (x0)

y − x ∈ K =⇒ g (y) ≥ g (x) .

Proof By hypothesis, there exists a point x1 ∈ C and a scalar λ such that g (x1) > λ > g (x0). Since g

is continuous, there are two open balls of ray η contained in C, Bη (x1) and Bη (x0), such that g (x) > λ

for all x ∈ Bη (x1) and g (x) < λ for all x ∈ Bη (x0). Since Bη (x0) ⊆ C, there exists t̄ > 0 such that

x2
def
= x0 + t̄ (x0 − x1) ∈ Bη (x0) ⊆ C. Define the set

K = {d : ∃t > 0, x2 + td ∈ Bη (x1)} .

The set K is a nonempty, open, and convex cone. In fact, since

x2 + td ∈ Bη (x1)⇐⇒ d ∈ t−1 [Bη (x1)− x2] ,

the set K can be rewritten as K = ∪α>0αΓ where Γ is the open ball Bη (x1)−x2 = Bη (x1 − x2). Moreover,

since x2 ∈ Bη (x0) and Bη (x0)∩Bη (x1) = ∅, we have that 0 6∈ K. Define V (x0) = (x2 +K)∩Bη (x0). Since

K is open and convex, so is V (x0). Moreover, since x1−x0 ∈ K, x0 ∈ Bη (x0), and td ∈ K for all t > 0 and

for all d ∈ K, we have that x0 = x2 + t̄ (x1 − x0) ∈ x2 + K, yielding that x0 ∈ V (x0) 6= ∅. Next, consider
x, y ∈ V (x0) with y − x ∈ K. Since y ∈ V (x0), it follows that y = x2 + d ∈ Bη (x0) for some d ∈ K. Since
d ∈ K, we have that x2 + t̃d ∈ Bη (x1) for some t̃ > 0. Note that t̃ > 1.9 If we define z2 = x2 + t̃d ∈ Bη (x1)

and s = 1− 1/t̃, then

y = x2 + d = sx2 + (1− s) z2. (11)

Since y − x ∈ K, we have that y = x+ d̂ for some d̂ ∈ K. Since d̂ ∈ K, we have that there exists t̆ > 0 such

that z1
def
= x2 + t̆d̂ ∈ Bη (x1). By (11), it follows that

y = sz1 + (1− s) z2 − st̆d̂ = z − τ (y − x) (12)

where z = sz1 + (1− s) z2 ∈ Bη (x1) and τ = st̆ > 0. By rearranging (12), we obtain that

y =
1

1 + τ
z +

τ

1 + τ
x.

Since g is quasiconcave and z ∈ Bη (x1) and x ∈ Bη (x0), it follows that g (y) ≥ min {g (z) , g (x)} = g (x).�

Theorem 2 If C is open and g is continuous and quasiconcave, then g is directionally Lipschitzian at each

point x /∈ argmaxC g.

The argmax condition cannot be avoided. For the quasiconcave function g (x) = −
√
|x|, at the maximizer

0 we have g↑ (0; 0) = −∞. Thus ∂Cg (0) = ∅, while 0 ∈ ∂Cg (0). Consequently, ∂Cg (0) 6= ∂Cg (0).

Proof Condition (10) is verified if there exist scalars ε, δ1, δ2 > 0 such that

sup
t∈(0,δ2)

sup
‖x−x′‖<δ1

sup
‖y−y′‖<ε

g (x′ + ty′)− g (x′)

t
<∞. (13)

Let x /∈ argmaxC g. By the previous lemma there exists an open neighborhood Bη (x) of ray η, and an open

convex cone K, such that if x1, x2 ∈ Bη (x) ⊆ C and x2−x1 ∈ K then g (x2) ≥ g (x1). Since K is nonempty

9 In fact, since x2 + t̃d ∈ Bη (x1), y = x2 + d ∈ Bη (x0), and Bη (x0) ∩ Bη (x1) = ∅, clearly, t̃ 6= 1. Since x2 ∈ Bη (x0), if
t̃ ∈ (0, 1), then x2 + t̃d =

(
1− t̃

)
x2 + t̃ (x2 + d) ∈ Bη (x0), a contradiction.
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and open, consider a vector y ∈ −K\ {0}. As K is open, there exists ε > 0 such that ‖y − y′‖ < ε implies

y′ ∈ −K\ {0}. Therefore, under the conditions

‖x− x′‖ < η/3 , 0 < t < min

{
η

3ε
,

η

3 ‖y‖

}
, ‖y − y′‖ < ε

we have

‖(x′ + ty′)− x‖ = ‖(x′ − x) + t (y′ − y) + ty‖ ≤ ‖x′ − x‖+ t ‖y′ − y‖+ t ‖y‖ < η

3
+
η

3
+
η

3
.

Consequently, x′ + ty′ ∈ Bη (x). Moreover, (x′ + ty′) − x′ ∈ −K and so g (x′ + ty′) − g (x′) ≤ 0. We can

infer that (13) holds by setting δ1 = η/3 and δ2 = min {η/3ε, η/3 ‖y‖}. So, g is directionally Lipschitzian
with respect to each vector y ∈ −K\ {0}. �

As a corollary of this theorem, we get the result announced in the previous section: the equivalence

between the Clarke superdifferential and subdifferential for continuous quasiconcave functions.

Corollary 5 Let C be open and g continuous and quasiconcave. We have ∂Cg (x) = ∂Cg (x) and

cone∗
[
∂Cg (x)

]
= ∂GP g (x) ∪ {0}

provided 0 /∈ ∂Cg (x) 6= ∅.

Proof Since 0 /∈ ∂Cg (x), we have that x is not a global maximizer. By Theorem 2, this implies that g is

directionally Lipschitzian at x. By [37, Theorem 6], this implies that ∂Cg (x) = ∂Cg (x). By Theorem 1, the

rest of the statement follows. �

Next result about quasiaffi ne functions is another straightforward consequence of Theorem 2.

Corollary 6 Let C be open and g continuous and quasiaffi ne. Then

∂GP g (x) = ∂GP g (x)

provided 0 /∈ ∂Cg (x) 6= ∅.

Proof As g is quasiconcave, by Corollary 5 we have ∂GP g (x)∪{0} = cone∗
[
∂Cg (x)

]
. Since g is quasiconvex

as well, by Theorem 1 we have cone∗
[
∂Cg (x)

]
= ∂GP g (x) ∪ {0}, which leads to the desired equality. �

4.2 A min-formula

The next result, an application of our main results (Theorems 1 and 2), extends to our quasiconcave setting

the classic max-formula of convex analysis.10 To this end, define the lower envelope ḡ : C → R of a collection
{gi}i∈I of real-valued functions over C by

ḡ (x) = inf
i∈I

gi(x) ∀x ∈ C

and set M (x) = argmini∈I gi (x) = {i ∈ I : ḡ (x) = gi (x)}.

Theorem 3 Let C be open, x0 ∈ C, and I a compact space. If {gi}i∈I ⊆ RC is such that

1. gi is quasiconcave on C for all i ∈ I,
10See, e.g., [33, Proposition 3.42] and [40, Theorem 2.4.18].
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2. the map I × C 3 (i, x) 7→ gi (x) is continuous,

3. 0 6∈ co∗
(
∪i∈M(x0)∂Cgi (x0)

)
,

4. g↓i (x0; y) is finite for all y ∈ X and for all i ∈M (x0),

then the lower envelope ḡ is continuous, quasiconcave, and

∂GP ḡ (x0) ∪ {0} = co∗
(
∪i∈M(x0)∂GP gi (x0)

)
.

In words, under mild conditions the Greenberg-Pierskalla superdifferential, at a point x0, of the lower

envelope of a family of quasiconcave functions is the closed convex hull of the union of the Greenberg-

Pierskalla superdifferentials of the functions attaining the minimum at x0.

In economics, a result of this kind is called an envelope theorem. It is typically stated as a characterization

of the derivative of the value function in a parameterized optimization problem

max
a

f (a, θ) sub a ∈ A

with objective function f : A×Θ→ R. The object of interest is the marginal behavior of the value function
v : Θ → (−∞,∞] defined by v (θ) = supa∈A f (a, θ) for all θ ∈ Θ. To frame our Theorem 3 as an envelope

theorem, assume that Θ is an open and convex set of a normed space X and that A is a compact topological

space. Denote by σ : Θ ⇒ A the solution correspondence defined by σ (θ) = argmaxa∈A f (a, θ) for all θ ∈ Θ.

If f is jointly continuous and quasiconvex in the second argument, with 0 6∈ co∗
(
∪a∈σ(θ0)∂

Cfa (θ0)
)
and

f↑a (θ0; y) finite for all y ∈ X and all a ∈ σ (θ0),11 then

∂GP v (θ0) ∪ {0} = co∗
(
∪a∈σ(θ0)∂

GP fa (θ0)
)
. (14)

In the important case when A is convex and f is strictly quasiconcave in the first argument, σ becomes a

function and so this equality takes the simpler form

∂GP v (θ0) ∪ {0} = ∂GP fσ(θ0) (θ0)
∗

By Proposition 3 below, when v is Gateaux differentiable at θ0, and so is fa for some a ∈ σ (θ0) with both

∇v (θ0) and ∇fa (θ0) nonzero, then (14) amounts to the existence of a scalar γ > 0 such that ∇v (θ0) =

γ∇fa (θ0). It is then routine to prove that γ = 1, so that

∇v (θ0) = ∇fa (θ0)

This is the basic differential form of the envelope theorem a la Danskin (1966), which can thus be viewed as

a special case of our min-formula.

Proof By Berge’s Maximum Theorem (see, e.g., [1, Theorem 17.31]), ḡ is continuous and the nonempty-

and compact-valued correspondence x 7→ M (x) is upper hemicontinuous. It is also routine to prove that ḡ

is quasiconcave.

Fix x0 ∈ C and consider ξ ∈ ∪i∈M(x0)∂GP gi (x0), that is, ξ ∈ ∂GP gi (x0) for some i ∈ M (x0). Since

ḡ (x0) = gi (x0), for each y ∈ C we have that

〈y, ξ〉 ≤ 〈x0, ξ〉 =⇒ ḡ (y) ≤ gi (y) ≤ gi (x0) = ḡ (x0) ,

yielding that ξ ∈ ∂GP ḡ (x0), that is, ∪i∈M(x0)∂GP gi (x0) ⊆ ∂GP ḡ (x0). By Lemma 1, ∂GP ḡ (x0) ∪ {0} is a
closed and convex cone. This implies that co∗

(
∪i∈M(x0)∂GP gi (x0)

)
⊆ ∂GP ḡ (x0) ∪ {0}.

11Here fa is the section of f at a.
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We next prove the opposite inclusion. Set D = co∗
(
∪i∈M(x0)∂GP gi (x0)

)
and, by contradiction, assume

that (∂GP ḡ (x0) ∪ {0}) \D 6= ∅. Let ξ̄ ∈ (∂GP ḡ (x0) ∪ {0}) \D 6= ∅. Since 0 ∈ D, we have that ξ̄ 6= 0 and so

ξ̄ ∈ ∂GP ḡ (x0). Following a similar argument to the one contained in the proof of Theorem 1, by the Strong

Separating Hyperplane Theorem and since D is a closed convex cone, there exists an element ŷ ∈ X such

that

〈ŷ, ξ〉 ≥ 0 >
〈
ŷ, ξ̄
〉

∀ξ ∈ D.

By Theorem 1 and since 0 6∈ ∂Cgi (x0) for all i ∈ M (x0), we have that ∂Cgi (x0) ⊆ ∂GP gi (x0) ⊆ D for all

i ∈M (x0) and, in particular,

〈ŷ, ξ〉 ≥ 0 >
〈
ŷ, ξ̄
〉

∀ξ ∈ ∂Cgi (x0) ,∀i ∈M (x0) . (15)

By [37, p. 276] and since g↓i (x0; y) is finite for all y ∈ X and for all i ∈M (x0), we have that ∂Cgi (x0) 6= ∅ for
all i ∈ M (x0). Since 0 6∈ co∗

(
∪i∈M(x0)∂Cgi (x0)

)
6= ∅, the Strong Separating Hyperplane Theorem implies

the existence of a vector ȳ ∈ X and η ∈ R such that 〈ȳ, ξ〉 ≥ η > 0 for all ξ ∈ ∂Cgi (x0) and for all i ∈M (x0).

Define x̄ = ŷ + εȳ with ε > 0. We have that 〈x̄, ξ〉 = 〈ŷ, ξ〉 + ε 〈ȳ, ξ〉 ≥ εη > 0 for all ξ ∈ ∂Cgi (x0) and for

all i ∈M (x0). Moreover, in view of (15), if ε > 0 is suffi ciently small, we have also

〈x̄, ξ〉 ≥ εη > 0 >
〈
x̄, ξ̄
〉
∀ξ ∈ ∂Cgi (x0) ,∀i ∈M (x0) . (16)

By Theorem 2 and since 0 6∈ ∂Cgi (x0) for all i ∈ M (x0), we have that each gi is directionally Lipschitzian

at x0. By [37, Theorem 3] and since g↓i (x0; y) is finite for all y ∈ X and for all i ∈M (x0), we have that

g↓i (x0; x̄) = lim inf
x′→x0
t↓0

gi (x′ + tx̄)− gi (x′)

t
∀i ∈M (x0) .

This implies that for each i ∈M (x0)

lim inf
t↓0

gi (x0 + tx̄)− gi (x0)

t
≥ g↓i (x0; x̄) = inf

ξ∈∂Cgi(x0)
〈x̄, ξ〉 ≥ εη > 0. (17)

Since C is open, there exists δ > 0 such that x0 + tx̄ ∈ C for all t ∈ [0, δ]. In view of (17), it follows that for

each i ∈M (x0) there exists ti ∈ (0, δ) such that

gi (x0 + tx̄)− gi (x0) ≥ εη

2
t > 0 ∀t ∈ (0, ti] . (18)

The next claim proves that such ti values can be chosen to be uniform. This will be instrumental for what

follows.

Claim. There exists t̄ ∈ (0, δ) such that gi (x0 + tx̄)− gi (x0) > 0 for all i ∈M (x0) and for all t ∈ (0, t̄].

Proof of the Claim Set ϕi (t) = gi (x0 + tx̄) − gi (x0) for all t ∈ [0, δ] and for all i ∈ M (x0). Consider the

function T : M (x0)→ R given by

T (i) = sup {t ∈ (0, δ) : ϕi (t) > 0} ∀i ∈M (x0) .

By (18) and since each ϕi is continuous and quasiconcave, {t ∈ (0, δ) : ϕi (t) > 0} is an open interval which
includes (0, ti] for all i ∈M (x0). By definition of T and since each ϕi is continuous and each ti ∈ (0, δ), this

implies that T (i) > ti > 0 and

t ∈ (0, T (i)) =⇒ ϕi (t) > 0 ∀i ∈M (x0) . (19)

We are left to show that T is lower semicontinuous. In fact, by Weierstrass’Theorem, this will yield that

there exists i? ∈ M (x0) such that T (i) ≥ T (i?) > ti? > 0 for all i ∈ M (x0). By (19), this will allow us to

conclude that ϕi (t) > 0 for all 0 < t ≤ ti? and for all i ∈M (x0), as claimed.
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To establish the lower semicontinuity of T , we will prove that {i ∈M (x0) : T (i) > k}, with k ∈ R, is
open. If either k ≥ δ or k ≤ 0, then the set is either empty or M (x0) and, in particular, open in the relative

topology. Otherwise, consider k ∈ (0, δ) and assume that the set is nonempty. Consider also i0 ∈ M (x0)

such that T (i0) > k. Set ε > 0 such that t̂ = T (i0)− ε > k > 0. By (19) and since t̂ ∈ (0, T (i0)), it follows

that ϕi0
(
t̂
)
> 0. Since the map (i, t) 7→ ϕi (t) is continuous, the condition ϕi

(
t̂
)
> 0 continues to hold for

all i ∈ U (i0) where U (i0) is a neighborhood of i0 in M (x0). By definition of T , it follows that T (i) ≥ t̂ > k

for all i ∈ U (i0), proving that U (i0) ⊆ {i ∈M (x0) : T (i) > k}. Since i0 and k were arbitrarily chosen, the
latter set is open and T lower semicontinuous. �
By [1, Theorem 17.16] and since the correspondence x 7→ M (x) is upper hemicontinuous at x0 and

M (x0) is compact, if we consider the net t 7→ (x0 + tx̄, it) in the graph of M , there exists a subnet {iβ} of
{it} and a point i0 ∈M (x0) such that iβ → i0 ∈M (x0) and tβ → 0.

By the above Claim and since i0 ∈M (x0), we have that gi0 (x0 + t̄x̄) > gi0 (x0). Since (i, x) 7→ gi (x) is

continuous and iβ → i0, there exists β̄ such that

giβ̄ (x0 + t̄x̄) > gi0 (x0)

and 0 < tβ̄ < t̄.

By definition of iβ̄ and (16) and since tβ̄ ∈ (0, t̄) and ξ̄ ∈ ∂GP ḡ (x0), we have that〈
x0 + tβ̄ x̄, ξ̄

〉
≤
〈
x0, ξ̄

〉
=⇒ giβ̄

(
x0 + tβ̄ x̄

)
= ḡ

(
x0 + tβ̄ x̄

)
≤ ḡ (x0) = gi0 (x0) . (20)

We have two cases:

1. iβ̄ 6∈ M (x0). We have that giβ̄ (x0) > ḡ (x0) = gi0 (x0). Since t 7→ giβ̄ (x0 + tx̄) is quasiconcave, for

each t ∈ [0, t̄] we have that

giβ̄ (x0 + tx̄) ≥ min
{
giβ̄ (x0) , giβ̄ (x0 + t̄x̄)

}
> gi0 (x0) ,

and, in particular, a contradiction with (20).

2. iβ̄ ∈ M (x0). By the above Claim and since tβ̄ ∈ (0, t̄), this implies that giβ̄
(
x0 + tβ̄ x̄

)
> giβ̄ (x0) =

ḡ (x0) = gi0 (x), a contradiction with (20). �

We close with a couple of remarks. First, as the proof shows, the inclusion ∪i∈M(x0)∂GP gi (x0) ⊆
∂GP ḡ (x0) always holds even without imposing assumptions 1-4. Second, assumption 3 cannot be removed.

Let n ≥ 2 and consider a continuously differentiable quasiaffi ne function ρ : Rn → R such that ρ (0) = 0 and

∇ρ (0) 6= 0. Consider also the collection {g1, g2} where g1 = ρ and g2 = −ρ. In this case we have ḡ = − |ρ|.
Since 0 ∈ co (∇ρ (0) ,−∇ρ (0)) = co∗

(
∪i∈M(0)∂Cgi (0)

)
, if we consider x0 = 0, then all of the above assump-

tions are satisfied with the exception of the third one. On the one hand, since 0 ∈ argmaxC ḡ, we can conclude

that ∂GP ḡ (0) = Rn. On the other hand, by Corollary 3 we have co∗ (∂GP g1 (0) ∪ ∂GP g2 (0)) = span (∇ρ (0)),

which is a one-dimensional linear space, yielding that ∂GP ḡ (0) ∪ {0} 6= co∗ (∂GP g1 (0) ∪ ∂GP g2 (0)).

4.3 More superdifferentials

What happens if in our main result, Theorem 1, the Clarke superdifferential is replaced by other types of

superdifferentials? The answer to this question is rather simple (and, more or less, known) for the inclusion

part of Theorem 1. Indeed, the superdifferential ∂C is quite large and so the inclusion will continue to hold

for many other superdifferentials.
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In the next proposition we consider this inclusion for the lower Dini superdifferential ∂D−. We focus on

the two superdifferentials ∂C and ∂D− because they are the largest ones among the classical superdifferentials.

Recall that (see [6] and [4]):

∂LS ⊆ ∂F ⊆ ∂H

⊆ ∂C

↗
↘

⊆ ∂D+ ⊆ ∂D−

where:

• ∂LS is the Lipschitz smooth superdifferential;

• ∂F is the Frechet superdifferential :

∂F g (x) =

{
ξ ∈ X∗ : lim sup

‖y‖→0

g (x+ y)− g (x)− 〈y, ξ〉
‖y‖ ≤ 0

}
;

• ∂H is the Hadamard superdifferential:

∂Hg (x) =

{
ξ ∈ X∗ : 〈y, ξ〉 ≥ lim sup

t↓0, y′→y

g (x+ ty′)− g (x)

t

}
;

• ∂D+ and ∂D− denote the upper and lower (respectively) Dini superdifferentials, for instance,

∂D−g (x) =

{
ξ ∈ X∗ : 〈y, ξ〉 ≥ lim inf

t↓0

g (x+ ty)− g (x)

t

}
.

In the next proposition ∂∗ denotes an abstract superdifferential ∂∗ : X ⇒ X∗.

Proposition 2 Let C be open and g continuous and quasiconcave. If either ∂∗ ⊆ ∂C or ∂∗ ⊆ ∂D− hold for
a superdifferential ∂∗, then

∂∗g (x) ⊆ ∂GP g (x) ∪ {0} ∀x ∈ C.

Proof If ∂∗ ⊆ ∂C , then the claim is true by Theorem 1. Suppose now ∂∗ ⊆ ∂D−. Let 0 6= ξ ∈ ∂∗g (x) and

y ∈ C such that 〈y − x, ξ〉 = α < 0. Since ξ ∈ ∂D−g (x), it follows

lim inf
t↓0

g (x+ t (y − x))− g (x)

t
≤ 〈y − x, ξ〉 < 0.

Consequently, there is a sequence tn ↓ 0 for which g (tny + (1− tn)x) < g (x) . By the quasiconcavity of g,

we have

g (x) > g (tny + (1− tn)x) ≥ min {g (y) , g (x)} ,

yielding that g (x) > g (y). By Lemma 1, we can conclude that ξ ∈ ∂GP g (x). �

In contrast, the extension of equality (6) to other superdifferentials is less obvious.
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5 Affi ne Gateaux differentiability and Roy’s identity

5.1 Affi ne Gateaux differentiability

Roy’s identity is one of the key formulas of consumer theory. In this section we show that our equivalence

results for the Clarke and Greenberg-Pierskalla differentials, in particular Corollary 3, permit to prove a

general version of this classical formula. To this end, we first extend Corollary 3 to functions g that are just

Gateaux differentiable, rather than strictly differentiable, and whose convex domain C is no longer assumed

to be open.

This relaxed condition on domains requires a notion of “affi ne Gateaux derivative”, which builds upon a

notion used in economic theory.12 Throughout this section, we consider two vector spaces (X,X∗) in duality,

and a convex set C of X.

Definition 4 A function g : C → R is called affi nely Gateaux differentiable at a point x ∈ C if there is

some ξ ∈ X∗ such that
lim
t↓0

g (x+ t (y − x))− g (x)

t
= 〈y − x, ξ〉

holds for all y ∈ C. The element ξ is called an affi ne (Gateaux) gradient and denoted by ∇ag (x).

The gradient ∇ag (x) is, in general, not unique (when it exists). In particular, it is easy to see that if ξ

is an affi ne gradient at a point x, then ξ′ ∈ X∗ is also an affi ne gradient at the same point if and only if

ξ − ξ′ ∈ (C − C)
⊥
.

That is, ∇ag (x) is actually an equivalence class [∇ag (x)] of the quotient space X∗/ (C − C)
⊥. In this

regard, recall that (C − C)
⊥ is a weak*-closed vector subspace of X∗ called the annihilator of C − C.

Observe further that (C − C)
⊥

= (C − x)
⊥ holds for any fixed element x of C. Note that the present

approach becomes relevant when C is not open, otherwise (C − C)
⊥

= {0} when C is open and we get the

familiar Gateaux differential.

The space generated by the set C,

V = span (C − C)

plays an important role in our arguments. Of course, (C − C)
⊥

= V ⊥ = V̄ ⊥ and so X∗/ (C − C)
⊥

=

X∗/V ⊥.

Thanks to the space V we can give another representation for the equivalence classes [ξ] ∈ X∗/V ⊥. Given
ξ ∈ X∗, denote by ξV : V → R its restriction to the space V ⊆ X, namely, ξV (x) = 〈x, ξ〉 for all x ∈ V . It
is then easy to check that

ξ′ ∈ [ξ]⇐⇒ ξ′V = ξV

which leads to the identification [ξ]↔ ξV .

Remark More is true when X is a normed vector space and X∗ is its norm dual: the Banach space X∗/V ⊥

is then isometrically isomorphic to the dual space V ∗ (see, e.g., [30, Theorem 1.10.16]).

A similar argument applies to the Greenberg-Pierskalla superdifferential because of the following impli-

cation:

ξ ∈ ∂GP g (x) =⇒ ξ + (C − C)
⊥ ⊆ ∂GP g (x) .

The cone ∂GP g (x) can thus be partitioned into equivalence classes. Let us denote by [∂GP g (x)] the parti-

tioned cone.
12See Cerreia-Vioglio et al. [8] and the references therein.
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Our last observation pertains the concept of (relative) internal point. A vector x ∈ X is said to be

internal to a convex set C if, for each v ∈ V , there exists ε > 0 such that x+ tv ∈ C for all |t| < ε. The set

of internal points of C forms its relative algebraic interior.13

We can now state the announced generalization of Corollary 3. Observe that the quasiconcavity of the

function is no longer assumed here.

Proposition 3 Let g : C → R be affi nely Gateaux differentiable at an internal point x of C with ∂GP g (x) 6=
∅. If [∇ag (x)] 6= 0, then

[∂GP g (x)] = {λ [∇ag (x)] : λ > 0} . (21)

Whenever V̄ = X, the equivalence classes [ξ] are singletons and so (21) reduces to the familiar

∂GP g (x) = {λ∇ag (x) : λ > 0} . (22)

Proof The assumption [∇ag (x)] 6= 0 implies that x is not a maximizer. Let ξ̄ ∈ ∂GP g (x) and ξ̄V : V → R
denote its restriction to V . Since x is not a maximizer, we have that ξ̄V 6= 0. Consider z ∈ ker ξ̄V ⊆ V . Since
x is internal, there exists δ > 0 such that y+

def
= x + δz ∈ C and y−

def
= x − δz ∈ C. Since C is convex, we

also have that x+ t (y+ − x) , x+ t (y− − x) ∈ C for all t ∈ (0, 1). Moreover, we have that〈
x+ t (y+ − x) , ξ̄

〉
=
〈
x, ξ̄
〉

+ δtξ̄V (z) =
〈
x, ξ̄
〉

and〈
x+ t (y− − x) , ξ̄

〉
=
〈
x, ξ̄
〉
− δtξ̄V (z) =

〈
x, ξ̄
〉
.

Therefore, the inequality
〈
x+ t (y+ − x) , ξ̄

〉
≤
〈
x, ξ̄
〉
implies that for each t ∈ (0, 1)

g (x+ t (y+ − x))− g (x)

t
≤ 0.

By passing to the limit, this yields that

δ∇ag (x)V (z) = 〈y+ − x,∇ag (x)〉 = lim
t↓0

g (x+ t (y+ − x))− g (x)

t
≤ 0,

proving that ∇ag (x)V (z) ≤ 0. The same argument, applied to y−, instead leads to ∇ag (x)V (z) ≥ 0, that

is, z ∈ ker∇ag (x)V . Since z was arbitrarily chosen, we obtain that ker ξ̄V ⊆ ker∇ag (x)V .

By [1, Theorem 5.91], there exists λ̄ ∈ R such that ∇ag (x)V = λ̄ξ̄V , that is, [∇ag (x)] = λ̄
[
ξ̄
]
. Since

[∇ag (x)] 6= 0, we have that λ̄ 6= 0. We next show that λ̄ > 0. By contradiction, assume that λ̄ < 0. Since

ξ̄V 6= 0, it follows that there exists z ∈ V such that ξ̄V (z) < 0 and ∇ag (x)V (z) > 0. By hypothesis, there

exists δ > 0 suffi ciently small such that y def= x+ δz ∈ C. Since C is convex, we have that x+ t (y − x) ∈ C
and

〈
x+ t (y − x) , ξ̄

〉
≤
〈
x, ξ̄
〉
for all t ∈ (0, 1). Consequently, we have that [g (x+ t(y − x))− g (x)] /t ≤ 0

for all t ∈ (0, 1) and

0 < δ∇ag (x)V (z) = 〈y − x,∇ag (x)〉 = lim
t↓0

g (x+ t (y − x))− g (x)

t
≤ 0,

a contradiction. We conclude that λ̄ > 0 and
[
ξ̄
]

= λ [∇ag (x)], with λ = λ̄−1 > 0. Since ξ̄ was arbitrarily

chosen, this implies that

[∂GP g (x)] ⊆ {λ [∇ag (x)] : λ > 0} .

At the same time, since [∂GP g (x)] is a cone, we have [∇ag (x)] = λ̄
[
ξ̄
]
∈ [∂GP g (x)] and, in particular,

{λ [∇ag (x)] : λ > 0} ⊆ [∂GP g (x)]. This yields our result. �
13 It is also known as the intrinsic core of C. See for instance [25].
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5.2 The Roy identity

Given a price system p ∈ Rn++ and a wealth level w > 0, a consumer with a continuous utility function

u : Rn+ → R confronts the budget set B (p, w) =
{
x ∈ Rn+ : 〈x, p〉 ≤ w

}
of affordable consumption bundles.

The consumer optimization problem is

max
x

u (x) subx ∈ B (p, w) .

Since the budget set is compact and the utility function is continuous, this problem admits solution for all

price-wealth pairs (p, w) ∈ Rn++ × R++.

The demand correspondence d : Rn++ × R++ ⇒ Rn+, given by d (p, w) = argmaxB(p,w) u, associates

to each price-wealth pair (p, w) the set of all optimal consumption bundles. The indirect utility function

v : Rn++ × R++ → R given by v (p, w) = maxB(p,w) u associates to each price-wealth pair (p, w) the utility

level attained at the optimal consumption bundle. The next classic result relates these two notions.

Proposition 4 (Antonelli-Roy) Suppose u : Rn+ → R is continuous. If the indirect utility function v is
Gateaux differentiable at (p, w) ∈ Rn++ × R++, with ∂v (p, w) /∂w 6= 0, then d (p, w) is a singleton and

d (p, w) = − 1
∂v(p,w)
∂w

∇pv (p, w) . (23)

Relation (23), called Roy’s identity, permits to compute demand functions from indirect utility func-

tions.14 Our aim is to extend it to an infinite dimensional setting.

To this end, in the duality (X,X∗) we interpret a closed convex cone K ⊆ X as the set of bundles of

goods and its conjugate cone K∗ ⊆ X∗ as the cone of prices. Yet, in this setting K∗ may be too large,

usually without internal points. Therefore, we consider a suitable convex subcone P ⊆ K∗, as it will be

discussed momentarily.

Using the wealth cone R++, we can define the budget set B (p, w) = {x ∈ K : 〈x, p〉 ≤ w} for each (p, w) ∈
P×R++. Given a utility function u : K → R, we can also define the indirect utility v : P×R++ → R∪{+∞}
by v (p, w) = supB(p,w) u.

Proposition 5 Given a u : K → R, let P ⊆ K∗ be a convex cone such that (P − P )
⊥

= {0} and (p, w) ∈
P × R++ a vector with p internal to P . If the indirect utility function v is real-valued and affi nely Gateaux

differentiable at (p, w), with ∂v (p, w) /∂w 6= 0, then d (p, w) is, when nonempty,15 a singleton and

d (p, w) = − 1
∂v(p,w)
∂w

∇apv (p, w) . (24)

Proof Suppose d (p, w) 6= ∅. The first step is to show that x̂ ∈ d (p, w) implies

(−x̂, 1) ∈ ∂GP v (p, w) . (25)

That is, we must verify the implication

−〈x̂, p′ − p〉+ 1 · (w′ − w) ≥ 0 =⇒ v (p′, w′) ≥ v (p, w) (26)

for all (p′, w′) ∈ P × R++. But, the left-hand side of (26) is equivalent to

w − 〈x̂, p〉 ≤ w′ − 〈x̂, p′〉 .
14First stated by Antonelli (1886) as equation 24 in his work (in both the original and translated version) and then rediscovered

by Roy (1942), under whose name it came to be known.
15 In our setting, the nonemptiness of the demand correspondence d : P × R++ ⇒ K is no longer ensured without adding

further conditions, an issue that, however, we do not consider here.
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Since x̂ ∈ d (p, w) ⊆ B (p, w), this implies that 〈x̂, p′〉 ≤ w′, yielding that v (p′, w′) ≥ u (x̂) = v (p, w) and, in

particular, (25).

By hypothesis, v is affi nely Gateaux differentiable at (p, w). Hence, there exists the gradient

∇av (p, w) = ∇apv (p, w)×
{
λ̄
}
∈ X × R

where λ̄ = ∂v (p, w) /∂w. Since (P − P )
⊥

= {0}, [∇av (p, w)] is a singleton. Given that p is internal to P ,

(p, w) is internal to P ×R++. As λ̄ 6= 0, we have ∇av (p, w) 6= 0. We can then invoke Proposition 3, namely,

∂GP v (p, w) = {λ∇av (p, w) : λ > 0} .

On the other hand, we proved that x̂ ∈ d (p, w) implies (−x̂, 1) ∈ ∂GP v (p, w). Hence, −x̂ = λ∇apv (p, w) and

1 = λ∂v (p, w) \∂w for some λ > 0. This proves (24) as well as the fact that d (p, w) is a singleton. �

The standard Roy’s identity (23) is the special case of (24) when K = Rn+ and P = Rn++, with the

additional condition that the utility function is continuous, so that d (p, w) 6= ∅ and v is real-valued.
Since P −P is a linear subspace of X∗, to get the condition (P − P )

⊥
= {0}, it is suffi cient that P spans

a space which is weak*-dense in X∗. Moreover, since p ∈ P is internal, the cone P must have a nonempty

relative algebraic interior.

To illustrate, consider the commodity space Lp ≡ Lp (Ω, µ), where µ is a finite measure and 1 ≤ p ≤ ∞,
and the price space Lq.16 In this case, a good choice are the cones K = Lp+ and P = L∞++ ⊆ Lq+ = K∗,

where p ∈ L∞++ if and only if p ≥ ε1Ω for some ε > 0. The span of L∞++ is weak*-dense in L
q and any vector

p ∈ L∞++ is internal. We thus have the following corollary.

Corollary 7 Let u : Lp+ → R and (p, w) ∈ L∞++ × R++. If the indirect utility function v is real-valued and

affi nely Gateaux differentiable at (p, w), with ∂v (p, w) /∂w 6= 0, then d (p, w) is, when nonempty, a singleton

and formula (24) holds.

In general, Proposition 3 can be applied in optimization problems that feature a differential link, similar to

that in the Roy identity, between value functions and solutions. Consider for instance the infimal generators

of quasiconcave functions. So, let G : X ×R→ R be a functional such that G (x, ·) is nondecreasing for each
x. If Γ is a subset, not necessarily convex, of X and if C is an open convex set of X∗, we can define a value

function v on C by

v (ξ) = inf
x∈Γ

G (x, 〈x, ξ〉) ∀ξ ∈ C.

Since ξ 7→ G (x, 〈x, ξ〉) is quasiaffi ne for every x ∈ Γ, the value function v is quasiconcave. Under additional

strong assumptions, generators like G appear in quasiconvex duality theory. In particular, the specification

G (x, t) = t− f (x) leads to concave Fenchel conjugation (see [9] for a detailed analysis).

The relationship with Roy’s identity comes from the following, easily checked, inclusion

argminx∈ΓG (x, 〈x, ξ〉) ⊆ ∂GP v (ξ)

To exemplify, endow X∗ with the dual norm, assume that C is open and let Γ be a subset of the unit sphere

of X. By Proposition 3, if the value function v is real-valued and (affi nely) Gateaux differentiable at ξ, with

∇v (ξ) 6= 0, then argminx∈ΓG (x, 〈x, ξ〉) is, when nonempty, a singleton and

x̂ξ = ‖∇v (ξ)‖−1∇v (ξ) .

16With a small abuse of notation, we denote by p both the exponent of Lp and the price functional. This should not generate
any confusion.
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