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Abstract

In this work we propose a definition of comonotonicity for elements ofB (H)sa,

i.e., bounded self-adjoint operators defined over a complex Hilbert space H. We

show that this notion of comonotonicity coincides with a form of commutativity.

Intuitively, comonotonicity is to commutativity as monotonicity is to bounded

variation. We also define a notion of Choquet expectation for elements of B (H)sa
that generalizes quantum expectations. We characterize Choquet expectations

as the real-valued functionals over B (H)sa which are comonotonic additive, c-

monotone, and normalized.

1 Introduction

In this work, we bridge the ideas of Choquet integration and quantum expectation.

In particular, we show how the notion of Choquet expectation can be naturally de-

fined also in the space B (H)sa. This notion naturally generalizes the one of quantum

expectation/mixed state.

Since readers may know only one of these two concepts, we start the Introduction

by briefly describing both. We then proceed to highlight our main contributions and

offer a physical point of view for some of them. We conclude the Introduction by

discussing the related literature and the organization of the paper.
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financial support of ERC (grant SDDM-TEA) and Massimo Marinacci of ERC (grant INDIMACRO).
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Choquet integral andMathematical Economics Comonotonicity and comonotonic

additivity are at the base of the theory of Choquet integration and they both had a

huge impact in Mathematical Economics and Decision Theory.1 In a decision theoretic

setting, the primitives are a measurable space (Ω,F) and a functional V : B (F)→ R,
where B (F) is the space of real-valued, bounded, and F-measurable functions. The
functional V is supposed to represent the preferences of an agent over uncertain

prospects, modelled as random variables.

Two functions f, g ∈ B (F) are said to be comonotonic if and only if

[f (ω)− f (ω′)] [g (ω)− g (ω′)] ≥ 0 ∀ω, ω′ ∈ Ω. (1)

In turn, the functional V is said to be comonotonic additive if and only if

f and g are comonotonic =⇒ V (f + g) = V (f) + V (g) .

The celebrated theorem of Schmeidler [23] shows that normalized,2 monotone, and

comonotonic additive functionals are tightly connected to normalized capacities. A set

function ν : F → [0, 1] is a (normalized) capacity if and only if

1. ν (∅) = 0 and ν (Ω) = 1;3

2. If E,F ∈ F and F ⊇ E, then ν (F ) ≥ ν (E).

Clearly, a finitely additive probability is a capacity, while the converse typically

does not hold.

Theorem 1 (Schmeidler) Let V be a functional from B (F) to R. The following
statements are equivalent:

(i) V is normalized, monotone, and comonotonic additive;

(ii) There exists a capacity ν : F → [0, 1] such that

V (f) =

∫ ∞
0

ν (f ≥ t) dt+

∫ 0

−∞
[ν (f ≥ t)− ν (Ω)] dt ∀f ∈ B (F) . (2)

Moreover, ν is unique.

1For applications in Economics see Marinacci and Montrucchio [20] for applications in Mathemat-

ical Finance see Follmer and Schied [12] for applications in Statistics see Marshall and Olkin [21] as

well as Huber and Ronchetti [18].
2That is, V (1Ω) = 1.
3In general, a capacity need not be normalized, that is, ν (Ω) 6= 1. As one might suspect, the

normalization property is rather innocuous in developing the theory of Choquet integration. For an

introduction to the subject, we refer readers to Marinacci and Montrucchio [20].
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The right hand side of (2) is also known as the Choquet integral of f with respect

to ν and we will denote it by
∫
fdν.4

The Choquet integral is a generalization of the usual notion of integral. For example,

if ν is a countably additive probability measure, then it is a standard measure theory

result — see, e.g., [6, p. 275 and p. 280] — to show that the right hand side of (2)

becomes the usual Lebesgue’s integral. One can also show that for each f ∈ B (F)

there exists a (possibly finitely additive) probability Pf such that∫
fdν =

∫
fdPf .

In other words, Choquet expectation can be viewed as a standard expectation where the

probability used depends on the integrand. We highlight three features of comonotonic-

ity and Choquet expectations:

1. If f and g are comonotonic, then their Choquet expectations coincide with a

standard expectation computed using a common probability. More formally (see

[20, Proof of Theorem 4.3]), we have that

f and g are comonotonic =⇒ Pf and Pg can be chosen to be the same. (3)

2. The notion of comonotonicity has a useful characterization.5 Two functions f

and g in B (F) are comonotonic if and only if their covariance is positive for each

(finitely additive) probability, that is,

CovP (f, g) ≥ 0 for all P ∈ ∆. (4)

3. If f =
∑pf

j=1 αj1Ej is a simple function where {αj}
pf
j=1 are distinct real num-

bers, already ordered from the greatest to the smallest, and {Ej}
pf
j=1 are pairwise

disjoint nonempty events whose union is Ω, then∫
fdν =

pf∑
i=1

(αi − αi+1) ν

(
i⋃

j=1

Ej

)
(5)

where we set αpf+1 = 0 (see, e.g., [23, p. 257]).

4As it is customary, we set for each f ∈ B (F) and for each t ∈ R, (f ≥ t) = {ω ∈ Ω : f (ω) ≥ t}.
The two integrals,

∫∞
0
and

∫ 0

−∞, are Riemann integrals.
5An early version is often attributed to Chebyshev (see, e.g., Franklin [13], Armstrong [3] as well

as Chateauneuf, Kast, and Lapied [8, p. 304]). Moreover, in Mathematics often two functions/vectors

that are comonotonic are also said to be “similarly ordered”(see, e.g., Hardy, Littlewood, and Polya

[17, p. 43]).
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Quantum expectations and Quantum Mechanics In the usual formulation

of Quantum Mechanics, the primitives are, loosely speaking, not a measurable state

space and bounded random variables defined on it, but mathematical objects that

carry some similarities as well as striking differences to the measurable setting (see,

e.g., Strocchi [24] and Gustafson and Sigal [15]). Pure states are identified with unit

vectors of a separable complex Hilbert space H that, for the sake of simplicity, in the

introduction we assume to be finite dimensional. Random variables, which in this con-

text are also called observables, are replaced by bounded self-adjoint operators on H,

i.e., elements of B (H)sa. Finally, expectations, which are also termed mixed states,

are normalized,6 positive, and linear maps ϕ : B (H)sa → R. The celebrated theorem
of Gleason [14] shows that if dimH ≥ 3, then mixed states are characterized as ex-

pectations with respect to a quantum probability (see Section 3.2).7 Intuitively, one

reason why bounded self-adjoint operators can be interpreted as random variables is

the spectral theorem that guarantees that if A ∈ B (H)sa, then A =
∑pA

j=1 αjEj where

{Ej}pAj=1 are pairwise orthogonal nonzero projections which sum up to the identity I

and {αj}pAj=1 are distinct real numbers. If ϕ is a mixed state, by linearity

ϕ (A) =

pA∑
j=1

αjϕ (Ej) (6)

where (ϕ (E1) , ..., ϕ (EpA)) is a probability vector, that is, all the components are posi-

tive and sum up to 1. In other words, the value ϕ (A) can be interpreted as the average

of the spectrum of A. The key property here is that the weights ϕ (Ej) depend on A

via its spectral form. We call rA a vector of probability weights that satisfies (6). A

remarkable feature is the following one:8

A and B commute =⇒ rA and rB can be chosen to be the same. (7)

In other words, if A and B commute, then their quantum expectations coincide with

a standard average of the spectrum, computed using a common probability.

Our contributions Starting from the similarities between (3) and (7) and the

stylized fact that in the double-slit experiment probabilities are nonadditive, this paper

tries to bridge the two theories of Choquet integration and quantum expectation. We

6That is, ϕ (I) = 1 where I is the identity operator.
7Gleason’s theorem could be interpreted as a counterpart in this setting of the Riesz’s representation

theorem for integrals over bounded and measurable functions (see, e.g., [25, p. 125]).
8If A and B commute, then there exists a set {Hj}pj=1 of pairwise orthogonal nonzero projections

which sum up to the identity I such that A =
∑p

j=1 αjHj and B =
∑p

j=1 βjHj where {αj}pj=1 and

{βj}pj=1 are two collections of real numbers. Compared to the spectral form, the αjs and βjs might

not be distinct. In light of this, in (6) we can define the common vector to be r = (ϕ (H1) , ..., ϕ (Hp)).
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offer a notion of comonotonicity for bounded self-adjoint operators and we provide a

definition of quantum Choquet expectation.

Since the notion of comonotonicity in (1) is intrinsically based on random variables,

we need to resort to a characterization to extend this notion to bounded self-adjoint

operators. In light of (4), we say that A and B in B (H)sa are comonotonic if and only

if

ϕ (A ◦B)− ϕ (A)ϕ (B) ≥ 0 for all mixed states ϕ

whereA◦B is the Jordan product. Conceptually, we are declaringA andB comonotonic
if and only if their covariance is positive for each possible quantum expectation.

In Theorem 2, we prove that comonotonicity implies commutativity. In Theorem

3, we then characterize comonotonicity as a strong form of commutativity. Indeed, for

A,B ∈ B (H)sa the following statements are equivalent:

(i) The operators A and B are comonotonic;

(ii) There exist C ∈ B (H)sa and two increasing functions f, g : R→ R such that

A = f (C) and B = g (C) .

Since it is well known that A and B commute if and only if (ii) holds without the

requirement that f and g are increasing, we can say that, intuitively, commutativity

is to comonotonicity as bounded variation functions are to increasing functions. This

statement is made formal in Corollary 1.

Given this notion of comonotonicity, we can define comonotonic additivity and

characterize it. To do so, we define the notion of quantum capacity. We denote by

P (H) the set of projections of H. A function ν : P (H)→ [0, 1] is a quantum capacity

if and only if

1. ν (0) = 0 and ν (I) = 1;

2. If E,F ∈ P (H) and F ≥ E, then ν (F ) ≥ ν (E).

In this context, the Choquet expectation, denoted by Eν (A), is then defined as

follows

Eν (A) =

pA∑
i=1

(αi − αi+1) ν

(
i∑

j=1

Ej

)
where

∑pA
i=1 αiEi is the spectral form of A and, by convention, we set αpA+1 = 0.9

Clearly, this definition is based on the Choquet integral for simple random variables

9Actually, the collection {αj}pAj=1 is the set of distinct eigenvalues of A, ordered from the greatest

to the smallest.
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in (5). It is also immediate to show that when ν is a quantum probability, Eν (A) is

a standard quantum expectation. Finally, given a functional φ : B (H)sa → R we say
that φ is:

a) c-monotone if and only if

A ≥ B and A and B commute =⇒ φ (A) ≥ φ (B) ;

b) comonotonic additive if and only if

A and B are comonotonic =⇒ φ (A+B) = φ (A) + φ (B) .

In Theorem 4 we provide a quantum counterpart to Theorem 1. Indeed, we show that,

given φ : B (H)sa → R, the following statements are equivalent:

(i) φ is comonotonic additive, c-monotone, and such that φ (I) = 1;

(ii) There exists a quantum capacity ν : P (H)→ [0, 1] such that

φ (A) = Eν (A) ∀A ∈ B (H)sa .

Moreover, ν is unique.

A physical point of view Following Bell [4], Varadarajan [25, pp. 124—125]

observes that the requirement of linearity for a mixed state ϕ might be too stringent

from a physical point of view. The idea is that the mathematical conditions on φ :

B (H)sa → R that have a physical interpretation should be the ones that only involve
commuting observables. For example, the following additivity condition

φ (A+B) = φ (A) + φ (B) provided AB = BA (8)

abides by this requirement. Similarly, comonotonic additivity is another property in

line with this view (see Theorem 3 and the previous discussion). Yet, linearity and

monotonicity are not properties which only involve commuting observables. Varadara-

jan calls physical states the real-valued functionals on B (H)sa that satisfy (8) and are

also positive and normalized. Physical states correspond exactly to the functionals

generated by a quantum probability.10 On the same vein, in our work we call physical

Choquet states the functionals that are comonotonic additive, c-monotone, and such

that φ (I) = 1. Given Gleason’s and von Neumann’s theorem, if dimH ≥ 3 one can

then conclude that there are no dispersion-free physical states. In contrast, there are

plenty of dispersion-free physical Choquet states (see Remark 3).
10Recall that Gleason’s theorem proves that, if dimH ≥ 3, then the notion of physical state coincides

with that of mixed state. Nowdays, most of the theory is discussed for functionals defined over the

entire space B (H), since the extension from B (H)sa is seamless. In contrast, we operate over B (H)sa
since, already in a commutative framework, it is not obvious how to characterize Choquet integration

when integrands are allowed to be complex valued.
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Related literature To the best of our knowledge, only Vourdas [26] tried to

extend the notion of comonotonicity and Choquet integration to the Quantum Me-

chanics framework. Despite having a similar goal, the final result seems to be very dif-

ferent. Most strikingly, the Choquet integral studied there is an operator valued map

from B (H)sa to B (H)sa and, in our language, an integral with respect to a specific

projection-valued capacity. Consequently, the corresponding notion of comonotonicity

is different.

Organization of the paper In Section 2, we introduce the main mathematical

preliminaries. In Section 3, the core of our paper, we study comonotonicity and Cho-

quet integration for the space of bounded self-adjoint operators, namely, B (H)sa.
11

Since proofs are often long, we place them in Appendix A along with some ancillary

results.

2 Preliminaries

Let H be a non-trivial complex Hilbert space with inner product 〈 , 〉.12 We denote
by B (H) the space of bounded linear operators A : H → H, endowed with the

operator norm. This space is a Banach algebra once we consider as multiplication the

composition. We denote the product of two elements simply by juxtaposition, so A

times B is written AB. By B (H)sa we denote the subspace of self-adjoint operators

endowed with the operator norm. Recall that B (H)sa is a real Jordan algebra under

the Jordan product A ◦ B = 1
2

(AB +BA) (see, e.g., Alfsen and Shultz [2, Chapter

1]).13 An element A in B (H) is positive, written A ≥ 0, if and only if

〈A (x) , x〉 ≥ 0 ∀x ∈ H.

In particular, this implies that A ∈ B (H)sa. The binary relation ≥ defined by

A ≥ B ⇐⇒ A−B ≥ 0

makes B (H)sa a real ordered vector space. A linear functional ϕ : B (H)sa → R is
positive (resp., normalized) if and only if ϕ (A) ≥ 0 for all A ≥ 0 (resp., ϕ (I) = 1).

11A similar mathematical analysis can be carried out for commutative and associative Banach

algebras which admit a concrete representation as a space C (K) whereK is an Hausdorff and compact

space.
12We refer the reader to Berberian [5] for most of the definitions and facts regarding complex Hilbert

spaces.
13We remind readers that Jordan algebras are typically not associative. Moreover, if A,B ∈

B (H)sa, then AB ∈ B (H)sa if and only if A and B commute and that is a reason why we resort to

the symmetrized product ◦. Indeed, A ◦B ∈ B (H)sa for all A,B ∈ B (H)sa.
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In the literature of operator algebras, a normalized, positive, and linear functional

ϕ : B (H)sa → R is also called (mixed) state.14

As common in this literature, we define the state space and its extreme points (see,

e.g., Alfsen and Shultz [1, pp. 10—11]):

S = {ϕ ∈ B (H)∗sa : ϕ ≥ 0 and ϕ (I) = 1} and K = extS.

Elements of K are called pure states. If H is finite dimensional, then self-adjoint

operators can be identified with Hermitian matrices and it is well known (see, e.g.,

Petz [22]) that ϕ is an extreme point of S if and only if it can be written as

ϕ (A) = 〈A (w) , w〉 ∀A ∈ B (H)sa

where w is a unit vector in H.

We conclude by recalling the spectral theorem when H is finite dimensional (see,

e.g., Halmos [16, p. 156]). Given A ∈ B (H)sa, we have that there exist pA ∈ N,
{αj}pAj=1 ⊆ R, and {Ej}

pA
j=1 ⊆ B (H)sa such that:

1. αj 6= αk, provided j 6= k;

2. Ej are pairwise orthogonal projections which are all different from 0;15

3.
∑pA

j=1 Ej = I;

4. A =
∑pA

j=1 αjEj.

Given A ∈ B (H)sa withH possibly not finite dimensional, we will refer to either the

triple
(
pA, {αj}pAj=1 , {Ej}

pA
j=1

)
or
∑pA

j=1 αjEj as the finite spectral form of A if and only

if properties 1—4 are satisfied and, without loss of generality, the scalars αs (and the

corresponding projections) have already been ordered from the greatest to the smallest,

so that α1 > α2 > ... > αpA .
16 Finally, given f : R → R and A ∈ B (H)sa with

finite spectral form
(
pA, {αj}pAj=1 , {Ej}

pA
j=1

)
, as usual we denote by f (A) the element

of B (H)sa such that

f (A) =

pA∑
j=1

f (αj)Ej.

Since in what follows we are interested in the values that f takes on the finite set

{α1, ..., αpA}, we can assume that f is a polynomial, unless f needs to satisfy some
extra property (e.g., monotonicity).

14Note that a mixed state, by being normalized, positive, and linear, is also automatically Lipschitz

continuous.
15An element E ∈ B (H) is a projection if and only if E ∈ B (H)sa and E

2 = E.
16Note that under these requirements the finite spectral form is unique, that is, if(
p′A,

{
α′j
}p′A
j=1

,
{
E′j
}p′A
j=1

)
is another finite spectral decomposition, then pA = p′A as well as αj = α′j and

Ej = E′j for all j ∈ {1, ..., pA}.
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3 Main results

3.1 Comonotonicity and commutativity

We start by defining a notion of comonotonicity for a pair of elements in B (H)sa that

builds on some of the ideas presented in the introduction.

Definition 1 Let A,B ∈ B (H)sa. We say that A and B are comonotonic if and only

if

ϕ (A ◦B)− ϕ (A)ϕ (B) ≥ 0 ∀ϕ ∈ S (9)

where A ◦B = 1
2

(AB +BA) is the Jordan product.

It is well known that in Quantum Mechanics (see, e.g., Strocchi [24]) the elements

of S can be interpreted as expectations, while the elements of B (H)sa are observables.

Note that (9) has a simple interpretation: A and B are comonotonic if and only if their

covariance is positive for all possible mixed states.17 In light of this interpretation, for

each mixed state ϕ ∈ S we define Covϕ ( , ) : B (H)sa ×B (H)sa → R by

Covϕ (A,B) = ϕ (A ◦B)− ϕ (A)ϕ (B) ∀A,B ∈ B (H)sa .

It is immediate to verify that:

Lemma 1 Let A,B,C ∈ B (H)sa and λ, µ, γ, δ ∈ R. The following statements are
true:

1. For each ϕ ∈ S,
Covϕ (A,B) = Covϕ (B,A) . (10)

2. For each ϕ ∈ S,

Covϕ (λA+ γC,B) = λCovϕ (A,B) + γCovϕ (C,B) .

3. For each ϕ ∈ S,

Covϕ (λA+ γI, µB + δI) = λµCovϕ (A,B) . (11)

4. If A and B are comonotonic and λ, µ ≥ 0, then λA + γI and µB + δI are

comonotonic.
17With the caveat that here the product of A and B is taken with respect to the symmetrized

product ◦ and not with the respect to the operation of composition. This interpretation is very much
in line with the characterization of comonotonicity reported in the Introduction for a pair of bounded

and measurable functions f, g : Ω → R (cf. (4)). Finally, observe that ◦ is commutative but not
associative (except in trivial cases).
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5. A and B are comonotonic if and only if −A and −B are comonotonic.

Our main results show that comonotonicity implies commutativity.

Theorem 2 Let A,B ∈ B (H)sa be such that they both admit a finite spectral form. If

A and B are comonotonic, then they commute.

In the finite dimensional case, we fully characterize comonotonicity and the extent

to which commutativity and comonotonicity are tied together.

Theorem 3 Let H be finite dimensional and A,B ∈ B (H)sa. The following state-

ments are equivalent:

(i) The operators A and B are comonotonic;

(ii) There exist C ∈ B (H)sa and two increasing functions f, g : R→ R such that

A = f (C) and B = g (C) . (12)

In a finite dimensional Hilbert space, it is well known that A and B commute if

and only if there exist C ∈ B (H)sa and two (not necessarily increasing) functions

f, g : R → R such that (12) holds (see, e.g., Halmos [16, p. 171]). In light of this

result, comonotonicity is a strong form of commutativity in that f and g are required

to be increasing as well. The next result fully characterizes commutativity in terms of

comonotonicity.

Corollary 1 Let H be finite dimensional and A,B ∈ B (H)sa. The following state-

ments are equivalent:

(i) The operators A and B commute;

(ii) There exist A1, A2, B1, B2 ∈ B (H)sa which are pairwise comonotonic and such

that

A = A1 − A2 and B = B1 −B2. (13)

Loosely speaking, we could say that commutativity is to comonotonicity as bounded

variation functions are to increasing functions.

One could also explore the following notion of comonotonicity:

Definition 2 Let A,B ∈ B (H)sa. We say that A and B are dually comonotonic if

and only if

[ϕ (A)− ϕ′ (A)] [ϕ (B)− ϕ′ (B)] ≥ 0 ∀ϕ, ϕ′ ∈ K.
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Conceptually, we replaced the role of the states in (1) with the pure states in K.

This is also in line with the notion of dual comonotonicity studied in Cerreia-Vioglio,

Maccheroni, Marinacci, and Montrucchio [7, p. 8524]. The next result shows that dual

comonotonicity is an extremely strong condition which yields a very strong form of

commutativity.

Proposition 1 Let H be finite dimensional and A,B ∈ B (H)sa. The following state-

ments are equivalent:

(i) The operators A and B are dually comonotonic;

(ii) There exist λ ≥ 0 and µ ∈ R such that either A = λB + µI or B = λA+ µI.

The next corollary is an easy consequence of the previous proposition and it shows

that dual comonotonicity and comonotonicity are equivalent only when dimH ≤ 2. In

the opposite case, dual comonotonicity only implies comonotonicity.

Corollary 2 Let H be finite dimensional and A,B ∈ B (H)sa. If A and B are dually

comonotonic, then A and B are comonotonic. Dual comonotonicity and comonotonic-

ity are equivalent only when dimH ≤ 2.

Remark 1 Another possible way to generalize comonotonicity to bounded self-adjoint
operators is through the following condition which mimics the condition in (1), where

states are replaced by unit vectors and the product by the inner product, that is,

〈A (w)− A (w′) , B (w)−B (w′)〉 ≥ 0 ∀w,w′ ∈ H s.t. ‖w‖ = ‖w′‖ = 1.

This notion does not seem to lead to any fruitful conclusion. It is indeed equivalent

to A and B being such that AB = BA ≥ 0, that is, commuting and having a positive

product. We omit the standard proof.

3.2 Quantum Choquet states

In this section we assume that H is finite dimensional. We denote by S the unit sphere
{w ∈ H : ‖w‖ = 1}. Recall that a state is a linear, positive, and normalized (that is,
ϕ (I) = 1) functional ϕ : B (H)sa → R. It is immediate to observe that a state ϕ is
monotone, that is, A ≥ B implies ϕ (A) ≥ ϕ (B). We call a functional φ : B (H)sa → R
a Choquet state if and only if φ is comonotonic additive, monotone, and normalized.

The only property we need to discuss is comonotonic additivity.

Definition 3 A functional φ : B (H)sa → R is comonotonic additive if and only if

φ (A+B) = φ (A) + φ (B) whenever A and B are comonotonic.
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Example 1 Define φ : B (H)sa → R to be such that

φ (A) = min
w∈S
〈A (w) , w〉 ∀A ∈ B (H)sa . (14)

Clearly, φ is monotone and normalized. Consider now A and B comonotonic. It

follows that there exist C ∈ B (H)sa and two increasing functions f, g : R → R
such that A = f (C) and B = g (C). If we assume that the spectral form of C

is
{
pC , {γj}pCj=1 , {Hj}pCj=1

}
where γ1 > ... > γpC , then A =

∑pC
j=1 αjHj and B =∑pC

j=1 βjHj where αj = f (γj) and βj = g (γj) for all j ∈ {1, ..., pC}. Since f and
g are increasing, we have that αpC ≤ αj and βpC ≤ βj for all j ∈ {1, ..., pC}. It follows
that

min
w∈S
〈(A+B) (w) , w〉 = αpC + βpC = min

w∈S
〈A (w) , w〉+ min

w∈S
〈B (w) , w〉 ,

proving that φ is comonotonic additive and therefore a Choquet state. In Quantum

Mechanics, the value φ (A) is the value of A computed at its ground state. N

Example 2 Define φ : B (H)sa → R to be such that

φ (A) = max
w∈S
〈A (w) , w〉 ∀A ∈ B (H)sa . (15)

By the same arguments contained in Example 1, we can conclude that φ is a Choquet

state. N

As it is rather customary, we denote the set of all projections of H by P (H). Recall

that ρ : P (H)→ [0, 1] is a (finitely additive) quantum probability if and only if

1. ρ (0) = 0 and ρ (I) = 1;

2. ρ (E + F ) = ρ (E) + ρ (F ), provided EF = 0.

We say that ν : P (H)→ [0, 1] is a quantum capacity if and only if

1. ν (0) = 0 and ν (I) = 1;

2. ν (F ) ≥ ν (E), provided F ≥ E.

Clearly, a quantum probability is a quantum capacity.

We can define the expectation of an observable A with respect to a quantum prob-

ability ρ by

Eρ (A) =

pA∑
i=1

αiρ (Ei) (16)
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where
∑pA

i=1 αiEi is the spectral form of A.
18 At the same time, if dimH ≥ 3, Gleason’s

theorem yields that ϕ ∈ S if and only if there exists a unique quantum probability

ρ : P (H)→ [0, 1] such that ϕ (A) = Eρ (A) for all A ∈ B (H)sa.
19

Note that the expression in (16) admits the following rewriting:

Eρ (A) =

pA∑
i=1

αiρ (Ei) =

pA∑
i=1

(αi − αi+1) ρ

(
i∑

j=1

Ej

)
(17)

where, by convention, we set αpA+1 = 0. Given a quantum capacity ν, we can use (17)

to define the notion of quantum Choquet expectation. More specifically,

Eν (A) =

pA∑
i=1

(αi − αi+1) ν

(
i∑

j=1

Ej

)
(18)

where
∑pA

i=1 αiEi is the spectral form of A and αpA+1 = 0. Since the spectral form of a

bounded self-adjoint operator is unique, (18) is well defined.

Remark 2 (i) If A is not positive, then the last addendum, (αpA − αpA+1) ν (I) =

αpAν (I) = αpA , in (18) is negative. (ii) It is easy to check that the definition in (18) is

valid also for the decomposition of an element A of the kind A =
∑m

i=1 α̃iẼi. Indeed,

assume that {α̃i}mi=1 is a collection of real numbers such that α̃1 ≥ α̃2 ≥ .... ≥ α̃m and{
Ẽi

}m
i=1

is a collection of nonzero and pairwise orthogonal projections whose sum is

I. Assume also that A =
∑m

i=1 α̃iẼi. In other words, compared to the spectral form,

we do not necessarily require that α̃i 6= α̃j whenever i 6= j. By setting α̃m+1 = 0, it

follows that

m∑
i=1

(α̃i − α̃i+1) ν

(
i∑

j=1

Ẽj

)
= Eν (A) =

pA∑
i=1

(αi − αi+1) ν

(
i∑

j=1

Ej

)
.

(iii) We also have that

Eν (A) =

m∑
i=1

(α̃i − α̃i+1) ν

(
i∑

j=1

Ẽj

)
=

m∑
i=1

α̃i

[
ν

(
i∑

j=1

Ẽj

)
− ν

(
i−1∑
j=1

Ẽj

)]

where we set ν
(∑i−1

j=1 Ẽj

)
= 0 if i = 1.

We next list some of the mathematical properties that quantum Choquet expecta-

tions satisfy.

18Recall the assumption α1 > ... > αpA .
19See Gleason [14] and Dvurecenskij [11, Theorem 3.2.16]. In this section of the paper, recall that

we assume that H is finite dimensional. In general, Gleason proved his theorem for the case dimH ≥ 3

where H is a complex separable Hilbert space and ρ is countably additive.
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Proposition 2 Let H be finite dimensional, ν : P (H) → [0, 1] a quantum capacity,

and A,B ∈ B (H)sa. The following statements are true:

1. (positive homogeneity): Eν (λA) = λEν (A) for all λ ≥ 0.

2. (translation invariance): Eν (A+ λI) = Eν (A) + λ for all λ ∈ R.

3. (comonotonic additivity): Eν (A+B) = Eν (A) + Eν (B) provided A and B are

comonotonic.

4. (c-monotonicity): A ≥ B implies Eν (A) ≥ Eν (B) provided A and B commute.

5. (positivity/negativity): A ≥ 0 (resp., ≤ 0) implies Eν (A) ≥ 0 (resp., ≤ 0).

We proceed by characterizing quantum Choquet expectations as physical Choquet

states.

Definition 4 Let H be finite dimensional and φ : B (H)sa → R. We say that φ is a
physical Choquet state if and only if φ is comonotonic additive, c-monotone, and such

that φ (I) = 1.

Theorem 4 Let H be finite dimensional and φ : B (H)sa → R. The following state-
ments are equivalent:

(i) The functional φ is a physical Choquet state;

(ii) There exists a quantum capacity ν : P (H)→ [0, 1] such that

φ (A) = Eν (A) ∀A ∈ B (H)sa . (19)

Moreover, ν is unique and such that ν (E) = φ (E) for all E ∈ P (H).

In light of the previous result we characterize the representing quantum capacities

for the Choquet states presented in Examples 1 and 2.

Example 3 On the one hand, if φ is the functional in (14), the associated quantum
capacity is ν (E) = 0 for every E 6= I and ν (I) = 1. On the other hand, to the

quantum capacity ν (E) = 1 for E 6= 0 and ν (0) = 0 there corresponds the functional

φ in (15). N

Clearly, Choquet states are physical Choquet states. Therefore, Choquet states

admit a representation as quantum Choquet expectations (see, e.g., Example 3). The

converse is not true as Example 4 shows. Namely, there are functionals induced by Cho-

quet expectations that are not Choquet states, that is, they fail to be fully monotone.

Indeed, the only difference between physical Choquet states and Choquet states is that

the former ones are monotone only when the observables considered commute too,

while the latter are always monotone.
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Example 4 Consider Ē ∈ P (H) \ {0}. Define

FĒ =
{
E ∈ P (H) : E ≥ Ē

}
.

On the side, note that FĒ has the following properties:

1. 0 6∈ FĒ;

2. I ∈ FĒ;

3. If E ∈ FĒ and P (H) 3 F ≥ E, then F ∈ FĒ;

4. If E ∈ FĒ and F ∈ FĒ, then E ∧ F ∈ FĒ.20

Define ν : P (H)→ [0, 1] by

ν (E) =

{
1 E ∈ FĒ
0 E 6∈ FĒ

∀E ∈ P (H) . (20)

In light of properties 1, 2, and 3, we have that ν is a quantum capacity. Note that:21

Eν (A) = max
{i∈{1,...,pA}:∑i

j=1 Ej≥Ē}
αi ∀A ∈ B (H)sa .

Assume now that dimH = 3 as well as that {e1, e2, e3} is an orthonormal basis. De-
fine an orthonormal basis {f1, f2, f3} where f2 = e2, f1 =

√
γe1 +

√
(1− γ)e3 with

γ =
(

99
100

)2
and f3 is a unit vector orthogonal to f1 and f2. Let Ei be the projections

associated to the spaces span {ei} for all i ∈ {1, ..., 3}. Similarly, let Fi be the projec-
tions associated to the spaces span {fi} for all i ∈ {1, ..., 3}. Consider now the scalars
α1 = 4, α2 = 3, α3 = 2 and β1 = 3, β2 = 2, β3 = 1. Define

A =

3∑
j=1

αjEj and B =

3∑
j=1

βjFj.

Some tedious computations yield that A ≥ B. Now let Ē = F1. We have that

Eν (A) = (α1 − α2) ν (E1) + (α2 − α3) ν (E1 + E2) + α3. (21)

By contradiction, assume that E1 + E2 ≥ F1. This would imply that

span {f1} ⊆ span {e1} ⊕ span {e2} = span {e1, e2}
20Recall that E ∧ F is the projection associated to the closed vector subspace RangeE ∩ RangeF .
21Recall that α1 > ... > αpA .
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and, in particular, f1 ∈ span {e1, e2}. But, by construction we have that f1 =
√
γe1 +

√
1− γe3, yielding that e3 ∈ span {e1, e2}, a contradiction. We conclude that E1 +E2 6∈

FĒ and ν (E1) = ν (E1 + E2) = 0. Thus, given (21) we obtain that Eν (A) = α3, while

Eν (B) = (β1 − β2) ν (F1) + (β2 − β3) ν (F1 + F2) + β3 = β1.

This proves that

Eν (A) = α3 < β1 = Eν (B) ,

thus violating monotonicity. N

Remark 3 Let ∞ > dimH ≥ 3. In Quantum Mechanics, a state ϕ ∈ S is dispersion-
free (see, e.g., Jauch [19]) if and only if

σ (ϕ) = sup
E∈P (H)

[
ϕ (E)− ϕ (E)2] = 0. (22)

It is well known that, under the current assumptions, there are no dispersion-free states.

In other words, physical states cannot be dispersion-free. Conversely, if we consider

physical Choquet states, then there are several which are dispersion-free: for example,

all the ones generated by the quantum capacities defined as in (20). Another interesting

example of dispersion-free physical Choquet state is the quantum median as defined in

Example 6.

We close with some examples of physical Choquet states, quantum capacities, and

comonotonicity.

Example 5 (Courant-Fisher) Examples 1 and 2 can be generalized by considering
Courant-Fisher’s minimax functionals. Let dimH = n. For each k ∈ {1, ..., n} define
φk : B (H)sa → R by

φk (A) = λk ∀A ∈ B (H)sa

where λ1 ≥ ... ≥ λn are the not necessarily distinct eigenvalues of A.22 It can be shown

that (see [16, p. 181])

φk (A) = inf
V :dimV=n−k+1

max
w∈S∩V

〈A (w) , w〉 ∀A ∈ B (H)sa .

Given Theorem 3, it is routine to check that φk is a Choquet state and, in particular,

a physical Choquet state. By Theorem 4, the associated quantum capacities are

νk (E) = φk (E) =

{
1 if dim RangeE > k − 1

0 if dim RangeE ≤ k − 1
∀E ∈ P (H) . (23)

N
22Thus, accounting for multiplicity.
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Example 6 (Quantum median and Quantum quantiles) Let ρ : P (H) → [0, 1]

be a quantum probability. Define φ : B (H)sa → R by

φ (A) = αr ∀A ∈ B (H)sa

where given the spectral form of
∑pA

i=1 αiEi ofA the value r ∈ {1, ..., pA} is the minimum
value such that23

r−1∑
j=1

ρ (Ej) <
1

2
and

r∑
j=1

ρ (Ej) ≥
1

2
.

In words, αr is the maximum value of A such that the (quantum) probability of ob-

serving a value greater than or equal to αr is at least 0.5, i.e., the (quantum) median.

It is not diffi cult to show that φ is a physical Choquet state with representing quantum

capacity

ν (E) =

{
1 ρ (E) ≥ 1

2

0 ρ (E) < 1
2

∀E ∈ P (H) .

Note that the quantum median is another dispersion-free physical Choquet state. Gen-

eralizing the previous discussion to any quantile is rather straightforward. Indeed, all

is needed to do is to replace everywhere 1/2 with 1− q with q ∈ (0, 1). N

Example 7 Building on some examples coming from Economics, one could think of

a quantum capacity defined as ν = f ◦ ρ where ρ is a quantum probability and f :

[0, 1] → [0, 1] is a strictly increasing and continuous function such that f (0) = 0 and

f (1) = 1. These quantum capacities are very different from the ones described above

since they are typically not {0, 1}-valued.24 N

Example 8 Assume that E,F ∈ P (H) commute. It is well known that E + F −
EF,EF ∈ P (H). Moreover, we have that

E + F − EF = (E − F )2 + EF ≥ EF.

What is less obvious to see is that E+F −EF and EF are comonotonic. Indeed, since
E + F − EF ∈ P (H), we have that, for each ϕ ∈ S, ϕ (E + F − EF ) ∈ [0, 1] and

Covϕ (E + F − EF,EF ) = ϕ (EF )− ϕ (E + F − EF )ϕ (EF )

= ϕ (EF ) (1− ϕ (E + F − EF )) ≥ 0,

23With the convention that
∑r−1

j=1 ρ (Ej) = 0 if r = 1.
24In Economics, Choquet expectations with respect to distortions of additive probabilities have been

originally used to explain choice patterns not consistent with the linear expected utility model of von

Neumann and Morgenstern.
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yielding comonotonicity. By Theorem 4, if ν is a quantum capacity, then

Eν (E + F ) = Eν (E + F − EF + EF ) = Eν (E + F − EF ) + Eν (EF )

= ν (E + F − EF ) + ν (EF ) .

N

A Appendix

A.1 Comonotonicity and commutativity

The main goal of this appendix is to show that comonotonicity implies commutativity.

The rest will be rather standard. We begin by showing that comonotonicity implies a

form of comonotonicity which is similar to dual comonotonicity, yet less stringent. We

term such a property DP comonotonicity. Then, we prove that, given A,B ∈ B (H)sa
with finite spectral forms

∑pA
j=1 αjEj and

∑pB
j=1 βjFj, if they are DP comonotonic, then

the projections E1 and F1 commute.25 We will then proceed by induction (Lemmas 6

and 7 as well as Theorem 5) and show that each projection Ei commutes with each

projection Fl. This in turn yields that A and B commute.

In order to do so, we need the next two simple, yet crucial, results and a well known

fact. We start by the well known fact.26

Lemma 2 Let E, F , and G be three projections such that G ≤ F . The following

statements are equivalent:

(i) EF = FE;

(ii) F (RangeE) ⊆ RangeE;

(iii) E (RangeF ) ⊆ RangeF .

In particular, if E and F commute, then the following statements are equivalent:

(a) EG = GE;

(b) G (RangeE ∩ RangeF ) ⊆ RangeE ∩ RangeF .

25Throughout the appendix, the notation
∑pA

j=1 αjEj and
∑pB

j=1 βjFj will indicate the spectral forms

of A and B respectively, where α1 > ... > αpA as well as β1 > ... > βpB .
26The reader can find a version of this result in Deutsch [10, Lemma 9.2]. As the reader can verify,

the result and its proof hold also when H is a complex Hilbert space. Alternatively, one could apply

[5, Theorem 4, p. 158].

18



Lemma 3 Let A,B ∈ B (H)sa. If ϕ, ϕ
′ ∈ S are such that ϕ (A ◦B) = ϕ (A)ϕ (B)

and ϕ′ (A ◦B) = ϕ′ (A)ϕ′ (B), then

Covϕ̄ (A,B) =
1

4
[ϕ (A)− ϕ′ (A)] [ϕ (B)− ϕ′ (B)]

where ϕ̄ = 1
2
ϕ+ 1

2
ϕ′.

Proof. Consider the state ϕ̄ = 1
2
ϕ + 1

2
ϕ′ ∈ S. Since ϕ (A ◦B) = ϕ (A)ϕ (B) and

ϕ′ (A ◦B) = ϕ′ (A)ϕ′ (B), it follows that

Covϕ̄ (A,B) = ϕ̄ (A ◦B)− ϕ̄ (A) ϕ̄ (B)

=
1

2
ϕ (A ◦B) +

1

2
ϕ′ (A ◦B)

− 1

4
ϕ (A)ϕ (B)− 1

4
ϕ (A)ϕ′ (B)− 1

4
ϕ′ (A)ϕ (B)− 1

4
ϕ′ (A)ϕ′ (B)

=
1

2
ϕ (A)ϕ (B) +

1

2
ϕ′ (A)ϕ′ (B)

− 1

4
ϕ (A)ϕ (B)− 1

4
ϕ (A)ϕ′ (B)− 1

4
ϕ′ (A)ϕ (B)− 1

4
ϕ′ (A)ϕ′ (B)

=
1

4
ϕ (A)ϕ (B) +

1

4
ϕ′ (A)ϕ′ (B)− 1

4
ϕ (A)ϕ′ (B)− 1

4
ϕ′ (A)ϕ (B)

=
1

4
ϕ (A) [ϕ (B)− ϕ′ (B)] +

1

4
ϕ′ (A) [ϕ′ (B)− ϕ (B)]

=
1

4
[ϕ (A)− ϕ′ (A)] [ϕ (B)− ϕ′ (B)] ,

proving the statement. �

Given a unit vector w ∈ H, we denote by ϕw : B (H)sa → R the state such that

ϕw (A) = 〈A (w) , w〉 ∀A ∈ B (H)sa .

Viceversa, by ϕw, we will always mean a state induced by a unit vector w, as above.

Lemma 4 Let A,B ∈ B (H)sa be such that they both admit a finite spectral form. If A

and B are comonotonic, then for each i ∈ {1, ..., pA} and l ∈ {1, ..., pB} and for each
pair of unit vectors w ∈ RangeEi and w′ ∈ RangeFl

[ϕw (A)− ϕw′ (A)] [ϕw (B)− ϕw′ (B)] ≥ 0.

Proof. Let i ∈ {1, ..., pA} and l ∈ {1, ..., pB}. Define ϕ = ϕw with w ∈ RangeEi. It

follows that

〈AB (w) , w〉 = 〈B (w) , A∗ (w)〉 = 〈B (w) , A (w)〉 = αi 〈B (w) , w〉
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and

〈BA (w) , w〉 = 〈A (w) , B∗ (w)〉 = 〈A (w) , B (w)〉 = αi 〈w,B (w)〉 = αi 〈B (w) , w〉 .

We can conclude that ϕ (A ◦B) = αi 〈B (w) , w〉 = ϕ (A)ϕ (B). Define ϕ′ = ϕw′

with w′ ∈ RangeFl. Similar computations yield that ϕ′ (A ◦B) = βl 〈A (w′) , w′〉 =

ϕ′ (A)ϕ′ (B). By Lemma 3 and since A and B are comonotonic, we have that

[ϕ (A)− ϕ′ (A)] [ϕ (B)− ϕ′ (B)] = 4Covϕ̄ (A,B) ≥ 0,

proving the statement. �

In light of Definition 2 and Lemma 4, we make the following definition.

Definition 5 Let A,B ∈ B (H)sa be such that they both admit a finite spectral form.

We say that A and B are DP comonotonic if and only if for each i ∈ {1, ..., pA} and
l ∈ {1, ..., pB} and for each pair of unit vectors w ∈ RangeEi and w′ ∈ RangeFl

[ϕw (A)− ϕw′ (A)] [ϕw (B)− ϕw′ (B)] ≥ 0. (24)

We term this type of comonotonicity DP comonotonicity, since it is very close to

dual comonotonicity (see Definition 2), but it is also tightly connected to the projections

representing A and B. We are ready to prove that if A and B are DP comonotonic,

then E1 and F1 commute.

Lemma 5 Let A,B ∈ B (H)sa be such that they both admit a finite spectral form. If

A and B are DP comonotonic, then E1 and F1 commute, that is, E1F1 = F1E1.

Proof. Clearly, we can assume that both pA and pB are strictly greater than 1.

Otherwise, either E1 = I or F1 = I and the statement trivially follows. Let w ∈
RangeE1 and w′ ∈ RangeF1. Since E1, F1 6= 0, we can choose them to be such that

‖w‖2 = 1 = ‖w′‖2. Note that

ϕw (A) = α1 and ϕw′ (A) =

pA∑
j=1

αj
∥∥w′j∥∥2

where w′j = Ej (w′) for all j ∈ {1, ..., pA} as well as

ϕw (B) =

pB∑
j=1

βj ‖wj‖2 and ϕw′ (B) = β1

where wj = Fj (w) for all j ∈ {1, ..., pB}. Since A and B are DP comonotonic, we have
that (

α1 −
pA∑
j=1

αj
∥∥w′j∥∥2

)(
pB∑
j=1

βj ‖wj‖2 − β1

)
≥ 0. (25)
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Since w and w′ are unit vectors and the elements {Ej}pAj=1 (resp., {Fj}
pB
j=1) are pairwise

orthogonal, it follows that
∑pA

j=1 αj
∥∥w′j∥∥2

and
∑pB

j=1 βj ‖wj‖
2 are weighted averages.

By contradiction, assume now that E1 and F1 do not commute. By Lemma 2, there

exist w ∈ RangeE1 and w′ ∈ RangeF1 such that F1 (w) 6∈ RangeE1 and E1 (w′) 6∈
RangeF1. Clearly, we have that w 6= 0 6= w′. Without loss of generality, we can

assume that w and w′ are unit vectors. Since
∑pB

j=1 ‖wj‖
2 = ‖w‖2 = 1, it follows

that 1 > ‖w1‖2 ≥ 0.27 In particular, this implies that 1 ≥ ‖wj‖2 > 0 for some

j ∈ {2, ..., pB}. Similarly, since
∑pA

j=1

∥∥w′j∥∥2
= ‖w′‖2 = 1, it follows that 1 > ‖w′1‖

2 ≥ 0

and 1 ≥
∥∥w′j∥∥ > 0 for some j ∈ {2, ..., pA}. Since β1 > βj for all j ∈ {2, ..., pB} and

α1 > αj for all j ∈ {2, ..., pA}, this implies that

α1 −
pA∑
j=1

αj
∥∥w′j∥∥2

> 0 and
pB∑
j=1

βj ‖wj‖2 − β1 < 0,

a contradiction with (25). �

We now extend the previous statement by showing that ifA andB are DP comonotonic,

then E1 commutes with all the elements of {Fj}pBj=1 and F1 commutes with all the ele-

ments of {Ej}pAj=1.

Lemma 6 Let A,B ∈ B (H)sa be such that they both admit a finite spectral form. If A

and B are DP comonotonic, then E1 and Fj commute for all j ∈ {1, ..., pB}. Similarly,
F1 and Ej commute for all j ∈ {1, ..., pA}.

Proof. As in the proof of Lemma 5, we can assume that both pA and pB are strictly
greater than 1. Otherwise, either E1 = I or F1 = I and the statement trivially follows.

We prove by induction that E1 commutes with all the elements of {Fj}kj=1 for all

k ∈ {1, ..., pB}.
Initial Step. k = 1. It follows from Lemma 5.

Inductive Step. Assume the statement is true for 1 ≤ k < pB. We next show it holds

for k+1. We only need to show that E1Fk+1 = Fk+1E1. Define F = I−
∑k

j=1 Fj. Since

E1 commutes with each Fj with j ∈ {1, ..., k}, we have that E1 and F commute

E1F = E1

(
I −

k∑
j=1

Fj

)
= E1−

k∑
j=1

E1Fj = E1−
k∑
j=1

FjE1 =

(
I −

k∑
j=1

Fj

)
E1 = FE1.

(26)

We now have two cases:
27Otherwise, we would have that ‖w1‖2 = 1. This would imply that ‖wj‖2 = 0 for all j ∈ {2, ..., pB},

that is, wj = 0 for all j ∈ {2, ..., pB}. In turn, this would yield that RangeE1 3 w = w1 = F1 (w) 6∈
RangeE1, a contradiction.
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1. k + 1 = pB. It follows that Fk+1 = I −
∑pB−1

j=1 Fj = I −
∑k

j=1 Fj = F . By (26),

this implies that E1 and Fk+1 commute.

2. k + 1 < pB. Since
∑pB

j=k+1 Fj = F , observe that Fk+1 ≤ F . By contradiction,

assume that E1 and Fk+1 do not commute. By Lemma 2, this implies that

there exists w ∈ RangeE1 ∩ RangeF such that Fk+1 (w) 6∈ RangeE1 ∩ RangeF .

Without loss of generality, we can assume that w is a unit vector. Given w, define

wj = Fj (w) for all j ∈ {1, ..., pB}. Since w ∈ RangeF , it follows that wj = 0 for

all j ∈ {1, ..., k}. At the same time, since ‖w‖2 = 1, we have that

1 = ‖w‖2 =

∥∥∥∥∥
pB∑

j=k+1

wj

∥∥∥∥∥
2

=

pB∑
j=k+1

‖wj‖2

and 1 > ‖wk+1‖2 ≥ 0.28 In particular, we have that 1 ≥ ‖wj‖2 > 0 for some j ∈
{k + 2, ..., pB}. By Lemma 2 and since E1 and Fk+1 do not commute, there exists

w′ ∈ RangeFk+1 such that E1 (w′) 6∈ RangeFk+1. Without loss of generality,

we can assume that w′ is a unit vector. Given w′, define w′j = Ej (w′) for all

j ∈ {1, ..., pA}. Since ‖w′‖2 = 1, we have that

1 = ‖w′‖2
=

∥∥∥∥∥
pA∑
j=1

w′j

∥∥∥∥∥
2

=

pA∑
j=1

∥∥w′j∥∥2

and 1 > ‖w′1‖ ≥ 0.29 In particular, we have that 1 ≥ ‖wj‖2 > 0 for some

j ∈ {2, ..., pA}. It follows that

α1 −
pA∑
j=1

αj
∥∥w′j∥∥2

> 0 and
pB∑
j=1

βj ‖wj‖2 − βk+1 =

pB∑
j=k+1

βj ‖wj‖2 − βk+1 < 0.

We can conclude that there exist two unit vectors w ∈ RangeE1 and w′ ∈
28Otherwise, if ‖wk+1‖2 = 1, we would have that ‖wj‖2 = 0 for all j ∈ {k + 2, ..., pB}, yielding that

wj = 0 for all j ∈ {1, ..., pB} \ {k + 1}. This would imply that

RangeE1 ∩ RangeF 3 w = wk+1 = Fk+1 (w) 6∈ RangeE1 ∩ RangeF,

a contradiction.
29Otherwise, if ‖w′1‖

2
= 1, we would have that

∥∥w′j∥∥2
= 0 for all j ∈ {2, ..., pA}, that is, w′j = 0 for

all j ∈ {2, ..., pA}. This would imply that

RangeFk+1 3 w′ = w′1 = E1 (w′) 6∈ RangeFk+1,

a contradiction.
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RangeFk+1 such that

0 >

(
α1 −

pA∑
j=1

αj
∥∥w′j∥∥2

)(
pB∑
j=1

βj ‖wj‖2 − βk+1

)
= [ϕw (A)− ϕw′ (A)] [ϕw (B)− ϕw′ (B)] ≥ 0,

a contradiction with A and B being DP comonotonic, proving the inductive step.

The first part of the statement follows by induction. The rest of the statement

follows given the symmetric role of A and B in the definition of DP comonotonicity.�

Next, we extend the previous result.

Lemma 7 Let A,B ∈ B (H)sa be such that they both admit a finite spectral form where

pA > 1. If A and B are DP comonotonic and if all the elements of {Ej}kj=1 pairwise

commute with all the elements of {Fj}pBj=1 for some 1 ≤ k < pA, then Ek+1 commutes

with Fl for all l ∈ {1, ..., pB}.

Proof. Assume that A and B are DP comonotonic. Assume also that all the elements
of {Ej}kj=1 pairwise commute with all the elements of {Fj}

pB
j=1 for some 1 ≤ k < pA.

We want to show that Ek+1Fl = FlEk+1 for all l ∈ {1, ..., pB}. If pB = 1, then the

statement is trivial since F1 = I. Otherwise, pB > 1 and we proceed by induction on l.

Initial Step. l = 1. It follows from Lemma 6.

Inductive Step. Consider l ∈ {1, ..., pB − 1} such that Ek+1Fl′ = Fl′Ek+1 for all

l′ ∈ {1, ..., l}. We only need to show that Ek+1Fl+1 = Fl+1Ek+1. We have two cases:

1. l + 1 = pB. In this case, we have that l = pB − 1. It follows that

Ek+1 − Ek+1FpB = Ek+1 (I − FpB) = Ek+1

(
pB−1∑
l′=1

Fl′

)
=

pB−1∑
l′=1

Ek+1Fl′

=

pB−1∑
l′=1

Fl′Ek+1 =

(
pB−1∑
l′=1

Fl′

)
Ek+1 = (I − FpB)Ek+1

= Ek+1 − FpBEk+1,

yielding that FpBEk+1 = Ek+1FpB .

2. l + 1 < pB. By hypothesis, Fl+1 and Ej commute for all j ∈ {1, ..., k}. This
implies that Fl+1 commutes with E = I −

∑k
j=1Ej =

∑pA
j=k+1Ej. We have two

subcases:

(a) k + 1 = pA. In this case, we have that Ek+1 = E, yielding that Ek+1 and

Fl+1 commute.
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(b) k + 1 < pA. By contradiction, assume that Fl+1 does not commute with

Ek+1. By Lemma 2 and since Ek+1 ≤ E, it follows that there exists w′ ∈
RangeFl+1∩RangeE such that Ek+1 (w′) 6∈ RangeFl+1∩RangeE. Without

loss of generality, we can assume that w′ is a unit vector. Given w′, define

w′j = Ej (w′) for all j ∈ {1, ..., pA}. Since w′ ∈ RangeE, it follows that

w′j = 0 for all j ∈ {1, ..., k}. At the same time, since ‖w′‖2 = 1, we have

that

1 = ‖w′‖2
=

∥∥∥∥∥
pA∑

j=k+1

w′j

∥∥∥∥∥
2

=

pA∑
j=k+1

∥∥w′j∥∥2

and 1 >
∥∥w′k+1

∥∥2 ≥ 0.30 In particular, we have that 1 ≥
∥∥w′j∥∥2

> 0 for some

j ∈ {k + 2, ..., pA}. It follows that

ϕw′ (B) = βl+1 and ϕw′ (A) =

pA∑
j=1

αj
∥∥w′j∥∥2

=

pA∑
j=k+1

αj
∥∥w′j∥∥2

< αk+1. (27)

By inductive hypothesis all the elements in {Fl′}ll′=1 pairwise commute with

Ek+1. Define F =
∑pB

l′=l+1 Fl′ . It follows that

Ek+1F = Ek+1

(
I −

l∑
l′=1

Fl′

)
= Ek+1 − Ek+1

l∑
l′=1

Fl′

= Ek+1 −
l∑

l′=1

Ek+1Fl′ = Ek+1 −
l∑

l′=1

Fl′Ek+1

= Ek+1 −
(

l∑
l′=1

Fl′

)
Ek+1 =

(
I −

l∑
l′=1

Fl′

)
Ek+1

= FEk+1.

This proves that Ek+1 and F commute. By Lemma 2 and since Fl+1 ≤ F

and Fl+1 does not commute with Ek+1, it follows that there exists w ∈
RangeEk+1∩RangeF such that Fl+1 (w) 6∈ RangeEk+1∩RangeF . Without

loss of generality, we can assume that w is a unit vector. Given w, define

wj = Fj (w) for all j ∈ {1, ..., pB}. Since w ∈ RangeF , it follows that wj = 0

for all j ∈ {1, ..., l}. At the same time, since ‖w‖2 = 1, we have that

1 = ‖w‖2 =

∥∥∥∥∥
pB∑

j=l+1

wj

∥∥∥∥∥
2

=

pB∑
j=l+1

‖wj‖2

30Otherwise, if
∥∥w′k+1

∥∥2
= 1, we would have that

∥∥w′j∥∥2
= 0 for all j ∈ {k + 2, ..., pA}. Moreover,

we would have that w′j = 0 for all j ∈ {1, ..., pA} \ {k + 1}. This would imply that

RangeFl+1 ∩ RangeE 3 w′ = w′k+1 = Ek+1 (w′) 6∈ RangeFl+1 ∩ RangeE,

a contradiction.
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and 1 > ‖wl+1‖2 ≥ 0.31 In particular, we have that 1 ≥ ‖wj‖2 > 0 for some

j ∈ {l + 2, ..., pB}. It follows that

ϕw (B) =

pB∑
j=1

βj ‖wj‖2 =

pB∑
j=l+1

βj ‖wj‖2 < βl+1 and ϕw (A) = αk+1. (28)

Equations (27) and (28) yield that there exist w ∈ RangeEk+1 and w′ ∈
RangeFl+1 such that

0 ≤ [ϕw (A)− ϕw′ (A)] [ϕw (B)− ϕw′ (B)] < 0,

a contradiction with A and B being DP comonotonic, proving the inductive

step.

The statement follows by induction. �

We are ready to prove that DP comonotonicity implies commutativity.

Theorem 5 Let A,B ∈ B (H)sa be such that they both admit a finite spectral form. If

A and B are DP comonotonic, then they commute.

Proof. As in the proof of Lemma 5, we can assume that both pA and pB are strictly
greater than 1. Otherwise, either E1 = I or F1 = I and the statement trivially follows.

We next prove by induction that for each k ∈ {1, ..., pA} all the elements of {Ej}kj=1

pairwise commute with all the elements of {Fj}pBj=1 .

Initial Step. k = 1. It follows from Lemma 6.

Inductive Step. Assume the statement is true for 1 ≤ k < pA. We next show it

holds for k + 1. Let i ∈ {1, ..., k + 1} and l ∈ {1, ..., pB} and consider Ei and Fl. We
have two cases:

1. i ≤ k. By inductive hypothesis, if i ≤ k, then Ei and Fl commute.

2. i = k + 1. By Lemma 7, Ei = Ek+1 and Fl commute.

Points 1 and 2 prove the inductive step.

The statement follows by induction. In particular, by setting k = pA, we have that

all the elements of {Ej}pAj=1 and {Fj}
pB
j=1 pairwise commute. This yields that A and B

commute. �
31Otherwise, if ‖wl+1‖2 = 1, we would have that ‖wj‖2 = 0 for all j ∈ {l + 2, ..., pB}. Moreover, we

would have that wj = 0 for all j ∈ {1, ..., pB} \ {l + 1}. This would imply that

RangeEk+1 ∩ RangeF 3 w = wl+1 = Fl+1 (w) 6∈ RangeEk+1 ∩ RangeF,

a contradiction.
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Proof of Theorem 2. By Lemma 4 and since A and B are comonotonic, A and B

are DP comonotonic. By Theorem 5, this implies that A and B commute. �

Before discussing the finite dimensional case, we need a useful fact about comonotonic

vectors.

Example 9 Let p > 1 and consider Rp. Consider also the set

∆p−1 =

{
r ∈ Rp+ :

p∑
j=1

rj = 1

}
.

By Denneberg [9, Proposition 4.5], one can prove that the following three conditions

are equivalent:

1. x and y in Rp are such that

p∑
j=1

(xjyj) rj −
(

p∑
j=1

xjrj

)(
p∑
j=1

yjrj

)
≥ 0 ∀r ∈ ∆p−1;

2. x and y in Rp are such that

(xi − xj) (yi − yj) ≥ 0 ∀i, j ∈ {1, ..., p} ; (29)

3. There exist a vector z ∈ Rp such that zi 6= zj whenever i 6= j and two increasing

functions f, g : R→ R such that

xi = f (zi) and yi = g (zi) ∀i ∈ {1, ..., p} .

N

Theorem 6 Let H be finite dimensional and A,B ∈ B (H)sa. The following state-

ments are equivalent:

(i) The operators A and B are comonotonic;

(ii) The operators A and B are DP comonotonic;

(iii) The operators A and B are DP comonotonic and commute;

(iv) There exist C ∈ B (H)sa and two increasing functions f, g : R→ R such that

A = f (C) and B = g (C) .
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Proof. Before starting, recall that given C ∈ B (H)sa, the notation f (C) means that

f (C) =

pC∑
j=1

f (γj)Hj

where
∑pC

j=1 γjHj is the spectral form of C. Consider now a matrix A =
∑p

j=1 αjHj

where {Hj}pj=1 is a collection of nonzero pairwise orthogonal projections such that∑p
j=1Hj = I.32 Observe that trivially

ϕ (A) =

p∑
j=1

αjϕ (Hj) ∀ϕ ∈ S (30)

where (ϕ (H1) , ..., ϕ (Hp)) is a vector that belongs to ∆p−1, that is, ϕ (Hj) ≥ 0 for all

j ∈ {1, ..., p} and
∑p

j=1 ϕ (Hj) = ϕ
(∑p

j=1Hj

)
= ϕ (I) = 1. Finally, since H is finite

dimensional, we have that A and B both admit a finite spectral form.

(i) implies (ii). By Lemma 4 and since A and B are comonotonic and both admit

a finite spectral form, A and B are DP comonotonic.

(ii) implies (iii). By Theorem 5 and since A and B both admit a finite spectral

form and are DP comonotonic, it follows that A and B commute too.

(iii) implies (iv). Since A and B commute (see, e.g., [16, p. 171]), there exist

C ∈ B (H)sa and f, g : R → R such that A = f (C) and B = g (C). Assume that the

spectral form of C is C =
∑pC

j=1 γjHj. If pC = 1, the statement trivially follows, since

f and g can be taken to be constant. If pC > 1, then define α, β ∈ RpC as the vectors
such that αj = f (γj) and βj = g (γj) for all j ∈ {1, ..., pC}. Let (pA, {α′k}

pA
k=1 , {Ek}

pA
k=1)

(resp., (pB, {β′k}
pB
k=1 , {Fk}

pB
k=1)) be the spectral form of A (resp., B). It follows that

pA, pB ≤ pC and for each i, j ∈ {1, ..., pC} we have that Hi ≤ Ek and Hj ≤ Fk′ for

some k ∈ {1, ..., pA} and k′ ∈ {1, ..., pB}. Let w and w′ be unit vectors such that

w ∈ RangeHi ⊆ RangeEk and w′ ∈ RangeHj ⊆ RangeFk′ . Since A and B are DP

comonotonic, we have that

(αi − αj) (βi − βj) = [ϕw (A)− ϕw′ (A)] [ϕw (B)− ϕw′ (B)] ≥ 0.

By Example 9, we can conclude that α and β are comonotonic vectors as in (29),

therefore, there exist a vector γ̂ ∈ RpC and f̂ , ĝ : R → R increasing such that γ̂i 6= γ̂j

for all i 6= j and αj = f̂ (γ̂j) and βj = ĝ (γ̂j) for all j ∈ {1, ..., pC}. Define

Ĉ =

pC∑
j=1

γ̂jHj.

32Note that this might not be the spectral form of A, since we did not require the elements of

{αj}pj=1 to be distinct.
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It is immediate to see that A = f̂
(
Ĉ
)
and B = ĝ

(
Ĉ
)
, proving the implication.

(iv) implies (i). Consider C and its spectral form
∑pC

j=1 γjHj. By assumption, it

follows that A =
∑pC

j=1 f (γj)Hj and B =
∑pC

j=1 g (γj)Hj. Define α, β ∈ RpC as the
vectors such that αj = f (γj) and βj = g (γj) for all j ∈ {1, ..., pC}. Let ϕ ∈ S. Define
by r ∈ RpC the probability vector rj = ϕ (Hj) for all j ∈ {1, ..., pC}. By (30), we can
conclude that

ϕ (A) =

pC∑
j=1

αjϕ (Hj) =

pC∑
j=1

αjrj and ϕ (B) =

pC∑
j=1

βjϕ (Hj) =

pC∑
j=1

βjrj.

Since A and B commute, we have that A ◦B = AB =
∑pC

j=1 (αjβj)Hj. It follows that

ϕ (A ◦B) =

pC∑
j=1

(αjβj)ϕ (Hj) =

pC∑
j=1

(ajβj) rj.

By construction and Example 9, we have that α and β are comonotonic as in (29).

This implies that

ϕ (A ◦B)− ϕ (A)ϕ (B) =

pC∑
j=1

(αjβj) rj −
(

pC∑
j=1

αjrj

)(
pC∑
j=1

βjrj

)
≥ 0. (31)

Since ϕ was arbitrarily chosen, it follows that (31) holds for all ϕ ∈ S, proving that A
and B are comonotonic. �

Proof of Theorem 3. It follows from the equivalence of (i) and (iv) of Theorem 6.�

Proof of Corollary 1. (i) implies (ii). Since A and B commute, there exist C ∈
B (H)sa and f, g : R → R such that A = f (C) and B = g (C). Assume that the

spectral form of C is C =
∑pC

j=1 γjHj. Since we are only interested in the values

that f and g take on the finite set {γj}pCj=1 ⊆ R, we can consider f and g being of
bounded variation and write them as difference of two increasing functions: namely,

f = f1 − f2 and g = g1 − g2 where f1, f2, g1, g2 are increasing functions from R to R.
Define A1 = f1 (C), A2 = f2 (C), B1 = g1 (C), and B2 = g2 (C). Clearly, we have that

A = A1−A2 and B = B1−B2. By construction and Theorem 3, we have that A1, A2,

B1, and B2 are pairwise comonotonic.

(ii) implies (i). By Theorem 3 and sinceA1, A2, B1, andB2 are pairwise comonotonic,

we have that they pairwise commute. By (13), this implies that

AB = (A1 − A2) (B1 −B2) = A1B1 − A1B2 − A2B1 + A2B2

= B1A1 −B2A1 −B1A2 +B2A2

= (B1 −B2) (A1 − A2) = BA,
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proving that A and B commute. �

Proof of Proposition 1. (i) implies (ii). Clearly, dual comonotonicity implies DP
comonotonicity. By Theorem 6, DP comonotonicity implies that A and B commute.

Since A and B commute, there exist C ∈ B (H)sa and f, g : R → R such that

A = f (C) and B = g (C). Assume that the spectral form of C is C =
∑pC

j=1 γjHj.

Define α, β ∈ RpC to be the vectors such that αj = f (γj) and βj = g (γj) for all

j ∈ {1, ..., pC}. Hence, A =
∑pC

j=1 αjHj and B =
∑pC

j=1 βjHj. For each j ∈ {1, ..., pC}
fix a unit vector wj ∈ RangeHj. Next, consider the space of affi ne functions over

the set ∆pC−1, that is, Aff (∆pC−1). Define also for each r ∈ ∆pC−1 the vector

wr ∈ H by wr =
∑pC

j=1

√
rjwj. Since the elements of {Hj}pCj=1 are pairwise orthog-

onal, we have that the vectors in {wj}pCj=1 are pairwise orthogonal. This implies that

‖wr‖2 =
∥∥∥∑pC

j=1

√
rjwj

∥∥∥2

=
∑pC

j=1

∥∥√rjwj∥∥2
=
∑pC

j=1 rj = 1, that is, wr is a unit vector.

Define Ã ∈ Aff (∆pC−1) to be such that Ã (r) =
∑pC

j=1 αjrj =
∑pC

j=1 αjrj ‖wj‖
2 for all

r ∈ ∆pC−1. Note also that for each r ∈ ∆pC−1

Ã (r) =

pC∑
j=1

αjrj ‖wj‖2 =

pC∑
j=1

αj
∥∥√rjwj∥∥2

= 〈A (wr) , wr〉 = ϕwr (A) (32)

where ϕwr is the pure state induced by the unit vector wr. Define also B̃ ∈ Aff (∆pC−1)

to be such that B̃ (r) =
∑pC

j=1 βjrj =
∑pC

j=1 βjrj ‖wj‖
2 for all r ∈ ∆pC−1. It follows that

(32) holds also for B̃ by replacing A with B and αj with βj. Since A and B are dually

comonotonic, this implies that for each r, r′ ∈ ∆pC−1[
Ã (r)− Ã (r′)

] [
B̃ (r)− B̃ (r′)

]
=
[
ϕwr (A)− ϕwr′ (A)

] [
ϕwr (B)− ϕwr′ (B)

]
≥ 0,

proving that Ã and B̃ are comonotonic. By Denneberg [9, Proposition 4.5], it follows

that Ã = ϕ
(
Ã+ B̃

)
and B̃ = ψ

(
Ã+ B̃

)
where ϕ, ψ : R→ R are increasing functions.

Since Ã, B̃, and Ã + B̃ are affi ne and ϕ is increasing, it follows that ϕ can be chosen

to be also affi ne,33 that is, ϕ (t) = λ̄t + µ̄ where λ̄ ≥ 0 and µ̄ ∈ R. This implies that
Ã = λ̄Ã+ λ̄B̃ + µ̄, that is,

(
1− λ̄

)
Ã = λ̄B̃ + µ̄. We have three cases:

1. λ̄ > 1. In this case, we have that Ã = λ̂B̃ + µ̂ where λ̂ = λ̄
1−λ̄ and µ̂ = µ̄

1−λ̄ . Note

that λ̂ < 0. This implies that

0 ≤
[
Ã (r)− Ã (r′)

] [
B̃ (r)− B̃ (r′)

]
=
[
λ̂B̃ (r) + µ̂− λ̂B̃ (r′)− µ̂

] [
B̃ (r)− B̃ (r′)

]
= λ̂

[
B̃ (r)− B̃ (r′)

]2

≤ 0 ∀r, r′ ∈ ∆pC−1.

33Indeed, given the assumptions, ϕ turns out to be affi ne on the range of Ã+ B̃.
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This implies that B̃ = k for some k ∈ R. Consider r ∈ ∆pC−1 such that rj = 1

and ri = 0 for i 6= j. It follows that

βj = B̃ (r) = k.

Since j ∈ {1, ..., pC} was arbitrarily chosen, we can conclude that B = kI. If we

define λ = 0 and µ = k, we have that B = λA+ µI.

2. λ̄ = 1. In this case, we have that B̃ = −µ̄. Consider r ∈ ∆pC−1 such that rj = 1

and ri = 0 for i 6= j. It follows that

βj = B̃ (r) = −µ̄.

Since j ∈ {1, ..., pC} was arbitrarily chosen, we can conclude that B = λA + µI

where λ = 0 and µ = −µ̄.

3. λ̄ < 1. In this case, we have that Ã = λB̃+µ where λ = λ̄
1−λ̄ and µ = µ̄

1−λ̄ . Since

λ̄ ≥ 0, note that λ ≥ 0. Consider r ∈ ∆pC−1 such that rj = 1 and ri = 0 for

i 6= j. It follows that

αj = Ã (r) = λB̃ (r) + µ = λβj + µ.

Since j ∈ {1, ..., pC} was arbitrarily chosen, we can conclude that A = λB + µI.

(ii) implies (i). It is trivial. �

A.2 Choquet integration

Proof of Proposition 2. Properties 1 and 2 follow from the definition of quantum

Choquet expectation and the properties of the spectral form.

3. Let A and B be comonotonic. By Theorem 3, A = f (C) and B = g (C) where

C ∈ B (H)sa and f and g are increasing functions from R to R. Let C have the

following spectral form
∑pC

i=1 γiHi. Since f and g are increasing, we have that

A+B =

pC∑
j=1

(f (γj) + g (γj))Hj

where f (γ1) ≥ ... ≥ f (γpC ), g (γ1) ≥ ... ≥ g (γpC ), and f (γ1) + g (γ1) ≥ ... ≥ f (γpC ) +

g (γpC ). By (iii) of Remark 2, we conclude that

Eν (A+B) =

pC∑
i=1

(f (γi) + g (γi))

[
ν

(
i∑

j=1

Hj

)
− ν

(
i−1∑
j=1

Hj

)]

=

pC∑
i=1

f (γi)

[
ν

(
i∑

j=1

Hj

)
− ν

(
i−1∑
j=1

Hj

)]
+

pC∑
i=1

g (γi)

[
ν

(
i∑

j=1

Hj

)
− ν

(
i−1∑
j=1

Hj

)]
= Eν (A) + Eν (B) ,
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as desired.

4. Assume that A and B commute with A ≥ B ≥ 0. It is well known that

A = f (C) and B = g (C) where C ∈ B (H)sa and f and g are two functions from

R to R. Let C have the following spectral form
∑pC

i=1 γiHi. Define αj = f (γj) and

βj = g (γj) for all j ∈ {1, ..., pC}. Consider A. Note that there exists a bijection
π : {1, ..., pC} → {1, ..., pC} such that i ≤ j implies απ(i) ≥ απ(j). Define α̃i = απ(i)

and Ẽi = Hπ(i) for all i ∈ {1, ..., pC}. Let also α̃pC+1 = 0. Clearly, we have that

A =
∑pC

i=1 αiHi =
∑pC

i=1 απ(i)Hπ(i) =
∑pC

i=1 α̃iẼi. Define the following two mathematical

objects:

a. IA,t = {j ∈ {1, ..., pC} : αj ≥ t} for all t ∈ [0,∞);

b. νA : [0,∞)→ [0, 1] to be such that νA (t) = ν
(∑

j∈IA,t Hj

)
for all t ∈ [0,∞) with

the convention that if IA,t = ∅, then
∑

j∈IA,t Hj = 0 and νA (t) = 0.

On the one hand, by (ii) of Remark 2 we have that

Eν (A) =

pC∑
i=1

(α̃i − α̃i+1) ν

(
i∑

j=1

Ẽj

)
.

On the other hand, since A ≥ 0 we have that for each t ∈ [0,∞),34

νA (t) =


0 t > α̃1

ν
(∑i

j=1 Ẽj

)
α̃i ≥ t > α̃i+1 and i ∈ {1, ..., pC}

1 t = 0

.

Note that νA is a decreasing function which eventually vanishes. So, it is Riemann

integrable and∫ ∞
0

νA (t) dt =

∫ α̃1

0

νA (t) dt =

pC∑
i=1

(α̃i − α̃i+1) ν

(
i∑

j=1

Ẽj

)
.

We can conclude that

Eν (A) =

∫ ∞
0

νA (t) dt. (33)

If we define IB,t for all t ∈ [0,∞) and νB similarly, then the same arguments yield that

Eν (B) =

∫ ∞
0

νB (t) dt. (34)

Since A ≥ B, we have that IB,t ⊆ IA,t for all t ≥ 0, proving that νB (t) ≤ νA (t) for all

t ≥ 0. By (33) and (34), we conclude that Eν (A) ≥ Eν (B). Finally, assume that A

34Observe that if α̃i = α̃i+1, then there does not exist any t ≥ 0 such that α̃i ≥ t > α̃i+1. Hence,

the equality νA (t) = ν
(∑i

j=1 Ẽj

)
is vacuously true.
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and B commute and A ≥ B. It follows that there exists λ ≥ 0 such that Ã ≥ B̃ ≥ 0

where Ã = A+ λI and B̃ = B+ λI. Clearly, Ã and B̃ commute. By the previous part

of the proof and point 2, we have that

Eν (A) + λ = Eν (A+ λI) = Eν
(
Ã
)
≥ Eν

(
B̃
)

= Eν (B + λI) = Eν (B) + λ,

proving point 4.

5. If we define B = 0, then clearly A and B commute. By point 4 and since

Eν (B) = 0, it follows that Eν (A) ≥ Eν (B) = 0 (resp., 0 = Eν (B) ≥ Eν (A)). �

Lemma 8 Let H be finite dimensional and φ : B (H)sa → R. The following statements
are true:

1. If φ is a Choquet state, then φ is a physical Choquet state.

2. If φ is a physical Choquet state, then

φ (λA) = λφ (A) ∀λ ≥ 0,∀A ∈ B (H)sa s.t. A ≥ 0 (35)

and

φ (A+ γI) = φ (A) + γ ∀A ∈ B (H)sa ,∀γ ∈ R. (36)

3. If φ is a Choquet state, then φ is Lipschitz continuous.

Proof. 1. It is trivial. 2. Clearly, 0 is comonotonic with itself. This implies that

φ (0) = φ (0 + 0) = φ (0) + φ (0), proving that φ (0) = 0. Consider A ∈ B (H)sa.

By Lemma 1 and since Covϕ (A,A) ≥ 0 for all ϕ ∈ S, observe that kA is always

comonotonic with k′A, provided k, k′ ∈ [0,∞). In light of this, we are going to prove

that a physical Choquet state is positively homogeneous when the argument is a positive

element. Indeed, if k ∈ N, we have that kA = (k − 1)A + A. Since (k − 1)A and A

are comonotonic and φ is comonotonic additive, it follows that

φ (kA) = φ ((k − 1)A) + φ (A) ∀k ∈ N.

By induction and since A was arbitrarily chosen, it follows that

φ (kA) = kφ (A) ∀A ∈ B (H)sa ,∀k ∈ N. (37)

Next, consider B ∈ B (H)sa and n ∈ N. Define A = 1
n
B. It follows that B = nA. By

(37), we can conclude that φ (B) = φ (nA) = nφ (A) = nφ
(

1
n
B
)
. Since B and n were

arbitrarily chosen, it follows that

φ

(
1

n
B

)
=

1

n
φ (B) ∀B ∈ B (H)sa ,∀n ∈ N. (38)

32



Consider now C ∈ B (H)sa and q ∈ Q∩(0,∞). It follows that q = k
n
for some k, n ∈ N.

By combining (37) and (38), we have that φ (qC) = φ
(
k
n
C
)

= kφ
(

1
n
C
)

= k
n
φ (C) =

qφ (C). Since C and q were arbitrarily chosen, it follows that

φ (qC) = qφ (C) ∀C ∈ B (H)sa ,∀q ∈ Q ∩ (0,∞) . (39)

Next, consider λ ≥ 0 and C ∈ B (H)sa such that C ≥ 0. We have two cases:

1. λ = 0. Since φ (0) = 0, we have that φ (λC) = φ (0) = 0 = λφ (C).

2. λ > 0. It follows that qC ≤ λC ≤ rC for all r, q ∈ Q∩(0,∞) such that q ≤ λ ≤ r.

By (39) and since φ is c-monotone, this implies that

qφ (C) = φ (qC) ≤ φ (λC) ≤ φ (rC) = rφ (C) .

By taking two sequences {qn}n∈N , {rn}n∈N ⊆ Q ∩ (0,∞) such that qn ≤ λ ≤ rn

for all n ∈ N, qn → λ, and rn → λ, we can conclude that φ (λC) = λφ (C).

Since C and λ were arbitrarily chosen, points 1 and 2 show that

φ (λC) = λφ (C) ∀λ ∈ [0,∞) ,∀C ∈ B (H)sa s.t. C ≥ 0, (40)

proving (35). We next prove (36). By definition of comonotonicity, we have that A

and λI are comonotonic for all A ∈ B (H)sa and for all λ ≥ 0. By (40) and since φ is

comonotonic additive and normalized, this implies that

φ (A+ λI) = φ (A) + φ (λI) = φ (A) + λφ (I) = φ (A) + λ ∀A ∈ B (H)sa ,∀λ ≥ 0.

(41)

Given (41), we only need to prove that (41) also holds for λ < 0. Consider λ < 0,

hence −λ > 0 and A+ λI ∈ B (H)sa. By (41), this implies that

φ (A) = φ ((A+ λI) + (−λI)) = φ (A+ λI)− λ,

proving (36).

3. Let φ be a Choquet state. By point 1, also the results in point 2 hold. We next

prove Lipschitz continuity. Let A,B ∈ B (H)sa. Recall that for each C ∈ B (H)sa we

have that ‖C‖ I ≥ C ≥ −‖C‖ I. This implies that A + ‖B − A‖ I ≥ B. By (36) and

since φ is monotone, this yields that

φ (A) + ‖B − A‖ = φ (A+ ‖B − A‖ I) ≥ φ (B) ,

that is, ‖B − A‖ ≥ φ (B)− φ (A). Given the symmetric role of A and B, we can con-

clude that ‖B − A‖ = ‖A−B‖ ≥ φ (A) − φ (B), that is, ‖B − A‖ ≥ |φ (A)− φ (B)|,
proving Lipschitz continuity. �

33



Proof of Theorem 4. (i) implies (ii). Define ν : P (H) → R by ν (E) = φ (E) for

all E ∈ P (H). By point 2 of Lemma 8, we have that φ (0) = 0. Since φ (I) = 1, this

implies that ν (0) = φ (0) = 0 = φ (I)− 1 = ν (I)− 1. Note that if E,F ∈ P (H) and

F ≥ E, then E and F commute. Thus, ν (F ) = φ (F ) ≥ φ (E) = ν (E). Since φ is

c-monotone, this implies that ν maps the elements of P (H) in [0, 1] and is a quantum

capacity. By point 2 of Lemma 8 and since φ is a physical Choquet state, observe also

that

φ (λI) = λφ (I) ∀λ ∈ R.

Consider now A ∈ B (H)sa with spectral form A =
∑pA

i=1 αiEi. We show by induction

on pA that (19) holds.

Initial Step. pA = 1. In this case, we have that A = α1E1 with E1 = I. It follows that

φ (A) = φ (α1E1) = α1φ (E1) = α1ν (E1) =

pA∑
i=1

(αi − αi+1) ν

(
i∑

j=1

Ej

)
.

Inductive Step. We assume that (19) holds for each A ∈ B (H)sa such that pA ∈
{1, ..., k}. We next show that (19) holds for allA ∈ B (H)sa such that pA ∈ {1, ..., k + 1}.
Since pA ≤ dimH for all A ∈ B (H)sa, if dimH ≤ k, then there is nothing to prove.

Otherwise, we have that k ≤ dimH−1. Let A ∈ B (H)sa with spectral form
∑pA

i=1 αiEi

such that pA ≤ k + 1. By the inductive hypothesis, if pA ≤ k, then (19) holds. Other-

wise, since pA = k+1 > 1, we have that α1−α2 > 0. Consider two increasing functions

f, g : R→ R such that

f (αi) =

{
αi i ∈ {2, ..., k + 1}
α2 i = 1

and g (αi) =

{
0 i ∈ {2, ..., k + 1}

α1 − α2 i = 1
.35

Define B = f (A) and C = g (A). By Theorem 3, we have that B and C are

comonotonic as well as A = C +B. We have two cases:

1. k = 1. In this case, we have that pA = 2 and B = α2I as well as C =

(α1 − α2)E1 + 0 (I − E1). By the initial step as well as point 2 of Lemma 8

and since φ is comonotonic additive, we have that

φ (A) = φ (C +B) = φ (C) + φ (B) = φ ((α1 − α2)E1) + φ (α2I)

= (α1 − α2)φ (E1) + α2φ (E1 + E2) = Eν (A) .

35For example, define f and g from R to R to be such that

f (t) =

{
t t ≤ α2

α2 t ≥ α2

and g (t) =

{
0 t ≤ α2

t− α2 t ≥ α2

.
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2. k > 1. In this case, we have that

B = α2E1 +

k+1∑
i=2

αiEi = α2 (E1 + E2) +

k+1∑
i=3

αiEi

C = (α1 − α2)E1 + 0 (I − E1) .

We can conclude that:

(a) The spectral form of B is
∑pB

i=1 βiFi where pB = pA − 1 ≤ k, βi = αi+1 for

all i ∈ {1, ..., pB}, F1 = E1 +E2, and Fi = Ei+1 for all i ∈ {2, ..., pB}. Thus,
by inductive hypothesis, we have that

φ (B) =

pB∑
i=1

(βi − βi+1) ν

(
i∑

j=1

Fj

)
=

pA−1∑
i=1

(αi+1 − αi+2) ν

(
i+1∑
j=1

Ej

)
.

(b) The spectral form of C is
∑pC

i=1 γiHi where pC = 2, γ1 = α1 − α2, γ2 = 0,

H1 = E1, and H2 = I − E1. Thus, by inductive hypothesis, we have that

φ (C) =

pC∑
i=1

(γi − γi+1) ν

(
i∑

j=1

Hj

)
= (γ1 − γ2) ν (E1) = (α1 − α2) ν (E1) .

Since φ is comonotonic additive, this implies that

φ (A) = φ (C +B) = φ (C) + φ (B)

= (α1 − α2) ν (E1) +

pA−1∑
i=1

(αi+1 − αi+2) ν

(
i+1∑
j=1

Ej

)

= (α1 − α2) ν (E1) +

pA∑
i=2

(αi − αi+1) ν

(
i∑

j=1

Ej

)

=

pA∑
i=1

(αi − αi+1) ν

(
i∑

j=1

Ej

)
= Eν (A) .

Case 1 and 2 prove the inductive step.

The implication follows by induction.

(ii) implies (i). It follows from Proposition 2.

As for uniqueness, by the previous part of the statement, if either (i) or (ii) holds,

then (19) holds. If ν1 and ν2 are two quantum capacities that satisfy (19), it follows

that

ν2 (E) = Eν2 (E) = φ (E) = Eν1 (E) = ν1 (E) ∀E ∈ P (H) ,

proving that ν1 = ν2 and that they both coincide with φ restricted to P (H). �
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