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Abstract
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seminated in a social network. We show that friend-based ranking—the report
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ex post incentive-compatible and efficient mechanism design. We characterize
the windmill network as the sparsest social network for which the planner can
construct a complete ranking. When complete rankings cannot be achieved, ex
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1 Introduction

In many social networks, individuals gradually acquire information about their neigh-

bors through repeated interactions. Pupils in a class learn about the ability of other

pupils with whom they write joint projects, workers in a firm learn about the produc-

tivity of the coworkers in their teams, and members of a community in a developing

country learn about the needs of their close friends. This information, which is dis-

seminated in the social network, may be of great use to an external planner who

wants to extract information about members of the community. A teacher wants to

learn about the ability of her pupils; an employer, the productivity of her workers; a

funding agency, the needs of villagers in a developing country.

In the classical literature on mechanism design, the principal designs a mechanism

which asks individuals to report on their own types. However, a large number of

mechanisms is used in practice which ask individuals to report not on their own type

but on the type of others. Pupils are asked to assess the performance of other pupils,

workers are asked to measure the productivity of their coworkers, or villagers are

asked to rank other individuals in the community. The objective of our paper is to

analyze these mechanisms, that ask individuals to report about their neighbors in

the social network—mechanisms that we term “friend-based ranking mechanisms.”

In particular, we want to understand how the architecture of the fixed social network

affects the planner’s ability to construct a mechanism having desirable properties.

While we treat the social network as exogenous, we note that in some situations the

planner can design the network endogenously. Consider, for example, peer selection

problems, e.g., when editors of scientific journals ask scholars to review the work

of their peers, or scientific funding agencies ask applicants to review the projects of

other applicants. By assigning reviewers to projects, the planner designs a network

of observation which plays exactly the same role as the exogenous social networks

described above.

We study a setting with three characteristics. First, we assume that information is

local. An individual may make comparisons only among his direct neighbors. Second,

information is ordinal. Individuals lack the ability to quantify characteristics and can

only assess whether one individual has a higher characteristic than another. Third,

we assume that the planner has only one instrument at her disposal: she constructs a

(complete) ranking of the members of the community. Hence, the number of outcomes
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that the planner can select from is very restricted. The planner cannot use transfers,

and cannot punish individuals by excluding them from the ranking. In particular,

she cannot impose punishments for inconsistent reports, as in the classical literature

on implementation with correlated types (Crémer and McLean, 1985).

We require that the planner’s mechanism satisfy two properties. First, individuals

must have an incentive to report information truthfully. In the ordinal setting we

consider, the natural choices for implementation concepts are dominant-strategy and

ex post implementation. However, we notice that the limited number of outcomes

in our setting means that dominant-strategy implementation is too strong, leading

to impossibility results. We adopt instead ex post incentive compatibility as the

desirable incentive property of the mechanism.

Second, we require the mechanism to be ex post efficient from the point of view

of the planner, whose objective is to recover the true ranking of individuals in the

community. More precisely, the ranking chosen by the planner must match the rank-

ing that society would construct by aggregating all local information. If society can

construct a complete ranking of individuals for any realization of types (a situation we

label “completely informative”), the ranking chosen by the planner must match the

true ranking. Otherwise, we may face different situations according to the realization

of types. For some type realizations, even if the information aggregated by society

is not complete, transitivity ensures that all individuals can be completely ranked.

For other type realizations, society will be able to construct only a partial order on

the individuals. In the latter case, the complete ranking chosen by the planner will

be a completion of the partial order that the community is able to construct, and

this completion will involve an arbitrary ranking across individuals who cannot be

compared.

We first analyze mechanism design in completely informative societies. We show

that a society is completely informative if every pair of individuals can be compared,

either through “self-reports” (the two individuals involved in the pair report on each

other) or through “friend-based reports” (a third individual observes both individuals

in the pair). Our main theorem shows that self-reports can be used only if they

are backed by the report of a third individual. A mechanism satisfying ex post

incentive compatibility and efficiency exists if and only if every pair of individuals

has a common neighbor. We then characterize the sparsest network which satisfies

this property. When the number of individuals is odd, this is the “friendship network”
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of Erdős, Rényi, and Sós (1966), the only network in which every pair of individuals

has only one common friend. This network, also known as the windmill, has one

individual as a hub who connects all other individuals who form pairs. When the

number of individuals is even, this is a variant of the windmill in which one of the

“sails” contains three individuals instead of two. In this network, one individual—the

hub— is responsible for a large number of comparisons, so we also investigate other

networks where every pair of agents has a common neighbor when the number of

comparisons performed by every individual is capped.

We then turn our attention to societies which are not completely informative;

to study these, we add another requirement to the mechanism: to guarantee that

whenever two individuals are incomparable, the mechanism ranks them in the same

way independent of (irrelevant) information from other comparisons. Under this

independence requirement, we show that any comparison based solely on self-reports

must be discarded by the planner, as both individuals have an incentive to misreport.

Hence, the planner can rely only on friend-based comparisons, and we construct a

“comparison network” by linking two individuals if and only if they have a common

neighbor. We find that there exist two network architectures for which the planner can

construct a mechanism satisfying independence, ex post incentive compatibility, and

efficiency. In the first architecture, the social network is bipartite (which is equivalent

to the comparison network being disconnected). We use the bipartite structure to

partition the set of individuals, so that individuals in one group rank individuals in

the other group, and individuals are ranked across groups in an arbitrary way. In

the second architecture, all links form triangles, and we can construct a mechanism

exploiting the fact that any unsupported report is surrounded by supported links.

However, we also note that there exist network architectures for which mechanisms

satisfying all three properties named above cannot be constructed. The simplest

example is a network of four individuals with one triangle and one additional link.

We then highlight three aspects of our findings using social network data from

villages in Karnataka, India, and neighborhoods in Indonesia. First, information,

as measured by the share of unique comparisons the planner receives, depends on

network structure. Two social networks of similar density may provide very different

levels of information. Second, we decompose comparisons into those within a triangle,

those across triangles, and a remainder. Low-density networks have a large share of

across-triangle comparisons. Third, we simulate the process of capping the number of
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comparisons each individual provides. If the cap is small relative to the community

size, the capped network is close to the upper bound in information (as measured by

the number of unique comparisons).

Finally, we consider different variants and robustness checks of our model. We

show that dominant-strategy implementation is too strong, leading to an impossibility

result in triangles. We analyze the robustness of our mechanism to joint deviations

by groups. We study whether coarser rankings are easier or harder to implement

than complete rankings. We study the impact of homophily. If individuals of similar

characteristics are more likely to form friendships, the planner is more likely to extract

the necessary and sufficient friend-based comparisons to find the complete ranking.

This relationship is reversed when the probability of across-group links is close to

zero.

In practical terms, our analysis points to two important facts. First, it shows

that it may be useful to partition the set of individuals into different groups and ask

individuals in one group to rank those in another. For example, one may want to let

men rank women and women rank men in a community. This procedure will result in

a truthful and efficient ranking, but the price to be paid is that interrankings among

individuals in the two groups will be arbitrary. Second, our analysis highlights the

importance of triangles. Truthful and efficient comparisons will be possible if all links

form triangles, suggesting that friend-based ranking should be used only in societies

with high clustering. As high clustering is also associated with high density and

low average distances, we conclude that friend-based ranking should be used only in

communities with dense social networks with low diameters. Finally, our analysis can

be used to help design review systems in peer-selection problems. It suggests that

using asymmetric networks of observation, with central reviewers observing a large

number of projects, may be a way to construct efficient and incentive-compatible

peer-review systems.

1.1 Literature Review

We first discuss the relationship of our paper with the literature on community-based

ranking in development economics. This literature documents experiments in which

members of a community are gathered to collectively agree on a ranking in order

to identify the poorest or the most able individuals. Rai (2002) discusses the indi-
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vidual incentives to lie in poverty targeting. Alatas, Banerjee, Hanna, Olken, and

Tobias (2012) and Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016) report

on an experiment in Indonesia in which community members were asked to collec-

tively identify recipients of benefits of social programs. They compare the accuracy

of community-based targeting with traditional proxy-means testing, and argue that

community-based targeting results in consensus, and brings higher satisfaction to all

members of the community. Hussam, Rigol, and Roth (2017) report on a recent

field experiment in Maharashtra, India where entrepreneurs were asked to rank their

peers according to the profitability of their businesses. They prove that this is a

more accurate method of ranking than using observable information about the en-

trepreneurs. We see friend-based ranking as a complement to targeting methods that

are currently popular such as proxy-means tests. Although widely used, the proxy

means test has been shown to perform only slightly better than universal transfers at

reducing poverty (Brown, Ravallion, and Van de Walle, 2016) and to lack adjustment

to transitory shocks (Coady, Grosh, and Hoddinott, 2004).

The theoretical analysis of the paper is closely related to the limited literature

in computer science and social choice theory studying peer selection. Alon, Fischer,

Procaccia, and Tennenholtz (2011) analyze the design of mechanisms to select a group

of k individuals among their peers. Alon, Fischer, Procaccia, and Tennenholtz (2011)

prove a strong negative result: no deterministic efficient strategy-proof mechanism

exists. Approximately efficient, stochastic, impartial mechanisms can be constructed,

which are based on the random partition of individuals into clusters of fixed size

such that individuals inside a cluster rank individuals outside the cluster. Holzman

and Moulin (2013) analyze impartial voting rules when individuals nominate a sin-

gle individual for office. They identify a class of desirable voting rules as two-step

mechanisms, by which voters are first partitioned into districts which elect local win-

ners, who then compete against one another to select the global winner. However,

Holzman and Moulin (2013) also highlight a number of impossibility results, show-

ing that there is no impartial voting procedure which treats voters symmetrically, nor

any impartial voting procedure which guarantees (i) that an individual whom nobody

considers best will be elected and (ii) that an individual whom everybody considers

best will always be elected. Kurokawa, Lev, Morgenstern, and Procaccia (2015) and

Aziz, Lev, Mattei, Rosenschein, and Walsh (2016) improve on the partition algorithm

proposed in Alon, Fischer, Procaccia, and Tennenholtz (2011). They consider a more
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general setting, inspired by the new peer-review system instituted by the National

Science Foundation to fund the Sensors and Sensing System program. Kurokawa,

Lev, Morgenstern, and Procaccia (2015) propose the “credible subset mechanism,”

a process which first identifies candidates who are likely to win, and assigns ratings

only to these candidates. Aziz, Lev, Mattei, Rosenschein, and Walsh (2016) propose

a mechanism combining the insights of the partition mechanism of Alon, Fischer,

Procaccia, and Tennenholtz (2011) with the impartial “divide the dollar” mechanism

of De Clippel, Moulin, and Tideman (2008).

Our model departs from all these models of peer selection in a number of ways.

First, we consider ordinal rather than cardinal information as inputs to the mecha-

nism. In our model, individuals do not assign grades to other individuals, but can

only make bilateral comparisons. Second, we consider as output a complete ranking

of individuals rather than a coarse ranking into two sets of acceptable and non ac-

ceptable candidates. (However, in Section 6, we also consider coarser rankings as a

possible extension of our model.) Third, because dominant-strategy mechanisms do

not exist, we weaken the incentive requirement to ex post implementation, thereby

obtaining positive results which differ from the results obtained in the peer-selection

literature. Fourth, and most importantly, we do not assume a specific assignment of

proposals to reviewers, but consider an arbitrary network of observations captured

by a social network. Our main objective is then to characterize those social networks

(or structures of observability) for which mechanisms satisfying desirable properties

can be constructed.

The paper which is probably the more closely connected to ours is a recent pa-

per by Baumann (2017) which analyzes network structures for which it is possible to

identify the individual with the highest characteristic. Baumann (2017) constructs

a specific multitier mechanism identifying the top individual from the reports of his

neighbors. The mechanism admits multiple equilibria, but there are some social net-

work architectures (e.g., the star) for which all equilibria result in the identification of

the top individual. Our paper differs from Baumann’s, however, in many dimensions.

First, we consider an ordinal rather than a cardinal setting, giving rise to the possibil-

ity of incompleteness of the social ranking. Second, we assume that the objective of

the planner is to rank all individuals rather than identify the top individual. Third,

we do not assume an exogenous bound on the way in which individuals can misreport,

in contrast to Baumann (2017), in which this exogenous bound plays a crucial role in
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the construction of equilibria.

2 Model

2.1 Individuals and communities

We consider a communityN of n individuals indexed by i = 1, 2, ..., n. Each individual

i has a characteristic θi ∈ R. Examples of θi include wealth, aptitude for a job,

or quality of a project. Characteristics are privately known and are drawn from a

nonatomic continuous distribution F .

Members of the community are linked by a connected, undirected graph g. The

social network g is common knowledge among the individuals and the planner. The

characteristic of individual i, θi, can be observed by individual i and by all his di-

rect neighbors in the social network g. We suppose that individuals cannot provide

an accurate value for the characteristic θi. Either the characteristic cannot be mea-

sured precisely, or individuals do not have the ability or the language to quantify θi

precisely. Instead, we assume that individuals possess ordinal information and are

able to compare the characteristics of two individuals. For any individual i and any

pair of individuals (j, k) that individual i can observe, we let tijk = 1 if individual

i observes that θj > θk, and tijk = −1 if individual i observes that θj < θk. The

ordinal comparison is assumed to be perfect: individual i always perfectly observes

whether individual j’s characteristic is higher than that of individual k. Given that

the characteristics are drawn from a nonatomic continuous distribution, we ignore

situations in which the two characteristics are equal.

Individual i’s information (and type) can thus be summarized by a matrix T i =

[tijk], where tijk ∈ {−1, 0, 1} and tijk 6= 0 if and only if i observes the comparison

between j and k, namely either i = j or i = k or gijgik = 1. When i = j or i = k, we

call the comparison tijk a self-comparison. When gijgik = 1, we call the comparison

tijk a friend-based comparison.

The vector T = (T 1, .., T n) describes the information possessed by the commu-

nity on the ranking of the characteristics of all the individuals. Obviously, because

individual observations are perfectly correlated, individual types T i and T j will be

correlated if there exists a pair of individuals (k, l) such that tikl 6= 0 and tjkl 6= 0.

Hence, if the planner could construct a punishment for contradictory reports, as in
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Crémer and McLean (1985), she would be able to induce the individuals to report

their true type. However, we rule out arbitrary punishments.

The information contained in the vector T = (T 1, .., T n) results in a partial rank-

ing of the characteristics of the individuals, which we denote by �. We let i �T j if

the information contained in T allows us to conclude that θi > θj.

For a fixed social network g, the information contained in the vector T = (T 1, .., T n)

may not be the same for different realizations of (θ1, .., θn). This is due to the fact

that (i) new comparisons can be obtained by transitivity but (ii) the transitive clo-

sure of an order relation depends on the initial order relation. To illustrate this point,

consider four individuals i = 1, 2, 3, 4 organized in a line as in Figure 1

1 2 3 4

Figure 1: A line of four individuals

If θ1 < θ2 < θ3 < θ4, then given that t112 = t212 = −1, t223 = t323 = −1, t334 =

t434 = −1, t213 = −1, and t324 = −1, the comparisons result in a complete ranking

1 ≺ 2 ≺ 3 ≺ 4. However, for other possible realizations of (θ1, θ2, θ3, θ4), the ranking

generated by the types T may be incomplete. For example, if θ1 < θ4 < θ2 < θ3, we

obtain 1 ≺ 2 ≺ 3 and 4 ≺ 2 ≺ 3, but 1 and 4 cannot be compared.

A social network g is called completely informative if, for any realization of the

characteristics (θ1, .., θn), the information contained in T results in a complete ranking

of the members of the community. The following lemma characterizes completely

informative social networks.

Lemma 1. A social network g is completely informative if and only if, for any pair

of individuals (i, j) either gij = 1 or there exists an individual k such that gikgjk = 1.

A social network is completely informative if and only if every pair of individuals

can be compared either by self-comparisons or by friend-based comparisons.

2.2 Planner and mechanism design

The objective of the planner is to construct a ranking of individuals according to

the value of the characteristic θi. For example, a charity wishes to rank potential

beneficiaries by need, an employer wants to rank workers according to their ability,

a bank wants to rank projects according to their profitability. We let ρ denote the
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complete order chosen by the planner. The set of all complete orders is denoted by

P . The rank of individual i is denoted by ρi.

The planner wishes to construct a ranking as close as possible to the true ranking

of the values of the characteristic θi. We do not specify the preferences of the planner.

In the ordinal setting that we consider, different measures of distances between rank-

ings can be constructed. Instead of describing explicitly the loss function associated

with differences in rankings, we focus attention on efficient mechanisms. Efficiency

requires that the ranking ρ coincides with the ranking generated by T for any pair of

individuals (i, j) who can be compared under T.

Individuals care only about their rank ρi and have strict preferences over ρi. By

convention, individuals prefer higher values of the ranking. Hence, ρi is preferred to

ρ′i if and only if ρi > ρ′i. In particular, we assume that there are no externalities in

the community, and thus, individuals do not derive any reward from high rankings of

friends or low rankings of foes.

A direct mechanism associates to any vector of reported matrices T ∈ T n a

complete ranking ρ ∈ P . We impose the following two conditions on the mechanism:

Ex post incentive compatibility. For any individual i, for any vector of types T =

(T i, T−1), any type T
′i, the following holds

ρi(T) ≥ ρi(T
′i, T−i).

Ex post efficiency. For any vector of types T, and for any pair of individuals i and j,

the following holds

if i �T j, then ρi(T) > ρj(T).

We focus on ex post implementation for two reasons. First, because we consider

an ordinal setting, we select a robust implementation concept which does not depend

on the distribution of types. Second, as we show in section 6, the alternative robust

implementation concept—dominant-strategy implementation— is too strong for our

setting.

Ex post efficiency requires that the planner’s ranking coincide with the true rank-

ing of characteristics in a very weak sense. Whenever two individuals i and j can be

ranked using the information contained in T, the ranking ρi must be consistent with

the ranking between i and j. As the order relation induced by T, �T, may be very

incomplete, the requirement may be very weak. The ranking ρ must be a completion
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of the ranking �T. If �T is a very small subset of N2, the ranking ρ may end up being

very different from the true ranking of the values of the characteristic θi. However as

the true ranking of characteristics cannot be constructed using the local information

from the social network, the difference between ρ and the true ranking should not

be a matter of concern, since the planner chooses an efficient mechanism given the

information available to the community.

3 Completely informative rankings

3.1 Importance of common friends

We first analyze conditions under which an ex post incentive-compatible and efficient

mechanism can be constructed when the information available in the community

results in a complete ranking. By Lemma 1, all pairs of individuals must either

be directly connected, or observed by a third individual. The next theorem shows

that for an ex post incentive-compatible and efficient mechanism to exist, all pairs of

individuals must be observed by a third individual.

Theorem 1. Suppose that the social network g is completely informative. An ex

post incentive-compatible and efficient mechanism exists if and only if, for all pair

of individuals (i, j), there exists a third individual k who observes both i and j, i.e.,

gikgjk = 1.

Theorem 1 shows that an ex post incentive-compatible and efficient mechanism

exists in completely informative communities if and only if every pair of individuals

(i, j) has a common friend k. Self-comparisons cannot be used. Every comparison

requires the presence of a third party. If the two individuals i and j are connected,

the link ij must be ‘supported’ by a third individual, following the terminology of

Jackson, Rodriguez-Barraquer, and Tan (2012).

The intuition underlying Theorem 1 is easy to grasp. If the comparison between

θi and θj can be reported only by i and j, in an ex post efficient mechanism, one

of them has an incentive to lie. Consider a ranking which places i and j as the two

individuals with the lowest characteristics in the community. If both announce that

θi is smaller than θj, then ρi = 1, ρj = 2. Similarly, if both announce that θj is smaller

than θi, then ρj = 1, ρi = 2. But by incentive compatibility, neither of the individuals
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can improve his rank by changing his report on tij. Hence i must still be ranked

at position 1 when she announces θi > θj and j announces θi < θj, and similarly

individual j must still be ranked at position 1 when she announces θj > θi and

individual i announces θi > θj. As two individuals cannot occupy the same position

in the ranking, this contradiction shows that there is no ex post incentive-compatible

and efficient mechanism relying on self-reports. Notice that this impossibility result

stems from the fact that the planner has a very small number of outcomes at her

disposal. If she could impose any arbitrary punishment (for example by excluding

all individuals who provide inconsistent reports), she could implement an ex post

efficient mechanism in dominant strategies, as in Crémer and McLean (1985), for any

network architecture.

The construction of an ex post incentive-compatible and efficient mechanism when

all links are supported is very intuitive. First consider a comparison between i and

j which is observed by at least three individuals. The mechanism disregards the

report of any individual who deviates from the reports of all other individuals. Hence

no individual can unilaterally change the outcome of the mechanism when all other

individuals report the truth. Next suppose that the comparison between i and j is

dictated by a third party, a common friend k of i and j. A change in reports could not

improve the rank of k given that all other individuals tell the truth and that the social

network is completely informative. If the change in report creates an inconsistency in

the ranking, the planner can detect if a single individual has cheated and punish him

by ranking him at the worst position in the ranking. If the change in report does not

create a violation in transitivity, because the social network is completely informative,

the rank of individual k is fully determined by the reports of other individuals in the

community. The rank of individual k is fixed and no change in report can improve

the position of individual k in the ranking. This “friend-based” ranking mechanism

is ex post incentive-compatible and efficient.

Theorem 1 characterizes communities for which friend-based ranking mechanisms

can be constructed. Clearly the complete network satisfies the conditions. However,

the condition is also satisfied by many other social networks, which are less dense than

the complete network. Our next result characterizes the sparsest networks for which

the condition of Theorem 1 holds. This characterization is based on the “friendship

theorem” of Erdős, Rényi, and Sós (1966).

Theorem 2. (The “friendship theorem”) If G is a graph of order n in which any two
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vertices i and j have one neighbor in common, then n = 2m + 1 and G contains m

triangles which are connected at a common vertex.

The “friendship theorem”, initially stated and proved in Erdős, Rényi, and Sós

(1966), asserts that in any community where every pair of individuals has exactly one

friend in common, one individual is friends with everyone and is the common friend

of all other individuals.1 The “friendship graph” is illustrated in Figure 2 for n = 7.

For obvious reasons, it is also called the “windmill graph”. The friendship graph has

exactly 3m edges. Our next theorem shows that this is actually the smallest number

of edges for which a completely informative mechanism can be constructed when n is

odd. When n is even, the graph which minimizes the number of edges is a variation

of the friendship graph, where one of the sails of the windmill contains three vertices,

as illustrated in Figure 2 for n = 8.

(i) n = 7. For odd number of nodes,
the windmill is also called a friend-
ship graph.

(ii) n = 8. For even number of nodes
the windmill is modified and one sail
has three nodes.

Figure 2: Windmill graphs

Theorem 3. Suppose that n ≥ 3. Let g be a social network for which friend-based

ranking generates a complete ranking. Then g must contain at least 3n
2
−1 links if n is

even and 3(n−1)
2

links is n is odd. If n is odd, the unique sparsest network architecture

is the friendship network. If n is even, the unique sparsest network architecture is a

modified windmill network where one of the sails contains three nodes i, j, k such that

i, j and k are connected to the hub, i is connected to j and j is connected to k.

1Different proofs of the friendship theorem have been proposed, often using complex combinatorial
arguments (Wilf, 1971; Longyear and Parsons, 1972; Huneke, 2002).
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Theorem 3 establishes a lower bound on the number of edges needed to obtain a

complete ranking of the community. It also identifies the unique network architecture

which reaches this lower bound: a windmill network where one of the nodes, the hub,

connects all other nodes which form pairs.2 This network architecture implies a

very unequal distribution of degrees. The hub is connected to all nodes, whereas

the remaining nodes have degree two or three. If agents have a limited capacity to

compare other agents, the windmill network cannot be used, and one needs to resort

to other more symmetric network architectures involving a larger number of links.

An exact characterization of the minimal degree of a regular network for which all

links can be supported remains an open question in graph theory.3

4 Incomplete rankings and friend-based compar-

isons

4.1 Comparison networks

We now consider communities where the condition of Theorem 1 fails. The condition

fails either when the community is completely informative but some comparisons are

based only on self-reports or because the community is not completely informative.

In the latter case, there exist some type profiles T for which individuals collectively

cannot construct a complete ranking. We let i ./T j denote the fact that i and

j cannot be compared using the information contained in T. As the mechanism ρ

defines a complete ranking, it must choose an arbitrary ranking between i and j at

T. We first define a condition on the mechanism ρ guaranteeing that the arbitrary

ranking chosen between i and j is independent of the reported type profile T.

Independence: The ranking ρ satisfies independence if for any two type profiles T

and T′ such that i ./T j and i ./T′ j, then ρi(T) > ρj(T)⇔ ρi(T
′) > ρj(T

′).

When the independence condition is satisfied, if the comparison between some pair

2The proof of the theorem is very different from known proofs of the Friendship Theorem, mostly
because we focus attention on the minimization of the number of edges rather than on the construc-
tion of a graph where any intersection of neighborhoods is a singleton.

3A family of regular graphs, called the rook graphs, satisfy the property. For an integer m ≥ 2,
rook graphs are regular graphs of degree 2(m− 1) among m2 nodes, and have the property that any
two connected nodes have m − 2 nodes in common and every pair of unconnected nodes has two
common neighbors. See Brouwer and Haemers (2011) for more details on rook graphs.
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of individuals i and j relies on self-reports, the mechanism ρ cannot simultaneously

satisfy ex post incentive compatibility and efficiency.

Proposition 1. Suppose that there exists a pair of individuals (i, j) such that gij = 1

but there is no individual k such that gikgjk = 1. Then there exists no mechanism

satisfying independence, ex post incentive compatibility and efficiency.

Proposition 1 extends the necessity argument of Theorem 1 to show that the

planner cannot construct an ex post incentive-compatible and efficient mechanism

when two individuals provide self-reports. Hence truthful comparisons based on self-

reports cannot be elicited by the planner. We thus ignore comparisons based on

self-reports. We now modify the type of individual i, Ti by removing any comparison

tiij which is not supported by a third individual, i.e., we let tiij = 0 if there exists no

k 6= i, j such that tkij 6= 0. We search for mechanisms satisfying independence, ex post

incentive compatibility and efficiency in the community where self-comparisons are

ignored. Second, we construct a comparison network h which captures all comparisons

that can be obtained using friend-based comparisons. Formally, we let hij = 1 if

and only if there exists k such that gikgjk = 1. The network h collects all pairs of

individuals which can be compared by a third individual. It differs from the social

network g in two ways: (i) pairs of individuals which are linked in g but do not have

a common friend appear in g but not in h, (ii) pairs of individuals which are not

directly linked in g but have a common friend appear in h but not in g. Figure 3

illustrates a social network g and the corresponding comparison network h.

(i) Social network g

(ii) Comparison network h

Figure 3: Social and comparison networks
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The comparison network h is the minimal set of comparisons that the planner can

guarantee for any possible realization of the characteristics. The planner complements

the comparisons contained in h by taking their transitive closure. If the conditions

of Theorem 1 hold, the comparison network h is the complete network. When the

conditions fail, we characterize comparison networks which can be supported by a

mechanism satisfying independence, ex post incentive compatibility and efficiency.

4.2 Connected comparison networks and bipartite social net-

works

We first provide a characterization of social networks which generate connected com-

parison networks.

Proposition 2. Suppose that n ≥ 3. The comparison network h is connected if and

only if g is not bipartite.

Proposition 2 establishes that the network h is connected if and only if the social

network g is not bipartite. If the network g is not bipartite, we construct a path

connecting any pair of individuals i and j in the comparison network. If the network

g is bipartite, and the nodes partitioned into the two sets A and B, the comparison

network h is disconnected into two components: individuals in A rank individuals in

B and individuals in B rank individuals in A. Individuals can be ranked inside the

two sets A and B but rankings of individuals across the two sets must be arbitrary.

Notice however that an individual in A cannot improve his ranking by lying about the

ranking of individuals in B. Hence, when the social network g is bipartite (and the

comparison network h disconnected), it is easy to construct a mechanism satisfying

independence, ex post incentive compatibility and efficiency.

Proposition 3. Suppose that the social network g is bipartite with two sets of nodes

A and B. Then there exists a mechanism satisfying independence, ex post incen-

tive compatibility and efficiency, which generates a ranking which coincides with the

comparison network h on its two components A and B.

Proposition 3 characterizes one situation where the planner can elicit information

about comparisons: when the set of individuals in the community can be partitioned

into two subsets where members of one subset observe members of the other subset.
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For example, one could survey separately men and women and ask men about the

characteristics of women and women about the characteristics of men. However,

this design would not allow the planner to obtain information about the ranking of

individuals across the two sets. The mechanism completes the partial ranking by

an arbitrary ranking across individuals in the two sets, possibly resulting in a final

ranking which is very different from the true ranking. We observe that the partition

of the set of nodes into groups which rank each other is the basis of most algorithms

proposed in the computer science literature on peer selection.

4.3 Social quilts in incomplete communities

We now consider communities for which the comparison network h is connected but

not complete. We provide a sufficient condition under which the planner can construct

a mechanism satisfying independence, ex post incentive compatibility and efficiency.

The mechanism is an extension of the mechanism constructed in the proof of Propo-

sition 1 for completely informative communities.

Proposition 4. Suppose that all links in g are supported (for all i, j such that gij = 1,

there exists a k such that gikgjk = 1). Then there exists a mechanism satisfying

independence, ex post incentive compatibility and efficiency.

Figure 4: A supported social network g

Proposition 4 identifies social networks which allow the planner to construct an

incomplete ranking of the individuals: all links must be supported and the social

network is thus formed of a collection of triangles. Following Jackson, Rodriguez-

Barraquer, and Tan (2012), we call these communities “social quilts”. Figure 4 illus-

trates one of these networks. Notice that some comparisons are supported as links

within the triangles, and other comparisons are supported as links across triangles.

Links across traingles do not play a role in Jackson, Rodriguez-Barraquer, and Tan’s

(2012) favor exchange context.
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Whether there exist other social networks g generating connected comparison net-

works h for which the planner can construct a mechanism satisfying independence, ex

post incentive compatibility and ex post efficiency remains an open question. How-

ever, there are social networks for which the planner will not be able to construct a

mechanism satisfying these three properties, as shown in the following example.

Example 1. Let n = 4. individuals i, j, k are connected in a triangle and individual

l is connected to i. 4

i

j k l

Figure 5: A social network g where a mechanism does not exist

In this example, the links (i, j), (i, k), (j, k) are supported, but the link (i, l) is not

supported. Consider a realization of the characteristics such that θl > θj > θi > θk.

If individual i announces θl > θj > θk, by ex post efficiency, the planner constructs

the rankings k, i, j, l and the rank of individual i must be equal to 2. If on the other

hand individual i announces θj > θk > θl, the planner constructs the ranking l, k, i, j

and the ranking of individual i is now equal to 3. Hence individual i has an incentive

to lie and announce θj > θk > θl.

In Example 1, the planner’s ranking of i depends on his announcement on the

rankings (j, l) and (k, l). Given that θj > θi > θk, and that (i, j, k) form a triangle, the

planner must rank i between j and k. Hence she cannot rank all three individuals j, k

and l on the same side of individual i, as in the mechanism constructed in the proof of

Proposition 4. But then, the announcement of individual i on (j, k, l), by changing the

rank of l with respect to j and k, will also affect the ranking of individual i. Because

individual i can manipulate his rank by his announcements on the unsupported links

(j, k) and (j, l), there is no mechanism satisfying ex post incentive compatibility and

efficiency in this community.
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5 Real-life social networks

In the two previous sections, we analyzed conditions on social networks under which

the planner can construct rankings that satisfy ex post incentive compatibility and

efficiency. We use real social network data from India (Banerjee, Chandrasekhar,

Duflo, and Jackson, 2013) and Indonesia (Alatas, Banerjee, Chandrasekhar, Hanna,

and Olken, 2016) to highlight three implications of our theoretical results. We first

observe that the information obtained in a social network does not depend only on the

number of links. For a given density of the social network, we witness a large variation

in the information obtained by friend-based ranking, depending on the exact structure

of the network. Second, we analyze the role played in friend-based comparisons by

supported links and links across triangles. For low-density networks, we show that

links across triangles provide the majority of the friend-based comparisons. Third,

we analyze how cognitive limitations affect the number of comparisons elicited by the

planner. We cap the number of comparisons per individual and observe that when

the cap is small relative to the community size, the information loss due to the cap

is also small.

The data from India and Indonesia are particularly useful because they contain

multiple independent networks: 75 villages from Karnataka, India, and 622 neigh-

borhoods from three provinces in Indonesia. Indonesian networks are smaller and

denser than the Indian networks. We focus on the giant component of each network.

Table 1 provides summary statistics of the networks. We report the mean, minimum,

and maximum for each measure. The combined sample of networks provides a large

range in network size and structure. We measure information using the density of the

comparison network, which is simply the count of unique comparisons as a share of

the n(n−1)
2

possible comparisons.

Figure 7 provides further detail on the distribution of network characteristics. No-

tice that the Indonesian networks are denser and more clustered, and display shorter

average distances than the Indian networks. As a result, the Indonesian networks

contain more information, i.e., result in denser comparison networks.

Figure 7 shows a tight relationship between average distance and the quantity of

information. Since every comparison (i, j) is provided by a path of length 2 between

i and j, this relationship is not surprising. In contrast to the relation between in-

formation and average distance, the relationship between information and density is
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not tight. In the following section we use an example to highlight two reasons for the

variation in the quantity of information at a given density.

5.1 Large variation in the quantity of information for a given

density

Dense social networks provide many comparisons, but density is not a good proxy

for the quantity of information that the planner can extract from a social network.

The windmill of Theorem 3 is completely informative but its density is only 3
n
. This

insight also applies to the data here. In the bottom left panel of Figure 8, we plot

the density against the quantity of information for social networks of more than

50 households. We highlight two networks and plot their corresponding network

diagrams. The orange network, from India, has 75 nodes and a density of 0.12. The

green network, from Indonesia, has 69 nodes and the same density of 0.12. Despite

having equal density, the orange network provides a quantity of information of 0.62—

nearly double the green network with 0.33.

Two factors contribute to the greater amount of information in the orange network.

First, as shown in the top right panel of Figure 8, the degree distribution of the orange

is spread more widely than the green. The number of comparisons provided by a single

node is a convex function of degree. For a given density, the greater the spread in the

degree distribution, the more comparisons the social network provides.

Second, the green network is a combination of cliques that are weakly connected to

each other. Cliques repeat comparisons. Take a clique of seven nodes as an example.

These seven nodes provide 105 comparisons yet 84 of these comparisons are repeated

ones. Since the green and orange networks have a similar number of nodes and equal

density, they each produce a total number of comparisons similar to the other’s. The

difference is that a greater share of the green network’s comparisons are repeated.

This example shows that the success of friend-based ranking depends not only on the

number of links, but, more importantly, on how those links are structured.

5.2 Decomposition of information

Proposition 4 (in Section 4) shows the importance of triangles in constructing incentive-

compatible and efficient mechanisms. Both the links within and across triangles are
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used to obtain truthful comparisons. For a given network we can decompose infor-

mation into comparisons provided within and across triangles.

We approach the decomposition by removing all unsupported links from the net-

work and recalculating the quantity of information. The resulting supported network

is incentive-compatible but information is reduced—from 0.37 to 0.27 on average for

India and from 0.78 to 0.75 on average for Indonesia. A greater share of the Indone-

sian links is supported, which is due to the fact that those networks are denser and

more clustered.

We decompose the comparisons in the supported network into those within and

across triangles. If a comparison appears both within and across a triangle, we cat-

egorize the comparison as “within.” Figure 9 shows the decomposition for 50 Indian

and 50 Indonesian networks. Each bar corresponds to a network and the bar is split

between within triangles, across triangles, and a remainder (i.e., the comparisons

which appear only in the unsupported network). At lower densities the majority

of comparisons are provided across triangles, while as density of the social network

increases, the share of comparisons within triangles increases.

5.3 Capping comparisons

For a given degree distribution, we can define a simple upper bound on the number

of bilateral comparisons. Since we measure information by counting links in the

comparison network, an upper bound on information is reached when none of the

bilateral comparisons produced in the social network is repeated. With the degree

of individual i denoted as di, the upper bound is
∑n

i=1
di(di−1)
n(n−1 , which is simplified to

d(d−1)
n−1 for regular networks of degree d.

To analyze the effect of capping the degree of individuals on the quantity of

information, we use simulations on the social network data. For each individual i, we

randomly pick five friends whom i will compare to each other. The resulting network

is directed. Suppose j picks i and i has more than five friends. There is no guarantee

that i will also pick j. Figure 10 uses the mean from 100 iterations to measure the

number of nonrepeated comparisons in the capped network. The standard deviation

is less than .01 for any given network in our sample. This variation depends on the

starting network.

The capped information is close to the upper bound. In Figure 10 we contrast
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the upper bound to the mean information provided by the capped networks. Each

bar represents a network capped at degree 5. When the cap is small relative to the

community size (i.e., the number of households), only a small share of the comparisons

in the capped network is repeated, so that the capped information is close to the upper

bound.

6 Robustness and extensions

The analysis of friend-based ranking mechanisms relies on specific assumptions on

the model. In this section, we relax some of these assumptions to test the robustness

of our results.

6.1 Dominant strategy implementation

We first strengthen the incentive compatibility requirement to dominant-strategy im-

plementation. The following proposition shows that dominant-strategy implementa-

tion is too strong in our setting. The outcome set is not rich enough to permit the

construction of strategy-proof mechanisms. We first recall the definition of strategy-

proofness:

Strategy-proofness. For any individual i, for any vector of announcements (T̂−i) and

any types T i, T
′i,

ρi(T
i, T̂−i) ≥ ρi(T

′i, T̂−i).

Proposition 5. Let g be a triangle. There exists no mechanism satisfying strategy-

proofness and ex post efficiency.

Proposition 5 is an impossibility result, highlighting a conflict between strategy-

proofness and efficiency in a very simple network architecture. As shown in the proof,

the impossibility stems from the coarseness of the outcome space, which limits the

power of the planner. There are only three possible outcomes corresponding to the

three possible ranks. Strategy-proofness imposes a large number of constraints on

the mechanism. We show, using a combinatorial argument, that if all the constraints

are satisfied, two individuals must be occupying the same rank for some vectors of

announcement. Hence, it is impossible to elicit truthful information in a complete

network with three individuals.4

4The extension of this impossibility result to more than three individuals remains an open ques-
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6.2 Coarse rankings

We next relax the assumption that the planner chooses a complete ranking and that

individuals have strict preferences over ranks. We consider a setting where the planner

selects only broad indifference classes. This is the typical situation in which the

planner selects a set of recipients of the benefits of social programs, or of research

funds. If the planner only chooses broad categories, she might be able to construct

ex post incentive-compatible and efficient mechanisms even if self-reports are not

supported by a third individual. The intuition is immediate: if there exist two “worst

spots” in the ranking, the planner can punish individuals who send conflicting self-

reports by placing both of them on the worst spot. We formalize this intuition in the

following proposition.

Proposition 6. There exists an ex post incentive-compatible and efficient mechanism

in any completely informative community if and only if the planner can place two

individuals in the worst spot, i.e., if and only if any individual i is indifferent between

ρ(i) = 1 and ρ(i) = 2.

Proposition 6 thus shows that it is easier to construct ex post incentive-compatible

and efficient mechanisms when the planner does not construct a complete ranking

of the individuals. This observation raises new possibilities. It may be possible

to construct strategy-proof and efficient mechanisms when the planner only assigns

agents to broad categories.

6.3 Group incentive compatibility

We now allow for individuals to jointly deviate from truth-telling. We let individuals

coordinate their reports and jointly misreport their types.

Consider a triangle with three individuals. Each individual reports on the three

links. The mechanism that we constructed in Theorem 1 of Section 3 assigns a

ranking ρ(i) > ρ(j) when at least two of the individuals report that i is higher than

j. This creates an incentive for any pair of individuals to misrepresent their types.

For example, if the true ranking is θ3 > θ2 > θ1, individuals 1 and 2 have an incentive

to misreport and announce that 2 is higher than 1, and 1 is higher than 3, so that in

the end, ρ(2) = 3 > 2 and ρ(1) = 2 > 1.

tion.

23



This intuition can be exploited to show that there does not exist any mechanism

satisfying ex post group-incentive compatibility and efficiency when n = 3. We first

provide a formal definition of ex post group-incentive compatibility:

Ex post group incentive compatibility. For any vector of types T, there does not

exist a coalition S and a vector of types T
′S such that for all individuals i in S,

ρi(T
′S,TS) ≥ ρi(T)

and

ρi(T
′S,TS) > ρi(T).

for some i ∈ S.

Proposition 7. Let g be a triangle. There does not exist a mechanism satisfying ex

post group-incentive compatibility and efficiency.

6.4 Homophily

In this last extension, we analyze the effect of homophily on friend-based ranking.

Using Golub and Jackson’s (2012) islands model of network formation, we show that

the probability of finding the full ranking of characteristics initially increases and then

decreases in the homophily parameter.

In a community of n individuals, n − 1 comparisons are necessary and sufficient

to determine the full ranking of characteristics. The lowest is compared to the second

lowest, the second to the third, and so on. We call this subset of comparisons C.

We will consider a random model of network formation and ask: how likely is it that

individuals form links that generate the set of bilateral comparisons C? Suppose that

pairs of individuals form friendships with a given probability p (which is the Erdős-

Rényi random graph model) and through friend-based ranking the realized network

provides a set of comparisons T . What is the probability Pr[C ∈ T ]?

For simplicity, we order the individuals in the community {1, 2, ..., n − 1, n} so

that the private characteristic θi > θj if and only if i > j. We then define C =

{(1, 2), (2, 3), ..., (n − 2, n − 1), (n − 1, n)}. Consider a pair (i, j). Pr[(i, j) ∈ T ] =

Pr[∃ k 6= i, j : gik = gjk = 1] = 1 − (1 − p2)n−2. Since there are n − 1 pairs in C,

Pr[C ∈ T ] =
(
1− (1− p2)n−2

)n−1
.
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We now divide the community into two groups of equal size, NL for low and NH

for high such that θl < θh ∀ l ∈ NL, h ∈ NH . Individuals form friendships within

their group with probability pw and outside of their group with probability po (which

is Golub and Jackson’s (2012) islands model with 2 groups). For pw ≥ po, the gap

between pw and po is a measure of homophily.

Keeping po constant, if we increase pw, Pr[C ∈ T ] will increase since we have raised

the expected density of the social network. We need to keep the expected density

of the network constant to isolate the impact of homophily. Since we disregard self-

comparisons by Proposition 1, there are more outside group links than within group

links. The number of outside group links is (n
2
)2 while the number of within group

links is (n
2
)2 − n

2
. The ratio simplifies to n− 2 within group links for every n outside

group links.

Starting from a zero homophily base of p = pw = po, we can analyze the impact of

homophily by increasing pw and decreasing po to keep the expected number of links

constant. Let pw = p+ η, where η is the homophily parameter. To keep the number

of links constant, po = p− η n
n−2 .

From a base of η = 0 we can increase η and observe how Pr[C ∈ T ] responds.

This is represented graphically in Figure 6 for a community size n = 250 and a base

probability of friendship p = 0.15. Along the horizontal axis, as η increases from 0

to around 0.1 the probability that the realized comparisons contain the comparisons

needed to derive the full ranking increases.

The intuition is simple. As homophily increases the probability that some individ-

ual k is friends with two individuals in the same group increases while the probability

that k is friends with two individuals in different groups decreases. Since nearly all

of the comparisons in C are pairs within the same group, Pr[C ∈ T ] rises with ho-

mophily. However, when the probability of outside group friendships po approaches

zero, Pr[C ∈ T ] approaches zero since there is little chance that the comparison of

the highest in NL to the lowest in NH is in T . In Figure 6, Pr[C ∈ T ] drops sharply

as η is above 0.12 and po approaches zero. Low levels of homophily improve friend-

based ranking whereas extreme homophily reduces the power of friend-based ranking

as agents across groups cannot be compared.
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Figure 6: Impact of homophily (p = 0.15, n = 250)

7 Conclusion

This paper analyzes the design of mechanisms to rank individuals in communities in

which individuals have only local, ordinal information on the characteristics of their

neighbors. In these communities, pooling the information of all individuals may not

be sufficient to obtain a complete ranking, and so we distinguish between completely

informative communities and communities where only incomplete social rankings can

be obtained.

In completely informative communities, we show that the planner can construct an

ex post incentive-compatible and ex post efficient mechanism if and only if each pair

of individuals is observed by a third individual, i.e., the individuals in each pair have

a common friend. We use this insight to characterize the sparsest social network for

which a complete ranking exists as constituting a “friendship network” (or “windmill

network”) in the sense of Erdős, Rényi, and Sós (1966).

When the social network is not completely informative, we show that any self-

report which is not supported by a third party must be discarded. We provide

two sufficient conditions on the social network under which an ex post incentive-

compatible and ex post efficient mechanism may be constructed.

First, in bipartite networks, individuals on one side of the network can be used
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to rank individuals on the other side, resulting in an ex post efficient but incomplete

ranking. Second, in “social quilts,” where all links are supported in triangles, the

planner can use the congruence of reports to construct truthful rankings over any

pair of individuals.

We use data on social networks from India and Indonesia to illustrate the results

of the theoretical analysis. We measure information provided by the social network as

the share of unique comparisons which can be obtained by friend-based comparisons

(which corresponds to the density of the comparison network) and show that (i)

information varies greatly even for a given density, (ii) across-triangle comparisons

are important at low densities, and (iii) information is close to an upper bound when

the degree is capped at a small value relative to the community size.

Finally, we discuss robustness and extensions of the model, focusing on strategy-

proofness, group-incentive compatibility, coarse rankings, and homophily.

To the best of our knowledge, this is the first paper to analyze this intriguing

theoretical problem—the design of a mechanism constructing a complete ranking

when individuals have local, ordinal information based on a social network. In future

work, we would like to further our understanding of the problem, by considering in

more detail the difference between ordinal and cardinal information, between complete

and coarse rankings, and between different concepts of implementation. We also plan

to extend the empirical and policy implications of the theoretical model by analyzing

specific institutional settings in more detail.
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Table 1: Summary statistics of social networks

India Indonesia

Networks 75 622
Number of households 198.72 [77, 356] 52.85 [11, 263]

Share in giant component .95 [.85, .99] .65 [.22, 1.00]
Average degree 9.34 [6.82, 13.83] 17.96 [2.00, 218.00]

Density .05 [.02, .12] .53 [.10, 1.00]
Average clustering .26 [.16, .45] .82 [.48, 1.00]
Average distance 2.75 [2.30, 3.32] 1.77 [1.00, 4.32]

Information .37 [.18, .62] .78 [.25, 1.00]

Notes: Means are reported with minimum and maximum in brackets. Information is measured by the density of the
comparison network. All statistics (except the number of households) are calculated on the giant component. Data
is sourced from Banerjee et al. (2013) for India and Alatas et al. (2016) for Indonesia.
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Figure 7: Distribution of social network measures

Note: Social networks from India (in orange) and Indonesia (in green). Information is
measured as the density of the comparison network.
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Figure 8: Large variation of information for a given density

Note: The bottom left panel shows a scatter-plot of information and density for networks
of more than 50 households. Two networks of similar density are highlighted by orange
and green points on the scatter plots. The network diagrams corresponding to those two
points are plotted in the top left and bottom right panel. The degree distribution of the
highlighted networks is shown in the top right panel.
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Figure 9: Decompose information

Note: We decompose information (unique comparisons) into comparisons which are pro-
vided within triangles, across triangles, and a remainder. By Proposition 4 all within and
across triangle comparisons are incentive-compatible. Comparisons within the remainder
may not be incentive-compatible.
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Figure 10: Capping comparisons at 5 friends

Note: Each bar represents a single network on which we simulate a cap on degree. Each
individual provides comparisons of at most 5 friends, selected uniformly at random when
the cap is binding. An upper bound equal to sum of unique and repeated comparisons
is given as a function of the degree distribution. The split between unique and repeated
comparisons is calculated as the mean after 100 iterations.
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C Proofs

Proof of Lemma 1

The condition is obviously sufficient, as it guarantees that for any pair (i, j) there

exists an individual k such that tkij 6= 0, Hence the matrix generated by (T 1, .., T n)

contains nonzero entries everywhere outside the diagonal. Conversely, suppose that

there exists a pair of individuals (i, j) who is observed by no other player and such

that gij = 0. Consider a realization of the characteristics such that θi and θj are

two consecutive values. No individual can directly compare i and j. In addition,

because there is no k such that θk ∈ (θi, θj), there is no k such that θi ≺ θk ≺ θj or

θj ≺ θk ≺ θi. Hence the social network g is not completely informative.

Proof of Theorem 1

Sufficiency. Suppose that for any pair of individuals (i, j), there exists a third in-

dividual k for whom gik = gjk = 1. We define the mechanism ρ by constructing

comparisons. Let rij denote the comparison between i and j chosen by the planner.

First consider a pair of individuals (i, j) who observe each other, gij = 1. By

assumption, there are at least three reports on the ranking of i and j. If all individuals

transmit the same report tij, let rij = tij. If all individuals but one transmit the same

report tij and one individual reports t
′
ij = −tij, ignore the ranking t

′
ij and let rij = tij.

In all other cases, let rij = 1 if and only if i > j.

Second consider a pair of individuals (i, j) who do not observe each other, gij = 0.

By assumption, there exists at least one individual k who observes them both. If there

are at least three individuals who observe i and j, use as above a mechanism such

that rij = tij if all individuals agree on tij or only one individual chooses t
′
ij = −tij,

and let rij = 1 if i > j otherwise.

If one or two individuals observe i, j, pick the individual k with the highest index.

Consider the vector of announcements T̃−k where one disregards the announcements

of individual k. Let �T̃−k be the binary relation created by letting tij = 1 if and only

if tlij = 1 for all l 6= k. If there exists a directed path of length greater or equal to 2

between i and j in �T̃−k , and for all directed paths between i and j in �T̃−k , i0, .., iL

we have tilil+1 = 1, then rij = 1. If on the other hand for all directed paths between i

and j in �T̃−k , tilil+1 = −1, then rij = −1. In all other cases, let individual k dictate

the comparison between i and j, rij = tkij.

Now consider all comparisons rij. If they induce a transitive binary relation on
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N , let ρ be the complete order generated by the comparisons. Otherwise, consider all

shortest cycles generated by the binary relation rij. If there exists a single individual

i who dictates at least two comparisons in all shortest cycles, individual i is punished

by setting ρi = 1 and ρj > ρk if and only if j > k for all j, k 6= i. If this is not the

case, pick the arbitrary ranking where ρi > ρj if and only if i > j.

We now show that the mechanism ρ is ex post incentive-compatible and ex post

efficient.

Suppose that all individuals except k report their true type, and consider indi-

vidual k’s incentive to report T
′k 6= T k. On any link (i, j) such that gij = 1, as

all other individuals make the same announcement, individual k cannot change the

comparison rij by misreporting.

Consider a link (i, j) such that gij = 0 and gikgjk = 1. If there are at least three

individuals who observe i and j, individual k cannot affect the outcome. Otherwise,

if there is a directed path of length greater than equal to 2 in �T̃−k , individual k’s

report cannot change the ranking. If individual k is not the highest ranked individual

who observes i and j, then she cannot change the comparison rij by misreporting.

Hence we only need to focus attention on pairs (i, j) such that k is the highest index

individual who observes i and j and there is no directed path between i and j in

�T̃−k .

Suppose that all individuals l 6= k announce the truth, so that �T̃−k=�T−k . We

first show that individual k cannot gain by making an announcement which induces

cycles in the ranking generated by the comparisons rij. Suppose that the ranking

generated by rij exhibits cycles. We first claim that the shortest cycles must be of

length 3.

Suppose that there exists a cycle of length L, i0, i1, .., iL. Because the community

is completely informative, the binary comparisons generated by the announcements

are complete, so that for any l,m, either rilim = 1 or rilim = −1. Now consider

i0, i1, i2. If ri0i2 = −1, i0, i1i2i0 forms a shortest cycle of length 3. If not, ri0i2 = 1 and

we can construct a cycle of length L − 1, i0i2, .., iL. By repeating this argument, we

either find shortest cycles of length 3 or end up reducing the initial cycle to a cycle

of length 3.

Consider next a shortest cycle of ijli. We claim that individual k must dictate at

least two comparisons in the cycle.

First note that if k does not dictate the comparison between i and j, there must

36



be a directed path between i and j in �T−k . To see this, notice that either gij = 1

and then i �T−k j or gij = 0 but i and j are not observed by k or are observed by k

and another individual with a higher index than k, in which case i �T−k j. Finally,

it could be that gij = 0, i and j are observed by k, k is the highest index individual

observing i and j, but then as k does not dictate the comparison (i, j), there must

exist a directed path of length 2 between i and j in �T−k .

Now suppose first that k does not dictate any comparison in the cycle. There must

exist a directed path between i and j, j and l and l and i in�T−k , a contradiction since,

as all individuals tell the truth, the binary relation generated by �T−k is transitive.

Next suppose that k dictates a single comparison (i, j) in the cycle but not the

comparisons (j, l) and (l, i). Then there exists a directed path between j and l and a

directed path between l and i in �T−k . Hence there exists a directed path of length

greater than or equal to 2 between j and i in �T−k . Furthermore, as all individuals

tell the truth, for all directed paths between j and i, rji = 1. Hence the mechanism

cannot let individual k dictate the choice between i and j, yielding a contradiction.

We conclude that all shortest cycles are of length 3, and that in any cycle of

length 3, individual k must dictate at least two of the three comparisons. Hence the

mechanism assigns ρ(k) = 1 and individual k cannot benefit from inducing a cycle.

Finally suppose that all comparisons rij result in a transitive relation so that ρ

can be constructed as the complete order generated by these comparisons. We claim

that the comparisons generated by T−k are sufficient to compute the rank of k. In

fact, for any i 6= k, either gik = 1 and as all other individual tell the truth, rik is

independent of the report tkik, or gik = 0 and the report on (i, k) is truthfully made

by another individual l. In both cases, the information contained in T−k is sufficient

to construct the comparison rik. Hence ρk is independent of the announcement T k,

concluding the proof that the mechanism is ex post incentive-compatible.

To show that the mechanism is ex post efficient notice that, when all individuals

truthfully report their types, the rankings rij induce a transitive relation, and yield

the complete ranking generated by �T.

Necessity. Suppose that the social network g satisfies the conditions of Lemma 1

but that there exists a pair of individuals (i, j) who observe each other but are not

observed by any third individual k. Consider a realization of the characteristics such

that θi and θj are the two lowest characteristics. Let T1 be the type profile if θi < θj

and T2 the type profile if θj < θi.
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By ex post efficiency, because the rankings generated by T1 and T2 are complete,

ρi(T1) = ρj(T2) = 1,

ρi(T2) = ρj(T1) = 2.

Because there are only two announcements tiij and tjij on the link (i, j), ex post

incentive compatibility requires that individuals i and j cannot improve their ranking

by changing their reports on the link (i, j). Let T−ij denote the announcements on

all links but link ij. We must have

ρi(T−ij, t
i
ij = 1, tjij = −1) = ρi(T1) = 1,

ρj(T−ij, t
i
ij = 1, tjij = −1) = ρj(T2) = 1.

resulting in a contradiction as i and j cannot both be ranked at position 1.

Proof of Theorem 3

We establish the Theorem through a sequence of claims. Let `(g) be the number

of links in the social network g.

Claim 1. If the social network is completely informative, then every individual must

have at least 2 friends.

Proof. Let di be the number of friends of individual i. As g is connected, di ≥ 1 for

all i ∈ N . Suppose that di = 1, and consider the unique neighbor j of i. As di = 1,

there is no k 6= j which is connected to i and can draw a comparison between i and

j. Hence the network g is not completely informative, establishing a contradiction.

Claim 2. If for any (i, j) there exists k such that gikgjk = 1, then `(g) ≥ 3(n−1)
2

if n

is odd and `(g) ≥ 3n
2
− 1 if n is even.

Proof. Consider the following problem: For a fixed number of links L, compute

the maximal number of comparisons of neighbors that can be generated by a social

network g when all nodes have degree contained in [2, n − 1]. More precisely, let

(d1, .., dn) denote the degree sequence of g with the understanding that di−1 ≥ di for
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all i = 1, .., n. Then consider the problem:

max
(d1,...,dn)

d1(d1 − 1)

2
+
d2(d2 − 1)

2
+ ...+

dn(dn − 1)

2

subject to 2 ≤ di ≤ n− 1 ∀i ,

d1 + d2 + ...+ dn = 2L .

Notice that the objective function V (d1, .., dn) = d1(d1−1)
2

+ d2(d2−1)
2

+ ...+ dn(dn−1)
2

is strictly increasing and convex in (d1, ..., dn).

Assume first that n is odd. Then pick L = 3(n−1)
2

and d1 = n−1, d2 = .. = dn = 2.

Because V is strictly convex,

V (n− 1, 2, ..., 2) =
(n− 1)(n− 2)

2
+ n− 1

=
n(n− 1)

2

> V (d1, ..., dn)

for any (d1, .., dn) 6= (n−1, 2, ...2) such that d1 + ..+dn = 3(n−1) and di ≥ 2 for all i.

Now n(n−1)
2

is the total number of comparisons. So, as V (d1, .., dn) is strictly increasing

in n, the social network g must contain at least 3(n−1)
2

links for all comparisons to be

constructed.

Assume next that n is even. Pick L = 3n
2
− 1 and d1 = n − 1, d2 = 3, d3 = .. =

dn = 2. Because V is strictly convex,

V (n− 1, 3, 2, ..., 2) =
(n− 1)(n− 2)

2
+ 3 + n− 2

=
n(n− 1)

2
+ 1

> V (d1, ..., dn)

for any (d1, .., dn) 6= (n− 1, 3, 2, ...2) such that d1 + ..+ dn = 3n− 2 and di ≥ 2 for all

i.
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In addition notice that for L′ = 3n
2
− 2,

V (n− 2, 2, 2, ..., 2) =
(n− 2)(n− 3)

2
+ n− 1

=
(n− 2)2 − n

2

> V (d1, ..., dn)

for any (d1, .., dn) 6= (n− 2, 2, 2, ...2) such that d1 + ..+ dn = 3n− 4 and di ≥ 2 for all

i.

Hence, the maximum of Vi is smaller than n(n−1)
2

when `(g) = 3n
2
− 2 and greater

than n(n−1)
2

when `(g) = 3n
2
− 1, establishing that the social network g must contain

at least 3n
2
− 1 links for all comparisons to be constructed.

Next we observe that the friendship network and the modified windmill network

generate all comparisons.

Claim 3. If n is odd, the friendship network containing exactly 3(n−1)
2

links, generates

all comparisons. If n is even, the windmill with sails of size 2 and one sail of size 3

with an additional link, containing exactly 3n
2
− 1 links, generates all comparisons.

Proof. The hub of the network, node nh, provides the comparisons between all other

(n−1) nodes. If n is odd, in any petal (i, j), i provides the comparison between j and

nh and j provides the comparison between i and nh. If n is even, in any sail of size

2, (i, j),i provides the comparison between j and nh and j provides the comparison

between i and nh. In the unique sail of size 3, (i, j, k), i provides the comparison

between j and nh, j provides the comparisons between i and nh and k and nh and k

provides a (redundant) comparison between j and nh.

Finally we establish that the friendship network and the modified windmill net-

work are the only network architectures generating all comparisons with the minimal

number of edges.

Claim 4. If n is odd, the friendship network is the only network with degree sequence

(n− 1, 2, ..., 2). If n is even, the modified windmill network with n
2
− 2 sails of size 2

and one sail of size 3 with an additional link is the only network with degree sequence

(n− 1, 3, 2, ..2).

Proof. Let n be odd. Because one node has degree n − 1, the network is connected

and this node is a hub. All other nodes must be connected to the hub, and if they
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have degree 2, they must be mutually connected to one other node. Let n be even.

The same argument shows that all nodes with degree 2 must be connected to the hub

and one other node. These nodes are mutually connected except for the petal of size

3, where one node is connected to the two other nodes in the sail.

Proof of Proposition 1

As in the necessity part of the proof of Proposition 1, consider a realization of

the characteristics such that θi and θj are the two lowest characteristics. Fix two

type profiles T and T′ which agree on all comparisons except that θi < θj in T and

θj < θi in T′. Clearly, for any k 6= i, j, if k �T j then k �T i, as i and j can be

compared under T. Similarly, if k �T′ i then k �T′ j. Furthermore, as θi and θj

are the two smallest characteristics, all individuals k which can be compared to i and

j have higher rank than i and j. Next consider k 6= i, j such that k ./T i. Then

we must also have k ./T j, as otherwise k �T j which implies k �T i. Similarly, if

k ./T′ j then k ./T′ i. Hence if an individual k cannot be compared to i under T, it

cannot be compared to j under T, nor to j under T′ nor to i under T′.

By ex post efficiency, for all k which can be compared to i, j, ρk(T) > ρj(T) >

ρi(T). Similarly, by ex post efficiency, for all k which can be compared to i, j, ρk(T′) >

ρi(T) > ρj(T). By independence, for all k which cannot be compared to i, j, ρk(T) >

ρi(T) if and only if ρk(T′) > ρi(T
′) and ρk(T) > ρj(T) if and only if ρk(T′) > ρj(T

′).

Hence the set of individuals who are incomparable to i, j and are ranked below i and

j under T and T′ are identical. But this implies that

ρi(T) = ρi(T
′)− 1,

ρj(T
′) = ρj(T)− 1

As we also have ρi(T) < ρj(T) and ρj(T
′) < ρi(T

′), we must have

ρi(T + 2 > ρj(T) > ρi(T),

so that ρj(T) = ρi(T) + 1. Hence
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ρi(T) = ρj(T
′),

ρj(T) = ρi(T
′).

Because there are only two announcements tiij and tjij on the link (i, j), ex post

incentive compatibility requires that individuals i and j cannot improve their ranking

by changing their reports on the link (i, j). Let T−ij denote the announcements on

all links but link ij. We must have

ρi(T−ij, t
i
ij = 1, tjij = −1) = ρi(T)

ρj(T−ij, t
i
ij = 1, tjij = −1) = ρj(T

′),

resulting in a contradiction as i and j cannot both be ranked at the same position.

Proof of Proposition 2

We first prove the following Claim.

Claim 5. The comparison network is connected if and only if for all i, j ∈ N , there

exists an even walk between i and j.

Proof. Suppose first that h is connected. Pick any two nodes i, j ∈ N and a walk

i = i0, ..., im = j in h. By definition, for any (ik, ik+1) in the walk, there exists jk ∈ N
such that ik, ik+1 ∈ Njk . But this implies that there exists a walk in g connecting i

to j given by i0, j0, i1, j1, ..., im−1, jm−1, im.5 This walk contains an even number of

edges, proving necessity of the claim.

Next suppose that h is not connected and let i and j be two nodes in different

components of h. We want to show that all walks between i and j in g are odd.

Consider first a path between i and j. If the path is even, there exists a sequence

of nodes i = i0, i1, .., im = j where m = 2l is even such that gik,ik+1 = 1 for all

k. But then, for any l = 0, m
2
− 1, hi2l,i2l+1 = 1, and hence there exists a path

i = i0, i2, ..., im = j ∈ f , contradicting the fact that i and j belong to two different

5Note that this walk is not necessarily a path even if the initial walk in h is a path, as the same
node jk can be used several times in the walk.
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components in h. Hence all paths between i and j are odd. If there exists an even

walk between i and j in g, it must thus involve an odd cycle starting at i or starting

at j. Without loss of generality, suppose that there exists an odd cycle starting at i,

i = i0, ..., im = i, where m = 2l + 1 is odd. Consider any even path between i and j,

where we index i = im, ...ir = j and r = 2p is even. We construct a path in h between

i and j as follows. Because m is odd, we first construct the sequence of connected

nodes in h, i = i2l+1, i2l−1, i2l−3, .., i1. Because i is connected in g both to i1 and im+1,

we then link i1 to im+1 in h. Now m + 1 is even, so we can use the path between i

and j to construct a sequence im+1, .., ir = j in h. Concatenating the two sequences,

we construct a sequence i, im−2, ..., i1, im+1, .., ir = j in h, contradicting the fact that

i and j belong to two different components in h. Hence if h is not connected, there

exists a pair of nodes i, j such that all walks between i and j are odd, proving the

necessity of the claim.

We now prove the second claim

Claim 6. For all i, j ∈ N there exists an even walk between i and j if and only if g

is not bipartite.

Proof. Suppose that g is bipartite with sets A and B. As N ≥ 3, at least one of the

two sets has more than one element. Pick i, j such that i ∈ A and j ∈ B, then we

claim that all walks between i and j must be odd. Any walk between i and j must

contain an even number of edges alternating between nodes in A and B and a single

edge between a node in A and a node in B. Hence the total number of edges must

be odd, proving the necessity of the claim.

Conversely, suppose that there exists a pair of nodes i, j such that all walks

between i and j are odd. Consider the sets of nodes A = {k|δ(i, k) is even} and

B = {k|δ(i, k) is odd }, where δ(i, k) denotes the geodesic distance between i and k

in the graph. We first claim that if k ∈ A, all walks between i and k must be even.

Suppose not, then there exist two different walks between i and k, one w1 which is

even (the shortest path between i and k) and one w2 which is odd. Pick one particular

path p between k and j. If this path is odd, then the walk between i and j containing

w2 followed by p is even, contradicting the assumption. If the path is even, then the

walk between i and j containing w1 followed by p is even, contradicting the assump-

tion again. Hence all walks between i and nodes in A are even and all walks between

i and nodes in B are odd. Next notice that there cannot be any edge between nodes
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in A. Suppose by contradiction that there exists an edge between k and l in A, and

consider a walk between i and k, w1 followed by the edge kl. This forms an odd walk

between i and l, contradicting the fact that all walks between i and l must be even.

Hence, there is no edge between nodes in A and similarly no edge between nodes in

B, showing that the graph g is bipartite.

Proof of Proposition 3

Consider a mechanism where all individuals in A are ranked above individuals in

B. For any two individuals i and j in A, let ρ(i) > ρ(j) if i �T j. If i ./T j or if

the reports on i and j are incompatible, construct an arbitrary ranking by letting

ρ(i) > ρ(j) if and only if i > j. Similarly, for any two individuals i and j in B, let

ρ(i) > ρ(j) if i �T j. If i ./T j or if the reports on i and j are incompatible, let

ρ(i) > ρ(j) if and only if i > j.

We will show that the mechanism satisfies the three properties. Clearly if i and j

are incomparable under two profile types T and T′, either one belongs to A and the

other to B (in which case the mechanism ranks them in the same way under T and

T′), or they belong to the same set, and the mechanism ranks them identically under

T and T′ as it only uses the index to rank them. Hence independence is satisfied.

The mechanism satisfies strategy-proofness, a stronger incentive compatibility no-

tion than ex post incentive compatibility. Consider an individual i in A. Then we

claim that if tijk 6= 0 it must be that both j and k are in B. To see this notice that as

g is bipartite it does not contain any triangle. Hence no self-report can be supported

by a third individual, and hence tiij = 0 for all j 6= i. The only case where tijk 6= 0

is thus when gijgik = 1 and j, k ∈ B. Hence, by changing his report tijk, individual

i can only affect the ranking of individuals in B. As all individuals in B are ranked

below individuals in A, this does not affect the rank of individual i, and hence indi-

vidual i’s ranking is independent of his announcement, proving that the mechanism

is strategy-proof.

Finally, notice that by construction, the mechanism ρ achieves an ex post efficient

ranking separately on each of the two components A and B. by Proposition 2, the

comparison network h is disconnected into two components A and B. Hence the

mechanism ρ is also ex post efficient.

Proof of Proposition 4

We consider the same mechanism as in the proof of Theorem 1: We define the
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mechanism ρ by constructing comparisons. Let rij denote the comparison between i

and j chosen by the planner.

First consider a pair of individuals (i, j) who observe each other, gij = 1. By

assumption, there are at least three reports on the ranking of i and j. If all individuals

transmit the same report on (i, j), let rij = tij. If all individuals but one transmit

the same report tij and one individual reports t
′ij = −tij, ignore the ranking t

′
ij and

let rij = tij. In all other cases, let rij = 1 if and only if i > j.

Second consider a pair of individuals (i, j) who do not observe each other, gij = 0.

If there are at least three individuals who observe i and j, use as above a mechanism

such that rij = tij if all individuals agree on tij or only one individual chooses t
′
ij =

−tij, and let rij = 1 if i > j otherwise.

If one or two individuals observe i, j, pick the individual k with the highest index.

Consider the vector of announcements T̃−k where one disregards the announcements

of individual k. Let �T̃−k be the binary relation created by letting tij = 1 if and only

if tlij = 1 for all l 6= k. If there exists a directed path of length greater or equal to 2

between i and j in �T̃−k , and for all directed paths between i and j in �T̃−k , i0, .., iL

we have tilil+1 = 1, then rij = 1. If on the other hand for all directed paths between i

and j in �T̃−k , tilil+1 = −1, then rij = −1. In all other cases, let individual k dictate

the comparison between i and j, rij = tkij.

Now consider all comparisons rij. If they induce a transitive binary relation on

N , let ρ be the complete order generated by the comparisons. Otherwise, consider all

shortest cycles generated by the binary relation rij. If there exists a single individual

i who dictates at least two comparisons in all shortest cycles, individual i is punished

by setting ρi = 1 and ρj > ρk if and only if j > k for all j, k 6= i. If this is not the

case, pick the arbitrary ranking where ρi > ρj if and only if i > j.

We now prove that this mechanism satisfies all three conditions. Consider two

type profiles T and T′, and two individuals i and j such that i ./T j and i ./T′ j.

Because T and T′ generate identical truthful reports and result in a transitive partial

order, i and j must be ranked at the final completion phase of the mechanism, using

the same ranking ρ(i) > ρ(j) if and only if i > j. Hence independence holds.

Next consider any pair (i, j) such that i �T j. There must exist a sequence of

comparisons (i, i1, .., it, .., iT , j) such that hit−1it = 1 and it−1 �T it. For any of these

pairs, we must have rit−1it = 1 and hence, because the announcement T generates a

transitive partial order, ρ(it−1) > ρ(it). But this implies that ρ(i) > ρ(j), establishing
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that the mechanism satisfies ex post efficiency.

Finally, we show that the mechanism is ex post incentive-compatible. Consider

individual k’s incentive to change his announcement on a link ij when all other

individuals tell the truth. If the link ij is supported, this change does not affect the

outcome of the mechanism. So consider an unsupported link ij and let individual k

be the highest index individual observing i and j. Suppose that all individuals l 6= k

announce the truth, so that �T̃−k=�T−k . We first show that individual k cannot gain

by making an announcement which generates cycles in the ranking rij.

Suppose that the binary relation generated by rij exhibits a cycle i0i1...iL

By the same argument as in the proof of Theorem 1, individual k must dictate at

least two comparisons in the cycle. We will show that the initial cycle must contain

a cycle of length 3. Suppose that the initial cycle has length greater than or equal

to 4. Let ij and lm be two comparisons dictated by individual k. Suppose first that

the rank of l is strictly higher than the rank of j. As individual k observes both (i, j)

and (l,m), he also observes both i and l. Hence i and l must be compared under r

and either ril = 1 or ril = −1. Now if ril = −1, one can construct a shorter cycle by

replacing the path lm..i by the path li. If ril = +1, one can construct a shorter cycle

by replacing the path ij, , l by the path il. Next suppose that j = l so that the two

comparisons (i, j) and (l,m) are adjacent in the cycle. Again because individual k

observes both i and m, then i and m must be compared under r and either rim = +1

or rim = −1. If rim = +1, one can construct a shorter cycle by replacing ijm with

im. If rim = −1, one can construct a cycle of length 3 ijmi.

We conclude that if the binary relation r exhibits a cycle, there must exist a sub-

cycle of length 3, so that all shortest cycles are of length 3. Furthermore, individual

k must dictate at least two of the comparisons in all cycles. Hence, individual indi-

vidual k has no incentive to make an announcement generating a cycle in r, as he

will be punished and obtain the lowest rank.

We finally assume that the ranking generated by r is acyclic and show that the

rank of individual k must remain the same if he changes his report on any pair (i, j).

Notice first that, if k dictates the ranking between i and j, i and j there does not exist

a l such that i, j and l can be ranked under T−k. In fact, if i, j and l can be ranked

using the reports of individuals in N \ k, they unanimously rank i and j through

a path of length equal or greater than 3 and the mechanism does not let k dictate

the choice between i and j. But this implies that whenever k is a dictator over the
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pair (il, jl) both individuals il and jl are either both ranked above or below k by the

reports T−k .

Now let J = (i1, j1), ..., (il, jl), ..(iL, jL) be the pairs on which k is a dictator and

let J+ denote the set of pairs (il, jl) such that k �T−k il, jl and J− the set of pairs such

that k ≺T−k il, jl. Let T′ = (T−k, T
′k) the announcement obtained when i changes

his report on some of the pairs in J while keeping a transitive partial order. For any

m such that k �T−k m, k �T m and k �T′ m. Hence ρk(T) > ρm(T) and ρk(T′) >

ρm(T′). Similarly, for any m such that k ≺T−k m, k ≺T m and k ≺T′ m. Hence

ρk(T) < ρm(T) and ρk(T′) < ρm(T′). We also have, for any m ∈ J+, ρk(T) > ρm(T)

and ρk(T′) > ρm(T′). For any m ∈ J−, ρk(T) < ρm(T) and ρk(T′) < ρm(T′). Next

consider m such that k ./T−k m and m /∈ J . If m ≺T−k il for some il ∈ J+, then

k �T m and k �T′ m so that ρk(T) > ρm(T) and ρk(T′) > ρm(T′). Similarly, if

m �T−k il for some il ∈ J−, then k ≺T m and k ≺T′ m so that ρk(T) < ρm(T) and

ρk(T′) < ρm(T′). Finally, if m �T−i il∀il ∈ J+,m ≺T−k il∀il ∈ J− and k ./T−k m,

then k ./T m and k ./T′ m. Whenever k ./T m and k ./T′ m, then the ranking

between k and m is independent of the type profile. Hence, in all cases the ranking

between k and m is identical under T and T′. This argument completes the proof

that the mechanism satisfies ex post incentive compatibility.

Proof of Proposition 5

We first establish the following simple general claim:

Claim 7. If ρ is strategy-proof, ρi(T
i, T̂−i) = ρi(T

′i, T̂−i) for all i, T i, T
′i, T̂−i.

Proof. Suppose by contradiction that there exists i, T i, T
′i, T̂−i such that ρi(T

i, T̂−i) >

µi(T
′i, T̂−i). Let T

′i be the true type of individual i. Then, individual i has an

incentive to announce T i, contradicting the fact that ρ is strategy-proof.

Consider next two vectors of types:

• T1: tij = tjk = tik = 1

• T2: tij = −1, tjk = 1, tik = −1

As the mechanism is ex post efficient, it must assign ranks ρi(T1) = 3, ρj(T1) =

2, ρk(T1) = 1, ρi(T2) = 1, ρj(T2) = 3, ρk(T2) = 2.
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Now let ti denote the announcement tiij = tijk = tiik = 1 and t
′i the announcement

tiij = −1, tijk = 1, tiik = −1. By Claim 7,

ρi(t
′i, tj, tk) = ρi(t

i, tj, tk) = 3,

ρj(t
i, t
′j, tk) = ρj(t

i, tj, tk) = 2.

ρk(t
′i, t

′j, tk) = ρk(t
′i, t

′j, t
′k) = 2.

Hence we conclude that, at (t
′i, t

′j, tk) either ρi = 3, ρj = 1 or ρi = 1, ρj = 3. But

ρj = 3 is impossible, as, by claim 7, ρj(t
′i, t

′j, tk) = ρj(t
′i, tj, tk) and ρj(t

′i, tj, tk) 6=
ρi(t

′i, tj, tk) = 3. Hence we conclude that

ρi(t
′i, t

′j, tk) = 3, ρj(t
′i, t

′j, tk) = 1, ρk(t
′i, t

′j, tk) = 2. (1)

A similar reasoning shows that

ρj(t
′i, tj, t

′k) = 3,

and hence either ρi = 2, ρk = 1 or ρi = 1, ρk = 3 at (t
′i, tj, t

′k). But ρi(t
′i, tj, t

′k) =

ρi(t
i, tj, t

′k) 6= ρk(ti, tj, t
′k) = ρk(ti, tj, tk) = 1. So we conclude that

ρi(t
′i, tj, t

′k) = 2, ρj(t
′i, tj, t

′k) = 3, ρk(t
′i, tj, t

′k) = 1. (2)

Now, ρj(t
′i, tj, tk) = ρj(t

′i, t
′j, tk). By equation 1,

ρj(t
′i, t

′j, tk) = 1

,

so that ρj(t
′i, tj, tk) = 1. As ρi(t

′i, tj, tk) = ρi(t
i, tj, tk) = 1,

ρk(t
′i, tj, tk) = 2.

Similarly, ρk(t
′i, tj, tk) = ρk(t

′i, tj, t
′k) and by equation 2,

ρk(t
′i, tj, t

′k) = 1

so that
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ρk(t
′i, tj, tk) = 1.

establishing a contradiction.

Proof of Proposition 6

If individuals strictly prefer being ranked at ρ(i) = 2 to being ranked at ρ(i), the

necessity part of the proof of Theorem 1 shows that whenever there exists a pair of

individuals who are not observed by a third individual, there cannot exist an ex post

incentive-compatible and efficient mechanism.

Conversely, if individuals are indifferent between being ranked at ρ(i) = 1 and

ρ(i) = 2, let ρ(i) = 1 and ρ(j) = 2 whenever i and j are the only two individuals

observing the ranking between i and j and tiij 6= tjij. This guarantees that individuals

have no incentive to send conflicting reports, and hence that this mechanism, com-

pleted by the mechanism constructed in the sufficiency part of Theorem 1, satisfies

ex post incentive compatibility and efficiency.

Proof of Proposition 7

Consider a vector of announcements where all three individuals agree on t13 =

−1, t23 = −1, t12 = 1. By ex post efficiency, ρ(1) = 2, ρ(2) = 1, ρ(3) = 3. We

claim that ex post group-incentive compatibility implies that, whenever individual

3 announces t313 = −1, t323 = −1, t312 = 1, the rank of individual 1 must be different

from 3. If that were not the case, there would exist an announcement (t
′1, t

′2) for

individuals 1 and 2 resulting in a rank ρ(1) = 3 > 2, ρ(2) ≥ 1, contradicting ex

post group-incentive compatibility. By a similar reasoning, whenever individual 1

announces t112 = 1, t113 = 1, t123 = 1, the rank of individual 2 must be different from

3. Finally, when individual 2 announces t212 = −1, t223 = 1, t213 = −1, the rank of

individual 3 must be different from 3.

So consider the announcement t1 = (t112 = 1, t113 = 1, t123 = 1), t2 = (t212 = −1, t223 =

1, t213 = −1), t3 = (t313 = −1, t323 = −1, t312 = 1). For this announcement, neither of

the three individuals can be in position 3, a contradiction which completes the proof

of the Proposition.
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