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Abstract

There exists a continuum of prices between Bertrand and joint-profit maximization prices
which can be interpreted as the outcome of a two-stage game where firms first invest to increase
product differentiation and then compete in prices. The lower the costs of differentiating their
products from each other the more relaxed competition in the product market and the closer
firms will be to the collusive outcome of the one-shot game for given degree of differentiation.
The higher the costs the harsher competition in the market and the closer to the Bertrand so-

lution of the one-shot game with given degree of differentiation.
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1 Introduction

In industrial organization the concepts of Bertrand competition, Cournot competition and joint
profit maximization are often used as benchmark cases which indicate, in decreasing order, the
toughness of competition in the market.! In this note, we argue that these benchmark concepts,
as well as all the possible intermediate cases, can be interpreted as outcomes of a two-stage
game where firms first invest to differentiate its product from the rival, and then compete in
prices. The lower the investment costs for the firms the higher product differentiation and the
more relaxed price competition in the product market. Consider for instance the case where,
in the absence of any investment, firms would sell homogenous goods. If firms can costlessly
differentiate their products in the first stage they will be able to sell goods which are perceived as
independent, and equilibrium prices will be identical to those arising in a situation of joint profit
maximization. At the other extreme, if investments require infinite costs, firms will be unable
to differentiate their products and the outcome of the game will coincide with the Bertrand
solution of the one-shot game. Any intermediate case, including Cournot competition, can arise
as the reduced form of this two-stage game, depending on the cost of investing in product
differentiation.

This note is related to the literature which interprets the mode of competition in the market
as the result of a richer game. The best known example probably lies in the work of Kreps
and Scheinkman (1983), who show that competition in quantities gives the same outcome as a
model where firms choose capacities and then compete in prices given the capacity constraint
determined by the first stage choices.?

Klemperer and Meyer (1989) consider a model where firms choose a supply function (i.e., a
price-quantity schedule) under demand uncertainty. Different factors might affect the steepness
of the equilibrium supply functions. The steeper (flatter) these functions are the more similar
the model is to the case of Cournot (Bertrand) competition.?

A related branch of the literature includes d’Aspremont, Dos Santos Ferreira and Gerard-

Varet (1991), who have showed that the Cournot equilibrium can be interpreted as equivalent

!See for instance Sutton (1991).
ZSee Tirole (1988) for a discussion and qualifications.

3See also Laussel (1992) and Grant and Quiggin (1996).



to a situation where firms choose quantities and price signals which are converted in the market
price by a pricing scheme (such as the "min-pricing”). Holt and Scheffman (1987) have found
that the Cournot equilibrium is the result of a game where price changes are notified in advance
but price rebates are possible.

The closest works to this paper are Vives (1986) and Maggi (1996). In their papers, firms
choose capacity in the first stage of the game but they can extend output beyond capacity in
the second stage of the game at an additional cost. If this cost is prohibitive, like in Kreps and
Scheinkman (1983), then capacity choices made in the first stage have complete commitment
force and fully constrain outputs in the last stage: the Cournot result is found again. At the
other extreme, if increasing output beyond capacity does not bring about any additional cost,
capacity decisions do not have any commitment value and firms can expand output at will in
the last stage: the outcome will be the same as in a Bertrand model. Between these two cases,
a continuum of intermediate outcomes is found according to the degree of flexibility in outputs.
There exists a close link between these works and the framework proposed by Klemperer and
Meyer (1989), because the former can be seen as one where firms compete in supply functions
whose slope is determined by the exogenously given flexibility coeflicient.

Our approach here is reminiscent of work by Vives and Maggi in at least two respects. First,
because the strength of competition depends on (first-stage) investment decisions. Second,
because a continuum of results can be obtained as the cost parameter changes. However, with
respect to the first point it should be noted that the crucial variable here is not the ability of the
firms to commit to their capacity choices but rather their ability to create product differentiation;
with respect to the second point, a substantial difference exists because we find that all the
intermediate cases between Bertrand pricing and joint profit maximization can be found as
equilibrium situations.

This note is also clearly related to a number of other papers which have shed light on the
fact that product differentiation relaxes price competition®. Although these results are by now
well known, it is only fair to remember that the basic insight of this note can be found in
those works. Further, Tirole (1988, pp. 216-17) has hinted at a similarity between product

differentiation and capacity constraints in affecting the mode of competition: “...when choosing

4See also Dixon (1985) for similar formalizations.

>d’Aspremont, Gabszewicz and Thisse (1979) and Shaked and Sutton (1982) among the first.



a location, firms try to differentiate themselves from other firms so as to avoid the intense
Bertrand competition associated with perfectly substitutable products (in the same way that
firms [..] avoid accumulating ” too much capacity” in order to soften price competition).” Finally,
Klemperer and Meyer (1989) had showed that the higher the degree of product differentiation
the steeper the equilibrium supply functions (which in turn makes competition resemble the
Cournot competition case).

This paper continues with the description of a simple linear model and the analysis of the
results in section 2. Section 3 generalises the results both on the demand side (by considering
a whole class of demand functions for differentiated products) and on the cost side. Section 4

concludes the paper.

2 A simple model

Consumers have the following utility function:
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where z is an outside composite good and ¢;, ¢; are the quantities of a differentiated good whose
industry we want to analyze. We assume that firms 1 and 2 are the only sellers in this industry.®
Restrictions on parameter values ensure that demand has a positive intercept and that the own
price effect is stronger than the cross price effect. Although not explicitly written in the utility
function above, the substitution parameter g = g(z;, z;) is exogenous to consumers’ choice but
is an endogenous variable in the model, since it is determined by the investments x;,z; of the
firms in a way we shall specify below.

Utility maximization implies: p; = a — (b — g)¢; — gq;, from which we can write the (direct)
demand functions as:

_alb—29) —(b—g)pi +gp;.
ql b(b— 2g) ’

by =120 %] (2)

The degree of product differentiation in this model can be indexed by ((b — 2g)/g) € (0,00).

When ¢ tends to 0 the goods become independent, and product differentiation is the highest. As

SWe consider a duopoly for ease of exposition, but extending the model to n firms would give the same

qualitative results.



g tends to b/2, goods become perfect substitutes and product differentiation is nil. These demand
functions have the property that aggregate demand in the industry does not change when the
substitutability parameter g varies. Therefore, investments by the firms which decrease the value
of g increase differentiation between the products but do not affect the size of the market.”
We can now turn to the game played by the two firms. In the first stage, firms simultaneously

decide on their investment levels z;, which affect the value of the parameter g as follows:

where g € (0,b/2) is the ex-ante degree of substitution between the products. Note that there
exists a complete positive externality in investments’ levels. In this model, investment by a firm
only increases the degree of product differentiation and this one is equally beneficial to both
firms. This is similar to what would happen in a Hotelling horizontal product differentiation
model if a firm moved along the line away from its rival.®

The cost of such investments is the same for both firms and is given by C(z;) = (kz)/7,
with vy > 1 and £ > 0.

In the second stage of the game, firms simultaneously decide on their price. We assume that

they have (zero) constant marginal costs of production.

2.1 Benchmark cases: Bertrand and Cournot

To solve the model, we start as usual from the last stage of the game, which will also give the
benchmark Bertrand solution for the case where no investments are made.

Firms’ profits are given by II; = p;q;(p;, p;). By substituting the demand functions given
above and maximizing with respect to p;, one finds the FOCs: ab — 2ag — 2(b — g)p; + gp; = 0.
The last stage reaction functions R;(p;) and R;(p;) are depicted in Figure 1. Stability and
uniqueness are satisfied by R} = 2(b—g)/g > 1> g/(2(b—g)) = R

“If market size changed with g then we could still find, say, the equivalence between the equilibrium price of
the two-stage game analyzed here and the Cournot price outcome, but we could not extend the equivalence to
quantity and profits. This is because with identical prices but a lower g, the firms would sell larger quantities

than in the Cournot case. See also section 3 on this point.

8The effect is not identical though. In the Hotelling model, moving away from the center of a segment would

give an additional advantage to the rival, since it would give it a more central location.



It is also easy to verify that an increase in the value of g raises (lowers) the intercept of
R; (R;) and decreases (increases) the slope of R; (R;). In particular, when g is close to 0, the
best reply function R; tends to the vertical line passing at (a/2,0), whereas the function R;
tends to the horizontal line passing at (0,a/2). The intersection of the best reply functions
moves to p; = p; = a/2. For higher values of g, the curves shift as indicated above until they
reach the extreme case where g = g, where R; (R;) meets the horizontal (vertical) axis in
a(b — 29)/(2(0 — 9)).

The last stage Nash equilibrium prices and profits are given by:?

pr = b —29) s — @0 —29)(b—g)
" T 2 —3g ' b(20 —3g)2

(4)
where g = g — x; —x;. For the specific case where no investments are made, the solutions above
give the benchmark Bertrand case after substitution of ¢ = g. Therefore, the Bertrand price is:
pp = (a(b —29))/(2b — 3g).

Note also that we are using the term ”Bertrand” in a broad sense, that is to indicate the
outcome of price competition for any given values of g and b, and therefore for any given ex-ante
degree of product differentiation. The standard Bertrand outcome would correspond to the
particular case where b — 2g. In this case, goods are homogeneous and prices tend to zero at
equilibrium.

The Cournot solution for any given values of parameters g and b can also easily be found
by using the inverse demand functions given above and maximizing with respect to ¢;. The
equilibrium prices and profits for g = g are:

_a(b—g)

a*(b — g)
bc = 2b——g’

=@ ?
Note that for the case of homogenous good (b — 2g), the solutions above tend to the familiar
expressions p. = a/3 and Il = a2 /(9b).
Finally, the last benchmark case, represented by the joint-profit maximization is given by:

pu = a/2 and Il = a?/(4b).

9Second order conditions are satisfied.



2.2 The investment game

At the first stage of the game, firms maximize their profit m;(z;,z;) = I} (x;,z;) — C(x;).
Replacing II} and Cj, recalling that ¢ = g — z; — x; and taking first derivatives gives the

following first order conditions:

om; _ a2<?{— T; — xj) A S (6)
Or;  (2b—3g + 3z; + 3x;)3 E

These expressions implicitly define the first-stage reaction functions r;(z;) and r;(x;). By dif-

ferentiating we can find the slopes r and r;- in the plane (z;, z;) as:

o dxj’ _ 1+ (k/a®)z] T F2(9+ (v — 1)F/x5)) )
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where I' = 2b — 39 + 3z; + 3x;.

Both reaction functions are negatively sloped 1 and for & > 0 we have 7} > 1 > r;-, which
guarantees stability and uniqueness. Figure 2 offers a graphical representation of the reaction
functions of the first stage of the game. To draw the picture, we have also made use of the
facts that r; passes through the point (0, g), that r; passes through (g,0), and that r; = r; for
T = x;.

It is straightforward to check that % > 0 and that % < 0. This effect is illustrated in
Figure 2. When the efficiency of the investment decreases (that is, when it is more costly to
differentiate) the intersection of the reaction functions move along the diagonal towards the
origin and the firms will select a lower level of investment at equilibrium (z;, z; will decrease).
This implies that the degree of product differentiation decreases (g rises) which in turn lowers
prices at the last stage of the game (see Figure 1).

Note what happens for extreme values taken by the parameter k. When & = 0 both reaction
functions collapse to the same curve having slope —1. As a result, equilibrium in the investment
stage is given by all the points x;,z; such that x; = g — x;, whence the ex-post substitution
parameter is given by g = g — z; — (§ — z;) = 0. We know from the analysis of the last stage

reaction functions that this entails the equilibrium price p; = p; = par = a/2. This amounts to

10T herefore, investments are strategic substitutes, whereas prices are strategic complements.



saying that when firms can costlessy differentiate their product from each other, they will select
the highest degree of differentiation and they will manage to get the same profit that they would
get if they could collude.

At the other extreme, when & — oo, both first stage reaction functions r; and r; rotate
inwards toward the origin so that r; becomes vertical and r; horizontal. Their intersection tends
to z; = z; = 0 so that g = g. This will result in the last stage reaction functions intersecting
at the point p; = p; = pp = (a(b — 2g))/(2b — 3g). Again, the intuition is obvious: if firms are
infinitely inefficient in their investments, they will not be able to increase product differentiation
in the industry beyond its ex-ante level and the equilibrium price of the whole game will coincide
with the Bertrand price.!!

We have therefore established a relationship between k, x (which uniquely determines g)
and p which is summarised by Figure 3. Any price outcome at the last stage of the game can
therefore be interpreted as if it were determined by a certain investment cost parameter. As an
example, consider the Cournot outcome. To find the level of the cost parameter & which would
bring about a Cournot price at the equilibrium of the whole game proceed in two steps. First,

find the investment values z¢ which satisfies p*(z;, z;) = pc. Second, look for the parameter k.

which solves the FOCs of the first stage, namely: gg?(l{,xc,xc) = 0.!2 The first step amounts

to solving;:
a(b—2g+4x) a(b—g)

- . 9)

26—3g+6x  2b—g

Some algebra shows that the result is given by:

72
“ 720 +9) (10)
The second step of the problem involves solving the following equation:
a%(g — 2x¢) 1
—kxl " =0. 11
(2b— 35 + 6zc)® T C (11)
By replacing the value of z¢ and rearranging one obtains:
2-3—2y b =\3

TR — PR+ 9P T

HRecall we use the ”Bertrand” term in a broad sense. Only if goods are ex-ante homogenous, that is if b — 2g,

do we have that the Bertrand price equals zero.

12Fquivalently, we could say that we look for the ex-post substitutability parameter go which satisfies p* (9c) =
pc, and then which satisfies the FOC %(k, go) = 0. The two approaches are equivalent.



3 A generalization

In this section we keep the same modeling structure as in the previous example but we generalise
the analysis to a system of demand functions which are not necessarily linear, and to a class of
functions which describe the cost of increasing product differentiation.

Consider the following system of demand functions for differentiated products:

& = ¢(piypj, 9) L,j=1,2 1#] (13)

where ¢; is the quantity demanded, p;, p; are prices and g a parameter which defines the

degree of substitutability between the two goods, with g € [¢,7] '®. The following assumptions

characterise the restrictions on the demand system:

g Oy , .
() g=5E<0 g=ZL>0 |diz|d|
i j
(A2) g_ 9% 99:@«)
qz ag — qZ 892 —
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7 ? J

(45) If pi=pjthen g=q; gG=q; ¢ =q @ =q ¢ =q" @' =q"

Hence, Al defines the products as substitutes, A2 refers to the degree of substitutability,
A3 guarantees that equilibrium prices rise with product differentiation, A4 is relevant for the
concavity of the demand and profit function and implies that the price game is in strategic

complements; finally, A5 imposes symmetry on the demand system!'?.

13The assumptions on the demand side are stated for simplicity directly on the system of demand functions.
However we can imagine that the representative consumer’s utility is quasi-linear with U = V(g q5,9) +1 —
Zi Diqi, where I is income. In this case ¢;(-) = 0V/9q; and the assumptions below can be referred to the features

of the function V(-) in the utility function.

14Notice that as firms differentiate, symmetry is preserved, as in a Hotelling model and our example in section



If we assume zero (constant) marginal cost, the profit function is:

IL; = pigi(pi s, 9)

The Nash equilibrium in prices, (p;, p}), is implicitly defined by I1(p}, p;) =0, H; (p},p;) = 0;
the second order conditions hold given A4. Firm #’s reaction function has a slope dp;/dp; =
—11%/ sz > 0, by A4 (products are strategic complements). Moreover, from Al and A4 it can
be easily established that 1% = 2¢% + p;g¥ < 0 and 117 = ¢/ +psq? > 0. Therefore | [T# |>| 17 |
and the reaction functions are contraction mappings ensuring uniqueness. Finally, given A5, the
unique equilibrium is symmetric.

Consider now the effects of a variation in g on the equilibrium prices. Totally differentiating
the first order condition for a Nash equilibrium we get, using the previous notation for partial

derivatives:

Zdp; + 117 dp; + 9dg = 0 (14)

[ dp; + 1 dp; + 1%dg = 0 (15)

Comparative statics of the equilibrium prices can be performed by evaluating

T T —onr - i Y (16)
g Hz Hj - HZ Hj Hz + Hz

using symmetry (AB), the fact that own effects are stronger than cross effects (A1 and A4) and
being HZQ =q’ + piqz:g < 0 given A2 and A3. Hence, an increase in product substitutability (g T)
reduces equilibrium prices (and vice versa).

Differentiating the equilibrium profits with respect to g and using the envelope theorem we
obtain

_ A A P LA <0 17

Hence, the equilibrium profits are decreasing in the degree of substitutability.

We can now turn to the first stage in which the degree of substitutability is chosen by firms
through a sunk investment ;. In line with the symmetric feature of differentiation of our model,
we assume that the investment of both firms contribute equally to determine the overall degree

of differentiation. Hence, g = g(z; + z;) with ¢(0) = 7 and ¢ < 0; as in section 2, if no firm



invests the degree of substitutability is set at the highest (ex-ante) level, while investing both
firms are able to increase differentiation, with a complete externality. The cost of the investment
is C; = C(x;,7) where v is a parameter that increases the marginal cost of the investment. We

assume
(A7) CF>0 C/" >0 C7 >0 C;(0)=CF(0)=0
The subgame perfect equilibrium in the first stage game requires

dll; dg B oc;
dg Or; Oxy -

(18)
The comparative statics of the equilibrium investment x] with respect to parameter v can

be studied totally differentiating the system of first order conditions and obtaining:

7

dy  2(g)2(Lhe) — cee

dr} cre

(19)

A sufficient condition for this expression to be negative is that equilibrium profits are concave
in g: d;—gngi < 0. This seems a reasonable assumption, as it amounts to saying that the marginal
impact of an investment in product differentiation is the smaller the more differentiated products
are already.!®

Another sufficient condition for C%z < 0 could be expressed by requiring that costs are
”convex enough”, so as to guarantee that the denominator of the above expression be negative.

Either of these conditions is enough to guarantee that as the marginal cost of differentiation
~ increases, the equilibrium investment x; decreases and the substitutability g between products

rises. Allowing for a sufficiently wide range of values of parameter v we can therefore obtain

any value of g in equilibrium, replicating the equilibrium prices from the non-cooperative Nash

15Tn turn, a sufficient condition for concavity of the equilibrium profit function is that the equilibrium price
function is concave in g (which means that the marginal effect on prices of more differentiation decreeases with
product differentiation itself). By differentiating further equation (18) one obtains:

4211,
dg?

= 199 + p?II39 4 T p99.

Since the first two terms are negative due to A2 and A3, p{? < 0 guarantees the negative sign of the derivative.
In turn, it can be proved that concavity of prices in ¢ would require additional assumptions which also involve

the third derivatives of the demand functions.

10



equilibrium with the ex-ante § to the one corresponding to full collusive prices, exactly as
showed in the example studied in section 2. Notice that the equilibrium profits follow the
same pattern as the equilibrium prices, falling as products become more similar: therefore,
shifting v we would be able to replicate also the pattern of equilibrium profits corresponding
to different degrees of competition (Bertrand, Cournot, collusion, etc.). However, in general we
cannot replicate through a single parameter v the overall market configurations (price, quantity,
profits) associated with different equilibria (price or quantity setting, collusion, etc.). In order
to do that, we need to reduce the dimensions of the problem: if ¢/ = 0, as occurs in the
linear example of section 2, the total and individual quantity for given prices do not change
when the degree of substitutability varies, although the elasticity of demand does vary. In this
case the equilibrium quantity is always the same and a single parameter ~ is sufficient to map
the marginal cost of differentiation into different equilibrium market outcomes, by replicating
exactly prices, quantities and profits of the one-shot game with given product differentiation (as

in section 2 example).

4 Conclusions

The extent to which firms can differentiate their products (or choose a location away from each
other) determines the toughness of price competition at the last stage of the game, in much the
same way as the degree of commitments on capacity determined the mode of competition in
Vives (1986) and Maggi (1996). In those papers, it is the cost of producing above capacity which
is crucial in determining the mode of competition. The lower the parameter which measures
that cost the lower the commitment value of capacities chosen in the first period and in turn
the closer the prices to the Bertrand solution. Such a parameter determines a continuum of
situations which are intermediate cases between Bertrand and Cournot.

In the present paper, it is the cost of product differentiation which determines the mode of
competition at the last stage of the game. Firms can invest to increase the degree of differentia-
tion between their products, to relax price competition which occurs in a later stage. The lower
the cost of these investments the closer the firms will be to the outcome of a one-shot game
where firms maximisize their joint profits. The higher the investment costs, the closer they will

be to the outcome of a one-shot game where they choose prices (and sell products whose degree

11



of differentiation is exogenously given). There exists a continuum of solutions between Bertrand
pricing and joint profit maximization pricing that can be associated to the cost of investing in

product differentiation.
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Appendix for the referees: Conditions to guarantee concavity of the

equilibrium profit function in g

To see the conditions for the concavity of the equilibrium profits with respect to g; differen-

tiating further equation (18) to obtain:

d211;
dg?

= 117 4 NI T (20)

While the first two terms are negative due to A2 and A3, we have to evaluate p!Y in order to

sign the derivative. Differentiating ( 16):

;P 4 11) - 0P 4 1)

= L 21
dg? (117 + 117)? (21)
Consider the terms in the expression above.
1% = g + pig;? + pa;’ (22)
Y + 117 = 24 + g +pilq; + &™) + p{ (@’ + ¢”) (23)

which cannot be signed using the assumptions above. Sufficient conditions for the concavity

of the profit function require therefore to further assume that:
(A6) 199 <0 I+ 1179 <0

If A6 holds, then the equilibrium price and the profit function are concave in g.

14
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