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Abstract

We propose a general framework to study whether and how common trends
and common cycles are still present when the original variables are linearly
aggregated or only a subset of them is analysed. This is particularly important

because of the adoption in empirical analysis of aggregated data on a limited

number of variables.
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1. Introduction

The possibility that the univariate behaviour of economic variables can be represented
as a random walk plus a stationary component has received increasing attention and
support since the early ’80s, starting with the seminal paper by Nelson and Plosser
(1982). Moreover, the existence of “equilibrium” relationships among the variables,
as implied by economic theory and by the observation of similar patterns of growth,
has led to the conclusion that only a limited number of random walks drives the joint
long run evolution of the variables, i.e., they are cointegrated, see, e.g., Engle and
Granger (1987), Stock and Watson (1988), and Johansen (1988). Similarly, the short
run behaviour of the variables could be determined by a limited number of shocks,
i.e., there could be serial correlation common features among the variables, cofeatures
henceforth, see Engle and Kozicki (1993), Vahid and Engle (1993a, 1993b).

In the theoretical papers which introduced these concepts, the level of temporal
and linear aggregation of the variables under analysis was not relevant, but it becomes
very important in the applications. Actually, temporally and linearly aggregated data
on a small number of variables are usually jointly studied. Hence, it is of particular
interest to determine whether or not the presence of cointegration and cofeatures at
the joint disaggregate level implies that they are still present in partial aggregate
models, and vice versa.

We will assume that the frequency of data generation and observation coincide,
in order to focus on the effects of linear aggregation.! An important particular case,
aggregation over sectors in our notation, has been studied by Lippi (1988, 1989) and
further considered by Gonzalo (1993) and Forni and Lippi (1997). In this paper, we
extend former results and propose some new ones, consider more general aggregation
schemes, and also deal with the effects of aggregation on cofeatures.

The required disaggregate probabilistic framework is introduced in Section 2. The
effects of aggregation are studied in Section 3. Section 4 discusses particular cases of

interest. Section 5 presents some statistical considerations. Section 6 concludes.

Tssues of temporal aggregation are considered, e.g., in Marcellino (1998, 1999).



2. The probabilistic framework

Let us consider the nm dimensional process
T = {(flfnt,fﬂmt, vy Tlnts L21ty ++o5 L2nty +++y Tmlty ---,flfmnt)/}fio,
whose evolution is governed by the stochastic difference equations
G(L)z; = ea, (2.1)

where L is the lag operator, G(L) = [ — G1L — GoL? — ... — G, L9, &, is a vector
white noise with V(e,;) = Y, T, is non singular. Exogenous variables and correlated
error terms could be considered, but they complicate the analysis without adding
substantial information on the topic of interest.

We will interpret n as the number of agents in the economy and m as the number
of sectors, even if a switching or other interpretations are possible. (2.1) can be con-
sidered either as a generic linear process, or as an economic theory based model. The
former possibility seems preferable because it is more general. It will be also conve-
nient to write the vector autoregressive (VAR) process in (2.1) in Error Correction
(EC) form as:

A.I't = Hﬂft,l + FlAl'tfl + ...+ Fgfletngrl + E¢, (22)

where I = ~G(1) and I'; = = 3%, 1 Gy, i =1,...,g — 1.

Former studies usually impose restrictions on (2.1) or (2.2), see, e.g., Hendry et
al. (1984), Nickell (1985), Granger (1987), Lippi (1988), and the review in Granger
(1990). For example, it is sometimes maintained that the micro variables only react

to the aggregated ones, e.g.:
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Or that the coefficients do not depend on the characteristics of the agents, e.g.:
T11e T114—1 1—g(L) 0 0
x T1t— 0 1—g(L) .. 0
ol=g @ | T |ten e G(L) = a(L) ,
cee 1><1 cee
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where g(L) = g1 L + ... + g,L?.

Or that there are no cross agents effects, e.g.,

Tiu 911%116-1 + 92172141 + - Gm1Tmit—1
T2t _ J12T11¢—1 T G22T216—1 + - Gm2Tmit—1 by, o
Trnnt 91nT11t-1 + GonT210-1 + - GmnTmit—1
(1—g11L,0,...,0) (911 L,0, ...,0) e (9ulL,0,...,0)
o G (0,912L,0,...,0) (0,1 —g15L,0,...,0) ... (0,g12L,0,...,0)
(0,...,0, gmnL) (0, ...,0, gmnL) e (0,...,0,1 = gpmn L)

We make milder hypothesis on G(L). In particular, we only assume that:

Al. The roots of |G(z)| = 0 lie in 1 or outside the unit circle.

A2. The rank of the nm x nm matrix Il = —G(1) = af’ equals p < nm, where «
and 3 are nm X p matrices of rank p

AS8. The rank of the r x r matrix o/, ¥(1)5, equals r = nm — p, where ¥(1)
is the derivative of II(z) with respect to z evaluated at z = 1, II(z) = (1 — 2)I —

?;i [;(1 — 2)27 — Iz, and ay and (3, are orthogonal to o and 3, and such that
span(a, ) = span(B, L) = R™™.

The assumption A7 rules out the possibility of explosive processes.

The assumption A2 is related to the presence of cointegration among the vari-
ables (e.g., Engle and Granger (1987), Johansen (1988,1995)). Actually, the rank of
IT coincides with the number of cointegration vectors, i.e., of stationary linear combi-
nations of the variables. They can be grouped in the columns of the matrix 5. When
p = 0 there is no cointegration among the variables, when p = nm the variables are
stationary.

The assumption A3 implies that the variables are at most integrated of order one,
i.e., they become stationary after first differencing. Actually, as Engle and Granger
(1987), Stock and Watson (1988) and Johansen (1991) showed, if x is generated by
(2.2) and A1, A2, A3 hold, then an alternative representation is:

Az, = T(L)e, G(L) =1, (2.3)



or
t —

Ty = T(l) ZSZ‘I‘ T (L)Et + BO, (24)

i—1
where T' (L) = (T(L) = T(1))/(1 = L), T(1) = BL(a, ¥(1)B1) ey, Bo = Sy Ties
(Giwo + ... + Giyg_121-4).2 T(1) can be decomposed into two nm x r matrices of full

column rank:

T(1)=0P, O=p.(a\¥1)B3.)", P=ay. (2.5)

Therefore, only r linearly independent common trends, f; = o' Y!_, &, drive the
evolution of .

Besides the common trends, the dynamics of the variables could be driven by only
a limited number of shocks with temporary effects, e.g., temporary tax reductions
or changes in monetary policy. Vahid and Engle (1993a) show that this requires the
existence of linear combinations of the variables such that their first differences are
innovations.® If we assume that there are ¢ such so called cofeature combinations, and

group their coefficients into the nm x ¢ matrix of cofeature vectors v, then
v Az, = +'ey. (2.6)

Vahid and Engle (1993a) show that the following conditions are equivalent and

sufficient for the existence of cofeature vectors:

NT: = 0,i>0; (2.7)
VT, = 0,i>0: (2.8)
~¥T; = 0,i=1,..,g—1, and ~'II=0; (2.9)
Y(I—-Gi) = 0, and ~+'G;=0,i>2. (2.10)

The number of cointegration and cofeature vectors are linked by the relationship ¢ <
nm — p, and the two types of linear combinations of x are linearly independent. From
(2.7) it follows that

Yy =~'0f. (2.11)

2The assumption A3 also guarantees that x; can be given initial distributions such that 3’Bg = 0,

so that Az, — E(Ax,) and §'z, — E(('x,) are stationary (Johansen (1995, p. 49)).
3Recall that an innovation process is a white noise process, but the reverse is not necessarily true,

see e.g. Hendry (1995, p. 63) for an example.



Moreover, Vahid and Engle (1993a) prove that T; can be decomposed for all i into
two nm x nm — q matrices F' and T, such that

/7

T (L, =FT (L) = Fg,

and they call common cycles (CC) the s = nm — ¢ elements of g;.

In summary, x admit the common trends - common cycles representation
xy = Of + Fgy, (2.12)

and we are now going to exploit this representation to determine that for the aggre-

gated (and) or marginalized variables.

3. Aggregation

In order to examine the effects of aggregation and marginalization on the presence
of common trends and cycles among the resulting variables, we introduce a j x nm

aggregator matrix of full row rank, A, as, e.g., in Liitkepohl (1984, 1987), with

Ay A o A,
Ay Ay . Ay

A: 21 22 2 :
Ay A o A,

where Ay is a 1 x n vector. Application of A to x leads to the desired j dimensional
aggregated or marginalized process

y = Ax.

For example, we are often interested in studying the behaviour of sectors of the
economy, i.e., of the m dimensional process which is obtained by aggregating over the

n agents in each sector. Hence, A has m rows and

e O 0

0 ... 0
Ay = c ,

0 0 e



where all the elements of the 1 X n vector e are equal to one. For aggregation over
sectors, i.e. when we are interested in studying the aggregate behaviour over sectors
of the n agents, under some homogeneity conditions such as the equality of the unit
of measurement across sectors, A is the n x nm matrix

As=(1,1,...1).

nxn

Instead, if the focus is on the behaviour of a limited set of agents or sectors of the

economy, the process of interest, y, can be obtained by applying to x the matrices

Sm 0 w0 1 0O .. 0
nLXT nxXn
AJWl = nyxXn or AJ\{Q — nXn ,
nimxnm nmixXnm
0 0 .. S, 0 0 . I
n1Xn nxn

where S,,, in Ay is a selection matrix with ones in correspondence of the n; agents
of interest for each sector, while the m; identity matrices in Ao identify the sectors
of interest.

The VAR representation for y can be obtained following the technique developed by
Liitkepohl (1984). In general, there will also be a moving average (MA) component,
but analytical determination of its coefficients is quite complex. It should also be
noticed that the aggregated error terms are not simply a linear combination of their
disaggregated counterpart.* Yet, to study the effects of aggregation on common trends
and cycles, a simpler representation can be exploited.

From (2.12) it follows that y satisfies:

Then we have,

Proposition 1. A necessary and sufficient condition for the existence of cointe-
gration among the elements of  is that the null space spanned by O’ A’ is not empty.

Any of the following conditions are sufficient for this:

4Formally, they are the projections of the variables on the orthogonal complement of the closure

of the space spanned by {y:—1,¥:—2,...}. See Ansley et al. (1977) for a formal demonstration.



P11: r <y
P12: r > j but at least » — j + 1 columns of AO are linear combinations of the other

ones;
/

P13: at least one row of the matrix ( ) is a linear combination of the other ones. B

Proposition 2. A necessary and sufficient condition for the existence of cofeatures
among the elements of y is that the null space spanned by F' A’ is not empty. Any of
the following conditions are sufficient for this:

P21: s < y;
P22: s > j but at least s — j + 1 columns of AF" are linear combinations of the other

ones;
!

P23: at least one row of the matrix ( i ) is a linear combination of the other ones. B

Proof. The necessary and sufficient conditions are obvious. The sufficient con-
ditions in P11-P12 and P21-P22 ensure the existence of two matrices, 6 and 6, such
that § AO = 0 and § AF = 0. The columns of § and # are the cointegration and
cofeature vectors for y. Their exact number coincides with the dimension of the null
space spanned by O'A" and F'A'. For P13, let us consider, for example, the case

a = H g

hxnm  hxnm—r nm—rXxnm

where a consists of h stacked rows of A. Then, it is immediate that az; is stationary.
If instead
B =K A,

kxnm kXj jxnm
where ;. is made up of k stacked rows of 3, then Ky, is stationary. A similar reasoning

holds for cofeatures. &

These conditions are also rather intuitive. P11 and P21 require the presence of
fewer common trends and cycles than aggregated variables. When there are more,
P12 and P22 require them to be groupable in fewer than j trends and cycles. P13 and
P23 require at least one cointegration or cofeature vector to be a linear combination
of the rows of A, or vice versa.

The formal similarity of Propositions 1 and 2 is due to the similar existence require-

ment of reduced rank matrices for the presence of cointegration and cofeatures among

7



the variables. Notice that the two propositions, and the three different conditions in
each of them, are not mutually exclusive but can coexist.

Two extreme cases of interest are when the disaggregate variables are stationary
or integrated but not cointegrated, i.e., when T'(1) in (2.4) has zero or full rank. These
properties are invariant to aggregation, because in the former case it is r(AT'(1)) = 0,
while in the latter r(AT(1)) = r(A) = j.°

A further implication of Propositions 1 and 2 is that if the aggregate variables
share common trends or cycles, this must be true also for the disaggregate variables.
Actually, if this were not true, AO or AF would have full row rank and the null space
spanned by O’A’ or F'A’ would be empty.®

4. Examples

We now provide examples where the conditions in Propositions 1 and 2 are satisfied
in the presence of aggregation over agents or sectors, or marginalization. Actually,
for the usual finding of cointegration and cofeatures among aggregated variables to be
reliable, it seems important to analyse whether the conditions in Propositions 1 and
2 are implied by reasonable economic assumptions. We will also relate ours to former

results in the literature, which were obtained for particular choices of G(L) and A.

4.1. Aggregation over agents

Due to the structure of the aggregator matrix Ay, the coefficients of k" original

common trend and cycle in the equation of the i’ sector are equal to the sum of the

5An alternative approach to linear aggregation consists in assigning a continuous density function
to characterize the distribution of the parameters across the agents, see, e.g., Granger (1980), Trivedi
(1985). This can lead to rather different results, e.g., Granger shows that when a Beta distribution

is adopted, stationary micro variables can be turned into fractionally integrated macro variables.
bIf we define C' = AQO, it is rank(C) < min{rank(A),rank(O)}, which is equal to rank(A), i.e.

to j, when O has full rank. But it is also rank(A) < min{rank(C),rank(O~')} = rank(C), so that
AO = C would have full row rank, j. Hence, there could not be cointegration among the aggregated

variables.



coefficients of these trend and cycle for all the agents in that sector. Formally,

20113' 20123' 20177 Efllj Zlej Zflsj

A,0= 20215 20225 ... D02 AP S fo; 2 faai o X fasg

mxr .. mxs

Zomlj ZOmQj Zomrj melj meQj mesj

where the sums are for j = 1,...,n, and o0;;; and f;; are the coefficients of the Eth
common trend and cycle in the equation of the j** agent in the i** sector.

We now discuss some cases where Proposition 1 holds, and they can be simply
modified to provide examples where the conditions in Proposition 2 are satisfied.

To start with, if a limited number of shocks with permanent effects drives the long
run evolution of the economy, so that » < m, then the aggregated variables are also
cointegrated (P11 is satisfied).

As an alternative, we can imagine that there are more agents than sectors, that
each agent is affected by a different common trend, but the effect of the trend on
the agents in the same sector is the same. For example, if the agents are consumers
and the common trends are interpreted as income, then we are requiring the marginal

propensity to consume to be equal in each sector for all the agents. Formally, it is

n=r>m,
cil cq 1 ... C
Ix1nxn
Col Cy Co ... Co
O = 2 and A40 =
nmxn
cml Cm Cm .- Cm

This implies that the n original common trends fi, fo,..., f, can be grouped into
f = fi+ fo+ .., +fn, and the m aggregated variables are driven by one common

trend:

1
C2 - .
Yy = f: + stationary terms.
1x1
Cm,

This is an illustration of condition P12, i.e., of the possibility that the columns of AO

become collinear.



A well known and obvious condition for aggregation to preserve cointegration and,
more generally, all the characteristics of the micro equations, is that the coefficients
of the disaggregate equations are the same for all agents. Actually, equality across
agents of the cointegration vectors is sufficient to preserve cointegration. For example,
if

(61,0,...,0) (52,0,...,0) ... (Bm,0,...,0)

1xn

g | (0.81,:0) (0,80 o (0,8, .., 0)

0,0,...,61) (0,0,...,82) ... (0,0,...,5m)

then the aggregated cointegration vector is Bl = (01, B2y .-, Bm). In this case, e.g., the
first row of 5 can be written as a linear combination of the remaining ones and of those
of Ay, so that P13 is satisfied. Notice that equality of the loadings of the common
trends across agents is sufficient but not necessary for the cointegration vectors to be
equal, as simple examples would show.

Finally, cointegration can be preserved and even increased also with extreme het-
erogeneity of the agents. As a limit example, let us assume that only the first stochastic
trend affects the agents in the first sector, i.e., 012; = 013; = ... = 01,; = 0, that its re-
lated coefficients, 0115, are all different, and that there is a cointegration vector equal to
(e,0,...,0). The last hypothesis implies that >%_; 011; = 0, i.e., even if the behaviour
of each agent is driven by the trend, on average its effect is null. It follows that the first
element of the vector y is stationary. Actually, the first row of A coincides with the
cointegration vector, and P13 is again satisfied. This type of restrictions can have a
theoretical justification in a general equilibrium model, and such a possibility requires

further examination.

4.2. Aggregation over sectors

In the case of aggregation over sectors the coefficients of the k** original common trend
and cycle in the aggregate equation of the j agent are equal to the sum over the

sectors of the coefficients of these trend and cycle in the equations for the j** agent.
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Formally,

201 2021 ... D041 Y fin X fior o X fim
AsO= 2062 D012 ... D02  AgF— > fie X fize o X faro ,
2 0itn 2. 0in - 2 Oim > filn > fiQn DY firn

where the sums are for ¢ =1, ..., m.

Thus, e.g., if there are fewer common trends than agents, the aggregated variables
will be cointegrated. Instead, notice that equality of the cointegration vectors among
agents is no longer sufficient for this property, while their equality across sectors is.

For example,” if

!

0 0
Az, = “ b Ti_1 + &,
0 (0%) 0 ﬁ

then
o —1a/ 0 t _
Ty = ﬁJ_( 1Lﬁj_) + , 1, Zgz‘l‘ T (L)St + BO;
0 Bilay, Br) ey )=
where
Cfoz I— T(l), flz Tl_ fo, f]: 7—']_‘_ ,_Z_jjfb ] Z 2
and

i—1
— 0 1 0
TO = -[7 Tl = Oélﬂ ) 1—; = E—l * alﬂ .
0 —Ckgﬁ 0 1+ Ckgﬁ

After aggregation with Ag = ( [ : T ), we get

nXxXn nXn

t —
yr = (Bl Br) ) 4+ Bu(ah Br) ) > e+ As T (L)er + AsBo,

=1

from where it follows that 3y, is stationary.
Notice that even for this very simple example it is not possible to find a finite order

VAR representation for the aggregated process. Actually, we have

Ay, = alﬂlytfl + Uy,

I owe this example to a referee.
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where u; has the same autocovariance function as (ap — al)ﬂ'xgt_l + 1t + €94 Uz 18
instead a white noise process for a; = as .

The effects of this type of aggregation on common trends, but not on common
cycles, were analysed by Gonzalo (1993) in a different framework. He considered each
sector separately, and for each of them adopted the representation in equation (2.4),

ie.,

t —
k=1

where x;; = (%14, Tioty -, Tine) and uy is an n dimensional vector white noise process.
The first condition for cointegration among the variables aggregated over sectors in
Gonzalo’s Theorem 1 is equal to P11: in our notation, the total number of common
trends driving the set of m systems must be smaller than n. Notice that this number is
in general smaller than the sum of trends driving each system, because of the possible
presence of inter sector cointegration. An alternative second condition is that the
intersection of the null spaces spanned by Ti(l)' is not empty. This is a particular case
of P13, boiling down to requiring the existence of at least one common cointegration
vector. The latter is also the main requirement in Lippi (1988) for cointegration to
be preserved through aggregation. The third condition that Gonzalo suggested is a
mixture of the first two.

Forni and Lippi (1997) adopted a similar framework and further refined the anal-
ysis, showing that either cointegration is always transmitted through aggregation, as
in our proposition P11, or it holds at the aggregate level only for a set of disaggregate
parameters of measure zero, as in P12 and P13.

While both Gonzalo and Forni and Lippi started with a model for each sector, we
prefer to adopt a joint model for all the variables under analysis, compare equations
(4.1) and (2.4). The similarity in the conditions for cointegration to be preserved
through cross sector aggregation is a positive result, it is due to the particular prop-
erties of first order integrated processes, as we will see in more detail in next section.
But their approach is not ideal for the analysis of the effects of aggregation on short-
run characteristics, such as the presence of common cycles. This requires to specify

all the relationships among the variables, not only those within each sector.

12



4.3. Marginalization

When only n; agents per sector, or only m; sectors, are studied, if nym < r or
nmy < r there is still cointegration among the marginalized variables y. Notice also
that if there are (n—mnq)m or n(m —m;) common trends that only affect the variables
not of interest, P12 is satisfied, and the number of cointegration vectors remains p.
Similarly, cointegration vectors that only involve the variables of interest are preserved,
because of P13.

To conclude, aggregation and marginalization can take place contemporaneously.
It is simple to determine the proper A matrix for these cases, e.g., for aggregation
over agents and marginalization over sectors there must be only m; e vectors in the
A4 matrix in section 3, and to provide examples where cointegration and cofeatures

are preserved.

5. Some statistical considerations

We now briefly discuss some of the issues that arise when verifying in practice whether
the conditions in Propositions 1 and 2 are satisfied or not, assuming that the aggregator
matrix A is known.

The starting point is estimation of the VAR in equation (2.1). If enough observa-
tions are available, this poses no problems: equation by equation OLS suffices. Then
the number and composition of cointegration and cofeature vectors can be determined
by applying standard techniques, see e.g. Johansen (1995) and Engle and Kozicki
(1993). This is for example the case when studying the interaction among a small set
of variables across a few countries.

Yet, the number of parameters of the VAR grows with the square of that of the
variables, so that there will tipically be more parameters than observations. Therefore,
a priori restrictions on the parameters, such as those considered in section 2, are in
general needed. But if they are not valid, the resulting estimators will be biased. This
bias can then influence the following analysis, i.e., the determination of the number
and composition of the cointegration and cofeature vectors.

There appears to be no solution to the trade-off between estimability and con-

sistency, but it is important to be aware of the problem. Yet, we want to recall the

13



method developed by Gonzalo and Granger (1995) to get the total number of common
trends driving a set of variables from analysis of subsets of them, because it is useful
to check the condition P11, i.e., to evaluate whether r < j.

They propose a two step procedure. In our notation, in the first step cointegration
analysis is applied to the n dimensional systems for x;, ¢ = 1,...,m, and the com-
mon trends driving each system are determined. In the second step, the number of
cointegration relationships (say ¢) among all the estimated common trends (say w) is
determined. Then, the total number of linearly independent common trends in the
full system is r = ¢ — w. This method is applied, e.g., by Gallo et al. (1998) to study
the relationships among a set of commodity price indices and the general price level.

If the disaggregated cointegration vectors, 3, can be estimated, P13 requires
AB, = 0or BA| = 0, that can be tested by standard likelihood ratio tests, see
e.g. Johansen (1995, Ch. 7).

The condition in P12 requires to impose restrictions on the loadings of the common
trends in the disaggregated MA representation. The statistical theory to test these
hypotheses has to be developed yet, and is an interesting topic for further research.

Finally, when the disaggregated model can be estimated and once the number and
composition of the cofeature vectors are determined, the conditions P21, P22, and

P23 can be verified by means of standard testing procedures.

6. Conclusions

In this paper we have analyzed the effects of linear aggregation of variables that share
common trends and, possibly, cycles. Casting the problem in a general framework
and for general aggregation schemes, we have provided conditions for cointegration
and cofeatures to be still present among the aggregated variables. They require either
“enough cointegration” at the disaggregate level, or particular restrictions on the
disaggregate equations, some of which can be given an economic justification. Testing
for the validity of these conditions is feasible, but it is often complicated by lack of
observations.

The results are also easily extended to the case where the common trends and
cycles in (2.12) are substituted with the nonlinear common trends in Granger et al.

(1994) and the non synchronous common cycles in Vahid and Engle (1993b). Instead,

14



the analysis of the effects of aggregation in more general nonlinear models seems to

be an interesting subject for future research.
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