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Abstract
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and Lyhagen (1999) to investigate economic hypotheses such as purchasing
power parity or the term structure of interest rates may be affected by the
existence of cross-unit cointegrating relations. The existing literature assumes
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Using empirical examples from a panel of OECD countries we show that this
assumption is very likely to be violated. Simulations of the properties of panel
cointegration tests in the presence of cross-unit relations are then presented
to demonstrate the serious cost of assuming away such relations. Some fixes
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1 Introduction

In recent years, the use of panel data techniques to test macroeconomic hypotheses
has become increasingly common. Two examples of the most popular uses to which
these techniques have been put are testing for convergence in growth rates of GDP!
and tests for purchasing power parity?. Each of these hypotheses is formulated
essentially as testing for a unit root in the estimated residuals of a single-equation
regression and the argument presented in favour of panel data methods is that they
have greater power than standard unit root tests, by virtue of the reduction in
noise caused by the averaging or pooling across the units of the panel. An added
advantage often proposed is that the asymptotic distribution (under the null) of
some of these tests, even in the presence of integrated data, is normal. Inference
is thereby in some sense made “standard”. The emphasis in this literature has
therefore primarily taken the form of considering the asymptotic properties of panel
data estimators and test statistics as 7" and N go to infinity, possibly at rates of
divergence that are controlled appropriately. Techniques developed by McKoskey
and Kao (1998), Kao (1999) and Pedroni (1999) inter alia have extended Engle
(1987) type static single equation regressions to pooled panel static regressions and
produced test statistics and critical values to test for cointegration in panel data.
Implicit in these analyses is the assumption of unique cointegrating vectors, albeit
heterogeneous, across the units.

Several issues are worth noting within the context of this study for the use
of panels in macro-econometric research. It is important firstly to make a clear
distinction between their use here and their use in micro-econometric research. The
macroeconomic data sets (relating to growth, distribution, term structure of interest

rates or PPP) typically consist of samples of up to 50 countries with observations

1See e.g. Evans and Karras (1996) and Lee, Pesaran, and Smith (1997)
20n panel studies of PPP, see Frankel and Rose (1996) and Papell (1997).



for thirty or forty years quarterly or annually. Thus the dimension of the number
of cross-section units N, although sometimes quite large, is very often dominated
by the time dimension 7. The uses of panel data methods in micro-econometrics
on the other hand has a much longer history and involve looking at settings where
the time dimension T is significantly smaller than N. Thus, while an impressive
amount of research has focused on modelling the heterogeneity across the units
by means of common time effects, or fixed- and random-effects, and on methods
of overcoming what is commonly known as the “incidental parameters problem”
(usually by means of transformations of the model or by instrumental variables or
GMM methods), the issue is dealt with by considering large-T, relatively-large-N
samples in the case of macro-econometric data sets. This is not to say that incidental
parameter problems do not have any relevance for our analysis, since the assumption
that we have sufficient data to estimate all the parameters of our model is far from
innocuous and we shall visit this issue below.

Secondly, in the context of analysis of multivariate (> 2) data sets it is natural
to focus on methods that relax the assumption of a unique cointegrating vector.
Groen and Kleibergen (1999), Larsson and Lyhagen (1999) and (2000), and Larsson,
Lyhagen, and Lothgren (1998) have therefore developed techniques analogous to
(Johansen 1995) maximum likelihood methods to allow for multiple cointegrating
vectors in the cross-section units. Since the assumption of unique cointegrating
vectors may be thought of as being unnecessarily restrictive and unrealistic, systems-
methods for panels have represented a notable advance.

However, thirdly, and most importantly, none of the methods cited above takes
any account of the possibility of long-run dependence among the variables across
the units comprising the panel (except through short-run effects or through correla-

tions among the errors across the units). As we show below, particularly in macro-



economic studies with integrated variables, this is a serious restriction. While GLS
methods such as those used by OConnell (1998) go some way towards allowing the
units to be related by means of a non-diagonal variance-covariance matrix of the
system, these do not account for the existence of long-run or cointegrating relation-
ships across variables in the units of the panel. Nor is the incorporation of short-run
dependence sufficient for the analysis of macroeconomic panel data sets.

This last observation leads on to important complications for the research agenda
involving the use of macroeconomic panel data. Within the compass of this critique
lie all the pre-existing tests for unit roots and cointegration in panels, to the extent
of vitiating entirely their use. Two significant features inhibit their applicability -
the assumptions of the same maximum cointegrating rank across the units and no
long-run dependence across the units.

Our paper takes Larsson and Lyhagen (1999) (henceforth LL) as its starting
point, since it provides one of the most general treatments of panel cointegration
(subject to the restrictions highlighted above). The motivation for and background
to our study is the consideration of small- to medium-sized macro-economic panels,
with the time dimension typically ranging from 100 to 200. Our methodology is
based on simulations. In Section 2, we briefly present the maximum likelihood
framework for analyzing panel data as exemplified by LL who also derive the null
distributions of the test statistics. In Section 3, we use an empirical example with
two units in the panel to illustrate the considerable difficulties for the direct use of
this method. By extension, any of the single-equation methods cited above may be
shown to be in similar trouble. By means of simple studies of long- and short-run
interest rates in a small panel where the cross-country cointegration possibilities
are self-evident, we motivate strongly the need to modify pre-existing methods of

looking at cointegrated panels.



In order to bench-mark our simulation study, in Section 4 we simulate data
under the LL specifications of the data generation process and show that use of the
asymptotic distributions and critical values derived by LL leads to tests with correct
size and good power. Our point of departure from this framework is then to simulate
data with cross-unit cointegrating relations or units with different cointegrating rank
and to show the properties of the LL tests in their presence. Notably, in Sections
5 and 6 we present results demonstrating findings of incorrect rank under simple
changes of the process generating the data.

We also suggest and evaluate modifications of the testing framework to allow
for cross-unit cointegration and to improve inference. An obvious route we explore
is to pre-test the units of the panel for cointegrating relations within each unit
using the Johansen ML method. The LL method is applicable if and only if one is
entitled to allow for the same maximum cointegrating rank across the units of the
sample and, moreover, cointegration occurs only within units and not across units.
Estimating the system unit by unit using Johansen ML is a way of verifying the first
assumption. If this is verified, one may then extract the common trends implied by
the cointegrating vectors and test for cointegration among the common trends a la
Gonzalo and Granger (1995) to rule out the existence of cross-unit relations. Only
then is the LL approach (and the special cases of this approach, such as Kao (1999)
and Pedroni (1999)) justified, and leads to gains in efficiency over estimating the full
system (consisting of all the variables in all the units of the panel). This sequential
testing procedure is implemented in Section 7 in order to analyze in more detail
the interest rate data. The analysis clearly indicates that the panel cointegration
techniques are not suited to this context, and can lead to incorrect conclusions.

The limitations of our current study must of course be borne in mind. Our

investigation is limited to looking at only the simplest possible scenarios. We do not



as yet have sufficient evidence for larger dimensional systems. Nor do we present
here the results for data generation processes with deterministic components such
as constants or trends or break dummies, complications that are very likely to occur
in practice. In this latter case, provided these deterministic variables enter into the
system unrestrictedly, we may consider our analysis as proxying for as if we were
working with detrended or demeaned data. Nevertheless, based on the consideration
of even these simple cases, we are drawn inexorably to the conclusion that in general
only panel methods that allow for full system maximum likelihood analysis are likely
to lead to the “right” answer. However, data limitations, with the implied degrees of
freedom restriction, will not allow such a full system to be estimated unrestrictedly
in all circumstances. We therefore conclude that, particularly in integrated panels,
great care must be taken in using and interpreting the results of macroeconomic
panels. Short-cuts or restrictions of the kind implicit in LL, or fixes such as those
which would enable the within-unit cointegrating relations to be estimated first and
then imposed in order to look at the cross-unit cointegrating relations, could in some

circumstances be useful but prove to be profoundly misleading in others.

2 The Panel Cointegration Framework

The LL panel cointegration model corresponds to a restricted cointegrated VAR.

The model under consideration is

m—1

AY, = afY1+ Y TeldYip +e

k=1

where a and [ have dimension Np X ZZ]\LI r;, IN is the number of units, p is the

dimension of each sub-system Yy = (Yiit, Yiots - Yipt), 0 = 1,2, ..N, t = 1,2,.., T,



and 7; is the rank of each sub-system. The vector Y; is given by stacking the N

vectors Y. The matrices o and 3 have the following structure:

Q11 Qg - 01N 511 0o - 0
21 29 0 ﬁ22

a = 5 /8 =
ay1 QGn2 - NN 0 0 - BNN

The variance-covariance matrix of &; is

E11 E12 e E1N

221 222 22]\[
Y —

ENl EN2 e ZNN

The model therefore allows for interaction among the units through the long-run
adjustment coefficients «a, the short-run matrices I'y, and the off-diagonal elements
of ¥, but the restriction 3,; = 0 Vi # j rules out cointegrating relationships across
the units. A further restriction is that of r; being assumed to be the same for each
unit. These two restrictions are the most important issues to be investigated, since
there are many examples where they may be inconsistent with both theory and
data.?

The estimation algorithm for the individual cointegrating relations is a series of
reduced rank regressions in which each 3, is estimated by concentrating out the

n — 1 remaining ones. Hence, 3,; to By are estimated at each iteration, and the

3Note that in practice, as NV grows, the amount of correlation among the units must be controlled
a priori by imposing restrictions on the «,I' and ¥ matrices in order to satisfy degrees of freedom
restrictions implied by the data.



procedure is repeated until convergence.*

The trace test for cointegrating rank of r; = q versus r; = p, for each 7 and for
q=0,...,p—1,is derived in LL. The rank is tested under the block-diagonality re-
striction on (3. The asymptotic distribution of the test statistic is the convolution of
the standard Johansen LR rank test and an independent x* with N (N — 1) (p — q) g
degrees of freedom. This means that the test for r; = 0 is the same as the Johansen
test, while for rank larger than zero there is an additional component in the distri-
bution which accounts for the additional zero restrictions imposed on 3. Note that
testing for r; = q versus r; = p in this framework corresponds to testing for rank Ng
versus Np in a full system context, whereas testing for rank in the Johansen frame-
work would allow for all the intermediate possibilities. For example, if N = p = 2,
LL tests for 0 versus 4 followed by 2 versus 4. Johansen would test for 0 versus 4,
1 versus 4 and so on.

Finally, note that when p = 1 and I'y is block diagonal for each k, the null
hypothesis of the LL test is that all the variables are I(1), against the alternative
that they are stationary with heterogenous stationary roots. This result is therefore
the panel version of the ADF test in the single unit case, and in this sense the
LL framework nests panel unit root tests (see e.g. Levin and Lin (1993), Im and

M. H.and Shin (1997)).

3 Empirical Examples

To illustrate the kind of problem one could encounter in using the LL panel coin-
tegration model in empirical modelling, we present two simple examples involving

short- and long-term interest rates.® We estimate the two systems consisting of Ger-

“For starting values, LL propose using the 3;; estimated from a standard cointegration analysis
on each unit separately. We instead use the initial values suggested in (Johansen 1995), p. 110.

®The variables, taken from the OECD database, are three-month interest rates (code 6225D) and
long term rates (codes 6253D for Germany, 6261D for Denmark and 6269D for the Netherlands).
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many and the Netherlands, and Germany and Denmark by full system maximum
likelihood, using the Johansen approach. It turns out that both pairs of countries
exhibit a cointegration pattern that is not consistent with the structure of the LL

model.b

3.1 Germany and The Netherlands

The sample period for the German-Dutch model goes from May 1990 to January
1999. The chosen specification for the unrestricted VAR involves four lags and
an unrestricted constant. Diagnostic tests for this simple model point towards its
congruence. There is only a marginal rejection of the null hypothesis of normality
in the system, which is not likely to affect the outcome of the cointegration tests,
see e.g. Gonzalo (1994).

The Johansen trace and maximum eigenvalue cointegration test statistics in this
model indicate that the cointegrating rank is equal to one, see the first panel of
Table 1. This is an indication that using the LL. model would be inappropriate.

The restricted cointegration vector corresponding to a rank of one involves short-
term rates from both countries, with homogeneous coefficients equal to one. Only
the German short-term interest rate adjusts to disequilibrium. The LR test corre-
sponding to this restricted specification is distributed as a X%G) and takes a value of
4.84, corresponding to a tail probability value of 0.56. The estimated coefficients are
reported in the second panel of Table 1. It is evident that with this cointegration

structure it would be inappropriate to estimate the LL panel cointegration model.

This part of the analysis was conducted using PcFiml 9.21 Doornik and Hendry (1997)

6We are very grateful to Johan Lyhagen for providing us with the Larsson and Lyhagen panel
data programs written in GAUSS 3.0. This code was subsequently translated by us to OX (Doornik
(1999)) and modified and extended for the uses made in this paper and is freely available from us.



3.2 Germany and Denmark

For the German-Danish model, the sample period considered goes from May 1990
to January 1999. We adopt the same specification as above, with four lags and an
unrestricted constant. In this sample, there is evidence of parameter instability in
1993 in the Danish short-term rate and in the German long-term rate. However,
the only evidence of misspecification is the rejection of normality in the Danish
short- and long-term rates and in the full system. If we analyze this model on the
sample starting from October 1993, we find no evidence of parameter instability.
The cointegration analysis suggests a rank of one in both samples, and we report
the results for the longer sample only.

The Johansen cointegration tests, reported in the first panel of Table 2, indicate
that the rank is one in this bivariate system as well.

The restricted cointegrating vector involves the short-term rates only, and the
German long-term rate is weakly exogenous. The LR test for this specification is
distributed as a X?g) and takes the value of 4.92, corresponding to a tail probability
of 0.18. Parameter estimates for the restricted model are reported in the second
panel of Table 2.

In summary, in both cases the block diagonality of 3 that characterizes the
panel cointegration framework is violated. We will evaluate the consequences of this
violation on the performance of the LL test in Section 5, while the next section
examines the size and power of the test, assuming that its underlying assumptions

are satisfied.



4 Simulations when the LL framework is correct

For data generation processes that satisfy the LL specification restrictions, the dis-
tribution of the LL trace test for cointegrating rank is as given in LL (and described
briefly above). We were able to simulate the critical values implied by the distri-
bution.” In particular, in these experiments we assume N = 2, a block-diagonal 3
matrix and the same cointegrating rank in all units of the panel. The homogeneity
of the cointegrating vector is also assumed, for simplicity. Results for N = 4 and
N = 8 are summarized in Section 6 below.

The data generation processes are as given in Table 3. DGP 1 is the simplest
null, with rank zero in both units. DGP 2A has rank 1 in both units, with the
loading matrix « constructed such that the equilibrium correction terms enters into
only one equation of each unit. In DGP 2B, with rank 1 in both units, the first equi-
librium correction term enters one equation each of both units whereas the second
equilibrium correction term enters only one equation of the second unit. DGP 2A
and DGP 2B are constructed in order to have the same amount of integration (as
reflected in the absolute values of the non-zero roots of the companion matrix) while
having different equilibrium correction properties. DGP 2C is a variant of DGP 2A
with less integration.®

In Table 4 we report the size of not only the LL tests but also of the Johansen
procedure unit by unit, jointly, and in full systems. Thus the column headed LL
gives the rejection frequencies of the null hypothesis of r; = rp, = 0, ¢+ = 1,2,
at the 5% significance level when the LL statistic is calculated for DGP 1 and LL
critical values are used. For DGP 2A to DGP 2C the rejection frequencies of the

null hypothesis of r; = r;;, = 1 at the 5% significance level is given, again with

"The values coincide with those in LL and, for the special case where the cointegrating rank is
0, with those presented in Johansen (1995).

80ther experiments with different configurations for o yielded qualitatively similar results, while
with smaller stationary roots the statistics have better size and higher power.
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Larsson and Lyhagen (1999) critical values.

The columns headed “unit 17 and “unit 2” provide the corresponding rejection
frequencies, for each unit individually, at the 5% significance level using Johansen
(1995) critical values. The rejection frequencies in the column headed “joint” are
calculated by setting the significance level of the unit by unit tests at 1 — (0.95)Y/2,
so that the significance of the joint test (i.e. the probably of rejecting rank 0 in both
units in DGP 1, and rank 1 in both units in DGP 2A to 2C) is 5%. The column
headed “J system ” gives the rejection frequencies (of r; = 0 for DGP 1 and r; = 2
for DGPs 2A to 2C) when the full four-dimensional system, is estimated without
restriction. Note that r;, indicates the cointegrating rank in the LL sense, and r;
that in the full system.

The final column of Table 4 gives the rejection frequencies of cointegration among
the common trends derived from the unit by unit cointegration analysis, whenever
the null hypothesis is accepted in each unit. Since for all the data generation pro-
cesses considered in Table 3 there is no cross-unit cointegration, the final column
therefore reports the rejection frequencies of » = 0 whenever four common trends
(two from each unit) are extracted in the samples generated by DGP 1, based on
testing for cointegrating rank unit by unit, and whenever two common trends (one
from each unit) are extracted in the samples generated by DGP 2A to 2C. This pro-
cedure is equivalent to that proposed by Gonzalo and Granger (1995) for checking
for cointegration among sub-systems of cointegrated systems. Gonzalo and Granger
suggested that the asymptotic distribution of the cointegration test is not affected
by having estimated the common trends in the first stage. Hence, the critical values
used are taken from Johansen (1995).

The results on size, as reported in Table 4, are encouraging. Except for the joint

test, no substantial size distortions are evident. The distortions of the joint test
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disappear as the sample size increases to 400 but, particularly for DGP 2A and 2B,
they are present and important at economically typical sample sizes of 100 or 200.
The distortions are greater with more feedback (compare DGP 2B with 2A) and
lower with lower integration (compare DGP 2A with 2C).

The Gonzalo and Granger procedure is slightly under-sized whenever cointegrat-
ing vectors are estimated, as in DGP 2A to 2C, even at large sample sizes of 400.
This is likely a consequence of using critical values that are strictly not applicable
with constructed as opposed to raw series. It is in principle possible to adjust the
critical values for size but since such corrections would be ad hoc, the size distor-
tions are not great, and the general points can be made in the absence of such size
corrections, we do not pursue this further.

Table 5 (under identical headings) provides the power of the test procedures for
DGP 2A to 2C. Thus for DGP 2A to 2C the rejection frequencies of v, = 0 are given
in the column headed LL, while the remaining columns provide the same information
for the other tests. All the tests have power approaching 1 as sample size increases.
Broadly speaking however, the LL test is seen to have the best power properties for
a majority of cases, both at low, medium and large sample sizes. The test based
on estimating the Johansen full system is the least powerful (although increasing
rapidly to 1) for all but one of the cases. This is to be expected, since when the LL
null is satisfied, estimation of the Johansen full system involves estimating a large
number of unnecessary parameters. This leads to a loss in efficiency in estimation
of important parameters and loss of power.? Estimating the system unit by unit is
partly beneficial (by cutting down on the number of parameters to be estimated)
although cross-unit connections via the o matrix are not taken into account. The
joint test therefore occupies the middle ground in terms of power performance.

Table 6 provides details of the bias and standard deviation of the estimates of

9See discussion of results of Table 6 below.
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the cointegrating vectors for each of the three different methods. In terms of bias,
even for T=100, the LL test and the Johansen trace statistic unit by unit perform
quite well. The latter is slightly better than the former, also in terms of efficiency,
i.e., lower standard errors for the estimated coefficients. The full system Johansen

ranks third for both bias and efficiency.

5 Simulations when the LL framework is not cor-
rect

From the previous section, the LL test appears to have the proper size, good power
compared to other cointegration procedures, and to yield some efficiency gains when
estimating the cointegrating coefficients. Yet, as we stressed in the introduction, the
LL framework (and the even more restricted models in the panel unit root literature),
may be inappropriate in applications with macroeconomic data. In particular, in
this context there can exist cointegrating relationships across the units, and the
units can be driven by a different number of common trends. We now evaluate the
consequences of these two features on the performance of the LL test, and consider
some “diagnostic tests” to spot their presence.

We use simulations to undertake this part of the analysis, instead of looking for
analytical expressions of the distributions under the alternative. The difficulties of
deriving densities in the presence of cross-unit cointegration are noted by Phillips
(1999) who comment that when there are strong correlations among the units of a
panel (as would apply in our cases of interest), standard central limit theory and
laws of large numbers will no longer apply. Moreover our interest is not solely in the
limit distributions (with N and T" approaching infinity) but we wish also to look at

the behaviour of these statistics for small N and medium-sized T'. The predictions
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of asymptotic theory are thus of limited use here.

5.1 Cointegration across the units

When the units are related by cointegrating relationships, the hypothesis of a block
diagonal 3 is violated. Several structures for # are now possible, and we focus
on three of these in our simulation experiments. The data generation processes
are described in Table 7. In DGP 3 there exists only one cointegrating relationship
across the units, so that r;,;, = 0 and r; = 1. The DGPs 3A, 3B and 3C differ for the
loading matrix, «, while in 3D there is more stationarity. In DGP 4 we consider the
case rrr, = 0 and r; = 2, namely, two cointegrating relationships across the units,
and none within the units. In DGP 5 we also allow for within-unit cointegration, and
keep one cross-unit relationship, so that r;;, = 1 and r; = 3. Several sub-cases of
DGP 4 and 5 are analyzed, which differ for the structure of the o matrix (indicated
by A,B,C) and for the magnitude of the roots (D).

The rejection frequencies of the LL test are reported in the LL columns of Table
8. For DGP 3, where r;, = 0, the probability of rejecting rp;, = 0 quickly increases
towards one, while that of rejecting r7;, = 1 is in the range 0.26 —0.28 when T" = 400.
For DGP 4 also the probability of rejecting r7;, = 1 increases to one, and the same
is true for DGP 5. These results indicate a massive rejection of the proper null
hypothesis of the LL test in the presence of cross-unit cointegration. Cointegration
across units is wrongly attributed to cointegration within units.

It is interesting to evaluate whether this is also a problem in the unit by unit
analysis using the Johansen trace test. Indeed, from the columns “unit 17 and “unit
2” of Table 8, there are cases when the size of the test is severely biased upwards, even
if the highest rejection probabilities of r;, = 0 are much smaller than those from LL,

about .38 for T" = 400. The distortion is related to the cointegrating relationships
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affecting several variables of the system (cases B and C). As a consequence, the joint
procedure based on the combination of the unit by unit results also presents size
distortions in these cases (column “joint”).*

In the light of these results, it seems particularly important either to use a full
system approach, or at least to evaluate whether there is cross-unit cointegration.
The former approach though is not feasible with a larger number of units, so that
the latter becomes even more important. The last three columns of Table 8 report
the size and power of the Gonzalo and Granger procedure. The power of the test
(columns 7 = 0 for all DGPs and also ¢ = 1 for DGP 4) is in general rather low
for T" = 100, but quickly increases with 7" and is often close to one for T' = 400. The
size (columns r¢ = 1 for DGPs 3 and 5, and column r¢ = 2 for DGP 4) is slightly
lower than the nominal value also for T" = 400, as in the previous section.

Overall, these results suggest that the LL test, and to a certain extent unit by
unit analysis, can lead to over-acceptance of within-unit cointegration when there
exists cross-unit cointegration. On the other hand, the latter is detected quite well

by the Gonzalo and Granger test, at least for large enough sample sizes.

5.2 Different cointegrating ranks in each unit

The cases of different within-unit cointegrating ranks we consider are listed in Table
9. In DGP 6 it is ry = 1, ro = 0; for DGP 7 r;y = 2, ro = 0; for DGP 8, r; = 2,
ro = 1. For each DGP we also consider different loading matrices a (subcases A, B,
C), and lower stationary roots (D).

The rejection frequencies of the LL test are reported in the LL columns of Table

10. When T = 400, r1;, = 0 is rejected with probability one in all cases, and also

ONote that, in order to reduce uncertainty, the same random numbers are used for all experi-
ments. Hence some values for the unit by unit analysis are the same (e.g. those for unit 2, DGPs
3A, 3B, 3D, 4A, 4B, 4D).
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rpp = 1 is rejected with probability close to one for DGPs 7 and 8. When T is
smaller, the rejection frequencies are lower in some cases, but overall these results
also indicate a tendency of the LL test to substantially under reject within-unit
cointegration.

The unit by unit cointegration analyses provide an indication about differences
in the cointegrating ranks (columns “unit 17 and “unit 2” of Table 10). In fact when
T = 400, the unit by unit tests in general have power close to one, and size close to
the nominal level. The exceptions are DGPs 6C and 7C, when the size of the test
is larger, about 0.14. This is the case where the cointegrating vectors from the first
unit also affect the second unit.

When T is smaller, the power of the tests in some DGPs is low, in particular
those of type A. In these cases the performance of the joint test (column “joint”) is
also unsatisfactory, with substantial over rejection of the correct null.

In summary, when the cointegrating ranks are different across units, the LL
test tends to over-accept the presence of within-unit cointegration. In other words,
cointegration in one unit biases the test towards non rejection of cointegration in
the other unit. Unit by unit analysis is accurate when 7' is large enough, and can
provide a useful diagnostic test for different cointegrating ranks across units.

The suggestion for empirical analysis that emerges from this section is to use
full-system estimation whenever possible. If this is not feasible, the first step should
be a unit by unit cointegration analysis. The second step is to test for the absence
of cross-unit cointegration by means of the Gonzalo and Granger procedure. If
this is accepted, and the unit by unit analysis does not indicate the presence of
different ranks across units, the third step is to apply the LL statistic, that can yield
efficiency gains in terms of higher power and lower standard errors for the estimated

cointegrating coefficients. This sequential empirical procedure is implemented in
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Section 7, to evaluate in more detail the presence of cointegration in the interest

rate data.

6 Summary of results for more units

Since the case of N = 2 might be thought to be unduly restrictive, in this section
we summarize the results of simulations when the number of units in the panel is
increased to 4 or 8. Conventional panel studies often consider cases where the num-
ber of units is even larger, and a limitation of the highly parameterized maximum
likelihood methods considered in this paper is that this cannot be done, unless T’
is very large with respect to N or the dependence across the units is severely re-
stricted. Imposing these restrictions leads to the framework considered by Larsson
et al. (1998), or by Kao (1999) and Pedroni (1999) inter alia, where the latter pa-
pers make the further assumption of one cointegrating vector. The tradeoff between
higher dimensionality and a priori restrictions is an issue that merits further inves-
tigation. Nevertheless, a panel of 4 or 8 units is a reasonable size when considering
for example data from the G7 countries, or from the largest economies of the Euro-
pean Union, or economic groupings such as NAFTA. The key economic indicators
of the main sectors of an economy, of geographically differentiated regions within a
country, or of the different segments of the labour market could also be investigated
within this context.

In order to evaluate the size and power of the competing approaches, we made

use of DGPs which replicated the structures used for N = 2. Thus, for example,
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DGP 2A for N = 4, took the form

-1 0 0 0 1 0 0 O
0 0 0 0 -1 0 0 O
0o -1 0 0 0 1 0 O
0 0 0 0 0 -1 0 O
o= , f=
0 0 -1 0 0O o0 1 0
0 0 0 0 0 0 -1 0
0 0 0 -1 0O 0 0 1
0 0 0 0 0 0 0 -1

The extensions for the other DGPs studies, namely, 3 to 8, are similarly straightfor-
ward. Moreover, for DGPs 3-5 we also considered cases with more than two cointe-
grating vectors across the units, and for DGPs 6-8 different degrees of cointegration
whithin each unit. A detailed account of these results (available upon request) is not
presented here for space constraints. The following important features are however
worth noting:

1) As the number of units in increased, the size of the LL tests becomes dis-
torted if asymptotic critical values are used. For example, when data are generated
with r; = 1 for each i, N = 4, T = 200, and the largest stationary roots are 0.8,
the LL test rejects the null with frequency of 0.19 at a confidence level of 5%. This
distortion becomes very severe for N = 8, with the rejection frequency increasing
to 0.90. The distortion also increases with the magnitude of the largest stationary
roots, if the other features of the DGP are left unchanged. Thus, with r;, = 1 for
each i, N = 4, T = 200, and largest stationary roots of 0.9, the corresponding

rejection frequency is 0.32.

18



The issue of size distortions is evident in the discussion in LL of their simulations,
leading them to suggest the use of “Bartlett corrections” for the test statistic. The

form of the correction is given by

&, = Zllr)

where C, is the asymptotic critical value and E(Cr) and E(C,,) are, respectively,
the expectations of the finite sample and asymptotic distributions of the test statis-
tic. Both E(Cr) and F(Cs) can be approximated by simulations. Our results
suggest that the use of Cr is effective in correcting the size of the tests. In other
words, 6’T is close in magnitude to the corresponding empirical quantile of the dis-
tribution of the test statistic. The power of the test when using Cr is satisfactory,
close to one even for T=200.

2)  We also investigated the performance of the LL procedure in the presence of
cross-unit cointegration and different cointegrating ranks. As before, we find that
even the presence of few cross-unit cointegrating relationships substantially biases
the LL test towards rejection of no within-unit cointegration, e.g., with T" = 200,
r; = 0 for each 7, and one cointegrating relationship among all units, the probability
of rejecting the null r; = 0 for each 7 is 0.56 when N = 8. This can be compared with
the figure of 0.62 for DGP 3A in Table 8. We conclude from this that the importance
of cross-unit cointegrating relationships does not decrease even when the number of
units increases. For the case of different ranks across the units, the over-acceptance
of within-unit cointegration reported in Table 10 and discussed in Section 5.2 is
confirmed. The degree of over-acceptance increases with the number of units which
have cointegration. For example, if N = 4, T' = 200, the rejection frequencies of
r; = 0 for each i are 0.18, 0.44, and 0.69 for, respectively, (r; = 1,79 = r3 =14 = 0),

(ri=ro=1,r3=r,=0),and (r, =ro =r3 =1,r, =0).
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3) As far as the various versions of the Johansen test are concerned (unit by
unit, joint, and system), these retain their good size and power properties when the
units do not cointegrate with each other. In the presence of cross-unit cointegration,
however, as for N = 2, the unit by unit analysis (and therefore the joint test) can
reject the null of no cointegration too often. The size of the GG test remains slightly
lower than the nominal value, at about 0.04. Its power is relatively low when there
is one cross-unit relationship, but quickly increases with the amount of cross-unit
cointegration and the number of observations.

In summary, it is satisfying to conclude that once the Bartlett corrected critical
values are used for the LL test, the overall performance of the various tests considered

remains qualitatively unaltered from that reported in detail for N = 2.

7 Empirical Examples Revisited

The first step in the sequential procedure we suggested above is unit by unit analy-
sis. Hence, we specify similar models for each country to estimate the unit-specific
cointegrating vectors. We then complement the analysis by extracting the common
trends from each unit and looking for cointegration among these. Finally, we run
the LL test to evaluate whether the outcome is in line with the simulation results.
Detailed results are reported for N = 2, and a summary of the main findings is

presented for N = 8.

7.1 Germany and The Netherlands

The chosen specification for Germany involves 4 lags and an unrestricted constant.
The available sample period goes from May 1990 to January 1999, for a total sample
size of 105 observations. Diagnostics tests for this specification point towards its

congruence since only heteroskedasticity and normality of the residuals of the short-
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term rate are marginally rejected. Cointegration tests for each rank are reported in
Table 11, first panel, along with the corresponding critical values.

The statistics indicate that the cointegrating rank in the model for Germany is
zero. One can then use both the short-and the long-term rate for Germany in a
successive step of the analysis based on the Gonzalo and Granger method.

The chosen specification for the Netherlands involves 4 lags and an unrestricted
constant. The available sample period goes from May 1990 to January 1999, for a
total sample size of 105 observations. Diagnostics tests for this specification indicate
no evidence of misspecification. Cointegration tests for each rank are reported in
Table 11, second panel, along with the corresponding critical values.

The statistics indicate that the cointegrating rank in the model for The Nether-
lands is also zero, which is consistent with the full-system cointegration analysis.
As a consequence, the analysis for cointegration among German and Dutch interest
rates would have to be conducted on the full system. From the results in Section 3,
we know that there exists one cross country cointegrating relationship. Hence, we
expect the LL test to be biased toward rejection of the null hypothesis rp;, = 0.

For the LL model the sample goes from May 1990 to January 1999, we leave the
constant unrestricted, and use 4 lags. The panel LR tests are reported in Table 12,
first panel.

In line with our expectations, the table indicates rejection of r7;, = 0 at the 10%,
though there is marginal non-rejection of the hypothesis at the 5%. Notice also that
whatever choice the investigator makes on the basis of the LL test, the resulting
model will be misspecified. If r;;, = 0 is chosen, the system will be analyzed in
first differences, thereby overlooking the existence of cointegration between the two
countries. If instead rp; = 1 is selected, the wrong cointegrating relationships will

be included in the ECM models.
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7.2 Germany and Denmark

The first tentative specification for Denmark involves 4 lags and an unrestricted
constant. The available sample period goes from May 1990 to January 1999, for
a total sample size of 105 observations. We are led to perform the final analysis
on the reduced sample starting in October 1993 because large outliers in 1993 pro-
voke heteroskedasticity and non-normality in the Danish short-term rate. There is
no evidence of misspecification in the reduced sample going from October 1993 to
January 1999, except for non-normality in the short-term rate.

The cointegration properties do not change in the two samples, since the rank
in both is found to be zero. Both sets of results are reported in Table 11, third and
fourth panels. The finding of zero cointegrating rank in Denmark implies that the
Gonzalo and Granger analysis for cointegration among German and Danish interest
rates would also have to be conducted on the full system. From Section 3, we know
that there exists only one cross country cointegrating relationship, so that the LL
test should again over-reject the null of no cointegration.

To avoid the troublesome period, we only estimate the LL model on the sec-
ond subsample, with 4 lags and an unrestricted constant. The panel LR tests are
reported in Table 12, second panel. This time the LL test rejects a common unit-
by unit rank of zero at 5%, as well as a common rank of one. This would lead
the investigator to estimate the model imposing a common rank of 2, with no cross-
country cointegration. Since the only cointegration vector in the full system involves

variables from both countries, the results would probably be very misleading.

7.3 More units

We now increase the number of units in the panel to 8, by including France, Italy,

UK, Spain and Austria in the analysis. As above, we start by analyzing the full
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system, which includes the short- and long-term interest rates for each country,
giving a total of 16 variables. Only one lag was included in the unrestricted VAR,
both for the sake of parsimony and because the resulting model did not present

any major evidence of misspecification.!!

The Johansen trace test suggests the
presence of 9 cointegrating relationships across the variables. We do not attempt to
identify them, but we note that this outcome already suggests that either some units
have cointegrating rank larger than one or that there exist cross-unit cointegrating
relationships.

In order to evaluate the first possibility, we performed a unit-by-unit cointegra-
tion analysis. In line with our results for Germany, The Netherlands and Denmark,
there appears to be no within-unit cointegration in the other countries, with the
possible exception of Spain. Thus the first requirement for the application of the
LL test is satisfied. However, we still need to verify the presence or absence of
cross-unit cointegration.

Given that the null hypothesis of zero rank in each unit is accepted, the GG
test can be run with the original set of variables and is equivalent to the trace test
in the full-system analysis. The outcome of such a test can now be interpreted as
indicating the presence of many cross-unit cointegrating relationships. From the
simulation experiments in Section 5.1 and 6, we know that the presence of cross-
unit cointegration can substantially bias the LL test towards rejection of the no
cointegration hypothesis (r; = 0 for each ¢, which is supported by the unit-by-unit
analysis) even when the number of units is large. The bias is in fact more serious
than that caused by the violation of non-uniform rank in each individual unit.

Using corrected critical values calibrated to our model (N = 8, T" = 100, and
the largest stationary roots are 0.6), we find that the hypothesis r; = 0 for each 4

is rejected at the 10% level, and r; = 1 for each i is also strongly rejected. Thus,

M Eull details of the estimations reported in this section are available from us upon request.
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we have another example where the application of the panel cointegration tests is
problematic because the main underlying hypothesis of no long run dependence
across the units is violated, leading us to “spuriously” conclude in favour of the

presence of within-unit cointegration.

8 Conclusions

Using data for short- and long-term interest rates in a small panel of OECD coun-
tries, the restrictions implied by the block diagonality of 3 that characterize the
panel cointegration framework (not only in systems methods such as LL but also
in the panel analogue of Engle-Granger methods as developed by Kao (1999) and
Pedroni (1999) inter alia) can be very easily shown to be violated. Since we suspect
that this is very likely to be the case when analyzing macroeconomic time series
across countries, we should be careful in using these methods.

Our simulation results for N = 2,4 and 8 indicate that when the hypotheses
underlying the LL framework are satisfied, the LL test has good size and power
properties, and often yields gains in efficiency relative to full system analysis for
estimation of the cointegrating parameters.

The consequences of violations of the LL assumptions can however be serious.
Our results suggest that the LL test can lead to substantial over-acceptance of
within-unit cointegration when there exists cross-unit cointegration or when the
ranks are different across units. Since tests for unit roots in panels and other ex-
isting tests for cointegration can be re-interpreted within the generalized system
framework, it follows that such tests also reject non-stationarity too often. Thus,
the common empirical finding in the PPP and convergence literature, when tested
in panels of countries, namely that PPP holds and country GDPs converge, may be

a spurious consequence of such violations. We are taking a closer look at this issue
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in on-going research.

Unit by unit analysis however is accurate when 7T is large enough, and can provide
a useful diagnostic test for different cointegrating ranks across units, while cross-unit
cointegration is detected by the Gonzalo and Granger test, at least for large enough
sample sizes.

The suggestion for empirical analysis that therefore emerges is to use full system
estimation whenever possible. If this is not feasible, the first step should be a unit by
unit cointegration analysis. The second step is to test for the presence of cross unit
cointegration by means of the Gonzalo and Granger procedure. If this is rejected,
and the unit by unit analysis does not indicate the presence of different ranks across
units, the third step is to apply the LL statistic since this can yield efficiency gains
in terms of higher power and lower standard errors for the estimated cointegrating

coefficients.
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Appendix

Table 1: Cointegration analysis for Germany and the Netherlands

Ho: rank = r | max eigenvalue | 95% | trace | 95%
r=20 33.16** 27.1 | 46.74 | 47.2
r<l1 10.45 21.0 | 13.58 | 29.7
r <2 3.117 14.1 | 3.127 | 154
r<3 0.0107 3.8 10.0107 | 3.8
Variables ?étgr?iﬁcgggﬁ? (G coefficients
Germany short —0.28589 1
(0.052418)
Germany long 0 0
Netherlands short | 0 -1
Netherlands long | 0 0
LR test of restrictions: xf; = 4.8436 [0.5640]
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Table 2: Cointegration analysis for Germany and Denmark

Ho: rank=r | Max eigenvalue | 95% | Trace | 95%
r=20 40.04** 27.1 | 56.77* | 47.2
r<l1 19.65 21.0 | 22.83 29.7
r<2 7.209 14.1 | 7.288 15.4
r<3 0.07885 3.8 10.07885 | 3.8
Variables %tggiﬁcjgﬁli? 0 coefficients
Germany short | —0.043439 —-1.19
(0.018386)
Germany long | 0 0
Denmark short | —0.48171 1
(0.11189)
Denmark long —((3;(5)29716%?5 0
LR test of restrictions: X%s) =4.9176 [0.1779]
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Table 3: Data Generating Processes for Size and Power: Block-diagonal 3

DGP rpp ry o o Roots
1 0 0 0 0 (1,1,1,1)
-0.1 0
0 0 1 -1 0 O
2A 1 2 (1,1,0.9,0.9)
0 —-0.1 0 0 1 -1
0 0
-0.1 0
0 0 1 -1 0 O
2B 1 2 (1,1,0.9,0.9)
0.1 -0.1 0 0 1 -1
0 0
-02 0
0 0 1 -1 0 O
2C 1 2 (1,1,0.8,0.8)
0 -0.2 0 0 1 -1
0 0

rpr: Cointegrating rank for each unit in sense of Larsson and Lyhagen

ry: Cointegrating rank for full system in sense of Johansen
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Table 4: Size of tests with block diagonal § matrix

DGP T LL@ J unit by unit® J system (¥ GG ©

unit 1 unit 2 joint(®

1 100 0.064 0.048 0.058 0.056 0.065 0.051
200 0.059 0.051 0.051  0.056 0.060 0.045
400 0.057 0.052 0.051  0.052 0.057 0.045

2A 100 0.098 0.048 0.049 0.815 0.022 0.021

200 0.087 0.055 0.052 0.142 0.051 0.024
400 0.069 0.051 0.052 0.051 0.056 0.028
2B 100 0.118 0.049 0.035 0.887 0.024 0.038

200 0.093 0.055 0.046 0.384 0.045 0.033

400 0.069 0.051 0.048 0.055 0.055 0.031

2C 100 0.098 0.054 0.054 0.136 0.057 0.027
200 0.072 0.054 0.050 0.054 0.058 0.029

400 0.060 0.050 0.053  0.050 0.053 0.031

(a): Rejection frequencies of null hypothesis at 5% significance level using LL(1999) asymp-
totic critical values, when LL statistic is calculated.

(b): Rejection frequencies, unit by unit, of null hypothesis at 5% significance level, using
Johansen (1995) asymptotic critical values.

(C): Calculated by setting the significance level of the unit by unit Johansen tests at 1 —
(0.95)1/2, so that the significance of the joint test is 5%.

(d): Rejection frequencies at 5% significance level using Johansen (1995) asymptotic critical
values when system is estimated without restriction (apart from those necessary for identification).

(e): Rejection frequencies of cointegration among the common trends derived from the unit

by unit cointegration analysis when the null hypothesis is accepted in each unit.
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Table 5: Power of tests with block diagonal § matrix

DGP T LL@ J unit by unit® J system (¢
unit 1 unit 2 joint(®

2A 100 0.513 0.576 0.575 0.229 0.136
200 0.978 0.982 0.98 0.914 0.635
400 1.000 1.000 1.000  1.000 0.999

2B 100 0.699 0.576 0.367 0.151 0.165
200 0.999 0.982 0.792 0.667 0.522
400 1.000 1.000 0.998  0.995 0.974

2C 100 0.983 0.985 0.983 0.917 0.658
200 1.000 1.000 1.000  1.000 0.999
400 1.000 1.000 1.000  1.000 1.000

(@) = (d):

See notes to Table 4
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Table 6: Estimates of 3 with block diagonal § matrix

DGP T LL(®) J unit by unit® J system (¢

B

Bia
B

2A 100 mean 1.169 0.961 1.058 1.001 1.141  1.005
s.d. 8837 10.730 2.716 2.783 17.150  20.564

200 mean 1.014 1.029 1.002 1.004 1.011  0.871

sd.  1.026 3.020 0.159 0.161 4.779  5.605

400 mean 0.999 1.000 0.999 1.000 0.781  1.052

s.d.  0.068 0.070 0.065 0.064  20.829 18.631

2B 100 mean 1.052 1.058 1.038 1.371 1.092  0.937
sd.  2.884 7.068 2716 33.670  9.922 18.448

200 mean 1.002 0.823 1.002 1.036 1.150  0.540

s.d. 0126 18.062 0.160  4.810 10.389 15.184

400 mean 1.000 1.000 0.999 1.045 1.007  0.731

sd.  0.052 0.075 0.065 0.126 1.117  1.437

2C 100 mean 1.004 1.015 1.002 1.005 0.772  0.818
sd. 0334 0.839 0.153 0.173 23.713  6.589

200 mean 1.000 0.999 1.000 1.000 0.942  0.912

sd.  0.069 0.112 0.066 0.063 3.276  3.499

400 mean 1.000 1.000 1.000 1.000 1.363  0.496

s.d.  0.032 0.030 0.031 0.030 38.599  37.520

—
Baa

Bar

—
Baa

Bar

(a): Monte Carlo mean and standard deviation of estimated normalised cointegrating param-
eter in each unit using LL method.
(b): Monte Carlo mean and standard deviation of estimated normalised cointegrating param-

eter in each unit using Johansen unit by unit.
(C): Monte Carlo mean and standard deviation of estimated normalised cointegrating param-

eter in each unit using Johansen full system.
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Table 7: Description of Data Generating Processes for Rejection Frequencies: Non-

block-diagonal 3

DGP 71 1y o o Roots
3A 0 1 (—0.1 00 0) (1 0 —1 0> (1,1,1,0.9)
3B 0 1 (—0.1 —-0.1 0 0 (1 0 —1 0> (1,1,1,0.9)
3C 0 1 (—0.1 0 0 —0.1) (1 0 —1 0) (1,1,1,0.9)
3D 0 1 (—0.2 00 0) <1 0 —1 0) (1,1,1,0.8)
0 —-01 00 01 0 -1
4A 0 2 (1,1,0.9,0.9)
-01 0 00 10 -1 0
0 —-01 00 01 0 -1
4B 0 2 (1,1,0.9,0.9)
-01 —0.1 0 0 10 -1 0
0 —-01 0 0 01 0 -1
4C 0 2 (1,1,0.9,0.9)
—-01 0 —01 0 10 -1 0
0 —02 00 01 0 -1
4D 0 2 (1,1,0.8,0.8)
—-02 0 00 10 -1 0
010 0 0 1 =10 0
5A 1 3 0 0 —=0.1 0 0 0 1 -1 (1,0.9,0.9,0.9)
0 0 0 01 0 1 0 —1
-01 0 0 —0.1 1 =10 0
5B 3 0 0 —01 0 0 0 1 —1 (1,0.9,0.9,0.9)
0 0 0 01 0 1 0 -1
-01 0 0 —0.1 1 =10 0
5C 3 0 0 —01 0 0 0 1 —1 (1,0.9,0.9,0.9)
0 0 —01 01 0 1 0 —1
—-02 0 0 0 1 =10 0
35
5D 3 0 0 —02 0 0 0 1 —1 (1,0.8,0.8,0.8)




Table 8: Rejection frequencies of tests with non-block diagonal # matrix

DGP T LL@® J unit by unit® GG @
unit 1 unit 2 joint
r7.=0 rr;,=1|1;=0 ry=1 1;=0 1;=1 r=0 r=1 1r=2

3A 100 | 0.231  0.105 | 0.054 0.004 0.054 0.006 0.055 | 0.210 0.020 -
200 | 0.621 0.235 | 0.051 0.004 0.053 0.005 0.056 | 0.605 0.036 -

400 | 0.993 0.281 | 0.053 0.003 0.051 0.004 0.050 | 0.993 0.041 -

3B 100 | 0.583 0.221 | 0.263 0.026 0.054 0.006 0.219 | 0.502 0.037 -
200 | 0.970 0.288 | 0.324 0.026 0.053 0.005 0.276 | 0.960 0.039 -

400 | 1.000 0.275 | 0.369 0.028 0.051 0.005 0.320 | 1.000 0.038 -

3C 100 | 0.580  0.218 | 0.054 0.004 0.265 0.023 0.221 | 0.500 0.035 -
200 | 0.969 0.285 | 0.051 0.004 0.341 0.030 0.288 | 0.960 0.042 -

400 | 1.000 0.264 | 0.053 0.003 0.382 0.029 0.333 | 1.000 0.031 -

3D 100 | 0.628 0.236 | 0.056 0.005 0.054 0.006 0.067 | 0.613 0.038 -
200 | 0.995 0.285 | 0.060 0.005 0.053 0.005 0.059 | 0.994 0.040 -

400 | 1.000 0.271 | 0.059 0.003 0.051 0.005 0.052 | 1.000 0.038 -

4A 100 | 0.512  0.350 | 0.063 0.008 0.054 0.006 0.058 | 0.495 0.115 0.016
200 | 0.977 0.937 | 0.063 0.006 0.053 0.005 0.058 | 0.976 0.632 0.038
400 | 1.000  1.000 | 0.058 0.006 0.051 0.005 0.045 | 1.000 1.000 0.033

4B 100 | 0.696 0.416 | 0.164 0.025 0.054 0.006 0.126 | 0.663 0.121 0.014
200 | 0.998 0.861 | 0.222 0.034 0.053 0.005 0.171 | 0.997 0.470 0.026

400 | 1.000 1.000 | 0.264 0.034 0.051 0.005 0.197 | 1.000 0.966 0.020

4C 100 | 0.843 0.638 | 0.142 0.023 0.265 0.023 0.241 | 0.798 0.240 0.020
200 | 0.997 0.993 | 0.180 0.026 0.341 0.302 0.306 | 0.999 0.837 0.026
400 | 1.000 1.000 | 0.203 0.026 0.382 0.029 0.358 | 1.000 1.000 0.021

4D 100 | 0.979  0.939 | 0.066 0.006 0.054 0.006 0.057 [ 0.978 0.630 0.036

200 | 1.000  1.000 | 0.070 0.005 0.053 0.005 0.054 | 1.000 0.999 0.032
36
400 | 1.000  1.000 | 0.070 0.007 0.051 0.005 0.047 | 1.000 1.000 0.026




(continued)

5A 100 | 0.771 0.364 | 0.584 0.049 0.595 0.061 0.803 | 0.520 0.039 -
200 | 1.000 0.842 | 0.984 0.056 0.986 0.062 0.131 | 0.956 0.023 -

400 | 1.000 1.000 | 1.000 0.051 1.000 0.058 0.041 | 1.000 0.018 -

5B 100 | 0.954 0.424 | 0.584 0.049 0.715 0.068 0.751 | 0.714 0.024 -
200 | 1.000 0.896 | 0.984 0.056 0.993 0.083 0.121 | 0.905 0.013 -

400 | 1.000 1.000 | 1.000 0.051 1.000 0.103 0.068 | 1.000 0.009 -

5C 100 | 0.993 0.687 | 0.584 0.049 0.911 0.172 0.681 | 0.698 0.016 -
200 | 1.000 0.997 | 0.984 0.056 0.999 0.221 0.204 | 0.928 0.006 -

400 | 1.000 1.000 | 1.000 0.051 1.000 0.270 0.199 | 1.000 0.003 -

5D 100 | 1.000 0.849 | 0.985 0.053 0.991 0.071 0.120 | 0.956 0.023 -
200 | 1.000 1.000 | 1.000 0.054 1.000 0.063 0.046 | 1.000 0.020 -

400 | 1.000 1.000 | 1.000 0.049 1.000 0.061 0.039 | 1.000 0.017 -

(a): Rejection frequencies of 71,7, = 0 or 1 at 5% significance level using LL(1999) asymptotic
critical values, when LL statistic is calculated

(b): Rejection frequencies, unit by unit, of rank 0 or 1 at 5% significance level, using Johansen
(1995) asymptotic critical values.

(c): Rejection frequencies of null hypothesis using joint test, where the significance level of
the unit by unit Johansen tests is set at 1 — (0.95)1/2.

(d) : Rejection frequencies of cointegration among common trends derived from unit by unit

analysis when the null hypothesis is accepted in each unit.
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Table 9: Description of Data Generating Processes for Rejection Frequencies: Block

diagonal 3 matrix but different rank in each unit

DGP r; o o Roots
6A 1 (—0.1 0 0 o) (1 -1 0 0> (1,1,1,0.9)
6B 1 (—0.2 0.1 0 0 (1 -1 0 0> (1,1,1,0.9)
6C 1 (—0.1 0 —0.1 0) (1 -1 0 0) (1,1,1,0.9)
6D 1 (—0.2 00 o) (1 -1 0 0) (1,1,1,0.8)
01 0 00 1000
7A ) (1,1,0.9,0.9)
0 —010 0 0100
—0.1 01 0 0 1000
7B ) (1,1,0.9,0.9)
0 —010 0 0100
—0.1 01 0 0 1000
7C 2 (1,1,0.9,0.9)
0 —0.1 01 0 0100
02 0 00 1000
7D 2 (1,1,0.8,0.8)
0 —02 0 0 0100
~01 0 0 0 1000
8A 3 0 —-01 0 0 0100 (1,0.9,0.9,0.9)
0 0 —-010 0010
-0.1 0.1 0 0 1000
8B 3 0 —-01 0 0 0100 (1,0.9,0.9,0.9)
0 0 —-01 0 0010
~0.1 0.1 0 0 1000
8C 3 0 -01 01 0 0100 (1,0.9,0.9,0.9)
0 0 —0.1 0.1 0010
—-02 0 0 0 1000
3
8D 3 0 —-02 0 0 0100 (1,0.8,0.8,0.8)
0 0 -02 0 0010




Table 10: Rejection frequencies of tests with block diagonal 3 matrix but different

rank in each unit

DGP T LL(® J unit by unit®
unit 1 unit 2 joint(®

I'LLZO rLL:1 I'J:O I'J:1 I'J:O I'J:1

6A 100 | 0.224  0.062 | 0.584 0.049 0.443 0.022 0.592

200 | 0.615 0.093 | 0.984 0.056 0.053 0.005 0.101

400 [ 0.994  0.096 | 1.000 0.0561 0.051 0.004 0.051

6B 100 | 0.962  0.126 | 1.000 0.055 0.058 0.006  0.060

200 | 1.000  0.108 | 1.000 0.054 0.053 0.006 0.059

400 [ 1.000  0.099 | 1.000 0.055 0.051 0.005 0.054

6C 100 | 0.587  0.115 | 0.584 0.049 0.131 0.017 0.618
200 | 0.969  0.116 | 0.984 0.056 0.138 0.015 0.157

400 | 1.000  0.102 | 1.000 0.051 0.145 0.014 0.127

6D 100 | 0.635  0.100 | 0.985 0.053 0.054 0.006 0.096

200 | 0.995 0.094 | 1.000 0.054 0.053 0.005 0.058

400 | 1.000  0.090 | 1.000 0.049 0.051 0.005 0.050

TA 100 | 0.131  0.056 | 0.603 0.407 0.054 0.006 0.788
200 | 0.499 0.306 | 0.998 0.987 0.053 0.006 0.094

400 [ 0.997  0.981 | 1.000 1.000 0.051 0.005 0.027

7B 100 | 0.218  0.079 | 0.796 0.417 0.054 0.006 0.767

200 | 0.744  0.328 | 1.000 0.922 0.053 0.006 0.228

400 | 1.000  0.866 | 1.000 1.000 0.051 0.005 0.026
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(continued)

7C

100

200

400

0.493

0.972

1.000

0.232

0.814

1.000

0.796

1.000

1.000

0.417

0.922

1.000

0.119

0.137

0.143

0.014

0.015

0.014

0.769

0.259

0.102

7D

100

200

400

0.518

0.997

1.000

0.322

0.984

1.000

0.997

1.000

1.000

0.985

1.000

1.000

0.054

0.053

0.051

0.006

0.005

0.005

0.089

0.031

0.027

8A

100

200

400

0.225

0.849

1.000

0.086

0.410

0.982

0.603

0.998

1.000

0.407

0.987

1.000

0.209

0.657

0.999

0.031

0.048

0.053

0.975

0.559

0.038

8B

100

200

400

0.334

0.949

1.000

0.114

0.365

0.865

0.796

1.000

1.000

0.417

0.922

1.000

0.209

0.657

0.999

0.031

0.048

0.053

0.970

0.625

0.037

8C

100

200

400

0.475

0.989

1.000

0.227

0.810

1.000

0.796

1.000

1.000

0.417

0.922

1.000

0.094

0.235

0.737

0.017

0.033

0.051

0.985

0.892

0.452

8D

100

200

400

0.864

1.000

1.000

0.422

0.984

1.000

0.997

1.000

1.000

0.985

1.000

1.000

0.670

0.999

1.000

0.052

0.051

0.052

0.545

0.033

0.027

: See notes to Table 8

40



Table 11: Unit by unit cointegration analysis

| Ho: rank=r Max cigenvalue 95% Trace 95% |
| Germany, 1990-1999 |
r=20 4.86 141 4886 154
r<l 0.02539 3.8 0.025 3.8

Horank=r Max eigenvalue 95% Trace 95% |
| The Netherlands, 1990-1999 |
r=20 2.984 14.1 3.087 154
r<l1 0.1033 3.8 0.095 3.8

Ho: rank=r Max.cigenvalue 95% Trace 95% |
| Denmark, 1990-1999 |
r==20 3.306 14.1 3.967 154
r<l1 0.2798 3.8 0309 3.8

Ho: rank=r Max.eigenvalue 95% Trace 95%
| Denmark, 1993-1999 |
r=20 7.596 14.1 8175 154
r<l 0.5791 3.8 0.579 3.8
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Table 12: Panel LL tests

rank LR test 95% critical values

Germany - The Netherlands, 1990-1999

rp, =0 46.737 47.49

rpp =1 11.658 18.21

rank LR test 95% critical values

Germany - Denmark, 1993-1999

rp, =0 62.748 47.49

rpp =1 22.888 18.21
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