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Abstract

This paper proposes a representation of (possibly) probabilistically unsophisticated prefer-
ences whereby (1) beliefs are jointly represented by a finitely additive probability measure and
a vector-valued measure; (2) uncertain prospects are ranked according to the difference between
a baseline expected utility evaluation and an adjustment term; and (3) the latter is the norm of
the vector-valued expected utility of the prospect under consideration.

Vector-valued measures are employed to represent the extent to which ambiguity about
different events “cancels out” or “adds up”, as revealed by the decision maker’s preferences.

The proposed representation, vector-adjusted expected utility (VEU), is shown to be con-
sistent with the maxmin-expected utility model (MEU). A necessary and sufficient condition
characterizing the class of VEU preferences within the MEU family of preferences is provided.

1 Introduction

According to the Bayesian paradigm of choice under uncertainty, individuals express their subjective
beliefs about the relative likelihood of events by assigning probabilities to them. Correspondingly,
they rank uncertain prospects according to their subjective expected utility.

Daniel Ellsberg [5] first observed that, in some circumstances, the relative likelihood of events
may be perceived as being “ambiguous”. He also noted that a pessimistic (or optimistic) attitude
in the face of ambiguity may lead to patterns of preferences that do not fit within the Bayesian
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paradigm. In order to account for such deviations, generalizations of the Bayesian model of choice
have been proposed and axiomatized: most notably, the Choquet-Expected Utility (Schmeidler
[18]) and Maxmin-Expected Utility (Gilboa and Schmeidler [11]) models.

This paper suggests an alternative extension of the Bayesian model, vector-adjusted expected
utility. In the proposed representation, the decision maker’s subjective beliefs are (uniquely) sepa-
rated into a baseline probabilistic component and an adjustment term, which reflects the perceived
distortions (e.g. ambiguity) that motivate deviations from the Bayesian model. Correspondingly,
an “ambiguity-averse” decision maker will rank uncertain prospects according to the difference be-
tween an expected utility component and an adjustment component. I provide a characterization of
the proposed decision rule, along with comparisons with other models of choice under uncertainty.

The essential features of vector-adjusted expected utility (VEU henceforth) are best illustrated
in the context of one of Ellsberg’s well-known “mind experiments.” A decision maker is presented
with an urn containing a total of 90 balls; of these, 30 are red, and the remaining are green or blue,
in unspecified proportions. The decision maker is asked to rank the following prospects, or “bets”,
labelled r, g, r̄ and ḡ:

(r) receive $10 if a red ball is drawn and $0 otherwise;
(g) receive $10 if a green ball is drawn, and $0 otherwise;
(r̄) receive $10 if a red ball is not drawn, and $0 otherwise;
(ḡ) receive $10 if a green ball is not drawn, and $0 otherwise.
Several individuals, when faced with these options, prefer r to g and r̄ to ḡ. Recall that the

proportion of green vs. blue balls is unspecified; an “ambiguity averse” individual may then prefer
to bet on a red draw rather than on a green draw, because she is worried that the urn may contain
no green balls. By a symmetric argument, she may simultaneously prefer to bet against a red draw,
rather than against a green draw, because she is worried that the urn may contain 60 green balls.

One can verify that, if a decision maker expresses these preferences, then her beliefs cannot be
represented by a probability measure (the choice of utility index is immaterial). However, these
preferences (and beliefs) admit a VEU representation.

To see this, define a baseline probability measure p1 by letting p1(ρ) = p1(γ) = p1(β) = 1
3 , where

ρ, γ and β denote the elementary events whereby a red, green or blue ball is drawn.
Next, in order to represent the adjustments to the probabilistic assessment p1, define a signed

measure p2 on {ρ, γ, β} by letting p2(ρ) = 0, p2(γ) = 1
3 and p2(β) = −1

3 , and extending it to all
subsets of {ρ, γ, β} by additivity. Thus, for instance, p2(ρ ∪ β) = −1

3 .
The signed measure p2 is to be viewed as a vector-valued measure (albeit a particularly simple

one), whose range is the vector space of the reals endowed with the absolute value norm. The
general VEU representation allows for arbitrary vector-valued measures.
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Finally, fix a utility function u(·) on the relevant space of outcomes, such that u($10) > u($0).
It can then be verified that the VEU functional associating to each prospect f the quantity

∑

ω∈{ρ,γ,β}
u(f(ω))p1(ω)−

∣∣∣
∑

ω∈{ρ,γ,β}
u(f(ω))p2(ω)

∣∣∣.

represents the preferences indicated above.
The interpretation of the adjustment p2 for an ambiguity-averse decision maker is as follows.

First, for any event E ⊂ {ρ, γ, β}, the absolute value of p2(E) reflects, loosely speaking, the
extent to which ambiguity reduces the decision maker’s willingness to bet on E. For example, the
adjustments p2(ρ) = 0 and p2(γ) = 1

3 signal that there is no (perceived) ambiguity about ρ, but
there is substantial (perceived) ambiguity about γ; this, in turn, makes a bet on γ less palatable
than a bet on ρ, although the two events are assigned the same baseline probability.

Second, for any event E ⊂ {ρ, γ, β}, the sign of p2(E) indicates how ambiguity about E combines
with ambiguity about other, disjoint events. For instance, p2(γ) and p2(β) are equal in absolute
value, but have opposite signs; this indicates that the events γ and β are perceived as being equally
ambiguous, but their ambiguities exactly “cancel out”: p2(γ∪β) = 0. On the other hand, ambiguity
about β is preserved when taking its union with ρ: p2(ρ ∪ β) = −1

3 .

The example emphasizes the two main features of the VEU model of choice under uncertainty.
First, it portrays a decision maker who evaluates a prospect by formulating a “neutral” assessment of
the latter, and separately accounting for any perceived ambiguity. Second, it provides an explicit,
compact representation of the extent to which ambiguity about disjoint events “cancels out” or
“adds up” when taking unions. As the example illustrates, these patterns of interaction are closely
related to the deviations from the Bayesian paradigm one observes as a consequence of (perceived)
ambiguity. I suggest that both features may contribute to making VEU an appealing modelling
option in the analysis of other, more complex problems of choice under uncertainty.

Observe also that the general VEU representation involves a linear functional, an integral with
respect to a vector-valued measure, and a well-behaved convex function of the latter. In sufficiently
regular setting, vector integrals can be thought of simply as collections of scalar integrals; hence,
they are structurally very similar to standard expectation operators. As a result, VEU generally
provides an analytically and numerically tractable representation of preferences.

The characterization of VEU preferences provided in this paper takes place in the setting of
Anscombe and Aumann [1]. I first show that every VEU preference also admits a Maxmin-Expected
Utility (MEU) representation: that is, preferences are also represented by the functional associating
to each act its minimum expected utility taken over a closed, convex set of probability measures.
The main result of this paper then establishes that a single additional axiom characterizes the VEU
subclass of preferences within the MEU class.
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The paper is organized as follows. Section 2 defines vector measures and integrals, and provides
the necessary decision-theoretic background. Section 3 contains the main characterization result.
Section 4 provides an extended discussion and interpretation of the axioms; moreover, it contains
additional results relating VEU preferences to other models of choice, as well as further examples.
All proofs are in the Appendix.

2 Preliminaries and Background

2.1 Vector Measures and Integration

Consider a set Ω, an algebra Σ of subsets of Ω, and a real Banach space V with norm ‖ · ‖V ; denote
by 0V the zero vector in V. A vector measure (cf. [4], §III.1.1) is a finitely additive set function
µ : Σ → V; that is, for disjoint E,F ∈ Σ, µ(E∪F ) = µ(E)+µ(F ), where “+” indicates addition in
V. The set of V-valued vector measures on (Ω, Σ) will be denoted by ∆V(Ω, Σ); the set of finitely
additive probability measures on the same measurable space is denoted by ∆(Ω, Σ).

For the purposes of the present paper, it is sufficient to define integration of bounded, real-
valued functions with respect to a finitely additive vector-valued measure. The material presented
here is based on Bartle [3]; the interested reader is referred to the latter paper for further details
and a considerably more general treatment.

Denote by B0(Ω,Σ) the set of simple Σ-measurable real-valued functions on Ω (i.e. the set of
finite linear combinations of indicator functions), and let B(Ω, Σ) denote its uniform closure. As is
customary, for any c ∈ R, let “c” also denote the function assigning the value c to each ω ∈ Ω. The
indicator function of an event E ∈ Σ will be denoted by 1E . Also, to simplify notation, the sets
B0(Ω, Σ) and B(Ω, Σ) will be simply referred to as B0 and B, respectively, unless it is necessary to
emphasize the dependence on Ω and/or Σ.

For any simple function f ∈ B0, the V-valued integral with respect to a V-valued measure µ is
defined as in in the development of Lebesgue integration: if f =

∑K
k=1 xk1Ek

for some collection of
disjoint events E1, . . . , EK and nonzero real numbers x1, . . . , xK , then, for any event E ∈ Σ,

I(f ; µ,E) =
∫

E
fµ(dω) =

K∑

k=1

µ(Ek ∩ E)xk. (1)

It is routine to show that the above definition is independent of the representation of the integrand,
and that the integral thus defined is a linear operator on B0 with values in V, and an additive
function on Σ for any fixed f ∈ B0.

For non-simple functions f ∈ B \ B0, by definition there exists a sequence {fn}n≥1 ⊂ B0

converging uniformly to f ; then the integral of f w.r.to a V-valued measure µ on an event E ∈ Σ
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is defined by

I(f ;µ,E) =
∫

E
fµ(dω) = lim

n→∞

∫

E
fnµ(dω), (2)

where the above limit is taken with respect to the norm topology on V; see Bartle [3], Theorem 8.

Example 1 Let µ = (µ1, . . . , µn) be a collection of bounded, finitely additive signed scalar mea-
sures on (Ω,Σ), and let V = Rn, endowed with the norm ‖x‖ = (

∑
n |xn|p)1/p, 1 ≤ p ≤ ∞. Then µ

is an lpn-valued vector measure.
In this case,

∫
E fµ(dω) = (

∫
E fµi(dω))n

i=1 ∈ Rn, where each component of the latter n-vector
is a Dunford integral (cf. [4], §III.2).

The VEU representation of preferences involves a finitely additive probability measure, as well
as a vector measure. The two measures must satisify a mutual consistency requirement; also, a
normalization condition must be imposed on the vector measure. The following definition provides
the details.

Definition 1 Consider a finitely additive probability measure p1 ∈ ∆(Ω,Σ) and a vector measure

p−1 ∈ ∆V(Ω,Σ). Then p−1 is a vector adjustment for p1 if and only if:

(i) For all E ∈ Σ, p1(E) ≥ ‖p−1(E)‖V ;

(ii) p−1(∅) = p−1(Ω) = 0V .

Note that the definition implies that p−1 is bounded.1

Since ‖p−1(E)‖V is interpreted as an “adjustment” to the probabilistic assessment p1(E), Con-
dition (i) ensures that this adjustment results in a non-negative decision weight. Condition (ii)
reflects the obvious requirement that there be no ambiguity regarding the decision weights assigned
to the empty set or the entire space.

2.2 Decision-Theoretic Setup

Following Anscombe-Aumann [1], Schmeildler [18] and Gilboa-Schmeidler [11], consider a set of
states of nature Ω endowed with an algebra Σ, a set X of consequences (prizes), the set Y of
(finite-support) lotteries on X, and a convex subset L ⊂ Y Ω of Σ-measurable acts, including the
class L0 of simple functions (i.e. functions taking up finitely many values in Y ), which in turn

1Condition (i) of Definition 1 (along with the normalization condition p1(Ω) = 1) also ensures that the total

variation (cf. Dunford-Schwartz [4], §III.1.4), and hence the semi-variation ([4], §IV.10.3) of the vector-valued measure

p−1 are finite. This simplifies the treatment of integration of unbounded functions with respect to vector-valued

measures: see e.g. the discussion of Definition 1 in [3].
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includes the class Lc of all constant functions. With the usual abuse of notation, denote by y the
constant act assigning the lottery y ∈ Y to each ω ∈ Ω.

Next, consider a preference relation º defined on Lc, and denote by L(º) the subset of Y Ω

comprising all acts that are bounded for º: that is, an act f ∈ Y Ω is an element of L(º) if and
only if there exist lotteries y, y′ ∈ Y such that y º f º y′.

Mixtures of acts are taken pointwise: for every pair of acts f, g ∈ L and for any α ∈ [0, 1],
αf + (1− α)g is the act assigning the compound lottery αf(ω) + (1− α)g(ω) to each state ω ∈ Ω.

Gilboa and Schmeidler [11] consider the following axioms:

(i) Weak Order. º is transitive and complete.
(ii) Monotonicity. ∀f, g ∈ L, f(ω) º g(ω) implies f º g.
(iii) Continuity. ∀f, g, h ∈ L such that f Â g Â h, there exist α, β ∈ (0, 1) such that f Â
αf + (1− α)h Â g and g Â βf + (1− β)h Â h.
(iv) Constant-act Independence. ∀f, g ∈ L, h ∈ Lc and α ∈ (0, 1): f º g implies αf + (1 −
α)h º αg + (1− α)h.
(v) Ambiguity Aversion. ∀f, g ∈ L and α ∈ (0, 1): f ∼ g implies αf + (1− α)g º g.
(vi) Non-degeneracy. Not for all f, g ∈ L, f º g.

The following result characterizes the MEU decision rule in the setting under consideration (see
Klibanoff et al. [14] for a similar result in a setting without objective lotteries).

Theorem 2.1 (Gilboa and Schmeidler [11]) For any preference relationº on L0, the following

statements are equivalent:

(1) º satisfies Axioms (i)-(v) for L = L0;

(2) there exists a convex and weak∗-closed set of priors C ⊂ ∆(Ω, Σ) and an affine utility function

u : Y → R (unique up to a p.l.t.) such that, for all acts f, g ∈ L0,

f º g ⇔ min
q∈C

∫

Ω
u ◦ f dq ≥ min

q∈C

∫

Ω
u ◦ g dq. (3)

Moreover, if (1) above holds, then º has a unique extension to L(º).
Finally, C is unique if and only if Axiom (vi) holds.

Note that a preference relation º admits a standard EU representation if and only if it satisfies
Axioms (i)-(iv), plus

(v’) Ambiguity Neutrality. ∀f, g ∈ L and α ∈ (0, 1): f ∼ g implies αf + (1− α)g ∼ g.

The following simple results will play an important role in the next section.

Remark 2.1 (Solvability) If a preference relation º satisfies Axioms (i), (iii) and (iv)2, then, for

2It is actually sufficient to require that º satisfy Independence on Lc.
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every act f ∈ L(º), there exists a lottery y(f) ∈ Y such that y(f) ∼ f .

To simplify the statement of axioms and results, for any act f ∈ L(º) the notation y(f) will
always indicate a lottery such that y(f) ∼ f ; the preceding remark asserts the existence of at least
one such lottery.

Remark 2.2 If a preference relation º satisfies Axioms (i)-(iv), then it satisfies Axiom (v), Am-

biguity Aversion (resp. Axiom (v’), Ambiguity Neutrality), if and only if, for every f, g ∈ L and

γ ∈ [0, 1],
γf + (1− γ)g º (∼) γy(f) + (1− γ)y(g).

Finally, the expression “VEU (resp. MEU, EU) preference” indicates a preference relation that
admits a VEU (resp. MEU, EU) representation.

3 Characterization of Vector-Adjusted Expected Utility

In the interest of clarity, the characterization of VEU preferences is presented here in two parts.
Proposition 3.1 below provides the first: it states that every VEU preference relation also admits
a MEU representation.

Proposition 3.1 Consider a finitely additive probability measure p1 ∈ ∆(Ω, Σ), a Banach space

(V, ‖ · ‖V), a vector adjustment p−1 ∈ ∆V(Ω,Σ) for p1 and an affine utility function u : Y → R. If,

for a preference relation º on L, and for all acts f, g ∈ L(º),

f º g ⇔
∫

Ω
u ◦ f p1(dω)−

∥∥∥
∫

Ω
u ◦ f p−1(dω)

∥∥∥
V
≥

∫

Ω
u ◦ g p1(dω)−

∥∥∥
∫

Ω
u ◦ g p−1(dω)

∥∥∥
V

(4)

then there exists a weak*-closed and convex set C ⊂ ∆(Ω, Σ) such that Equation (3) in Theorem

2.1 holds for all acts f, g ∈ L(º).

The second part of the characterization shows that a single additional axiom, Symmetric Hedg-
ing, identifies the subclass of VEU preferences within the MEU family of preferences.

The reader is referred to Section 4 for an extended discussion of this axiom and related defini-
tions; its basic motivation may be summarized as follows.

Ambiguity Aversion postulates a (weak) preference for “‘smoothing’ or averaging utility dis-
tributions” (Schmeidler [18], p. 582). This preference, in turn, can be interpreted as reflecting
a desire to “hedge against ambiguity”: a decision maker who is unable to confidently assess the
relative likelihood of certain events may wish to reduce the perceived variability of outcomes (i.e.
the variability of utilities) contingent on them.
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If one accepts the hedging motivation, then it follows that, whenever two pairs of acts provide
the same opportunities for reducing perceived outcome variability across the same events, the
decision maker’s preferences should reveal that, indeed, mixing the two pairs of acts provides an
equally effective “hedge against ambiguity.” This is, essentially, what Symmetric Hedging requires.

In order to state the latter axiom, a preliminary definition is required.

Definition 2 Two acts f, f̄ ∈ L are complementary if and only if, for any two states ω, ω′ ∈ Ω,

1
2
f(ω) +

1
2
f̄(ω) ∼ 1

2
f(ω′) +

1
2
f̄(ω′).

Thus, if an act f assigns different outcomes at two states, then so does a complementary act f̄ .
Moreover, changes in the outcome assigned by f are exactly offset by the corresponding changes
in the outcome assigned by f̄ . Note also that, if the pairs of acts f, f̄ and, respectively, g, ḡ are
complementary, then, for any weight γ ∈ [0, 1], the mixtures γf + (1 − γ)g and γf̄ + (1 − γ)ḡ are
themselves complementary. This implies that f and g provide the same opportunities for utility
smoothing as do f̄ and ḡ. Section 4.1.1 provides further details.

The Symmetric Hedging axiom may now be formulated.3

Symmetric Hedging. For all acts f, g, f̄ , ḡ ∈ L and real numbers γ ∈ [0, 1]: if the pairs f, f̄ and,
respectively, g, ḡ are complementary, and there exist a real number α ∈ (0, 1) and lotteries y, y′ ∈ Y

such that
α
(
γf + (1− γ)g

)
+ (1− α)y ∼ α

(
γy(f) + (1− γ)y(g)

)
+ (1− α)y′ (5)

then
α
(
γf̄ + (1− γ)ḡ

)
+ (1− α)y ∼ α

(
γy(f̄) + (1− γ)y(ḡ)

)
+ (1− α)y′. (6)

Recall that, by Remark 2.2, a MEU decision maker will weakly prefer a mixture of acts to the
same mixture of lotteries equivalent to them; as noted above, this captures a notion of hedging
against ambiguity.

Equation 5 indicates that mixing γf + (1− γ) with y and γy(f) + (1− γ)y(g) with y′ exactly
offsets the decision maker’s (weak) preference for γf + (1− γ)g vs. γy(f) + (1− γ)y(g); that is, it
counterbalances the hedging effect of mixing f and g.

Equation 6 similarly indicates that the same lotteries also exactly offset the hedging effect of
mixing f̄ and ḡ. Thus, Symmetric Hedging encodes the requirement that f, g and f̄ , ḡ provide an
equally effective hedge against ambiguity.

Observe that, by Remark 2.2, EU preferences always satisfy Symmetric Hedging.

3I thank Paolo Ghirardato for suggesting the present formulation of the axiom.
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Further remarks about the implications of Symmetric Hedging are offered in Section 4.1.2;
I now turn to the main characterization result. Recall that, for any vector measure µ, I(·;µ,Ω)
denotes the vector integral operator f 7→ ∫

Ω fµ(dω), and I(B; µ; Ω) denotes the image of B through
I(·; µ,Ω).

Theorem 3.2 Consider a preference relation º for which there exist an affine utility function

u : Y → R and a weak*-closed and convex set C ⊂ ∆(Ω, Σ) such that Equation (3) in Theorem 2.1

holds for all acts f, g ∈ L(º). The following statements are equivalent:

(1) The preference relation º satisfies Symmetric Hedging.

(2) There exists a finitely additive probability measure p1 ∈ C and a vector adjustment p−1 ∈
∆V(Ω, Σ) for p1, taking values in a Banach space (V, ‖ · ‖V), such that, for all acts f, g ∈ L(º),

f º g ⇔
∫

Ω
u ◦ f p1(dω)−

∥∥∥
∫

Ω
u ◦ f p−1(dω)

∥∥∥
V
≥

∫

Ω
u ◦ g p1(dω)−

∥∥∥
∫

Ω
u ◦ g p−1(dω)

∥∥∥
V

(7)

Furthermore, if (1) holds, then º satisfies Axiom (vi), Non-degeneracy, if and only if p1 is unique

and, for any vector adjustment p′−1 for p1 that also satisfies Equation 7, there exists an isometric

isomorphism T : I(B; p−1,Ω) → I(B; p′−1,Ω) such that p′−1 = T ◦ p−1.

Note that statement (2) may be reformulated as follows: there exists a probability measure p1

and a vector-valued adjustment p−1 for p1 such that, for all acts f ∈ L(º),

min
q∈C

∫

Ω
u ◦ f q(dω) =

∫

Ω
u ◦ f p1(dω)−

∥∥∥
∫

Ω
u ◦ f p−1(dω)

∥∥∥
V
. (8)

The second part of Theorem 3.2 indicates the uniqueness properties of the VEU representation.
In particular, the baseline probability measure p1 is unique, and the vector measure p−1 that
determines the adjustments associated with events (indicator functions) and acts are unique up to
an isometric isomorphism—a norm-preserving, linear homeomorphism.

In the present setting, two measures p−1 and p′−1 related by such a transformation T convey
the same decision-theoretically relevant information. First, they encode the same adjustments to
baseline probabilities, because the transformation T is norm-preserving. Second, they encode the
same information concerning the extent to which ambiguity about an event “cancels out” or “adds
to” ambiguity about another, because T preserves the additivity properties of p−1. More generally,
they convey the same information on the effects of utility smoothing, because T also preserves the
linearity properties of the integral operator I(·; p−1, Ω), as well as norms on the entire subspace
I(B; p−1, Ω). Example 2 below exemplifies the first two points; see also Example 7 in Section 4 for
further details on utility smoothing.
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Example 2 Refer to the VEU preferences described in the Introduction in the context of the
Ellsberg Paradox. In particular, recall that Ω = {ρ, γ, β} and p−1(ρ) = 0, p−1(γ) = −p−1(β) = 1

3 ;
the fact that the latter two adjustments have opposite signs indicates that ambiguity about γ and
β “cancels out.” Note that I(B; p−1, Ω) is the entire real line.

Now consider a measure p′−1 taking values in R2, endowed with the Euclidean norm, denoted by
‖ · ‖′. If p′−1 is isometrically isomorphic to p−1, then ‖p′−1(ρ)‖′ = 0 and ‖p′−1(β)‖′ = ‖p′−1(γ)‖′2 = 1

3 .
This implies that p′−1(ρ) = (0, 0)—the zero vector in R2; moreover, since additivity is preserved,
p′−1(γ) = −p′−1(β). Therefore, p′−1 encodes exactly the same information about γ and β as p−1:
the two events are equally ambiguous, but their ambiguities “cancel out”.

Geometrically, p′−1(γ) and p′−1(β) are opposite points on a circle centered at the origin with
radius equal to 1

3 , and I(B; p′−1, Ω) is a line through the origin. Indeed, R2-valued measures
isometrically isomorphic to p−1 are in one-to-one correspondence with such lines. This intuitively
suggests that ambiguity in the Ellsberg Paradox is really “one-dimensional”, regardless of the
particular vector representation one chooses.

Incidentally, the example emphasizes that the measures p−1 and p′−1 in the statement of Theo-
rem 3.2 may take values in different Banach spaces.

The proof of Theorem 3.2 also identifies a “canonical” vector adjustment. In the statement of
the following Corollary, the notation C(K) indicates the Banach space of bounded, continuous real
functions defined on a compact set K, endowed with the supremum norm.

Corollary 3.3 If (1) holds, the set function pC : Σ → RC defined by pC(E)(q) = p1(E)− q(E) for

all E ∈ Σ and q ∈ C is a C(C)-valued adjustment for the probability measure p1 whose existence is

asserted in (2); moreover, p1 and pC jointly satisfy Equation 7 for all f, g ∈ L(º).

4 Discussion and Extensions

The first part of this section discusses key aspects of Definition 2 and Symmetric Hedging, empha-
sizing their relationship with the Ambiguity Aversion axiom. The second collects additional results
and examples.

4.1 Interpretation of Symmetric Hedging

As indicated in the previous section, the Schmeidler [18] - Gliboa and Schmeidler [11] Ambiguity
Aversion axiom formally postulates a preference for “utility smoothing”. A possible interpretation,
related to a notion of ambiguity, runs as follows: if the decision maker cannot confidently assess
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the relative likelihood of certain events, she may wish to reduce perceived4 differences in outcomes
contingent upon their realization. The motivation for the Symmetric Hedging axiom builds upon
these ideas.

The following example clarifies the suggested interpretation of Ambiguity Aversion, and will be
referred to throughout this section.

Example 3 Consider the version of the Ellsberg paradox described in the Introduction. Recall
that the decision maker is informed that a ball will be drawn from an urn containing 90 balls, of
which 30 are red and the remainder green and blue, in unspecified proportions. The set of states
is Ω = {ρ, γ, β}, and the set of available prizes is X = {$0, $10}. Consider further the acts defined
in Table 1.

Act ρ γ β

g $0 $10 $0
b $0 $0 $10
1
2g + 1

2b $0 1
2$10 + 1

2$0 1
2$10 + 1

2$0
ḡ $10 $0 $10
b̄ $10 $10 $0
1
2 ḡ + 1

2 b̄ $10 1
2$10 + 1

2$0 1
2$10 + 1

2$0

Table 1: Acts in a three-color urn problem

As noted in the Introduction, the act g represents a bet “on” a green draw, whereas the act ḡ

is a bet “against” a green draw. The acts b and b̄ are similarly interpreted.
The preferences g ∼ b and 1

2g + 1
2b Â g are consistent with Ambiguity Aversion; for instance, a

MEU decision maker with beliefs represented by the class of priors C = {p ∈ ∆(Ω) : p(ρ) = 1
3} and

utility function u such that u($10) > u($0) would display these preferences. Note that the latter
also admit a VEU representation, with beliefs as indicated in the Introduction.

Note that any mixture αg + (1− α)b reduces outcome variability across the elementary events
γ and β, relative to the acts g or b. In particular, choosing α = 1

2 eliminates all variability. A
preference for mixtures of g and b is then consistent with the idea that, since the ratio of green to
blue balls is unspecified, the decision maker might favor acts whose ultimate outcome is less (or
not at all) dependent upon the realization of γ rather than β.

Finally, note that the same observations hold for mixtures of the acts ḡ and b̄. Indeed, loosely
speaking, a mixture of ḡ and b̄ reduces outcome variability relative to ḡ or b̄ to the same extent

4An act may yield objectively distinct, but subjectively equivalent lotteries contingent upon the realization of

different events. In this case, there is obviously no scope for “utility smoothing”.
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as the same mixture of g and b reduces it relative to g or b. Consistent with this observation, a
decision maker with beliefs as described above would express the preferences ḡ ∼ b̄ and 1

2 ḡ+ 1
2 b̄ Â ḡ.

It may be verified that the pairs of acts g, ḡ and b, b̄ are complementary, and that these prefer-
ences satisfy Symmetric Hedging.

The following two subsections analyze the key ingredients appearing in the statement of the
Symmetric Hedging axiom. In the interest of brevity, two ordered pairs of acts (f, g) and (f̄ , ḡ) will
be deemed complementary if f and f̄ and, respectively, g and ḡ are complementary acts.

4.1.1 Complementary Acts

Definition 2 encodes two (related) requirements related to the idea that complementary pairs of
acts provide the same opportunities for reducing perceived outcome variability by mixing.

First, note that every act h determines a partition of the state space Ω into maximal events on
which h assigns subjectively equivalent lotteries.5 It is clear from Definition 2 that complementary
events determine the same partition of Ω. Thus, loosely speaking, up to indifference among lotteries,
complementary acts are defined in terms of the same (ambiguous and/or unambiguous) events. In
particular, since mixtures of complementary pairs of acts (with the same weights) are themselves
complementary, they also induce the same partition of Ω.

Second, lotteries assigned at any two distinct states by complementary acts may be intuitively
interpreted as being reverse-ordered, but equally “far apart” or “close”. Consider two complemen-
tary acts f and f̄ , and two distinct states ω, ω′; then the ranking

1
2
f(ω) +

1
2
f̄(ω) ∼ 1

2
f(ω′) +

1
2
f̄(ω′)

may be interpreted as imposing a restriction on the final outcome of two operations: starting with
the mixture 1

2f(ω) + 1
2 f̄(ω), (1) f(ω) is replaced with f(ω′), and (2) f̄(ω) is replaced with f̄(ω′).

Since the decision maker is indifferent between the initial and final lotteries, either each replacement
leaves the decision maker indifferent, or one leaves her worse off but the other exactly compensates
for this. In this sense, f(ω) and f(ω′) are as “far apart” as f̄(ω) and f̄(ω′).

It is easy to see that, if the affine function u represents the decision maker’s preferences among
lotteries, then, for every ω ∈ Ω, u(f̄(ω)) = k − u(f(ω)) for some constant k ∈ R (cf. the proof
of Lemma A.2 in the Appendix). In other words, in utility terms, complementary acts are the
negative of each other, possibily translated by a constant.6

5Formally, define a relation =h on Ω by letting ω =h ω′ if and only if h(ω) ∼ h(ω′). The partition alluded to in

the text is the collection of equivalence classes of =h.
6This property implies that complementary acts induce the same partition of Ω.
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In particular, complementary acts and mixtures of complementary pairs of acts are therefore
subject to the same perceived outcome variability, i.e. the same variability of utilities.

These observations formalize the heretofore informal assertion that complementary pairs provide
the same opportunities for utility smoothing: their mixtures induce the same partition of Ω in the
sense described above; furthermore, they are subject to the same variability of utilities.

In Example 3, it is easy to verify that (g, b) and (ḡ, b̄) are complementary pairs, and that these
acts and their mixtures exhibit the two features discussed here. For instance, note that the acts g

and ḡ both induce the partition {{γ}, {ρ, β}}, which intuitively, reflects the fact that the “source”
of ambiguity in the evaluation of g and ḡ is the same: namely, the fact that the ratio of green
to blue balls is unspecified. Equal reduction of outcome variability is immediately apparent upon
inspection of Table 1.

4.1.2 Symmetric Hedging

As mentioned in Section 3, the Symmetric Hedging axioms requires that pairs of acts that provide
the same utility smoothing opportunities be perceived as providing an equally effective “hedge
against ambiguity.” This subsection comments on two aspects of this requirement.

First, the sense in which complementary pairs of acts provide the same utility smoothing oppor-
tunities has been made precise in Subsection 4.1.1. In particular, outcomes assigned by mixtures
of complementary pairs at any two distinct states are equidistant, i.e. equally far apart in utility
terms, albeit ordered in reverse fashion.

It seems natural to require that “hedging against ambiguity” be equally effective also for pairs of
acts whose mixtures assign equidistant and equally ordered outcomes at any pair of states. Formally,
for any two acts f, f ′, say that f ′ is a traslation of f if and only if, for every pair of states ω, ω′,

1
2
f(ω) +

1
2
f̄(ω′) ∼ 1

2
f̄(ω) +

1
2
f(ω′).

The interpretation is as in Subsection 4.1.1: replacing (1) f(ω) with f̄(ω) and (2) f̄(ω′) with f(ω′)
leaves the decision maker indifferent, so either (1) and (2) individually leave her indifferent, or one
leaves her worse off and the other exactly compensates for this. Thus, in particular, if f(ω) Â f̄(ω),
then also f̄(ω′) ≺ f(ω′).

One may then consider the following property:

Traslation-Invariant Hedging. For all acts f, g, f ′, g′ ∈ L, and for all γ ∈ [0, 1]: if f (resp. g)
is a translation of f ′ (resp. g′) and there exist a real number α ∈ [0, 1] and lotteries y, y′ ∈ Y such
that

α
(
γf + (1− γ)g

)
+ (1− α)y ∼ α

(
γy(f) + (1− γ)y(g)

)
+ (1− α)y′ (9)
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then
α
(
γf ′ + (1− γ)g′

)
+ (1− α)y ∼ α

(
γy(f ′) + (1− γ)y(g′))

)
+ (1− α)y′ (10)

The following remark states7 that, in fact, MEU preferences automatically satisfy the above
requirement. Hence, by imposing Symmetric Hedging, one ensures that all pairs of acts that
provide equal opportunities for utility smoothing be perceived as providing an equally effective
“hedge against ambiguity”.

Remark 4.1 Consider a preference relationº and assume that, for some utility function u : Y → R
and set of priors C ⊂ ∆(Ω, Σ), Equation 3 holds on L(º). Then:

(a) for any two acts f, f ′ ∈ L, f ′ is a traslation of f if and only if there exists k ∈ R such that,

for all ω ∈ Ω, u(f ′(ω)) = u(f(ω)) + k;

(b) º satisfies Traslation-Invariant Hedging.

The second observation concerns the relationship between Symmetric Hedging and the notion
of “ambiguity” implicit in the Ambiguity Aversion axiom.

The characterization of MEU preferences in [11] does not directly employ or refer to any formal
definition of “ambiguous event”. Rather, a preference for utility smoothing is interpreted as a
consequence of (and reaction to) perceived ambiguity. Under this interpretation, violations of
Ambiguity Neutrality may be taken to reveal the presence of ambiguity.8

Pursuing this line of inquiry to develop a definition of ambiguity within the Anscombe-Aumann
framework is beyond the scope of this paper.9 However, I suggest, by means of an example, that
Symmetric Hedging may facilitate inferences about the presence of ambiguity based on violations
of Ambiguity Neutrality. Equivalently, the following example suggests that the interpretation of
the Ambiguity Aversion axiom may be less transparent when Symmetric Hedging is violated.

Example 4 [Another three-color urn problem] As in Example 3, let Ω = {ρ, γ, β} and consider
the acts defined in Table 1. The composition of the urn and the beliefs of the decision maker
are not the same as in Example 3: for now, I shall focus on preferences, and indicate their MEU
representation later. Thus, assume:

g ∼ b,
1
2
g +

1
2
b ∼ g (11)

7The proof is available upon request.
8As will be argued in Subsection 4.2.2, this seems legitimate in the current decision-theoretic setting, which

incorporates the assumption that the decision maker behaves like an expected utility maximizer when evaluating

lotteries.
9The interested reader is referred to Epstein [6], Epstein and Zhang [7] and Ghirardato and Marinacci [9] for

behavioral definitions of ambiguity which do not rely on the existence of objective lotteries.
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ḡ ∼ b̄,
1
2
ḡ +

1
2
b̄ Â ḡ (12)

Recall that the acts g, ḡ and b, b̄ are complementary, and hence provide the same opportunities
for utility smoothing. Note that the preferences in Equation 11 are consistent with Ambiguity
Neutrality, and hence with EU maximization. Thus, on the sole basis of these preferences, one
is tempted to conclude that the events γ and β are not ambiguous. However, the preferences in
Equation 12 clearly lead to the opposite conclusion, invoking the arguments given in Example 3.

These preferences have a MEU representation, whereby the set of priors is C = ∆(Ω). However,
since they clearly violate Symmetric Hedging, they do not admit a VEU representation.

I emphasize that Example 4 does not indicate or imply that the preferences indicated above are
“unintuitive”; it merely suggests that the “utility smoothing” interpretation of Ambiguity Aversion
may be appropriate only for certain types of MEU preferences.

4.2 Additional Results

4.2.1 Symmetric Hedging and α-MEU Preferences

Apart from its role in the characterization of VEU preferences, the Symmetric Hedging axiom has
implications for a class of representations which generalize the MEU model.

It has been observed that the “1
2 -MEU functional” f 7→ 1

2 minq∈C
∫

fq(dω)+ 1
2 maxq∈C

∫
fq(dω)

intuitively conveys a notion of “ambiguity neutrality”. Ghirardato, Klibanoff and Marinacci [8]
show that the above functional is indeed additive if the class C of priors is the convex hull of two
probability measures, and provide an example to demonstrate that this is not the case in general.

This paper completes their analysis by providing, as a by-product, a complete characterization
of the class of priors for which the 1

2 -MEU functional is additive.10

Specifically, if a preference relation º admits a MEU representation via a utility function u and
a class of priors C, then it satisfies Symmetric Hedging if and only if the “1

2 -MEU” functional is
additive (cf. Lemma A.2).

More generally, for α ∈ [12 , 1], consider the “α-MEU” functional f 7→ Mα(f ; C, E) defined by

∀f ∈ B, Mα(f ; C, E) = α min
q∈C

∫

E
fq(dω) + (1− α)max

q∈C

∫

E
fq(dω).

Again, α appears to provide a measure of “ambiguity aversion,” for a fixed class of priors repre-
senting the decision maker’s beliefs. This intuition can be made precise using the results in the
present paper.

10This implies that the Remark following Example 2 in Section 4.2 of [8] is inaccurate.

15



Suppose that the MEU (i.e. “1-MEU”) preferences generated by C satisfy Symmetric Hedging,
so the 1

2 -MEU functional can be represented as the integral with respect to a probability measure
p ∈ C. Then straightforward calculations show that, for every α ∈ (1

2 , 1] the class of priors

Cα = {q′ ∈ ∆(Ω, Σ) : q′ = (2α− 1)q + 2(1− α)p for some q ∈ C}

provides a 1-MEU representation of the α-MEU functional. That is, omitting the region of inte-
gration for notational simplicity, for every f ∈ B, Mα(f ; C) = M1(f ; Cα). Since the sets Cα are
ordered by inclusion (α > α′ implies Cα ⊃ Cα′), the index α provides a measure of the extent the
decision maker deviates from EU maximization. Indeed, according to the comparative definitions
of ambiguity and ambiguity aversion in Epstein [6] (provided the class C satisfies the appropriate
restrictions on the set of unambiguous events) and in Ghirardato and Marinacci [9], the index α

can be interpreted as an ambiguity aversion parameter—assuming, of course, that the underlying
description of beliefs C is given. An analogous construction can be carried out for α < 1

2 .
If the 1

2 -MEU functional is not additive, the above is not true in general, as one can easily show
by considering a set Ω containing more than two elements and the class C = ∆(Ω,Σ).11

4.2.2 VEU and Probabilistic Sophistication

The VEU model allows for departures from probabilistic sophistication, as defined by Machina and
Schmeidler [15, 16]; for instance, it accommodates the modal preferences in the Ellsberg example.
This subsection provides a result and related comments on the possibility and consequences of
probabilistic sophistication for VEU preferences. However, a preliminary observation is in order.

Recall that, by definition, the beliefs of a probabilistically sophisticated decision maker can
be represented by a probability measure µ ∈ ∆(Ω, Σ), whereas her risk attitudes are captured by
a preference functional W defined on the set of simple lotteries over final prizes; in the current
setting, this is the set Y . Finally, note that every act f induces a lottery yf via the measure µ12;
then, probabilistically sophisticated preferences admit the following representation: f º g if and
only if W (yf ) ≥ W (yg).13

11The following converse also holds: if the α-MEU functionals are superlinear, and hence generate preferences

satisfying Ambiguity Aversion, for α > 1
2
, and are sublinear (hence generate preferences satisfying Ambiguity Appeal)

for α < 1
2
, then the 1

2
-MEU functional must be linear by a simple continuity argument. Therefore, the 1-MEU

preferences satisfy Symmetric Hedging. Ghirardato, Maccheroni, Marinacci and Siniscalchi [10] analyze further

properties of the classes of priors for which the 1
2
-MEU functional is linear.

12Formally, yf (x) =
R
Ω

f(ω)(x)dµ for every x ∈ X.
13Machina and Schmeidler [15] characterize probabilistically sophisticated preferences in a setting à la Savage,

without objective lotteries; the authors also provide a simpler characterization in the Anscombe-Aumann setting in

[16].
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In particular, within the Anscombe-Aumann framework (cf. Machina and Schmeidler [16]),
the functional W must represent preferences among acts and lotteries. But recall that, in this
setting, the Gilboa-Schmeidler [11] axioms imply that a MEU decision maker behaves like an EU
maximizer when choosing among lotteries. It follows that a MEU (hence, a VEU) decision maker
is probabilistically sophisticated in the Anscombe-Aumann environment if and only if her overall
preferences are consistent with EU maximization.

This observation has two important implications for the present paper. First, deviations from
EU maximization may be ascribed to violations of probabilistic sophistication, and may thus be
interpreted as reflecting perceived ambiguity.

Second, in order to analyze probabilistic sophistication in the VEU model without incurring
in either degeneracy or contradiction, it seems appropriate to consider a more general decision-
theoretic framework.

Thus, throughout this subsection, I consider an arbitrary set of outcomes X , and define acts to
be Σ-measurable maps from Ω to X . In this framework, a preference relation º on acts admits a
VEU representation if there exist a baseline probability p1, a vector adjustment p−1 for p1, and a
function u : X → R such that the functional f 7→ V (u ◦ f ; p1, p−1,Ω) represents º.14

It is still the case that, in this more general framework, the beliefs of a VEU decision maker
are represented by the difference between the baseline probability of an event and the norm of its
vector adjustment. More precisely, define a weak order º` on Σ × Σ by stipulating that, for all
events E, F ∈ Σ,

E º` F ⇔ (x,E; x′, Ω \ E) º (x, F ;x′, Ω \ F ) (13)

for some pair of outcomes x, x′ ∈ Y such that x º x′; (x,E; x′, Ω \ E) is the simple act that yields
the outcome x if E obtains, and x′ otherwise. It is immediate to verify that, for MEU preferences,
º` is well-defined, i.e. the specific choice of “good” and “bad” outcomes is irrelevant. Moreover,
for VEU preferences, E º` F if and only if p1(E) − ‖p−1(E)‖ ≥ p1(F ) − ‖p−1(F )‖, where p1 and
p−1 are the appropriate baseline probability and vector adjustment.

The question then arises whether the likelihood ordering º` may reflect probabilistically sophis-
ticated beliefs: that is, whether there exists a probability measure µ ∈ ∆(Ω,Σ) such that E º` F

if and only if µ(E) ≥ µ(F ).
The following example shows that even non-degenerate VEU beliefs may be probabilistically

sophisticated in the present context.

Example 5 Assume that Ω = {ω1, ω2, ω3} and let µ be the uniform measure on Ω. Now define

14Although this paper does not provide an axiomatization of VEU preferences in this setting, I am confident that

one can be obtained using the techniques in Klibanoff et al. [14].
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p1 = µ and an l∞3 -valued15 vector adjustment p−1 = (p2, p3, p4) by letting

p−1 =




2/9 2/9 0
0 −2/9 2/9

−2/9 0 −2/9




The ij-th entry in the above matrix corresponds to the adjustment term pj+1(ωi). It is easy to
verify that, for any E ⊂ Ω, p1(E)− ‖p−1(E)‖∞ = µ2(E). Hence, for any pair E, F ⊂ Ω, E º` F if
and only if µ(E) ≥ µ(F ).

Observe that, in the above example, the measure µ representing º` coincides with the baseline
probability. This is always the case if µ is convex-ranged16:

Proposition 4.1 Consider a VEU preference relation º and let p1 ∈ ∆(Ω, Σ) be the correspond-

ing baseline probability. If the induced likelihood ordering º` is represented by a convex-ranged

probability measure µ ∈ ∆(Ω, Σ), then µ = p1.

Machina and Schmeidler [15] provide a characterization of probabilistically sophisticated non-
expected utility preferences (and hence beliefs) in the setting of this subsection. In particular,
the axioms they propose imply that the probability measure representing the decision maker’s
beliefs is convex-ranged. Thus, Proposition 4.1 applies to all preference relations satisfying the
Machina-Schmeidler axioms.

This result underscores the central role of baseline probabilities in the VEU representation.
Consider a VEU decision maker who is not also an EU maximizer, but nevertheless has proba-
bilistically sophisticated beliefs. Then, in the setting of this subsection, vector adjustments reflect
aspects of her risk attitudes that are not captured by the baseline EU term. Thus, it seems in-
tuitively plausible to expect that, if the decision maker’s beliefs can be separated from her risk
attitudes, then the vector adjustments (which reflect the latter) should not alter the likelihood
ordering of events induced by the baseline probabilities. Proposition 4.1 confirms that this is the
case if probabilistic beliefs are convex-ranged.

4.3 Additional Examples

This subsection illustrates further features of vector adjustments by means of two simple examples.
As discussed in Examples 2 and 3, there is only one source of ambiguity in the Ellsberg paradox;

the first example of this subsection instead deals with “multidimensional” ambiguity. Also, it

15That is, p−1 takes values in R3, endowed with the maximum norm: ‖p−1(E)‖∞ = maxi=2,3,4 |pi(E)|.
16A probability measure µ is convex-ranged if, for every event E ∈ Σ such that p(E) > 0, and for every α ∈ (0, 1),

there exists A ∈ Σ such that A ⊂ E and µ(A) = αµ(E).
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demonstrates how vector adjustments may be constructed on the basis of assumptions about the
decision maker’s perception of ambiguity.

The second example provides a graphical representation of the classes of priors corresponding
to different VEU beliefs, again in the setting of a three-color urn problem; moreover, it illustrates
how different attitudes towards utility smoothing may be captured by choosing different types of
norms.

Example 6 Consider the following variant of the Ellsberg model. As in Example 3, the state
space is denoted by Ω = {ρ, γ, β}. As in the Ellsberg Paradox, the ratio of green vs. blue balls is
unspecified; however, the decision maker is now told that, out of 90 balls, between 15 and 45 are
red. Intuitively, this introduces an additional source of ambiguity.

In order to represent these beliefs consistently with the VEU model, consider a uniform baseline
probability p1: that is, p1(ρ) = p1(γ) = p1(β) = 1

3 . The problem is then to construct an appropriate
vector adjustment p−1 for p1, taking values in some Banach space V. In particular, the following
equalities reflect the preceding assumptions:

‖p−1(ρ)‖V =
1
6
, ‖p−1(γ)‖V = ‖p−1(β)‖V =

1
3
. (14)

Equation 14 immediately implies that V 6= R—that is, ambiguity is not “one-dimensional”. To see
this, note that if p−1(γ) and p−1(β) are scalars, then ‖p−1(γ ∪ β)‖V = |p−1(γ ∪ β)| is either 0 or 2

3 ,
whereas ‖p−1(ρ)‖V = ‖ − p−1(γ ∪ β)‖V = 1

3 .
Thus, consider V = R2, endowed with the l1 norm. It is convenient to write adjustment vectors

explicitly: p−1(E) = (p2(E), p3(E)) for any event E ⊂ Ω; then ‖p−1(E)‖V = |p2(E)|+ |p3(E)|.
The following, heuristic argument identifies an appropriate vector adjustment. Essentially, the

scalar measure p2 will be used to encode ambiguity about the relative likelihood of ρ vs. γ ∪ β,
whereas p3 will reflect ambiguity about the relative likelihood of γ vs. β.

First, to ensure that ‖p−1(ρ)‖V = 1
6 while providing a separate representation of the two sources

of ambiguity, let p2(ρ) = 1
6 and p3(ρ) = 0. Additivity and the normalization condition p−1(Ω) =

(0, 0) then imply that p2(γ) + p2(β) = −1
6 and p3(γ) + p3(β) = 0.

Next, ambiguity about the relative likelihood of γ vs. β intuitively affects the decision maker’s
willingness to bet on either of them in a symmetric fashion. Thus, it seems plausible to choose p3

so that |p3(γ)| = |p3(β)|; for definiteness, assume that p3(γ) > 0. Equation 14 then implies that
|p2(γ)| = |p2(β)| as well. Hence, since p2(γ∪β) = −1

6 and |p2(γ)|+ |p3(γ)| = 1
3 , a vector adjustment

p−1 satisfying Equation 14 is now fully identified:

p−1 =




1
6 0

− 1
12

3
12

− 1
12 − 3

12



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ρ γ

β

p p1

Case (a): l2 norm

p−1 =


1
3
√

2
1

3
√

2
0

− 1
3
√

2
0 1

3
√

2

0 − 1
3
√

2
− 1

3
√

2




ρ γ

β

p p1

Case (b): l1 norm

p−1 =




1
6

1
6 0

− 1
6 0 1

6

0 − 1
6 − 1

6




ρ γ

β

p p1

Case (c): l2 norm

p−1 =




1
6 0

− 1
6

1
6

0 − 1
6




Figure 1: MEU Representations of VEU Beliefs (p1 = [13 , 1
3 , 1

3 ]′)

where the ij-th element of the above matrix is pj+1(ωi) and (ω1, ω2, ω3) = (ρ, γ, β).
Note that reversing the signs of one or both of the measures p2 and p3 yields a behaviorally

equivalent (and isometrically isomorphic) vector adjustment for p1. Indeed, any rotation of the
vector p−1 about the origin yields an equivalent adjustment (cf. Example 2).

It should be observed that the family of vector adjustments with values in (R2, l12) is formally
characterized by Equation 6 together with the linear restrictions imposed by additivity and nor-
malization. However, the heuristic construction provided above is hopefully more revealing.

Example 7 Again, assume Ω = {ρ, γ, β}; probability measures on Ω may be represented (using
barycentric coordinates) as points in the 2-simplex.

Figure 1 plots the boundary of the set of priors corresponding to three different specifications
of vector adjustments; in all three cases, the baseline probability is the uniform measure on Ω. As
in the preceding example, the ij-th entry of the matrix p−1 is pj+1(ωi), and (ω1, ω2, ω3) = (ρ, γ, β).

In Cases (a) and (b), the norm and vector measure are chosen to ensure that, for every event
E ⊂ Ω, the adjustment ‖p−1‖V to p−1(E) is the same, i.e. 1

3 for all sets consisting of one or two
elements (recall the adjustment associated with the empty set and Ω is zero by definition).

However, it is interesting to point out that the different choice of norm has relevant behavioral
implications. For instance, let the set of prizes be X = {$0, $10} and let u($0) = 0, u($10) = 1.
Consider the class of acts fx : Ω → Y defined by

fx(ρ) = $0, fx(γ) = x$10 + (1− x)$0, fx(β) = (1− x)$10 + x$0
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for all x ∈ [0, 1]. Thus, u ◦ fx(ρ) = 0, u ◦ fx(γ) = x and u ◦ fx(β) = 1− x.
Observe that αfx + (1 − α)fx′ = fαx+(1−α)x′ for all α, x, x′ ∈ [0, 1]; that is, the class of acts

under consideration is closed under mixtures.
Simple calculations show that, in Case (a),

V (u ◦ fx) =
1
3
− 1√

3

√
x2 − x +

1
3
.

Since the above is a strictly concave function of x, for all numbers α, x, x′ ∈ [0, 1] one obtains the
ordering αfx + (1− α)fx′ Â αy(fx) + (1− α)y(fx′). That is, the decision maker always displays a
strict preference for reducing outcome variability (see also Remark 2.2).

On the other hand, in Case (b),

V (u ◦ fx) =
1
3
− 1

3
max

(
x, 1− x

)
.

Hence, for α ∈ [0, 1] and either x, x′ ∈ [0, 1
2 ] or x, x′ ∈ [12 , 1], αfx+(1−α)fx′ ∼ αy(fx)+(1−α)y(fx′).

The decision maker in Case (b) does not always display a strict preference for utility smoothing;
it may be verified that she does so if the acts fx and fx′ are not comonotonic (Schmeidler [18]; see
also Ghirardato, Klibanoff and Marinacci [8]), i.e. if x < 1

2 < x′.
The contrast between Cases (a) and (b) provides a further illustration of the notion of uniqueness

of vector adjustments appearing in Theorem 3.2. The two vector measures indicated above generate
the same adjustments for all baseline probabilities; however, adjustments associated with general
acts may differ, and this violates the condition for behavioral equivalence stated in Theorem 3.2.
More precisely, if pa

−1 and pb
−1 denote the vector adjustments in Cases (a) and (b) respectively, the

subspaces I(B; pa
−1) and I(B; pb

−1) are not isometrically isomorphic.
The comparison also indicates that the VEU representation allows the modeler to characterize

the decision maker’s willingness to bet (via the map E 7→ p1(E)− ‖p−1(E)‖: see Subsection 4.2.2)
separately from her attitudes towards utility smoothing (described by the choice of norm and range
space V).
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A Proofs

A.1 Additional Notation and Preliminaries

The following notation shall be employed to refer to the VEU and MEU functionals. Fix a function
f ∈ B(Ω, Σ) and an event E ∈ Σ.

First, for any finitely additive probability measure p1 ∈ ∆(Ω, Σ) and vector adjustment p−1 ∈
∆V(Ω, Σ) for p1, the vector-adjusted expectation of f over E with respect to (p1, p−1) is denoted
by

V (f ; p1, p−1, E) =
∫

E
fp1(dω)−

∥∥∥∥
∫

E
fp−1(dω)

∥∥∥∥
V

. (15)

The first term in the right-hand side is a Dunford integral with respect to the finitely additive
probability measure p1. When referring to the functional V , the integrating measures and/or the
region of integration will be omitted, if they can be inferred from the context. The main properties
of the functional V are listed in Proposition A.1 below.

Next, consider a weak*-closed and convex set C ⊂ ∆(Ω, Σ) and a scalar α ∈ [0, 1]. Define

Mα(f ; C, E) = (1− α)min
q∈C

∫

E
f q(dω) + α max

q∈C

∫

E
f q(dω). (16)

The set of priors and region of integration will also be omitted, if they can be inferred from the
context. The functional M1(·; C, E) will be denoted simply by M(·; C, E); note that the latter is
concave on B, and that

Mα(f) = αM(f)− (1− α)M(−f). (17)

A.2 Properties of Vector-Adjusted Expectation and Proposition 3.1

Here and in the following, inequalities between functions are interpreted as pointwise inequalities.

Proposition A.1 Fix a finitely additive probability measure p1 ∈ ∆(Ω,Σ) and a vector adjustment

p−1 ∈ ∆V(Ω,Σ) for p1. The functional V (·; p1, p−1, Ω) : B → R satisfies the following properties.

(i) For any c ∈ R, V (c; p1, p−1, Ω) = c.

(ii) For any f, g ∈ B, V (f + g; p1, p−1, Ω) ≥ V (f ; p1, p−1, Ω) + V (g; p1, p−1, Ω).
(iii) For any c ∈ R and f ∈ B, V (f + c; p1, p−1, Ω) = V (f ; p1, p−1, Ω) + c.

(iv) For any c ∈ R+ and f ∈ B, V (cf ; p1, p−1, Ω) = cV (f ; p1, p−1, Ω).
(v) For any f ∈ B such that f ≥ 0, V (f ; p1, p−1,Ω) ≥ 0; hence, f ≥ g implies V (f ; p1, p−1, Ω) ≥

V (g; p1, p−1,Ω).

Observe that Condition (i) in Definition 1 is also necessary for Property (v) above to hold: if it
fails for some E ∈ Σ, then V (1E ; p1, p−1,Ω) < 0.
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Proof: Part (i) is immediate. To simplify notation, let EJ(f) =
∫
Ω fpJ(dω), for J = 1, J = −1;

also write the norm on V simply as ‖ · ‖, and V (·) instead of V (·; p1, p−1, Ω).
(ii) V (f + g) = E1(f + g) − ‖E−1(f + g)‖ = E1(f) + E1(g) − ‖E−1(f) + E−1(g)‖ ≥ E1(f) +

E1(g)−‖E−1(f)‖−‖E−1(g)‖ = V (f)+V (g), where the penultimate step follows from the triangle
inequality.

(iii) V (f+c) = E1(f+c)−‖E−1(f+c)‖ = E1(f)+c−‖E−1(f)+E−1(c)‖ = E1(f)−‖E−1(f)‖+c =
V (f) + c, because, from (i), E−1(c) = 0.

(iv) V (cf) = E1(cf)−‖E−1(cf)‖ = cE1(f)−‖cE−1(f)‖ = cE1(f)−c‖E−1(f)‖ = cV (f), where
the penultimate step requires c ≥ 0.

(v) First of all, note that the claim is true for all indicator functions: V (1E) = p1(E) −
‖p−1(E)‖ ≥ 0 by (i) in Definition 1. By (ii) and (iv) above, it is true for all simple functions.
Hence, it holds for all uniform limits of simple functions, i.e. on all of B.

Proof of Proposition 3.1. By Proposition A.1, for any finitely additive probability measure
p1 and vector adjustment p−1, the functional V (·; p1, p−1,Ω) is monotonic, superadditive, homoge-
neous of degree 1, C-Linear (i.e. V (f+c) = V (f)+V (c) for any function f ∈ B and constant c ∈ R),
and satisfies V (1) = 1. Hence, by Lemma 3.5 in Gilboa and Schmeidler [11], there exists a closed
and convex set C of finitely additive probability measures on Σ such that V (f) = minq∈C

∫
Ω fq(dω).

A.3 Remark 2.2

Proof: Suppose that f ∼ g and γf + (1 − γ)g º (∼)γy(f) + (1 − γ)y(g). Then, by transitivity,
y(f) ∼ y(g); by Independence on Y , γy(f) + (1 − γ)y(g) ∼ y(g) ∼ g; hence, by transitivity,
Ambiguity Aversion (resp. Neutrality) holds.

Conversely, supposeº satisfies Ambiguity Aversion (resp. Neutrality). Then, by C-Independence,
f ∼ y(f) and g ∼ y(g) imply γf + (1 − γ)y(g) ∼ γy(f) + (1 − γ)y(g) and γy(f) + (1 − γ)g ∼
γy(f) + (1 − γ)y(g), so γf + (1− γ)y(g) ∼ γy(f) + (1 − γ)g. Now, by Ambiguity Aversion (resp.
Neutrality) we get

1
2

(
γf + (1− γ)y(g)

)
+

1
2

(
γy(f) + (1− γ)g

)
º (∼)γy(f) + (1− γ)g ∼ γy(f) + (1− γ)y(g),

which, upon rearrangement, becomes

1
2

(
γf +(1−γ)g

)
+

1
2

(
γy(f)+(1−γ)y(g)

)
º (∼)

1
2

(
γy(f)+(1−γ)y(g)

)
+

1
2

(
γy(f)+(1−γ)y(g)

)
,
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and C-Independence yields the result.

A.4 Baseline Preferences and Symmetric Hedging

Throughout this subsection, suppose that º is a MEU preference relation, represented by the utility
function u and the class of priors C. Then a new preference relation ºb may be defined by letting

∀f, g ∈ L(º), f ºb g ⇔ M 1
2
(u ◦ f ; C, Ω) ≥ M 1

2
(u ◦ g; C, Ω). (18)

The superscript “b” indicates that ºb is the “baseline” preference that will yield the baseline
probability measure in the VEU representation. Observe that ºb satisfies Axioms (i)-(iv), because
the functional M 1

2
is monotonic, C-linear, positively homogeneous and continuous; moreover, º

and ºb agree on Lc.
The following result contains the first key step in the proof that (1) implies (2) in Theorem 3.2.

The second key step is contained in Lemma A.6.

Lemma A.2 Assume that º is a MEU preference, represented by the class of priors C and the

affine utility function u. Then it satisfies Symmetric Hedging iff ºb satisfies Ambiguity Neutrality.

Proof: I begin with three preliminary observations.
Observation 1. Two acts h, h̄ are complementary iff there exists yh ∈ Y such that, for every

ω ∈ Ω, u
(

1
2h(ω) + 1

2 h̄(ω)
)

= 1
2u(h(ω)) + 1

2u(h̄(ω)) = u(yh), i.e. iff

u(h̄(ω)) = 2u(yh)− u(h(ω)). (19)

Observation 2. For any two acts h, h′, there exist α ∈ (0, 1) and y, y′ ∈ Y such that

αh + (1− α)y ∼ αh′ + (1− α)y′

if and only if M(u ◦ h) − M(u ◦ h′) = 1−α
α [u(y′) − u(y)]. To see this, observe that, by positive

homogeneity and C-linearity of M , the above indifference relation holds if and only if

αM(u ◦ h) + (1− α)u(y) = αM(u ◦ h′) + (1− α)u(y′);

since α ∈ (0, 1), the claim follows by rearranging terms.
Observation 3. For any pair of acts h, h′ ∈ L(º), there exist α ∈ (0, 1) and y, y′ ∈ Y such that

αh + (1 − α)y ∼ αh′ + (1 − α)y′. The claim is trivially true if h ∼ h′, so assume that h Â h′ for
definiteness and choose y′ Â y.17 There exists k ∈ R+ such that M(u◦h)−M(u◦h′) = k[u(y′)−u(y)];
the claim now follows from Observation 2, by choosing α = 1

1+k ∈ (0, 1).

17This must be possible because h Â h′.
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Now consider four acts f, g, f̄ , ḡ such that f, f̄ and g, ḡ are complementary, so Equation 19 holds
for some lottery yf and, respectively, yg. By Observations 2 and 3, Symmetric Hedging requires
that, for any such 4-tuple of acts, and for any γ ∈ [0, 1],

M
(
γu ◦ f + (1− γ)u ◦ g

)
−

(
γu(y(f)) + (1− γ)u(y(g))

)
= (20)

= M
(
γu ◦ f̄ + (1− γ)u ◦ ḡ

)
−

(
γu(y(f̄)) + (1− γ)u(y(ḡ))

)
.

Recalling that u(y(h)) = M(u ◦ h) for any act h, this is equivalent to

M
(
γu ◦ f + (1− γ)u ◦ g

)
−

(
γM(u ◦ f) + (1− γ)M(u ◦ g)

)
=

= M
(
γu ◦ f̄ + (1− γ)u ◦ ḡ

)
−

(
γM(u ◦ f̄) + (1− γ)M(u ◦ ḡ)

)
.

By Equation 19 and C-linearity of M(·), M(u ◦ h̄) = M(2u(yh) − u ◦ h) = 2u(yh) + M(−u ◦ h)
for any complementary pair of acts h, h̄, with yh ∼ 1

2h + 1
2h′; moreover, γu ◦ f̄ + (1 − γ)u ◦ ḡ =

γ2u(yf )− γu ◦ f + (1− γ)2u(yg)− (1− γ)u ◦ g; thus, one obtains

M
(
γu ◦ f + (1− γ)u ◦ g

)
−

(
γM(u ◦ f) + (1− γ)M(u ◦ g)

)
=

= 2[γu(yf ) + (1− γ)u(yg)] + M
(
− [γu ◦ f + (1− γ)u ◦ g]

)
+

−2[γu(yf ) + (1− γ)u(yg)]−
(
γM(−u ◦ f) + (1− γ)M(−u ◦ g)

)
.

Cancelling the common term 2[γu(yf )+(1−γ)u(yg)], rearranging and dividing both sides by 2, one
concludes that the 4-tuple of acts f, g, f̄ , ḡ satisfies Equation 20 if and only if the pair f, g satisfies

M 1
2
(γu ◦ f + (1− γ)u ◦ g) = γM 1

2
(u ◦ f) + (1− γ)M 1

2
(u ◦ g) (21)

(cf. Equations 16 and 17).
The proof of the Lemma may now be completed. Suppose that ºb satisfies Ambiguity Neutral-

ity; then Equation 21 holds for every pair of acts f, g, and hence Equation 20 holds for any 4-tuple
of acts f, g, f̄ , ḡ, whenever f̄ and ḡ are complementary to f and g respectively. Hence, º satisfies
Symmetric Hedging.

Conversely, suppose that º satisfies Symmetric Hedging. Note that, for any act h ∈ L(º),
there exist y′, y′′ ∈ Y such that y′ º h(ω) º y′′ for every ω, so u(u′) ≥ u(h(ω)) ≥ u(y′′) for every
ω. Define a new act h̄ by letting

∀ω ∈ Ω, h̄(ω) =
u(y′)− u(h(ω))
u(y′)− u(y′′)

y′ +
u(h(ω))− u(y′′)
u(y′)− u(y′′)

y′′; (22)

observe that h̄ ∈ L(º) and, moreover, for y = 1
2y′ + 1

2y′′,

u(h̄(ω)) = u(y′) + u(y′′)− u(h(ω)) = 2u(y)− u(h(ω)),
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i.e. h and h̄ are complementary. Now consider any pair of acts f, g ∈ L(º) = L(ºb). The acts
f̄ and ḡ defined as in Equation 22 are complementary to f and g respectively. Since º satisfies
Symmetric Hedging, the 4-tuple f, g, f̄ , ḡ satisfies Equation 20, and hence the pair f, g satisfies
Equation 21. Therefore ºb satisfies Ambiguity Neutrality.

Lemma A.2 implies that, if º is a MEU preference satisfying Symmetric Hedging, ºb is an EU
preference, represented by some probability measure p ∈ ∆(Ω, Σ). Lemma A.3 summarizes these
conclusions, and adds that p is an element of the class of priors representing º.

Lemma A.3 Assume that the class of priors C and the affine utility function u provide a MEU

representation of º, and that º satisfies Symmetric Hedging. Then there exists a probability

measure p ∈ ∆(Ω, Σ) that, together with u, provides an EU representation of ºb. Moreover, p is

unique if and only if º satisfies Non-Degeneracy, in which case p ∈ C.

Proof: As noted above, ºb satisfies Axioms (i)-(iv) and agrees with º on Lc. By Lemma A.2,
ºb satisfies Ambiguity Neutrality, so it admits an EU representation. In particular, there exists
p ∈ ∆(Ω, Σ) such that, for every f ∈ L,

∫

Ω
u ◦ fp(dω) =

1
2

min
q∈C

∫

Ω
u ◦ fq(dω) +

1
2

max
q∈C

∫

Ω
u ◦ fq(dω). (23)

Also, p is unique iff ºb satisfies Non-Degeneracy, hence iff º satisfies Non-Degeneracy. Moreover,∫
u◦fp(dω) ≥ M(u◦f ; C) for all acts f ∈ L by Equation 23. To complete the proof of the Lemma,

I claim that

M(u, C) ≡
{

q ∈ ∆(Ω,Σ) : ∀f ∈ L,

∫
u ◦ fq(dω) ≥ M(u ◦ f ; C)

}
= C.

To see this, note first that the set M(u, C) is weak*-closed and convex. Next, for every prior q ∈ C,∫
u ◦ fq(dω) ≥ minq′∈C

∫
u ◦ fq′(dω) = M(u ◦ f ; C) for any act f ∈ L; hence, C ⊂ M(u, C). This

implies that, for any f ∈ L, minq∈M(u,C)
∫

u ◦ fq(dω) ≤ minq∈C
∫

u ◦ fq(dω) = M(u ◦ f ; C). But,
by the definition of M(u, C), for any f ∈ L, minq∈M(u,C)

∫
u ◦ fq(dω) ≥ M(u ◦ f ; C); therefore,

minq∈M(u,C)
∫

u ◦ fq(dω) = M(u ◦ f ; C) for any f ∈ L.
Since C is the unique weak*-closed and convex set that provides a MEU representation of º

because the latter satisfies Non-Degeneracy, C = M(u, C), and the claim is proved.

To complete the analysis of baseline preferences, the next Lemma shows that, if º admits a
VEU representation, then it satisfies Symmetric Hedging; this establishes that (2) implies (1) in
Theorem 3.2. Moreover, the probability measure representing ºb, whose existence is guaranteed
by Lemma A.3, is actually the VEU baseline probability.
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Lemma A.4 Assume that the probability measure p1 ∈ ∆(Ω,Σ), the vector adjustment p−1 ∈
∆V(Ω, Σ) and the affine utility function u provide a VEU representation of º, and the class of

priors C, together with u, provides the corresponding MEU representation. Then p1 and u provide

an EU representation of ºb, and º satisfies Symmetric Hedging.

Proof: Since V (·) = M(·), for any function b ∈ B,

M 1
2
(b) =

1
2
M(b)− 1

2
M(−b) =

=
1
2

∫
bp1(dω)− 1

2

∥∥∥
∫

bp−1(dω)
∥∥∥− 1

2

∫
(−b)p1(dω) +

1
2

∥∥∥
∫

(−b)p−1(dω)
∥∥∥ =

=
∫

bp1(dω)

using linearity of both integrals and the fact that ‖ − v‖ = ‖v‖ for v ∈ V. Hence ºb admits an
EU representation, and in particular satisfies Ambiguity Neutrality. By Lemma A.2, º satisfies
Symmetric Hedging.

A.5 Norm representation of Adjustments

The results so far imply that a MEU preference relation º that satisfies Symmetric Hedging is
represented by the difference between an EU term (which itself represents the baseline preference
ºb) and an adjustment term. Lemma A.6 below shows that the latter may be written as the norm
of a vector integral, and hence completes the proof that (1) implies (2) in Theorem 3.2.

More precisely, for any weak∗-closed and convex class C of priors, and event E ∈ Σ, define a
functional A(·; C, E) : B → R by

∀f ∈ B, A(f ; C, E) =
1
2

{
max
q∈C

∫

E
fq(dω)−min

q∈C

∫

E
fq(dω)

}
. (24)

Equation 23 implies that, if º is MEU preferences represented by the class C and the affine utility
function u, then M(u ◦ f ; C) =

∫
Ω u ◦ fp(dω)− A(u ◦ f) for any act f . The next step is to extend

this decomposition of the functional M(·) to all of B; the arguments are standard.

Lemma A.5 In the setting of Lemma A.3, let C be the class of priors in the maxmin EU repre-

sentation of º. Then, for all f ∈ B and E ∈ Σ,
∫

E
fp(dω) =

1
2

min
q∈C

∫

E
fq(dω) +

1
2

max
q∈C

∫

E
fq(dω) and

M(f ; C, E) =
∫

E
fp(dω)−A(f ; C, E).
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Proof: Note first that if c, d ∈ R and c ≥ 0, A(cf + d) = cA(f).
By Equations (23) and (24), it is clear that the claim, with E = Ω, holds for all functions f ′ ∈ B

such that, for some f ∈ L, f ′ = u◦f . In particular, it holds on u◦L0 = {b ∈ B0 : ∃f ∈ L0, b = u◦f},
the set of images of simple acts.

Since L0 includes all simple acts, u ◦ L0 is the set of simple functions whose range is contained
in the range of u. Therefore, any simple function b ∈ B0 \ u ◦ L0 can be written as b = cb′ + d,
for real numbers c, d ∈ R with c > 0 and b′ ∈ u ◦ L0. Since M(·) and the expectation operator are
positively homogeneous and C-Independent, and A(·) is positively homogeneous, it follows that the
claim, with E = Ω, holds on all of B0. Therefore, the claim also holds on B0 for arbitrary E ∈ Σ.

Finally, the equality can be extended to all of B(Ω,Σ) because M(f) = minq∈C
∫

fq(dω),
maxq∈C

∫
fq(dω) = −M(−f), and

∫
fq(dω) are all continuous functionals on B (endowed with the

sup norm topology) and B is the uniform closure of B0.

Note that uniqueness of p implies uniqueness of A(·).
It remains to be shown that A(·) can be written as the norm of a vector-valued expectation.

Define the vector-valued map pC : Σ → RC by

∀E ∈ Σ, pC(E) = {p(E)− q(E)}q∈C . (25)

Recall that C(K) denotes the Banach space of bounded, continuous real functions on a compact
space K, endowed with the sup norm; moreover, C is weak*-compact.

The next Lemma shows that pC is a vector measure, yields the “right” adjustments for any
f ∈ B, and satisfies Definition 1. As noted above, this completes the proof that (1) implies (2) in
Theorem 3.2.

Lemma A.6 Consider the setting of Lemma A.5. The set function pC is a C(C)-valued measure

on (Ω,Σ). Moreover, for all f ∈ B and E ∈ Σ,

A(f ; C, E) =
∥∥∥∥
∫

E
fpC(dω)

∥∥∥∥
C(C)

.

Finally, the vector measure pC satisfies pC(∅) = pC(Ω) = 0K , and for every E ∈ Σ, p(E) ≥
‖pC(E)‖C(C).

Proof: Recall that, in the topology of weak∗ convergence (cf. [4], §IV.13.17), qn → q implies that
qn(E) → q(E) for all E ∈ Σ. Hence, if qn → q in C, pC(E)(qn) = p(E) − qn(E) → p(E) − q(E) =
pC(E)(q) for all E ∈ Σ.18 In other words, pC(E) ∈ C(C) for all E ∈ Σ; moreover, pC is finitely

18Also recall that the space of bounded additive measures on (Ω, Σ) is endowed with the metric induced by the

total variation norm.
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additive: hence, it is a C(C)-valued measure.
Now fix f ∈ B and let F = {∫E fp(dω) − ∫

E fq(dω)}q∈C . Note that F : C → R is continuous
and bounded, i.e. F ∈ C(C). I claim that

∫
E fpC(dω) = F .

The claim is true if f ∈ B0: if f =
∑K

k=1 xk1Ek
, then

∫

E
fpC(dω) =

K∑

k=1

{p(Ek ∩ E)− q(Ek ∩ E)}q∈C · xk =

=

{
K∑

k=1

p(Ek ∩ E)xk −
K∑

k=1

q(Ek ∩ E)xk

}

q∈C
=

= F.

Now consider a sequence {fn}n≥0 of simple functions converging monotonically and uniformly to
f from below.19 Then

∫
E fnq(dω) ↑ ∫

E fq(dω) for every q ∈ C, and
∫
E fnp(dω) ↑ ∫

E fp(dω). Also,
for every n, define Fn = {∫E fnp(dω)− ∫

E fnq(dω)}q∈C =
∫
E fnpC(dω), and note that Fn ∈ C(C).

Moreover, Fn → F pointwise. It must be shown that convergence is actually uniform, so that
Fn → F in the norm topology on C(C).

To see this, note first that the integrals
∫
E fnq(dω), for n ≥ 0, as well as

∫
E fq(dω), are

continuous functions of q, and convergence of the former to the latter is monotonic on the compact
set C; therefore, by Dini’s Theorem (Aliprantis and Border [2], §2.63),

∫
E fnq(dω) → ∫

E fq(dω)
uniformly in q; thus, supq∈C

∣∣∫
E fnq(dω)− ∫

E fq(dω)
∣∣ → 0 as n →∞.

Next, note that

sup
q∈C

∣∣∣∣
∫

E
fp(dω)−

∫

E
fq(dω)−

∫

E
fnp(dω) +

∫

E
fnq(dω)

∣∣∣∣ ≤

≤
∣∣∣∣
∫

E
fp(dω)−

∫

E
fnp(dω)

∣∣∣∣ + sup
q∈C

∣∣∣∣
∫

E
fq(dω)−

∫

E
fnq(dω)

∣∣∣∣ .

The first term in the r.h.s. vanishes as n → ∞ by definition of the scalar integral; the second
vanishes by the argument just given. Therefore, Fn → F in the norm topology on C(C), and the
claim is proved.

Now fix an event E ∈ Σ and a function f ∈ B. Choose qf,min ∈ arg minq∈C
∫
E fq(dω) and

qf,max ∈ arg maxq∈C
∫
E fq(dω). Then A(f ; C, E) = 1

2{
∫
E fqf,max(dω) − ∫

E fqf,min(dω)}. Also, by

19E.g. let finf = infω∈Ω f(ω) and fsup = supω∈Ω f(ω), both finite because f ∈ B. Assume that fsup > finf

(otherwise take fn = f , constant) and let f̂(ω) = (fsup − finf)
−1(f(ω)− finf) for every ω ∈ Ω. For every n ≥ 0 and

k = 0, . . . , 2n − 1, let Ek,n = {ω : f̂(ω) ∈ [k2−n, (k + 1)2−n)}, and En,n = f̂−1(1). Then let f̂n =
P2n

k=0 1En,kk2−n.

Note that, for every ω, if f̂n(ω) = k2−n, then f̂n+1 equals either 2k2−(n+1) = k2−n or (2k + 1)2−(n+1) > k2n;

moreover, 0 ≤ f̂(ω)− f̂n(ω) ≤ 2−n. Hence, letting fn = finf + (fsup − finf)f̂
n yields the required sequence.
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Lemma A.5,
∫
E fp(dω) = 1

2{
∫
E fqf,max(dω) +

∫
E fqf,min(dω)}; therefore,

∫

E
fp(dω)−

∫

E
fqf,min(dω) =

∫

E
fqf,max(dω)−

∫

E
fp(dω) = A(f ; C, E).

Now pick any q ∈ C. If
∫
E fq(dω) ≤ ∫

E fp(dω), then
∫
E fp(dω) − ∫

E fq(dω) ≤ ∫
E fp(dω) −∫

E fqf,min(dω); if instead
∫
E fq(dω) ≥ ∫

E fp(dω), then
∫
E fq(dω)− ∫

E fp(dω) ≤ ∫
E fqf,max(dω)−∫

E fq(dω).
Hence, supq∈C

∣∣∫
E fp(dω)− ∫

E fq(dω)
∣∣ = ‖ ∫

Ω fpC(dω)‖C(C) is attained by qf,min and qf,max,
and its value is A(f ; C, E), as required.

Finally, it is clear that pC(∅) = pC(Ω) = 0C . Also, p(E)−‖pC(E)‖C(C) =
∫
Ω 1Edp−A(1E ; C, Ω) =

M(1E ; C, Ω) ≥ 0.

The last Lemma in this section establishes the uniqueness claim in Theorem 3.2.

Lemma A.7 Fix two vector-valued measures µ and µ′ on (Ω,Σ), with values in (V, ‖ · ‖) and

(V ′, ‖ · ‖′) respectively. If, for all f ∈ B, ‖ ∫
Ω fµ(dω)‖ = ‖ ∫

Ω fµ′(dω)‖′, then there exists an

isometric isomorphism T : I(B; µ,Ω) → I(B; µ′, Ω) such that µ′ = T ◦ µ.

Proof: Denote by I and I ′ the range spaces in the statement. Both are normed linear spaces.
Define T : I → I ′ by letting, for every v ∈ I, T (v) =

∫
fµ′(dω) if f ∈ B is such that

∫
fµ(dω) = v.

To see that T is well-defined, note that if f, g ∈ B satisfy
∫

fµ(dω) =
∫

gµ(dω) = v, then
‖ ∫

(f − g)µ(dω)‖ = 0 = ‖ ∫
(f − g)µ′(dω)‖′; hence,

∫
gµ′(dω) =

∫
fµ′(dω).

To see that T is one-one, suppose v =
∫

fµ(dω) 6= ∫
gµ(dω) = w; then 0 6= ‖ ∫

(f − g)µ(dω)‖ =
‖ ∫

(f − g)µ′(dω)‖′, so T (v) =
∫

fµ′(dω) 6= ∫
gµ′(dω) = T (w).

T is linear: if α, β ∈ R and v =
∫

fµ(dω), w =
∫

gµ(dω), then αv + βw =
∫

(αf + βg)µ(dω), so
by definition T (αv + βw) =

∫
(αf + βg)µ′(dω) = αT (v) + βT (w).

By assumption, for every v ∈ I, ‖T (v)‖′ = ‖v‖; therefore, T is a bounded, hence continuous
linear operator. Therefore, T is an isometric isomorphism between I and I ′. Furthermore, for every
E ∈ Σ, T (p−1(E)) =

∫
1Ep′−1(dω) = p′−1(E).

A.6 Proposition 4.1.

Since º` is represented by µ and also by the map defined by E 7→ p1(E)− ‖p−1(E)‖, there exists
an increasing function g : [0, 1] → [0, 1] such that p1(E) − ‖p−1(E)‖ = g(µ(E)) for all events E.
Hence, recalling that p−1(Ω \ E) = −p−1(E),

1
2
g(µ(E)) +

1
2
[1− g(1− µ(E))] = p1(E) (26)
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for all events E ∈ Σ. Now, since µ is convex-ranged, for any integer n there exists a partition
{En

1 , . . . , En
n} of Ω such that µ(En

j ) = 1
n for all j = 1, . . . , n. By (26), we have

1
2
g

(
1
n

)
+

1
2

[
1− g

(
n− 1

n

)]
= p1(En

j ), j = 1, . . . , n.

Adding up these equalities and dividing by n yields

1
2
g

(
1
n

)
+

1
2

[
1− g

(
n− 1

n

)]
=

1
n

.

Comparing the last two equalities yields p1(En
j ) = 1

n = µ(En
j ) for all j = 1, . . . , n. This implies

that, for every event E such that µ(E) is rational, p1(E) = µ(E).
To extend this equality to arbitrary events, note that, for every event E such that µ(E) > 0 and

number r < µ(E), since µ is convex-ranged, there exists L ⊂ E such that µ(L) = r
µ(E)µ(E) = r.

Similarly, for every event E such that µ(E) < 1 and number r > µ(E), there exists an event U ⊃ E

such that µ(U) = r: to see this, note that µ(Ω \ E) > 0 and 1 − r < µ(Ω \ E), so there exists
L ⊂ Ω \ E such that µ(L) = 1− r; hence, U = Ω \ L has the required properties.

Now consider sequences of rational numbers {`n}n≥0 ⊂ [0, 1] and {un}n≥0 ⊂ [0, 1] such that
`n ↑ µ(E) and un ↓ µ(E); by the preceding argument, for every n ≥ 1 there exist sets Ln ⊂ E ⊂ Un

such that µ(Ln) = `n and µ(Un) = un. It was shown above that p1(Ln) = µ(Ln) and p1(Un) =
µ(Un); moreover, Ln ⊂ E ⊂ Un implies that p1(Ln) ≤ p1(E) ≤ p1(Un). Therefore, p1(E) = µ(E),
as required.
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