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Abstract

This paper explores the extent to which predictability of asset re-
turns could be exploited for dynamic portfolio allocation among sev-
eral (seven) assets taking model uncertainty explicitly into account.We
consider model uncertainty when solving the problem of a represen-
tative fund manager who allocates funds between stock and bonds in
three geographical areas: Europe, USA and Japan. We consider ex-
plicitly model uncertainty by implementing ’thick modelling’ to derive
the average portfolio allocation generated by the recursively selected
top fifty per cent of models in term of adjusted R2. The portfolio al-
location based on this strategy leads to systematic over-performance
with respect to optimal portfolio allocation among several assets is
based on the predictions of the best model as selected by the adjusted
R? . Such over performance is mainly attributable to a reduction in
the volatility of the returns on the selected portfolios. Thick modelling
leads also to systematic replication, but not to over-performance, of a
typical benchmark portfolio for our asset allocation problem.
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1 Introduction

This paper explores the extent to which predictability of asset returns could
be exploited for dynamic portfolio allocation among several (seven) assets
taking model uncertainty explicitly into account.

Recent financial research has provided ample evidence on the predictabil-
ity of asset returns (see, for example, Keim and Stambaugh,(1986), Camp-
bell and Shiller(1988a, 1988b) Pesaran and Timmermann(1996), Lander at
al.(1997) and, for a survey, Cochrane(2000)). Such evidence has motivated
empirical work on portfolio choice in the presence of time-varying, pre-
dictable, expected returns.

The literature typically analyzes portfolio allocation between two assets,
stock and cash, and it is divided into two strands. A more theoretical ori-
ented strand (Kandel and Stambaugh,1996, Barberis, 2000) concentrates
on very simple predictive models of excess returns to assess the impact of
estimation risk, a more empirically oriented strand (Pesaran and Timmer-
mann, 1996, 2000) considers richer predictive models to evaluate their port-
folio allocation performace against simple buy-and-hold strategies.

Kandel and Stambaugh(1996) evaluate sample evidence about the pre-
dictability of monthly stock returns from the perspective of a risk-averse
Bayesian investor. They show that the current value of the predictive vari-
ables can exert a substantial influence on the portfolio allocation, even when
investor’s prior beliefs are weighted against predictability.

Barberis(2000) pursues the Bayesian line of research further by concen-
trating on the estimation risk relevant to models used to predict returns.
The empirical results show that there is enough predictability of returns to
agree with the often quoted statement by D.Siegel(1994) but they also make
clear that ignoring estimation risks might induce a sizeable overallocation to
stocks.

Pesaran and Timmermann(1996) consider a richer parameterization for
the forecasting model to find that the predictive power of various economic
factors over stock returns changes through time and tends to vary with the
volatility of returns. They apply a ’recursive modelling’ approach according
to which at each point in time all the possible forecasting models are esti-
mated and returns are predicted by relying on the best model, chosen on the
basis of some given statistical criterion. The dynamic portfolio allocation,
based on the signal generated by a time-varying model for asset returns, is
shown to over-perform the buy-and-hold strategy. The results obtained for



the US are successfully replicated in a recent paper concentrating on the UK
evidence, Pesaran and Timmermann(2000).

In this paper we consider model uncertainty when using rich parameteri-
zations for the predictive models. Moreover, we extend the previous empirical
work along the dimension of the portfolio allocation by considering the prob-
lem of a representative fund manager who allocates funds between stock and
bonds in three geographical areas: Europe, USA and Japan.

In the first section of the paper we outline the asset allocation problem
and the strategy used to generate the solution. In the second section we
describe the data and the specification of the forecasting models. In the
third section we propose a dynamic asset allocation, which is evaluated in
the fourth section of the paper. The fifth section concludes.

2 The asset allocation problem

We consider the problem of allocating a portfolio among seven assets: we
have a safe asset and two asset classes, stock and long-term bonds, for three
areas: US, Europe and Japan. The portfolio is rebalanced every month by
optimizing the following function:

Ey (mi41) — gVar (T41) (1)

where E; (7,11) is the expected return of the portfolio for the following period,
Var (m.1) is the variance of the return of the portfolio for the following
period and c is the coefficient of risk aversion. Given that the return for the
safe asset in period t+1, r;.1, is known at time ¢, the asset allocation problem
is solved by exploiting predictability of asset returns to derive from some
estimated model the vector E; (x;.1) of expected values of excess returns for
all risky assets, along with the variance-covariance matrix of the one-step
ahead forecasting errors Y1 = By (Xi11 — By (X¢41)) (Xeq1 — By (Xe41))"

The asset allocation problem is then solved by optimizing the following
function:
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where miil is monthly return on asset ¢ in area j, with ¢ = {S, B} and
j=A{US,JP,EU}.

The asset allocation is viewed form the point of view of an investor based
in Europe, therefore the safe asset is a 3-month deposit in Euro-DM and
all excess returns are denominated in DM. European shares are taken to be
German shares prior to January 1999 and truly European shares afterwards,
the European bonds are always benchmark German bonds.

The crucial question is the choice of the modelling approach for the predic-
tion of excess returns and the variance-covariance matrix of their forecasting
errors.

Importantly, our choice of model focuses on modelling the decision in real-
time. Therefore, at any point in time we mimic the decision of an investor
who decides portfolio allocation on the basis of the available data.

To this end we implement the recursive modelling approach, according
to which at each point in time, ¢, we search over a base set of observable k
regressors to make one-period ahead forecast. In each period we estimate a
set of regression spanned by all the possible permutations of the k regressors.
As we consider predicting models, simultaneity is not an issue and we esti-
mate our system equation by equation. Moreover the number of regressors
k is kept constant for all equations. This gives a total of 2¥ different models
for each excess return'. We keep the sample size constant and all models

INote that in case of simultaneous estimation of all six equations the ‘curse of di-
mensionality’ will imply a very rapidly explosive growth of the number of models to be
estimated.



run are based on a sample of six years of monthly data. So in each period
6 x 2¥ models are estimated on the previous 72 observations to generate
a portfolio allocation. As we keep a fixed window of 72 observations, our
methods amounts to running a number of rolling regressions, an alternative
could be to proceed to a series of recursive regressions?, in which case at any
point in time the size of the sample used for estimation is increased by one
observation.

In practice, we consider monthly data over the period 1984:1-2000:10,
our first sample for estimation is 1984:1 -1989:12 which determines portfolio
allocation for 1990:1, the data spanning the period 1984:2-1990:1 inform the
decision on portfolio allocation for 1990:2 and so on up to 2000:10. Our
exercise involves the estimation of 153 x 6 x 2¥ models, which, with k set to
10, amounts to 940032 models.

We estimate all the possible specifications, on an equation by equation
basis, of the following system:

(X1 = 1e1) = LDy + 04441 (2)
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where fo is the set of regressors, observable at time ¢, included in the ¢-th
specification (i = 1,...2%) for the j-th excess return (j = B, S) and the k-th

2The use Rolling regressions for forecasting allows more parameters’variability over
time than recursive regressions .




country(j = US, JP,EU). Given the estimation of (2), the relevant asset
allocation problem could, in principle, be solved by specifying a value for ¢
and by setting

Ei,t (Xt+1 - Tt,t+1) = Zi,tFi,t (3)
Van,t (Xt+1 — Tt,t—&-l) = ZivtVar (Pi,t) Z;,t + Var(uiﬁl) (4)

However, while the computation of E;;(X¢ 1 — rt4+1), can be imple-
mented even if the system is estimated equation by equation, the computa-
tion of Var;; (X441 — ri441) via formula (4) requires simultaneous estimation
of the six equations for excess returns which, as already pointed out, runs
very rapidly into a classical ‘curse of dimensionality’ problem. We propose
to solve this problem by using the empirical distribution of the forecasting
errors. In other words, given the estimation of the model over the first 72
observations, we do not generate portfolio allocation until two years later so
that we accumulate at least 24 observations on forecasting errors to compute
empirically Var; ; (Xi41 — T441) -

2.1 Model Uncertainty

Our econometric procedure delivers 2 models to predict each excess returns
and their associated variance-covariance matrices at any point in time, there-
fore the decision of asset allocation requires us to take a stand on model, or
specification, uncertainty.

A traditional approach taken in the literature® is to proceed to ‘thin’
modelling by specifying a selection criteria and therefore by selecting the
best model in each period. We follow Granger (2000) and label this approach
‘thin” modelling in that the performance of the asset allocation is described
over time by a thin line.

Thin modelling needs to be based on a selection criterion which weights
goodness of fit against parsimony of the specification. The literature typically
considers BIC, AKAIKE, Schwarz and the adjusted R? as selection criteria.

The advantage of this approach is that a process potentially non-linear is
modeled by applying recursively a selection procedure among linear models.
The specification procedure mimics a situation in which variables for pre-
dicting returns are chosen in each period from a pool of potentially relevant

3See, for example, Pesaran and Timmermann (1995, 2000).
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regressors. This choice fits well the behaviour often observed in financial
markets of attributing different emphasis to the same variables in different
periods.

Obviously keeping track of the selected variables helps the reflection on
the economic significance of the ‘best’ regression.

The main limit of thin modelling is that model, or specification, uncer-
tainty is not considered. In each period the information coming from the dis-
carded 2 —1 is ignored for the portfolio allocation exercise. This choice seems
to be particularly strong in the light of the results obtained by Bayesian line
of research, which, as we have seen, stresses the importance of the estimation
risk for portfolio allocation. A natural way to interpret model uncertainty is
to refrain form the assumption of the existence of a "true” model and attach
instead probabilities to different possible models. This approach has been la-
belled ‘Bayesian Model Averaging’, see, for example, Hoeting J.et al.(1999),
and Raftery et al.(1997).

The main difficulty with the application of Bayesian Model Averaging to
problems like ours lies with the specification of prior distributions for param-
eters in all 6*2F models of our interest. Recently, Doppelhofer et al.(2000)
have proposed an approach labelled ‘Bayesian Averaging of Classical Esti-
mates’(BACE) which overcomes the need of specifying priors by combining
the averaging of estimates across models, a Bayesian concept, with classi-
cal OLS estimation, interpretable in the Bayesian camp as coming from the
assumption of diffuse, non-informative, priors.

In practice BACE averages parameters across all models by weigthing
them proportionally to the logarithm of the likelihood function corrected for
the degrees of freedom, using then a criterion analogous to the Schwarz model
selection criterion. It is important to note that the consideration of model
uncertainty in our context generates potential for averaging at two different
levels: averaging across the different predicted excess returns and their vari-
ance covariance matrices and averaging across the different portfolio choices
driven by the excess returns and thei variance-covariance matrices. The ex-
plicit consideration of estimation risks naturally generates ‘thick’ modelling,
where both the prediction of models and the performance of the portfolio
allocations over time driven by those predictions are described by a thick
line to take account of the multiplicity of models estimated. The thickness of
the line is a direct reflection of the estimation risk. A finding of our empirical
work is that the ranking of models in terms of their within sample perfor-
mance does not match at all the ranking of models in terms of their ex-post
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portfolio allocation. This empirical evidence points clearly agains BACE us-
ing within sample criteria to weight models. Consistently with this evidence,
we opted for the selection method proposed by Granger(2000) of using a ‘...
procedure [which] emphasizes the purpose of the task at hand rather than just
using a simple statistical pooling..." .

We implemented thick modelling by obtaining first the portfolio weights
based on the maximization of the CARA utility functions in which mean and
variance of the utility function are derived from the best 50 per cent of all
our estimated models*, by considering in turn the portfolio allocation associ-
ated with all models for the six relevant excess returns ordered in decreasing
order of fit, for a total of 2¥/2 allocations in each month, and by finally
deriving an average portfolio allocation by averaging the optimal weights of
each allocation.

3 The data and the econometric specifica-
tions

Our application of the recursive modeling strategy requires one-step ahead
forecasts for the vector of six excess returns and the associated variance-
covariance matrices of the forecasting errors.

Figure 1 displays the monthly excess returns on stock and bond markets
for US, Japan and EU? over the period 1984:1-2000:10, while Table 1 reports
a range of descriptive statistics.

Insert here Figure 1 and Table 1

The monthly excess returns for all variables show very little persistence,
their distribution is (moderately) non-normal due to the presence of a number
of outliers. Excess returns from stock markets are higher, but more volatile,
than those from the bond markets. The higher mean excess returns is that
of the US stock market, which takes a value of a 0.0925 on an annual basis.
Uncoditional correlations over the full-sample are all positive, however the
sub-sample analysis show some instability, which becomes notable for the

4The fifty per cent cutoff point has been chosen on the basis of the positivity of the
considered criterion

5We consider genuine EU data for the stockmarkets and the macroeconomic aggregate
from 1999 onwards. Prior to this date German data are considered.



case of the correlation between excess returns of US bonds and stock and
European bonds, where the correlation coefficient takes a small negative value
in the first sub-sample and an high positive value in the second sub-sample.

To model time-variation in predicted excess returns and their variance-
covariance matrices, we apply recursively modelling to obtain time-varying
specifications and one-step ahead predictions for these six variables. Follow-
ing Pesaran and Timmermann(2000) we divide variables in focal, labelled
A; and secondary focal, labelled B;. Focal variables are always included in
all models. We take these variables as those defining the long-run equilibria
for the stock and bond markets. Following the lead of traditional analysis®
(Graham and Dodd Security Analysis, 4th edition, 1962, p.510) and recent
studies (Lander et al. (1997)) we have chosen to construct an equilibrium for
the stock market by concentrating on a linear relation between the long term
interest rates, R;, and the logarithm of the earning price ratio, ep. Such an
equilibrium can be derived within the framework of a forward-looking equi-
librium models for share-prices (see, for example, Bonfiglioli-Favero(2000)).

For the definition of the long run equilibrium of bond market we use a
linear relation between long-term interest rates, R; and short term interest
rates, r; , which is compatible with the expectational model and is also capa-
ble of allowing for a stationary risk premium (see Campbell and Shiller,1987).

Some graphical evidence supporting our choice for the focal variables is
provided in figure 2-3 which provides a direct assessment on the performance
of our selected focal variables to capture long-run trends in bonds and share
prices.

Insert here Figure 2-3

Note that we do not impose any restrictions on the coefficients of the
variables entering the long-run equilibria, thus allowing equilibria to change

6

”... Theoretical analysis suggests that both the dividend yield and the earn-
ings yield on common stocks should be strongly affected by changes in the
long-term interest rates. It is assumed that many investors are constantly
making a choice between stock and bond purchases; as the yield on bonds
advances, they would be expected to demand a correspondingly higher return
on stocks, and conversely as bond yields decline...”

The above statement suggests that either the dividend yield or the earnings yield on
common stocks could be used



over time. Moreover, in the specification of focal variables for excess returns
in the bond markets we consider two lags of the short-term rate to capture
both short-run and long-run fluctuations in this variable.

The second set of regressors called ’secondary focal’, By, includes vari-
ables that are always considered important in capturing the short-term effects
linked with new data releases or business cycle fluctuations. We consider as
secondary focal variables sp;, the ratio of corporate bonds on government
bonds, sev,”, a measure of the volatility of asset ¢ in market 7, Aislip;,
the annual rate of change in the index of industrial production, Alrs;, the
monthly change in the index of retail sales, Ajom3;, the annual rate of change
of the money supply, Ajacpis, the annual rate of change of retail prices,
Aqscpmy, the rate of change of commodity price index, Ajs0il;, the rate of
change in the spot price of oil, cc;, the level of consumer confidence index,
bey, the level of business confidence index, demusdy, the log of DEM/USD ex-
change rate, yendem,, the log of YEN/DEM exchange rate, and yenusd;, the
log of YEN/USD exchange rate (see the Data Appendix for more details).
We initially considered also the lagged dependent variable as a potential
semi-focal regressors for all excess returns, but we then discarded it as it was
never found significant®.

Note that some, or even all secondary focal variables, could be left out
from the relevant forecasting equation. In fact, given k% focal variables and
k* secondary focal variables, we construct for all possible samples after in-
iziatilzation 2 models keeping focal variables fixed and considering all the
possible combinations of secondary focal variables. We rank then rank mod-
els according our proposed criteria and proceed either to thin modelling,
choosing only the best model, or to thick modelling, choosing a thick subset
of the 2¥ estimated models.

4 Estimation

We estimate, on an equation by equation basis, six one-step(month) ahead
forecasting models for the relevant excess returns. The details of these spec-

"This measure of volatility is obtained by considering the squared excess returns, it can
therefore be interpreted as a measure of conditional volatility.

8This empirical results fulfills one of the necessary condition for the generalization
to longer term horizons of the optimal short-term portfolio choice (see, for example,
Samuleson(1969)).
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ifications are reported in Table 2.
Insert Table 2 here

While the number of focal variables is different for excess returns on
stock and bonds, we have ten secondary focal variables for each asset and we
estimate the same number of specifications for each equation at every sample
split.

Figure 4 displays the thick line of the adjusted R? associated to the best
fifty per cent models (512) for each sample point after initialization. Usually
in the literature this criterion is used along with other criteria to offer a wide
range of selection of weights in the penalty function which trades off goodness
of fit with parsimony. We concentrate just on the R? to keep dimensionality
under control when evaluating thin against thick modelling. Note that
when thick modelling is considered the importance of the selection criterion
is drastically reduced. Our sympathy for the adjusted R? is generated by the
fact that a value of zero for this criterion has an intuitive appeal for the kind
of predictive regressions that we run.

Insert Figure 4 here

The value of the criterion ranges from zero to 0.3 and fluctuates rather
remarkably over time and so does the thickness of the plot, indicating the
presence of differences over time in the relative performance of the estimated
models. The start of EMU is associated to a sharp drop in the predictability
of excess returns on the stock market but also with a sharp increase in the
predictability of excess returns in the bond market.

The importance of recursive modelling is illustrated in Figures 5-10, where
we report the probability with which each variable is included in the selected
specification, by considering in turn the top fifty per cent models and the
top ten per cent model on the basis of the adjusted R?.

Insert Figures 5-10 here

The plotted probability is computed as the ratio of the number of models
in the top ten (fifty) per cent in which the given variable is significant to the
total number of models in the top ten (fifty) per cent. The figures emphasize
the importance of non-linearities and switching effects for all variables, clearly
such importance increases with the thinness of the chosen approach.
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5 Asset Allocation

On the basis of the results of estimation we proceed to asset allocation by
maximizing the utility function given the forecast for the expected returns
and the empirical distribution of the associated forecasting errors. In each
period we consider 512 forecasts for each of the six excess returns associated
to the best fifty per cent of the estimated models. We then consider 512 port-
folio allocations associated with models in decreasing order of adjusted R2.
As we have a total of 129 (total observations used for estimation,153, minus
24 initial observations needed to compute the empirical variance-covariance
matrix of forecasting errors) observations on which the optimization exercise
is implemented, our exercise involves 129 %512 = 66 048 portfolio allocations.
We then proceed to analyze the performance of thin modelling by concen-
trating on a specific portfolio allocation, usually the portfolio allocation as-
sociated to the highest R2. We can also compare thin modelling with thick
modelling based on the average portfolio allocation, derived by averaging the
optimal weights of the 512 portfolio allocations.

Figures 11-12 illustrate the optimal weights of the average portfolio allo-
cation by aggregating assets from different areas into bonds and stocks.

Insert Figures 11-12 here

The portfolios chosen by thick modelling tend to favour stocks versus
bonds ( the average allocation to stock is .62 while the average allocation
to bonds is .30) and it implies a rather proactive allocation strategy with
frequent and sizeable re-balancing. However,as clearly shown by Figure 12,
the volatility of weigths in optimal portfolio chosen by thick modelling is
much lower than that generated by thin modelling based on the best R

6 Performance Evaluation

We evaluate the performance of our asset allocation strategies by using a
range of tools.

First, we analyze one-step ahead predictions for all six excess returns
of our interest by using the sign test proposed by Pesaran and Timmer-
mann(1996). The sign test is based on the proportion of times that the sign
of a given variable y; is correctly predicted in the sample by the sign of the
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predictor x; . Under the null hypothesis that z; has no power in predicting
y; the proportion of times that the sign is correctly predicted has a binomial
distribution with known parameters, therefore a test of the null of predictive
failure is constructed by comparing the observed proportion of sign correctly
predicted with the proportion of sign correctly predicted under the null. De-
tails on the derivation of the statistics and results are reported in Table 3.

Insert Table 3 here

When testing we have considered the whole sample 1990-2000 along with
a split in two subsamples, 1990-1995 and 1995-2000. We have analyzed three
predictors: the prediction associated with the best model in terms of R2, the
prediction associated with the worst model in terms of R?, and the average
prediction of the top fifty per cent models(512) in terms of R%. The null of
predictive failure is consistently rejected only for excess returns from investing
in European shares. The sign test takes positive, but not significant, values
for excess returns on European bonds, Japanaese shares and Japanese bonds,
while values are consistently negative for the US markets. Evidence from
the whole sample dominates evidence form the two subsamples in terms of
tendency to reject predictive failure. Interestingly, no clear pattern emerges
between the in-sample performance of the selected models as measured by
the R? and their one-step ahead predictive ability.

The sign tests concentrate on a specific assets of our exercise in that
it does not allow to measure performance and it does not consider issues
related to the variance-covariance matrix of prediction errors and therefore
to the utility function. We then proceed further in our evaluation exercise
by analyzing performance. First we look at cumulative performance, by
following over time the value of a wealth of 100 in 1992:1. We consider six
alternative wealth profiles generated respectively, by the portfolio allocation
based on thin modelling with the best R2, by the portfolio allocation based
on thin modelling with the worst R?, by the portfolio allocation based on
thick modelling, i.e. average allocation resulting from the top 50 per cent
models in terms of R? by the best performance, by the worst performance
and by a typical benchmark for funds investing in our asset classes, i.e. an
asset allocation with weights 0.55 for bonds and 0.45 for stocks and a country
allocation based on GDP weights. The results, reported in Figure 13, show
that thick modelling replicates but does not over-performs the benchmark,
and that the ranking in terms of R? are not reflected at all in the ranking in
terms of performance.
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Insert Figure 13 here

In fact, the allocation based on best R? does not clearly dominate the
allocation based on the worst R? and the best performance is associated
with a model rather low (350) in the R? ranking. The evidence from the
sign tests and the evaluation of the performance of a rather limited number
of models is confirmed when the performance of all 512 models is analyzed:
Figure 14 clearly shows that ranking the models in terms of decreasing R?
does not generate a decreasing performance.

Insert Figure 14 here

This empirical results heavily question the use of within sample perfor-
mance criteria to proceed to thin modelling and determine the best model
for predicting returns and their variance-covariance matrices and determine
portfolio allocation. In principle model-selection based on the limited infor-
mation criteria, such as the adjusted R?, is dominated by full-information
criteria, especially in the presence of several risky assets. The problem of
full information criteria is that they are heavily affected by the curse of di-
mensionality problem (the total number of specifications for our six equation
models would be 22® = 268 435456 as our system includes 28 different semi-
focal variables). Moreover, the measure of performance reported in Figure 14
takes only on account cumulated returns and not their variance-covariance
matrix. Therefore it is not affected by the fact that choosing best models on
the basis of the single equation R? does not minimize the variance-covariance
of the system residuals.

Lastly, we consider rates of returns at horizons of, respectively,1,12, and
24 months. The results are reported in Figure 15 and Table 4.

Insert Figures 15 and Table 4 here

In Table 4 we report for the three selected horizons the values of the av-
erage ex-post returns, of their variance, and the implicit levels of the CARA
utility function, for a coefficient of risk aversion of 6. These quantities are
derived for portfolio allocations based on thin modelling with the best R?,on
thin modelling with the worst R?,on thick modelling(average portfolio allo-
cation of the top fifty per cent model on the basis of their R?), on the chosen
benchmark and on thick modelling of returns generated by the minimization
of the CARA utility function . The Table clearly shows a over-performance
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of thick modelling with respect to thin modelling, but not with respect to the
benchmark. Lastly, minimization induces a sizeable increase in the variance
of returns, confirming that recursive modelling can be useful for portfolio
allocation of a risk-averse agent even if the sign tests reveal a very limited
predictive accuracy for excess returns. The time-series used to construct
Table 4 are reported in Figure 15.

7 Conclusions

The objective of this paper was the evaluation of the impact of predictability
of asset returns in dynamic portfolio allocation with several assets in pres-
ence of model uncertainty. We have considered two asset classes, stock and
bonds, and three geographic areas, US, Japan and Europe along with a safe
return, Furo-denominated short-term interest rates. This gives a typical as-
set allocation problem, which can be evaluated using the typical benchmark
chosen by investment funds. Our starting points are the results obtained in
the context of recursive modeling for portfolio allocation among two assets
(stock and cash for a single geographic area) proposed by Pesaran and Tim-
mermann(2000). We consider explicitly model uncertainty by implement-
ing thick modelling to consider the average portfolio allocation generated
by the recursively selected top fifty per cent of models in term of adjusted
R2. The portfolio allocation based on this strategy leads to systematic over-
performance with respect to optimal portfolio allocation among several assets
based on the predictions of the best model as selected by the adjusted R? .
Such over-performance is mainly attributable to a reduction in the volatility
of the returns on the selected portfolios. However, thick modelling does not
lead to over-performance with respect to a typical benchmark for our asset
allocation problem.
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A Data Appendix

All the data are at monthly frequencies (end of period observation) and are
taken from DATASTREAM:
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Table 1: Data description

Ethock,US Ethock,JP ERtstock,EU ER]l;omLUS ERimnd,JP ER?Dnd’EU
Mean 0.994295 0.533552 0.813405 0.258189 0.484891 0.196261
Median 1.209115 0.478314 1.106681 0.155691 0.311222 0.410888
Max 14.37010 22.32307 13.27408 11.22538 14.99584 2.611280
Min 26.12715 -18.74755 -22.04453 -9.104957  -7.824083 -4.191668
Std. Dev. 5.797650 7.215082 5.325057 3.514238 3.625911 1.205883
Skewness -0.603130 0.157378 -0.738908 0.384001 0.492237 -0.609543
Kurtosis 4.723641 3.248839 5.246071 3.379549 3.846602 3.161211
Jarque-Bera 37.25219 1.355014 60.84217 6.176855 14.18987 12.72734
Probability 0.000000 0.507882 0.000000 0.045574 0.000829 0.001723
Observations 202 202 202 202 202 202
| Correlation matrix of excess returns. |
Sample: 1984 : 1 — 2000 : 10
(1984:1—1991:12,1992:1—2000:10)
ER;;tock,US EthOCkJP ERitock,EU ERi)ond,US ERgond,JP ERi)ond,EU
ER®US 1 0.40 0.52 0.71 0.23 0.08
(0.38,0.44) (0.42,0.65) (0.72,0.68) (0.17,0.30) (—0.09,0.27)
ERHTE 1 0.32 0.22 0.54 0.12
(0.33,0.32) (0.23,0.22) (0.66,0.42) (0.21,0.04)
ERStREU 1 0.28 0.05 0.19
(0.18,0.40) (—0.004,0.11) | (0.19,0.18)
ER)"Y? 1 0.28 0.17
(0.23,0.33) (—0.08,0.46)
Tond, JP
e ! (o.gé%.lw)
E Ri)onmEU 1
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Table 2: The specification of forecasting equations for excess returns

Focal variables, A,

Shares Bonds

US {c,pegS,RgS,rggrl} {C,Rys,rﬂil,ry_slt
JP {Cvpegpv Rgp7r1it1:-1} {67 R5P7r£{£—17ril—ﬂt
EU {Cv petEU7 RtEU7 ngq {67 RtEUv ngm rﬁq,t

Semi-focal variables, B,

Shares Bonds

U3 US U5 . US EU 5,03 5085 _ US
Tiiy1 Ay 7, sevg”, spy e, Tii41, SEU, S€U 8Py,

- US .EU U . US Us Us
US Agalipy 2, ri g, Aam3y Aqolipyy, Alrsy >, Aam3y,
Aqacpmy, demusd,, Aqo0ily A1acpmy, Aq190ily, demusd,
US . EU JP TP EU 5,07 5,03 5U3
e Teae1s QY75 sevy ™, Ttit1, S€Vy  , S€U, S€U

US" o JP . JP JP JP . JP JP

JP sevy” spi ', Araliplty, Aam3; 1T, spy ', Aqalipy ™y, A1am3; 1,
Ajscpmy, yendemy Aqscpmy, yendem,, demusd,

U5 B0 BT EU US 5,0 0US _EU
rt,t-‘,—lvrt—l,t?dyt » SE€U; Tiga1, €V, S€Vy 8Py,

EU . EU . EU . EU EU . .EU

EU spy s Avalipy™y, copy, Avalip, Alrs™, cci”y,
Aqscpmy, yenusdy, demusd, Aqscpmy, demusdy, yenusd,

¢ is the yield to maturity of long term bonds
7‘;t+1is the short term interes rate
pe® is the log of the price earning ratio
Spi is the ratio of corporate bond yields on government bond yields
Sevz’j is a measure of the volatility on asset ¢ in country j
A1olipt is the annual rate of change in the index of industrial production
Alrst is the monthly change in the index of retail sales
A12m3i is the annual rate of change of the money supply
Algcpii, is the annual rate of change of retail prices
Ajscpmt is the rate of change of commodity price index
A190il; is the rate of change of the spot price of oil
cci is the level of consumer confidence index
bcé is the level of business confidence index
demusdy is the log of DEM/USD exchange rate
yendem, is the log of YEN/DEM exchange rate
yenusd, is the log of YEN/USD exchange rate
NB the suffix i always denotes the area, where i=US,JP, EU
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Table 3: Sign test of excess returns in stock and bonds markets

1990-2000 1990-1995 1995-2000

Ethock,US
Best R?
PT-statistic -1.969 -3.544 0.080
Proportion of Correct Signs % 0.4538 0.2623 0.6143
Worst R?
PT-statistic 0.1484 0.640 -1.191
Proportion of Correct Signs %  0.5077 0.4262 0.5714
Average
PT-statistic -0.4612 -1.4260 -0.2404
Proportion of Correct Signs %  0.50 0.3934 0.5857
ERtstock,JP
Best R?
PT-statistic 0.9237 0.6058 0.3265
Proportion of Correct Signs % 0.5385 0.5410 0.5286
Worst R?
PT-statistic 1.7565 2.3288 0.1873
Proportion of Correct Signs % 0.5769 0.6557 0.5143
Average

PT-statistic 1.4415 0.7814 0.8460
Proportion of Correct Signs % 0.5615 0.5574 0.5571

ERstoclc,EU
t

Best R?
PT-statistic 3.2404 2.4252 1.5186
Proportion of Correct Signs % 0.5923 0.5410 0.6429
Worst R?
PT-statistic 2.1415 0.2708 1.8637
Proportion of Correct Signs %  0.6077 0.5246 0.6857
Average

PT-statistic 1.6513 0.5860 0.6928
Proportion of Correct Signs % 0.5923 0.5410 0.6429
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Table 3: continued

1990-2000 1990-1995  1995-2000

ER]lzond,US
Best R?
PT-statistic -0.123 -0.791 -0.070
Proportion of Correct Signs %  0.492 0.475 0.5
Worst, R?
PT-statistic -1.07 -1.914 -0.846
Proportion of Correct Signs %  0.454 0.410 0.486
Average
PT-statistic -0.844 -2.197 -0.286
Proportion of Correct Signs %  0.462 0.410 0.500
ERfond,JP
Best R?
PT-statistic -1.567 -0.665 -1.755
Proportion of Correct Signs % 0.431 0.459 0.400
Worst R?
PT-statistic -0.025 -0.411 0.542
Proportion of Correct Signs %  0.492 0.475 0.514
Average
PT-statistic -0.258 -0.136 -0.297
Proportion of Correct Signs %  0.485 0.492 0.471
E Rfond,EU
Best R?
PT-statistic 1.140 -0.088 1.513
Proportion of Correct Signs %  0.531 0.475 0.571
Worst R?
PT-statistic 1.772 0.449 1.950
Proportion of Correct Signs %  0.577 0.508 0.643
Average
PT-statistic 1.635 0.665 1.391
Proportion of Correct Signs %  0.569 0.525 0.600

The PT-statistic is the Pesaran-Timmerman non-parametric test of predictive
performance. Let x; = E(yt,Qt_l) be the predictor of y; found with respect
to the information set, ), 1 , with n observations (y1, z1), (Y2, 22), - - -, (Yn, Tn)
available. The test proposed by Pesaran and Timmerman (1992) is based on the
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proportion of times that the direction of changes in g, is correctly predicted by x;.
The test statistic is computed as
P—P*

Sn = ~ N(0,1 5
) vy Y ?

where:

S
P = Z:E;Zi

P* = PP+ (1-P)(1-P)
V(P = %P*(l—P*)
_ o CR-1)PO-P)+(2P-1PF,(1-R)+
V(P) = n( +iP,P,(1-P)(1—-F,) )

Z; is an indicator variable which takes value of one when the sign of 4, is correctly
predicted by x;, and zero otherwise, P, is the proportion of times ¥, takes a positive
value, P, is the proportion of times x; takes a positive value.
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Table 4: performance

Model Horizon in months Mean Variance Utility Function
Best R? 1 0.0125  0.0022 0.0059
Worst R? 1 0.0129  0.0017 0.0077
thick 1 0.0124  0.0017 0.0074
Benchmark 1 0.0116  0.0007 0.0093
thick (min) 1 0.0114  0.0022 0.0050
Best R? 12 0.1416  0.0182 0.0871
Worst R? 12 0.1545  0.0321 0.0582
thick 12 0.1492  0.0183 0.0942
Benchmark 12 0.1452 0.0123 0.1082
thick (min) 12 0.1606  0.0538 -0.0009
Best R? 24 0.2817  0.0335 0.1811
Worst R? 24 0.2960  0.0569 0.1252
thick 24 0.2995  0.0293 0.2115
Benchmark 24 0.2982 0.0197 0.2391
thick (min) 24 0.2818  0.0397 0.1627
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Figure 1: Monthly excess returns, with respect to a Euro-denominated
short term interest rate, for two asset classes (stock and long-term bonds)
and three areas (US, Europe and Japan)
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Figure 6: Modelling excess returns of Japan equities
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Figure 8: Modelling excess returns of US bonds
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Conyerative Performance, 1990:1=100

100y \Wrst Performance (model 178) '
' ' ! W/

1wj i i i
/ V

Figure 13: Comparative performance
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Figure 14: Comparative performance over time (obs 25 to 150) of predictive
models ranked (from 1 to 512) by their adjusted R?
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Comparetive Performance, 1-Month Retums

Figure 15: Period returns, from thick modelling, thin modeling with the
best R?, thin modelling with the worst R? and from the benchmark.
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