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Abstract

Index tracking requires to build a portfolio of stocks (a replica)
whose behavior is as close as possible to that of a given stock index.
Typically, much fewer stocks should appear in the replica than in the
index, and there should be no low frequency (persistent) components
in the tracking error. Unfortunately, the latter property is not satisfied
by many commonly used methods for index tracking. These are based
on the in-sample minimization of a loss function, but do not take into
account the dynamic properties of the index components. Instead,
we represent the index components with a dynamic factor model, and
develop a procedure that, in a first step, builds a replica that is driven
by the same persistent factors as the index. In a second step, it is
also possible to refine the replica so that it minimizes a loss function,
as in the traditional approach. Both Monte Carlo simulations and an
application to the EuroStoxx50 index provide substantial support for
our approach.
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1 Introduction

Stock index tracking underlies a big slice of the fund management industry
world wide. There are funds whose explicit strategy is to replicate an index
or a pool of indexes, as for example the Vanguard 500 index fund which, on
May 2001, showed a total asset value of about 93 billions of dollars. More
generally, the existence and use of benchmarks for performance valuation
compels the manager, from time to time, to “index” her strategy. Moreover,
convex strategies as, for instance, portfolio insurance strategies, are based on
the dynamic replication of an option whose underlying is usually a market
index. When a futures on the index does not exist, or its use is forbidden
by the rules of the fund, the manager will implement the synthetic hedging
policy using an index replication. Long/short (also called market neutral)
strategies, where a trader takes a long position in an index and a short
position in some subset of the same, also require the accurate replication of
the underlying index. Basis trading between a stock index futures and the
underlying is another example of the need for good index replication.

Index tracking is also relevant for the development and enforcement of
regulation policies. For example, if a benchmarking policy is imposed to fund
managers by law (e.g., in Italy) or by use, the degree of effective replicability
of the chosen benchmarks has important influences on the fund manager
choices and, by consequence, on the investors ability to evaluate the fund
strategy and performance. A purely passive tracking policy, for instance,
could imply relevant deviations from the benchmark when replication of the
latter is difficult. On the other hand, small differences from the benchmark
could imply, in case of easy replication, a relevant discretional behavior of
the fund manager.

The purpose of this paper is to clarify some problems related to index
replication, and to propose and test a statistical method for building a port-

folio made of a limited number of stocks which, with good probability, will



track a given index.

We are interested in cases where a full replication of the index is not a
feasible strategy for the fund manager. A full replication is feasible when
the net asset value of the fund is relevant, the structure of the index is kept
constant for long stretches of time, and no big inflows or outflows of money
affect the fund. When these three conditions are not met, the manager must
consider a partial replication strategy and address the problem of tracking
error. This is the case, for example, when considering convex strategy funds,
strategies based on variable weight allocation across a set of index funds,
index funds replicating indexes based on partially illiquid markets, etc.

While the construction of a replicating strategy is a practically impor-
tant problem, the literature about this topic is still quite undeveloped. A
recent survey in Beasley et al. (2000) reports less than 15 papers specifically
dedicated to the topic. Most of this literature assumes that the solution of
the tracking problem lies in some simple tracking error measure minimiza-
tion, and concentrates on efficient ways for implementing this minimization,
under investment constraints and transaction costs. While these are impor-
tant problems indeed, we believe other relevant issues should be considered
before tracking error minimization.

In this paper we concentrate on the study of the relationships among
the time dynamics of the price series for the securities contained in the
original index, the index itself, and the replica. While the dynamics of most
securities and securities indexes are characterized by trend-like low frequency
behavior, the dynamics of an acceptable tracking error, i.e., of the difference
between the index and the tracking portfolio, should be characterized by a
trendless high frequency behavior.

The dynamic properties of the stocks composing the index are taken into
consideration by Pope and Yadav (1994). They go beyond simple tracking

error minimization, and suggest diagnostics based on the study of the au-



tocorrelation function of the tracking error. Alexander (1999) takes a step
further and suggests a tracking procedure based on the study of cointegra-
tion between the index and the component series. This method could be
extended by borrowing from the literature on cointegration of stock prices,
see e.g. Pindyck and Rothemberg (1992). In fact, the main procedures sug-
gested in the present paper are directly connected to those considered in
the literature on common trends and cointegration, a particularly relevant
reference for our work being Stock and Watson (1988).

On the other hand, we cannot simply apply multiple cointegration theory
to our problem for several reasons. First, while in cointegration analysis no
explicit relations are known to hold across the series, in the tracking case we
know the structure of the index, and this is important information. Second,
the cointegration literature focuses on an extreme form of non-stationarity
in the series: integration. Other non stationary behavior, as for instance
low frequency cycles, are also relevant for us. For this reason, we prefer to
speak in general of “low frequency components”, as characterized by a low
frequency peaked periodogram, and do not make any distinction between
the particular origin of this behavior. Third, the inclusion of some specific
assets in the replica and the minimization of a given loss function can be
also required.

An additional complication for index tracking is that the fund manager
is not free to choose among functional forms depending, possibly in a non-
linear way, on past and present values of the component stocks. The index
replication must be a tradable asset and the only shape it can take is that of
a portfolio, i.e., a linear combination of contemporaneous values for a lim-
ited number of securities. Hence, it is by no means obvious that a feasible
solution exists for the replication problem under this constraint, no matter
which tracking error measure is chosen. The existence and the properties

of a solution depend on the assumptions on the dynamics of the securities



involved in the index, and on the weight structure of the index itself.

In this paper we consider the case where the prices evolve according to
a linear dynamic factor model, see e.g. Stock and Watson (1998), Forni and
Reichlin (1996, 1998), Forni et al. (2000). We distinguish between long term
and short term factors. Long term factors are dynamic components of the
prices which exhibit a low frequency dominated behavior. As a limiting case,
these factors could exhibit integrated behavior. Short term factors exhibit
high frequency behavior.

Our main objective is to build a tracking portfolio which excludes the
long term/low frequency factors from the tracking error, using a small num-
ber of securities. Traditional procedures based on the minimization of some
tracking error measure do not necessarily achieve this aim, even when it is
possible.

We argue that a useful replication is possible only when few long term
factors drive the evolution of all the prices of the components of the index,
and the weights of these components in the full index and in the replicating
portfolio are the same. This is a necessary condition in order to avoid the
undesirable presence of low frequency or even integrated components in the
tracking error.

It is possible to consider many examples where these conditions are not
satisfied. The low frequency factors could be a complicated combination of
leads and lags of the prices in the index, while we can only use contempo-
raneous values for the replication. Or the total number of low frequency
factors could be larger than the number of stocks that we are willing to
include in the replication. Hence, we also suggest methods to clarify the
source of a poor tracking performance and develop possible remedies. More-
over, since a replication free of low frequency components in the error could
be impossible to build with a small number of securities, our approach to

index tracking endogenously warns the user when this problem comes up.



Index tracking is, by its nature, a multi-period dynamic problem. We
must then distinguish between linear factor models based on returns and on
price levels. Most factor models for security prices are linear in returns, see
for example the APT class of models. Yet, static replicas of indexes, the
most common method in which the fund manager buys and holds without
rebalancing a portfolio of stocks, implicitly hypothesize linear factor models
in price levels. We discuss the implications of these alternative assumptions,
and suggest solutions in both cases. Also, though we only require the track-
ing error to have no low frequency components, additional constraints, e.g.
minimization of a particular loss function, can be added.

The structure of the paper is as follows. In section 2 we formulate a linear
factor model for prices, and discuss a necessary condition for the tracking
error not to have low frequency components. In section 3 we suggest a
similar model for returns. In section 4 we discuss in details a sequential
procedure for building a replicating portfolio. In section 5 we report the
results of a set of Monte Carlo experiments to evaluate the performance of
our approach. In section 6 the method is applied to construct a replica of
the EURO STOXX50 index. Finally, section 7 summarizes the main results

and contains suggestions for further research.

2 Necessary conditions for index tracking

In this section we discuss necessary conditions for the construction of a parsi-
monious index, E, whose implied tracking error shows limited low frequency
components. The focus is not on the minimization of a particular tracking
error summary measure (e.g., the sum of squares of return differences or
of index levels), but on the procedure to follow in order to build a replica
whose low frequency tracking error behavior is largely independent on the
chosen summary measure. Here we work with index levels, the following

section considers the case of returns.



Let us write the generic index I; in matrix terms as:
It = w p¢, (].)

where p; is an IV x 1 vector of prices, w is a 1 X N vector of known weights
(numbers of shares), and ¢ = 1,...,7. The weights can themselves be time
varying provided they are known for each time ¢ but, for simplicity, we
assume that they are constant.

The prices are assumed to evolve according to the factor model:

pt = Afy + e, (2)

where f; is an r x 1 vector of factors, whose loadings are grouped in the
N x r matrix A, and e; is an N x 1 vector of disturbances. The factors
f and the disturbances e are allowed to be correlated in time, and e can
also be correlated across prices. Hence, (2) is a dynamic approximate factor
model, see Stock and Watson (1998) and Forni et al. (2000) for more details
and precise conditions on the correlation structure of f and e.

The above model is common to many descriptions of asset price behav-
ior and there are in principle an infinite number of ways to decompose p;
into factors. Usually, in finance the distinction between f; and e; is the
distinction between “common factors” and “idiosyncratic factors”. In this
case the factors are constructed to yield residuals maximally uncorrelated
across different stocks. These factors can be either observable economic vari-
ables (as in the APT model) or “synthetic” variables expressed as portfolios
of the stocks themselves. There are, however, many other useful ways of
interpreting and then identifying the decomposition implicit in the model
(2).

For our purposes, the interesting distinction is that between “long term
factors” and “short term factors”. An approximate but empirically useful

definition of “long term factor” is that of a series whose periodogram is



concentrated on low frequencies. By contrast a “short term factor” indicates
a series whose periodogram peaks on the high frequencies.

It may well be possible, and indeed it seems to be the case in empirical
studies, that the long term factors coincide with the common factors of the
financial literature. This will be the case, for instance, if we believe that
the common behavior across assets is induced by the influence of fundamen-
tals and other slow varying economic variables, while idiosyncratic factors
represent short term deviations from the common path of evolution of the
market. It is quite reasonable, however, that low frequency idiosyncratic
components exist, and it is also possible for common factors to show high
frequency behavior.

Our interest is not in the economic interpretation of the factors, but in
the assessment of the possibility to impute the long run dynamics of prices to
a small number of driving series. Only when this is possible, a reliable replica
of the index can be built. A detailed analysis of the economic interpretation
of the factor representation should take into account its non-uniqueness. For
our purposes, however, any decomposition which distinguishes between high
and low frequency components is equivalent.

A similar interpretation of model (2) is provided by Stock and Watson
(1988): p¢ is a vector of N processes satisfying N — r cointegration rela-
tions, and driven by r independent integrated stochastic processes f;. We
also include in f; non integrated processes with a dominating low frequency
component.

We must now define the replica of the index I;. It is another index, E,

based on a choice of ¢ out of the N stocks in the original index:
ft = w Spt, (3)

where w is a 1 X g vector of weights, ¢ > r, and S is a ¢ X N selection matrix,
namely, a matrix that selects only ¢ out of the N prices in p;. Hence, I, is

made up of a subset of the prices in I;, with different weights.



In practice, it is possible that the replica also contains shares not in-
cluded in the index. For instance, these shares could be already existent in
the trader portfolio and she could be unwilling to sell them while, at the
same time, she could require her portfolio to track a specified index. The
suggestions of this paper can be easily extended to this case. Moreover, we
concentrate on static replicas, i.e., portfolios where the number of shares for
each stock is kept constant. We do this for two reasons. First, the index it-
self is usually a constant weights portfolio (or, at least, weights are changed
only in a predetermined way and on predetermined dates). Second, a time
varying structure of the replica requires explicit consideration of transaction
costs, something we want to avoid in this paper. However, in Section 3
we examine a case where a dynamic replica is required by the assumptions
made on stock dynamics, and we suggest a solution to this problem.

Any definition of loss function useful for evaluating the tracking error
I — ft should give negative weight to the fact that the error process contains
a low frequency component. Otherwise, the tracking error can be persistent
and even diverge, and this, when the drift direction cannot be forecasted, is
not a good property for a tracking portfolio.

The most widely used loss functions are of the type

g9(e,q) =Y _d(er) + <(q), (4)

T
t=0
where ¢; is either I; — ft or the difference of the returns, and d(.) is typically
the square function, the absolute value, the positive part of the difference,
etc. The function d(&;) is in general non increasing in the number of assets, ¢,
in the replica E Yet, increasing g can be expensive for the investor. Hence,
a penalty c(q) is sometimes added to the loss function, as it is common in the
construction of information criteria in the time series literature to penalize

overparametrized models. Other tracking error measures, which cannot be

written as a sum but are of relevance for portfolio replication, are based on



the supremum over time of the difference of the values of the indexes or of
returns.

In order to find the optimal replication index ft, we could minimize the
objective function g(e,q) with respect to ¢, S, and w over a stretch of past
data. This agrees with common practice but, in general, it is not enough
to assure that low frequency components (f) do not appear in the tracking
error. We want to develop a tracking procedure that avoids this problem.

Let us assume for the moment that the choice of assets represented in
I, is already made, i.e., ¢ and the selection matrix S are fixed. We further
suppose that A is known. We add the obvious restriction that, at some date
t = 0, the index and the replica have the same value I=1.

Under these hypotheses, a simple result follows:

Proposition 1 For the index and the replica to share the same factor struc-

ture the optimal weights must satisfy:
w* = w(Apo)(SA:Spo)™ + AT, — (SA:Spo)(SA:Spo) ], (5)

where h is any 1 x q vector, I, is the q X q identity matriz and ()% indicates
a generalized (Moore-Penrose) inverse. If [(SA:Spy) (SA:Spo)] ! exists, we

can write it as:
(SAiSpo)* = [(SA:Spo) (SA:Spo) ™" (SA:Spo)'.

Proof. The common components of I; and ft are, respectively, wAF;
and w SAF;, while Iy = wpy and fo = wSpg. Hence, we can form the
system w( SA:Spy) = w(Aipg). The general representation of the solution
(if it exists) is w* in (5) (see e.g. Graybill (1983) ch. 7.3). =

Thus, a set of linear constraints on w* are required to avoid the leakage
of low frequency factors in Iy — I,. These constraints depend on the choice of

the components for the replica (S), the weights of each stock in the original



index (w), and the loadings of the long term factors (A). Moreover, this
condition is independent from the choice of the tracking error measure.

If ¢ = r+ 1 and |SA:Spo| # 0, the generalized inverse simplifies to
(SA:Spo)~t, and the solution is unique. The intuition underlying such a
result is that in this case the factors can be expressed as a linear combination
of all the ¢ selected stocks.

Otherwise, in general, given a factor structure A, for some choices of §
there can be infinite solutions (the g elements of the vector of weights w* can
be all expressed as functions of ¢ — r — 1 free parameters), while for other
choices of S there may be no solution. This happens, for example, when the
S matrix selects stocks whose behavior is unaffected by the factors f; (i.e.,
the corresponding rows of A are equal to zero).

Notice also that if the factor model for the prices in (2) coincides with
the common trend model in Stock and Watson (1988), i.e., if the factors
are pure orthogonal random walks, then w* coincides with the cointegration
vector for (I, Sp:), when there exists cointegration.

In general, the choice of h gives the degrees of freedom necessary to
optimize the replica with respect to a specific choice of the loss function
g(.). As an example, for a quadratic loss function, i.e., g = (I — f)(I — f)’,

the optimal value of h, when unique, is given by:
h* = —(ASPP'S'B' — IP'S'B')(BSPP'S'B')™!, (6)
where
= w(Aipo)(SA:Spo)™,
= [1— (SA:Spo)(SA:Spo)™].

This choice of h is adopted in the simulation experiments and in the empirical
application below.
For comparison, it is instructive to derive the OLS solution to the track-

ing problem when the sum of squared errors are defined on index levels
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unconditional to the constraints given in (5). The tracking error can be
written as ey = I; — ft = (w—w S )pt, and the loss function to be minimized

with respect to the 1 x ¢ vector w (assuming S and g are known) is
(I-D)(I—-1) =(w—-wS)PP(w—wSs). (7)
Adding the constraint I = .70, the solution is

wrrs = w(PP S p))Ct +h*[I —CCH], (8)

C (SPP'S":Spy).

The main differences between w* in (5) and wprrg in (8) can be best
appreciated if we set ¢ = r and disregard the condition fo = Ip. In this case

the (supposed unique) vector satisfying (5) is given by
w* = wA(SA) L, 9)
while the OLS solution simplifies to
wors = WAFF'A'S +ee' S )(SAFF'A'S + See' )L (10)
The tracking error when using w* is given by
e* = (w —wA(SA)1S)e. (11)

Since w* satisfies Proposition 1, £* does not dependent on F'. This in general
is not the case for the OLS weights, since wAF is different from worgSAF.
Hence, even if the OLS weights could provide a better in-sample fit, their
performance can deteriorate substantially out-of-sample.

There is a case where the OLS weights coincide asymptotically with the
optimal weights w*. This happens in the common factor model in Stock and
Watson (1988) where, as mentioned before, the factors are pure random

walks. Actually, in this case wors behaves asymptotically as

wors ~ w(AFF A'S)(SAFFA'S)y ' =wA(SA) ' =w*.  (12)
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Finally, it is worth noting that for the construction of the OLS weights,
we have considered a regression of index levels on price levels. Yet, frequently
in practice the OLS regression is run between the returns of I and those of
Sp, see e.g. Pope and Yadav (1994), Rohweder (1998), Wang (1999). The
resulting weights are used as amounts to be invested in each stock at time 0
for the replica of the index. This is inconsistent with a linear factor model
in prices. If the loadings of the factors on the stocks and the weights of
the stocks in the index are constant, a linear relation can exist between the
returns of the index and the returns of the stocks. However, the coefficients
of this relation are not constant, hence the OLS estimate is meaningless.
Intuitively, the returns of those stocks whose prices grew more than other
stocks, weight progressively more on the index returns. The weights remain
constant only if the stocks undergo identical percentage variations. We
consider in more details issues related to modelling the returns in the next

Section.

3 Modelling returns

In the financial literature it is usually assumed that returns rather than
prices follow a linear factor model, see e.g. Chamberlain and Rotschild
(1983). Similarly, replicas are often built to track the returns of the index
rather than the index itself, see e.g. Bealsley et al (2000). In this section
we consider the required modifications to the previous analysis to deal with
this case.

Besides the OLS method mentioned before, another common approach
to tracking index returns, e.g. Rudolf et al. (1999), is to choose the subset

of stocks in the replica, J, according to some criterion (e.g. size, sector,
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etc.), and then find the weights w; as the minimizers of

T
Zd(RIt - ijR’Pjt)7 (13)
t=0

jedJ
where R indicates the return and d is usually given by the square function
or the absolute value.

An additional problem in this case is that there is no replica port-
folio, containing a constant number of shares for each stock, such that
EjerjRpjt in (13) can be equal to the index replica returns, th. In
fact, we can write the replica returns as

W;Pjt—1
= )
jed !

so that, for ) Jw;R,,, to be equal to th, w; should be

I
Pjt—1

Wit = Wj

In practice, to keep w; constant we need to sell some shares of a given
stock if it outperforms the index I;, and buy if it underperforms. As a
consequence, it can happen that, even when the replica and the index contain
the same stocks, it is I, # I, independently of the choice of d. Moreover, the
variability of the weights and the connected transaction costs become non
negligible when, as in the recent past, subsets of stocks are highly favored,
or left behind, for rather long periods by the market.

This drawback can be overcome by a proper reformulation of the loss

function as

T

N d(Rry, -y HELR ), (15)

t=0 jeJ I
which leads to a nonlinear optimization problem. Here the loss function is
defined in terms of the returns, but the w; are the number of shares for each

stock in the constant weights replica portfolio.
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This rather obvious problem extends to the case where we require a
replica portfolio to share the factor structure of the index. Suppose that

stock returns follow a linear factor model:
Ry = Afi + e (16)

Proposition 2 For the index and the replica to share the same factor struc-

ture the optimal weights must satisfy:
O = {Btio] Cl +h[I-CC, (17)

C

[SAt EJDt - pt1:|

where * indicates a generalized inverse, h is an arbitrary 1 x q vector (which

may depend on t), and As and By are defined below.

Proof. In this case prices follow a non linear factor model. Building a
constant weights replica portfolio such that the returns of the replica and
those of the index share the same factor structure is equivalent to solving
the following problem:

I 1Y wipie 1Ay = Iy > wipjiadi, =17, (18)
jeJ J
w; = 07 Vj ¢ ‘]7
where the \;; are elements of A in (16). This system cannot be solved, in
general, if the weights w; are not allowed to be time varying. If the weights

are allowed to be time varying the problem can be written as:

Wt |:SAtpt _pt—1:| = |:Bt0:| , (19)
where
4 3\
PLi—1A11  Pli—1A1,2 - DPli—1A1r
P2.t—1A2,1  P2t—1A22 ... DP2i—1A2r
At = P
| PNi—1AN1 PNi—1AN2 - PNi—1AN,

14



)
> WiPji-1A41
~ Wit
Loy | 2 wipii-12
By = — , Wi =
I
wqt
[ D2 w1

S is the usual selection matrix and the second part of the partitioned system
imposes the self financing property for the tracking portfolio. Then, the
solution of the system is w; in (17). m
The solution to the problem is not so satisfactory as in the previous
section. In fact, the tracking error on returns is:
I I, Y wWiPji1€ie Y e WitPji-1€j
L ftq B Iy - I~t71 '

(20)

Thus, even when wj; solves the linear problem, long term factors may affect,
in a multiplicative way, the tracking error trough p; and wj;. This implies
a (known but difficult to compute) low frequency time evolution for the
variance of the tracking error. Moreover, with a time varying portfolio,
transaction costs can no longer be assumed negligible and their minimization
should be considered among the asset manager objectives. We intend to
pursue these topics in further research, while in the remaining part of the
paper we focus on the construction of a buy and hold tracking portfolio,

that is on the case of a linear factor model for prices.

4 Implementing index tracking

In order to implement the procedure described in the previous Sections, two
main practical issues must be addressed.

First, it is necessary to estimate the factor model for the prices, equation
(2). The estimated loading matrix, /AX, can then be used to construct w* in
(5). In the first subsection, we discuss three versions of a method based on

a slight modification of principal components analysis.
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Second, we have to choose how many and which stocks to be used in
the replication. In the second subsection, we suggest a procedure to select
the component stocks on the basis of their ability in reconstructing the
estimated factors, with a predetermined error margin. While we do not
need to reconstruct the estimated factors in order to satisfy Proposition 1,
a selection of the set of stocks to be included in the replica based on “factor
tracking” seems quite sensible.

The problem of stock selection can be complicated by the need to include
in, or exclude from, the replica portfolio a set of stocks. Often the maximum
and minimum value of the investment in each single stock are also given and,
for some stock, even the exact amount to be purchased is a constraint. All
these requirements can be smoothly added to the procedure we suggest by
choosing, if it exists, a proper h in (5). In particular, since in general it
is ¢ > r+ 1, we will use the degrees of freedom in h to minimize a given
tracking error measure, g.

Let us now consider in more details each step of the procedure for index

tracking.

4.1 Estimation of the factor structure

We suggest three methods to estimate F' and A based on a principal compo-
nent analysis of the matrix of historical prices P. They differ in the trans-
formation of P used for the analysis. These methods are based on those
suggested by Stock and Watson (1988, 1998) (SW henceforth), see also Bai
(2001a, 2001b). In particular, given the number of factors, r, and assuming
stationarity of the modelled series, SW showed that the space spanned by
the factors can be consistently estimated by the principal components of
the original variables. Bai (2001b) proved that the result remains valid for
integrated series.

Our aim is to decompose the stock prices movement into orthogonal com-

16



ponents ordered by their contribution to the low frequency variance of the
prices (the factors F'). Principal components rank orthogonal constrained
linear combination of prices in terms of total variance, disregarding the dis-
tribution of this variance across frequencies. Yet, when studying stock prices
it is reasonable to hypothesize that, at least for the first components, the
bulk of the variance is concentrated on the low frequencies. This is consistent
with the idea of “trends” in the market and is sometimes expressed by as-
sessing that prices are integrated. In this case, the first principal components
provide a good approximation to the low frequency dominating factors.

A greater care should be given to the estimation of lower order factors.
Now it is no longer reasonable to assume that low frequency components
dominate linear combinations variances. To address this issue, we suggest
two modifications of the principal components analysis outlined above.

1) If we want to identify as factors the linear combinations of p; that
contribute most to the low frequency component of the series variance, and
if we roughly measure this using the covariance between p; and p;_1, a
proper procedure is to use as estimators the eigenvectors associated with the
largest eigenvalues of T/ 2PP'_1 instead of TY2PP’, where P_; is the T x N
matrix of lagged prices. While traditional principal components maximize
the variance of each orthogonal component, given that the sum of squared
coefficient is 1, in this case we maximize the first order autocovariance of
the component series.

2) A second method to enhance the low frequency content of principal
components is to filter the prices P with a low band pass filter in order
to remove high frequency components before extracting classical principal
components.

Having estimated a proper factor space, the second step is the estimation
of the factor loadings on the original variables. This can be achieved by an

OLS regression of the variables on the estimated factors. Note that A and
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f in (2) are not identified unless additional restrictions are imposed, e.g.,
f'f/T = I, which explains why the principal components are only consistent
for the space spanned by f. While the lack of identification can be an
important problem for structural analysis, it is not particularly relevant in
our context. Actually, even if the common component of the factor model
(2) is rewritten as AKK~1f;, where K is a generic r x » matrix with full
rank, the expression for w* in (5) does not change.

For the choice of the number of factors, r, SW suggested to start with a
large enough value, and then use a particular information criterion to select
the number of factors in an equation of interest. As long as the assumed
number of factors is larger than the true one, consistency of the principal
components is preserved. Bai and Ng (2000) proposed a multivariate infor-
mation criterion to determine 7, which seems to perform quite well when the
sample size is long enough. Forni et al. (2000), on the other hand, suggest
to include as many factors as necessary to explain a fixed percentage of the
variability of py, say 90%. On the basis of the simulation experiments in
Section 5, the latter method seems to work better in the context of index
tracking, as we will discuss in more details below.

Finally, notice that the framework developed by Forni et al. (2000),
where the factors are estimated using Brillinger’s (1981) dynamic principal
components, is not suited in our context, since the factors are combinations
not only of the contemporaneous values of the series but also of their leads

and lags.

4.2 Reconstruction of the factor structure

We want to replicate the index using a limited number of stocks and we must
choose them. We could select the component stocks by minimizing the ob-
jective function g(e,q) in (4), subject to the constraint that the solution

satisfies Proposition 1. However this approach becomes quickly computa-
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tionally cumbersome, as the solution should be found in a large, partially
discrete, space. Hence, we suggest a stepwise ad hoc procedure that gives
good results both with real data and in simulations.

As mentioned above, for the construction of the optimal weights w* we do
not need an exact reconstruction of low frequency factors based on a limited
number of stocks. Yet, a choice of the stocks based on their factor replicating
ability seems a sensible strategy. For example, when the total number of
stocks to be included in the replica is fixed and small, it is important to
exclude those stock which are not influenced by the factors. Otherwise, as
we mentioned, there could be no solution to the index tracking problem such
as to avoid the presence of persistent components in the tracking error.

To implement this idea we start by ranking the estimated factors ac-
cording to their correlation with the index. We then proceed to reconstruct
all the reordered factors using the stocks in the index, or in a restricted
or expanded set of stocks available to the fund manager. Each factor is
reconstructed up to a predefined residual variance.

The outcome of this procedure is a ranking of the available stocks based
on their ability in replicating the estimated factors. The choice of the stocks
in which to invest is then made according to how many factors are included
in the replica. We assume their number to be equal to that selected for
modelling all the stocks in the index.

The steps to be followed in this procedure are:

1. Order the factors according to their correlation with the index.
2. Choose a minimum R? for the replication of each factor.

3. Start from factor 1.

4. Rank the shares in correlation order with the factor.

5. Regress the factor on the first share.
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6. If the R? of the regression is greater then the objective, skip next step.

7. Add to the regression the share with the highest correlation with the

residual and go to step 6).

8. Regress the next factor on all the variables included in the analysis up

to now then go to step 6).

9. If all the desired factors are replicated with the desired accuracy, stop

Finally, since any choice of h results in a portfolio satisfying the re-
quirements of Proposition 1, we are free to minimize with respect to h the

tracking error measure g best suited for our purposes.

5 Monte Carlo experiments

In this section we run a set of simulation experiments to compare the per-
formance of OLS on returns (e.g. Pope and Yadav (1994), Rohweder (1998),
Wang (1999)) and factor based tracking, and evaluate the relative merits of
alternative methods for factor estimation.

OLS on returns is selected as a benchmark because stratified sampling
by firm characteristics, the other popular method for the construction of
tracking portfolios, is not suited for an “automatic” implementation. More-
over, in the OLS regressions we can use the same variables chosen for factor
based tracking, so that the two approaches only differ for the choice of the
weights of the stocks in the replica.

The N price series are generated according to the following factor model:

Pt = A1 fie + Ao for + e, (21)

where fi; and fo, are, respectively, 1 and ro integrated and stationary
factors, while e; is an idiosyncratic i.i.d. standard normal error. More

precisely, fo; are i.i.d. standard normal, while fi; are pure independent
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random walks, driven by i.i.d. standard normal innovations. The elements
of the loading matrices A; and As are independent draws from a uniform
distribution over the interval zero-one.

This data generating process is quite extreme in its behavior as it only
considers integrated and i.i.d. components. However, such a specification
already highlights all the relevant characteristics of the tracking procedure
we suggest. Notice also that in this context OLS on levels would yield
asymptotically the same results as factor based tracking, while this would
not be the case if fo; were persistent.

As detailed in Section 3, a linear factor model on levels is necessary
for a constant coefficient replication to be possible. However, as mentioned
in Section 2, this data generating model implies that a constant coefficient
replication based on OLS on returns is a misspecified solution to the tracking
problem. More precisely, the OLS on returns replication will work reason-
ably well when the simulated series, by chance, do not show any relevant
trending behavior. This is more probable in simulations where the number
of integrated factors is small.

To mimic the values in the empirical application in the next section, we
set N = 50 and T" = 1000, where 7" is the sample size. We consider three
possible factor structures: 11 =5 and ro =5, =2 and ro =8, r; = 8 and
ro = 2. The index to be replicated is then constructed as an average of all
the N prices with equal weights.

Following subsection 4.1, we consider three alternative estimators for
the factors. In the base case, no transformation is applied to the price
series and the factors are extracted from their variance covariance matrix
(BASE). Then we experiment with extracting the factors using the first lag
of the autocovariance matrix (AC), and with transforming the series with
a low band pass filter (BPF), a one-sided moving average of length 50 with

equal weights. Different lengths and decreasing weights do not alter sensibly
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the results.

The number of factors is determined so that at least 99.9% of the vari-
ability of the series is explained when using the low band pass filtered data,
in order to focus on the low frequency variability. We also experimented
with the Bai and Ng (2000) selection criteria, and with the Bartlett (see
Anderson (1963)) and Kaiser (1960) tests. These methods often selected
a larger number of factors. This is because in a sample as long as ours,
they can correctly identify as different from zero even very small eigenval-
ues. Yet, the contribution of the associated eigenvectors to explaining the
variability of the series is so small that it is offset by the cost of having to
include a larger number of variables in the replica in order to mimic the
factor structure of the index.

The variables to be included in the index replica are selected according
to the procedure described in subsection 4.2, with the value for the minimum
R? in step 2 set at 0.80. Three different sets of variables are selected for each
of the three sets of estimated factors. The factor based index replication is
then built, using the formulae in section 2. The same variables are used for
the OLS on returns replications.

The model is estimated over the period 1 — 500, and the performance
of the replica indices are evaluated in sample and out of sample, over the
periods 501 —1000, 501 —750, 751 —1000. An evaluation over such a long out
of sample period is required by the use of high frequency data in practice,
combined with the need of the fund manager to keep the weights in the
replica constant over long periods of time to reduce transaction costs.

Four loss functions are used to compare the performance of the alter-
native index replications: the mean tracking error (MEAN), the standard
deviation (STD.DEV.), the mean absolute deviation (MAD), and the supre-
mum of the absolute value of the errors (SUPMOD).

Table 1 reports the average value of the loss functions over 5000 replica-
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tions for each method, with Monte Carlo standard errors, for the case 1, = 5,
ro = 5. Six comments are in order. First, the factor based replications work
better than OLS both in-sample and out of sample, according to any cri-
terion, and the gains are substantial. Second, among the factor methods,
BASE works best, AC is a close second best, while BPF performs worst.
Third, the standard error for the OLS on returns cases are much larger than
those for factor based tracking. This is consistent with the fact that this
model is misspecified for the data generating process we use. Fourth, the
tracking performance deteriorates with the forecast horizon, less so for the
factor based replications. Fifth, the selected number of factors is on average
equal to 4, which is close to the number of non-stationary factors in the data
generating process. Finally, the number of variables included in the replica,
selected in order to match as closely as possible the factor structure of the
index, is equal on average to 8 for BASE and AC, and to 4 for BPF (the
same variables are used in the OLS on returns replications). The fact that
fewer variables are included in the replica index when using BPF is the most
plausible reason for the worse performance of this method.

To evaluate the relative role of stationary and integrated factors, Tables
2 and 3 report results for, respectively, the cases r1 =2, ro =8 and r; = §,
ro = 2. It is worth making four comments on them. First, the performance
of the OLS methods improves with a lower number of integrated factors,
while that of the factor methods deteriorates substantially. Actually, when
r1 = 2, ro = 8 the average gains from the factor methods are only about 10%.
Moreover, in general, the standard error of the results decreases for the OLS
on returns methods but increases for the factors methods, with comparable
values when r; = 2, ro = 8. These facts happen because a smaller number
of integrated factors implies, in our data generating process, a smaller long
term variance and a higher probability of trendless simulated series. Second,

among the factor methods, the AC performs slightly better than BASE, but
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the differences are very small. Third, on average, the selected number of
factors is equal to 2 when 71 = 2 and to 6 when r; = 8. This is in line with
the more important role of the integrated factors in explaining the variability
of the series. Finally, the number of variables in the replica index is about
6 for r1 = 2 and 11 for r; = 8, which reflects the higher number of factors
in the latter case.

As a check on the robustness of the results we got, using r = 5 and
ro = 5, we conduct three additional experiments. First, we increase the
number of variables from 50 to 100. Second, we compare the performance of
the methods using the median rather than the mean over the simulations.
Third, we fix the number of factors to the true value of 10.

The figures in Table 4 indicate that a larger number of variables does
not alter the results. The ranking of the methods and the size of the gains
remain basically the same as for N = 50; the same number of factors is
selected; the only minor difference is that now a slightly larger number of
variables is included in the replica index, about 10 for BASE and 13 for AC,
versus 8 when N = 50.

When the median rather than the average over the 5000 replications is
used to compare the methods, the performance of the OLS on returns based
replications improves, but it still remains substantially worse than that of
the factor based replications, using any criterion and both in sample and
out of sample, see Table 5.

When the true number of factors is imposed, Table 6 shows that the
gap between the factor and the OLS on returns based replications widens
substantially. The former provides a sensibly more accurate tracking while
the performance of the latter deteriorates with respect to the case where the
number of factors is determined with the percentage of explained variance
criterion. The cost of the improved factor based tracking is the much higher

number of variables to be included on average in the replication: 36 out of
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50 for the best factor method (BASE) versus 8 before. Since the aim of the
replication is to reduce substantially the number of stocks in the portfolio,
this major increase in the number of selected variables more than offsets the
benefits in terms of reduced loss. The worse performance of the OLS on
returns method is likely due to collinearity problems because of the large
number of regressors.

In summary, factor based index tracking performs better than conven-
tional methods, with the magnitude of the gains increasing with the number
of non-stationary factors driving the variables. Extracting the factors from
the variance covariance matrix of the raw data is in general performing well,
with only minor gains in a few cases from using the autocovariance matrix.
The selected number of factors using our approach is smaller than the true
value, but close to the number of integrated factors and capable of explaining
more than 99.9% of the variability of all the series in the index. Finally, the
number of variables in the replica is substantially smaller than that in the

index, usually only slightly larger than twice the number of selected factors.

6 Tracking the EURO STOXX50

In this section we evaluate the performance of our factor based methods for
tracking the EURO STOXX50 index, relative to the common OLS on returns
and to OLS on prices. We use a daily dataset from Jan 1997 to Jun 2000, for
a total of 890 observations. This period contains several problematic events,
including the Asian crisis of summer 1998 and the rise and early fall of the
tech market bubble, which makes the analysis particularly interesting.

The dataset contains all the component stocks which were in the index
during the sample period. In the spirit of this paper, we recomputed the
index so that the weights of each stock are constant over the whole period,

and the component stocks are the same.! We split the sample so that the

'During the sample period stocks were added to and deleted from the index (see
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replica portfolio weights are estimated using the first set of 350 observations,
while index tracking is carried out on the sample 351-890.

The procedures applied for factor estimation, reconstruction using a sub-
set of the variables, and computation of the weights in the replica are the
same as those described in the previous Section. In particular, the number
of factors is selected so that the total variance explained is at least 99.8%,
and we consider the three cases BASE (raw data, factors extracted from
variance matrix), AC (raw data, factors extracted from first lag of autoco-
variance matrix) and BPF (smoothed data, factors extracted from variance
matrix). The comparison is made with the OLS on returns and on price
levels replications.

In Table 7 we report the percentages of variance explained by the eigen-
vectors associated with the largest 10 eigenvalues. The use of the autocovari-
ance matrix does not change significantly the relative weights of the factors,
but the prefiltering of the series has an interesting impact. Actually, while
the first two values are larger and the third one is of comparable magnitude,
the other figures are substantially smaller. A reasonable interpretation of
this result is that the variance of the first three factors is relatively more
concentrated on the low frequencies than the variance of the other factors,
hence it is less affected by the low band pass filters. This interpretation is
supported by the outcome of standard Dickey-Fuller tests, the null hypoth-
esis of a unit root is not rejected only for the first three factors.?

According to our selection criterion, 6 factors are required. The perfor-

http://www.stoxx.com/index.html for a detailed description of the index computing pro-
cedures). We decided to compute the new index using the full set of these stocks. For this
reason our index contains 54 stocks instead of 50 as the actual one. As stated above, we
could have used the actual weights, since weight modifications are announced in advance

of their implementation, with additional computational costs.
?Bai and Ng (2001) prove that the limiting distribution of the unit root test is not

affected by factor estimation. They estimate the integrated factors by cumulating their

first differences while we directly estimate the levels, but this fact does not alter the result.

26



mance of the resulting index replications is summarized in Table 8, while
in Figure 1 we plot the out of sample values of the index, the BASE factor
based and the OLS replications, that are the best performing in their class.

From Table 8, depending on the factor extraction method, the number
of variables chosen to mimic the factor structure of the index ranges from
6 (BPF) to 21 (AC). When the same variables as in the BPF case are used
for the OLS replications, (Naivel and Levell), the factor method yields the
lowest std.dev. and mad both in sample and in the two forecast subsamples,
while looking at the whole forecast sample Levell is better. In all cases, the
OLS on returns, the most common method in practice, is by far the worst.

Focusing instead on the overall best performing factor method, BASE,
in-sample the ranking based on either the std.dev. or the mad is OLS on
levels, factor, and OLS on returns. Yet, out of sample, the factor method
becomes the best, in all subperiods and according to any criterion. The OLS
on returns remains the worst tracking procedure.

The performance of all methods is in general substantially better over
the first forecast subsample, 351-650, than over the second one, 651-890.
Though a certain deterioration is expected, since we are forecasting further
ahead in the future, another cause for this temporal pattern is the upward
trend in the index over most of the second subsample, compare Figure 1.
The Figure particularly highlights the bad tracking performance of OLS on
returns. Actually, as we mentioned earlier, the problems of OLS on returns
are exacerbated when the index presents a trending behavior, or persistent
deviations from the mean (as it happens at the beginning of the first forecast
subsample, in coincidence with the Asian crisis).

In order to give an idea of the absolute average quality of the replicating
portfolio, since the mad using 6 series in the replica is 16.05 for the BPF
factors and 23.68 for the corresponding OLS on returns, while the average

of the index is about 234 out of sample, the factor replica shows an error
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of about 6.86% of the average value of the index, about 10.12% for the
commonly used OLS on returns. The corresponding values with 19 variables
and BASE tracking are 1.63% and 5.84%.

In summary, the good performance of the factor based index tracking
that emerged in simulation experiments is confirmed also with real data, in

particular when the index shows a trending or highly persistent behavior.

7 Conclusions

In this paper we have proposed a statistical method for building tracking
portfolios. An interesting property of our procedure is that it can take into
account the constraints commonly imposed to fund managers. Moreover, it
does not require the index weights to be constant and can be applied to a
wider universe of securities than those included in the index.

The starting point is a detailed analysis of the component stocks which,
combined with a proper choice of the replica weights, can avoid tracking
errors contaminated by low frequency components. We have analyzed in
details the cases of a linear factor model for prices and for returns. In the
second setting, however, a tracking portfolio with constant weights cannot be
built. This highlights the importance of dynamic hedging and of accounting
for transaction costs, whose examination is left for further research.

Our procedure is tested against competing methods by means of simu-
lation experiments and an application to the well known EURO STOXX50
index. The results are quite encouraging, and emphasize the importance of

a statistical approach to index tracking.
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Table 1 - Monte Carlo comparison of Factor and OLS on retuns based index replication (N=50, r1=5, r2=5)

Naive 1 Naive 2 Naive 3 Factor 1 Factor 2 Factor 3
In sample (1-500)
mean 20.65 2.50 1.43 1.25 0.63 0.54
4.53 15.90 16.60 0.05 0.03 0.03
std.dev. 4991 46.29 49.14 7.05 4.28 4.19
4.73 7.13 7.59 0.05 0.04 0.04
mad 41.45 38.47 40.69 5.68 3.44 3.36
3.93 5.87 6.23 0.04 0.03 0.03
supmod 163.51 165.56 181.15 22.39 13.64 13.40
14.35 32.84 35.83 0.15 0.13 0.12
ncomp 3.81
0.40
nvar 3.89 8.38 7.54 3.89 8.38 7.54
0.58 6.21 4.64 0.58 6.21 4.64

Qut of sample (501-1000)

mean -3.26 33.99 27.05 -0.14 0.11 -0.04
8.27 24.45 23.47 0.26 0.16 0.15
std.dev. 54.28 61.16 65.51 10.89 6.26 6.09
4.64 15.34 15.80 0.10 0.08 0.07
mad 45.13 50.95 54.39 9.02 5.17 5.01
3.75 12.70 13.05 0.09 0.07 0.06
supmod 186.80 213.87 221.59 38.85 22.58 22.04
17.43 58.71 58.73 0.36 0.27 0.25

Qut of sample (501-750)

mean -0.45 21.16 19.00 -0.21 0.15 0.01
7.15 13.93 13.41 0.19 0.12 0.11
std.dev. 39.52 40.68 44.29 8.28 4.97 4.89
3.51 7.91 8.50 0.07 0.05 0.05
mad 32.69 34.14 37.22 6.80 4.06 3.98
2.84 6.73 7.26 0.06 0.05 0.04
supmod 136.45 143.71 152.05 29.26 17.63 17.35
14.47 31.24 32.13 0.25 0.19 0.18

Qut of sample (751-1000)

mean -6.08 46.83 35.10 -0.07 0.07 -0.09
10.00 35.16 34.14 0.36 0.22 0.21

std.dev. 40.07 47.04 51.75 8.33 4.96 4.86
411 13.19 13.59 0.07 0.05 0.05

mad 33.13 39.64 43.53 6.84 4.04 3.96
3.20 11.36 11.67 0.06 0.05 0.04

supmod 180.92 209.28 215.09 37.52 21.78 21.24
17.13 58.69 58.48 0.36 0.27 0.25

Notes

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),

of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 50 period moving average of the data (BPF,
NaiveX indicates the OLS on returns based replica, using the same variables as in FactorX, X=1,2,3.

Mean is the mean error of replications, std.dev. the standard deviation, mad the mean absolute deviation, supmod the sup of the mo
Ncomp is the number of factors included in the factor model, nvar the number of variables included in the replica

The figures are averages over 5000 replications. Monte Carlo standard errors are reported in smaller fonts.



Table 2 - Monte Carlo comparison of Factor and OLS on returns based index replication (N=50, r1=2, r2=8)

Naive 1 Naive 2 Naive 3 Factor 1 Factor 2 Factor 3
In sample (1-500)
mean -7.85 23.23 25.01 -10.55 22.07 23.26
20.88 11.81 11.94 20.84 11.80 11.93
std.dev. 75.56 57.54 59.25 71.92 54.86 55.85
18.78 8.98 9.05 18.78 8.98 9.03
mad 62.27 48.14 49.53 59.30 45.95 46.77
15.06 7.59 7.64 15.05 7.59 7.62
supmod 237.64 183.52 190.21 222.74 172.98 177.04
54.10 27.98 28.33 54.06 27.97 28.21
ncomp 1.93
1.51
nvar 2.48 7.07 5.73 2.48 7.07 5.73
2.79 10.36 9.40 2.79 10.36 9.40

Qut of sample (501-1000)

mean -29.39 -4.95 -6.33 -29.65 -4.81 -5.35
20.96 5.16 5.31 20.95 5.15 5.16

std.dev. 60.71 48.09 49.93 55.97 44.87 45.37
12.29 5.23 5.35 12.27 5.23 5.25

mad 50.29 40.08 41.55 46.27 37.38 37.78
10.05 4.38 4.46 10.04 4.37 4.39

supmod 213.27 162.08 168.26 197.82 151.07 152.58
46.06 16.86 17.31 46.02 16.84 16.92

Qut of sample (501-750)

mean -16.96 -1.97 -3.37 -17.26 -1.59 -1.87
15.14 3.80 4.01 15.12 3.78 3.79

std.dev. 50.03 34.92 36.08 46.97 32.62 33.11
12.31 3.81 3.86 12.30 3.80 3.82

mad 41.05 28.98 29.91 38.47 27.05 27.45
9.92 3.16 3.20 9.91 3.15 3.17

supmod 171.90 118.29 123.63 161.34 110.41 112.07
43.82 12.09 12.53 43.79 12.06 12.15

Qut of sample (751-1000)

mean -41.82 -7.92 -9.30 -42.05 -8.04 -8.82
27.34 7.64 7.74 27.32 7.63 7.65
std.dev. 42.56 36.48 38.46 39.07 34.20 34.74
7.32 461 481 7.29 4.60 4.64
mad 34.93 30.26 31.93 31.94 28.34 28.77
5.89 3.83 4.01 5.87 3.83 3.85
supmod 205.22 156.70 162.62 190.45 146.29 147.66
43.92 16.42 16.88 43.88 16.41 16.49
Notes

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),

of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 50 period moving average of the data (BPF,
NaiveX indicates the OLS on returns based replica, using the same variables as in FactorX, X=1,2,3.

Mean is the mean error of replications, std.dev. the standard deviation, mad the mean absolute deviation, supmod the sup of the mo
Ncomp is the number of factors included in the factor model, nvar the number of variables included in the replica

The figures are averages over 5000 replications. Monte Carlo standard errors are reported in smaller fonts.



Table 3 - Monte Carlo comparison of Factor and OLS on returns based index replication (N=50, r1=8, r2=2)

Naive 1 Naive 2 Naive 3 Factor 1 Factor 2 Factor 3
In sample (1-500)
mean 22.65 52.32 3491 0.51 0.22 0.22
28.85 26.96 20.41 0.02 0.01 0.01
std.dev. 112.85 91.91 57.20 5.82 3.19 3.23
43.92 29.66 12.00 0.03 0.03 0.03
mad 96.39 75.57 47.34 4.66 2.55 2.58
38.94 24.06 9.82 0.03 0.02 0.02
supmod 340.30 304.81 195.17 18.30 10.26 10.33
106.30 95.56 49.68 0.11 0.08 0.08
ncomp 5.57
0.76
nvar 5.88 11.00 10.70 5.88 11.00 10.70
0.93 5.95 5.60 0.93 5.95 5.60

Qut of sample (501-1000)

mean -107.04 -65.78 -1.74 -0.22 0.10 0.07
98.86 64.68 3.36 0.27 0.14 0.14

std.dev. 101.96 106.19 72.72 11.66 5.62 5.65
28.96 29.93 17.77 0.10 0.06 0.06

mad 81.35 86.62 59.20 9.72 4.64 4.66
21.01 23.54 13.20 0.09 0.06 0.05

supmod 396.11 391.88 239.70 40.48 20.14 20.21
149.01 13241 56.11 0.34 0.23 0.22

Qut of sample (501-750)

mean -90.73 -52.64 9.50 -0.09 0.10 0.10
87.14 64.27 10.98 0.19 0.10 0.10
std.dev. 87.68 93.78 57.07 8.57 4.38 4.42
32.39 34.82 17.89 0.07 0.05 0.05
mad 71.06 79.36 47.56 7.09 3.59 3.63
25.02 29.88 14.93 0.06 0.04 0.04
supmod 315.50 328.94 188.13 29.72 15.32 15.50
138.56 131.83 55.94 0.24 0.16 0.16

Qut of sample (751-1000)

mean -123.34 -78.92 -12.98 -0.36 0.10 0.03
110.73 66.71 10.17 0.38 0.20 0.20

std.dev. 72.16 72.85 50.79 8.58 4.35 4.38
17.94 19.21 10.56 0.07 0.05 0.04

mad 59.87 60.32 42.60 7.10 3.56 3.58
14.44 15.63 8.81 0.06 0.04 0.04
supmod 382.87 362.56 212.06 39.07 19.47 19.50
148.50 124.96 35.10 0.34 0.22 0.22

Notes

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),

of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 50 period moving average of the data (BPF,
NaiveX indicates the OLS on returns based replica, using the same variables as in FactorX, X=1,2,3.

Mean is the mean error of replications, std.dev. the standard deviation, mad the mean absolute deviation, supmod the sup of the mo
Ncomp is the number of factors included in the factor model, nvar the number of variables included in the replica

The figures are averages over 5000 replications. Monte Carlo standard errors are reported in smaller fonts.



Table 4 - Monte Carlo comparison of Factor and OLS on returns based index replication (N=100, r1=5, r2=

Naive 1 Naive 2 Naive 3 Factor 1 Factor 2 Factor 3
In sample (1-500)
mean 7.43 24.49 16.88 1.40 0.74 0.64
7.74 7.24 4.51 0.04 0.03 0.03
std.dev. 45.76 41.48 41.41 7.21 4.38 4.35
3.66 4.60 3.06 0.05 0.05 0.04
mad 37.63 34.17 34.14 5.81 3.52 3.49
2.90 3.73 2.47 0.04 0.04 0.03
supmod 155.90 142.75 141.56 22.83 13.99 13.93
14.24 18.16 11.75 0.15 0.16 0.13
ncomp 3.83
0.39
nvar 3.87 12.04 9.18 3.87 12.04 9.18
0.51 12.90 9.75 0.51 12.90 9.75
Out of sample (501-1000)
mean 0.06 10.56 -5.58 -0.18 -0.08 -0.02
6.91 7.74 6.18 0.25 0.16 0.16
std.dev. 52.42 51.83 46.16 11.15 6.46 6.30
4.18 7.75 3.14 0.10 0.09 0.08
mad 43.77 43.55 38.43 9.25 5.33 5.18
3.45 6.64 2.58 0.09 0.08 0.07
supmod 174.87 171.72 158.78 39.73 23.01 22.77
14.10 23.56 12.09 0.34 0.30 0.27
Qut of sample (501-750)
mean 0.62 5.71 -5.44 -0.02 -0.07 0.05
5.28 3.87 6.01 0.18 0.12 0.11
std.dev. 39.19 37.64 35.35 8.39 5.02 4.98
3.77 5.22 3.13 0.07 0.06 0.05
mad 32.73 31.38 29.47 6.88 410 4.05
3.19 4.26 2.62 0.06 0.05 0.05
supmod 130.09 122.58 120.38 29.64 17.61 17.62
12.45 14.71 11.40 0.23 0.22 0.19
Out of sample (751-1000)
mean -0.51 15.42 -5.71 -0.33 -0.10 -0.08
9.06 13.49 6.67 0.36 0.23 0.22
std.dev. 36.32 34.50 34.20 8.53 5.10 5.05
2.61 4.02 2.47 0.07 0.06 0.05
mad 30.20 28.49 28.60 7.01 417 412
2.17 3.21 2.10 0.06 0.05 0.05
supmod 168.64 165.18 153.01 38.42 22.25 22.00
13.57 23.26 11.71 0.34 0.30 0.27
Notes

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),

of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 50 period moving average of the data (BPF,
NaiveX indicates the OLS on returns based replica, using the same variables as in FactorX, X=1,2,3.
Mean is the mean error of replications, std.dev. the standard deviation, mad the mean absolute deviation, supmod the sup of the mao

Ncomp is the number of factors included in the factor model, nvar the number of variables included in the replica

The figures are averages over 5000 replications. Monte Carlo standard errors are reported in smaller fonts.



Table 5 - Monte Carlo comparison of Factor and OLS on returns based index replication (N=50, r1=5, r2=5, median)

Naive 1 Naive 2 Naive 3 Factor 1 Factor 2 Factor 3
In sample (1-500)
mean 8.16 5.74 5.70 0.67 0.16 0.16
std.dev. 18.33 16.58 16.37 6.25 3.78 3.55
mad 15.18 13.57 13.55 5.00 3.01 2.83
supmod 59.96 55.10 55.42 19.89 12.13 11.43
ncomp 3.81
nvar 3.89 8.38 7.54 3.89 8.38 7.54
Qut of sample (501-1000)
mean 0.14 0.77 1.41 0.17 0.08 0.10
std.dev. 20.25 18.88 19.09 9.10 4.87 4.53
mad 16.66 15.62 15.87 7.40 3.92 3.66
supmod 67.82 63.25 64.16 32.95 17.91 17.01
Qut of sample (501-750)
mean 0.40 0.70 0.70 -0.09 0.06 0.05
std.dev. 14.50 13.71 13.90 7.01 413 3.87
mad 11.95 11.30 11.40 5.68 3.31 3.10
supmod 49.06 46.23 46.17 25.17 14.74 13.84
Qut of sample (751-1000)
mean 0.57 1.07 1.90 -0.01 0.04 0.06
std.dev. 14.69 13.65 13.50 7.01 413 3.91
mad 12.06 11.22 11.14 5.68 3.31 3.14
supmod 65.21 60.17 60.41 31.68 17.01 16.15
Notes

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),

of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 50 period moving average of the data (BPF, X=1).
NaiveX indicates the OLS on returns based replica, using the same variables as in FactorX, X=1,2,3.

Mean is the mean error of replications, std.dev. the standard deviation, mad the mean absolute deviation, supmod the sup of the modulus
Ncomp is the number of factors included in the factor model, nvar the number of variables included in the replica

The figures are medians over 5000 replications.



Table 6 - Monte Carlo comparison of Factor and OLS on returns based index replication (N=50, r1=5, r2=5, ncomg

Naive 1 Naive 2 Naive 3 Factor 1 Factor 2 Factor 3
In sample (1-500)
mean 25.80 18.61 -162.34 0.021 0.003 0.003
5.73 4.08 127.53 0.001 0.000 0.000
std.dev. 56.03 39.89 101.50 1.382 0.489 0.479
5.34 2.57 39.27 0.005 0.001 0.001
mad 46.80 32.83 76.85 1.102 0.390 0.382
4.54 2.07 27.54 0.004 0.001 0.001
supmod 179.83 136.47 437.15 4.491 1.585 1.551
16.23 9.49 200.58 0.017 0.005 0.005
ncomp 10.00
0.00
nvar 17.03 36.41 36.81 17.03 36.41 36.81
2.59 2.30 2.97 2.59 2.30 2.97

Qut of sample (501-1000)

mean 17.89 7.69 -96.27 -0.052 0.012 0.002
11.49 8.44 61.83 0.020 0.004 0.004

std.dev. 58.47 51.37 12412 1.585 0.545 0.531
5.26 4.23 53.46 0.007 0.001 0.002

mad 49.12 42.93 101.45 1.271 0.435 0.424
4.49 3.49 43.31 0.006 0.001 0.001

supmod 205.34 171.56 461.94 5.719 1.864 1.822
21.06 15.62 210.73 0.030 0.006 0.007

Qut of sample (501-750)

mean 17.54 7.63 -45.87 -0.032 0.014 0.002
8.78 6.52 26.93 0.016 0.003 0.003

std.dev. 43.99 37.13 78.53 1.489 0.532 0.521
4.49 3.74 29.65 0.006 0.001 0.002

mad 36.45 31.09 65.60 1.189 0.424 0.416
3.62 3.21 24.93 0.005 0.001 0.001

supmod 159.77 127.19 263.25 5.032 1.695 1.671
18.99 14.04 99.56 0.025 0.006 0.006

Qut of sample (751-1000)

mean -0.51 15.42 -5.71i -0.332 -0.096 -0.082
14.59 10.78 96.78 0.027 0.005 0.005
std.dev. 41.16 35.56 107.73 1.485 0.533 0.519
3.19 2.45 48.91 0.006 0.001 0.002
mad 34.09 29.53 90.25 1.185 0.425 0.414
2.63 2.02 41.42 0.005 0.001 0.001
supmod 199.58 166.61 457.68 5.457 1.780 1.733
20.99 15.42 210.73 0.031 0.006 0.007

Notes

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),

of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 50 period moving average of the data (BPF, X=1).
NaiveX indicates the OLS on returns based replica, using the same variables as in FactorX, X=1,2,3.

Mean is the mean error of replications, std.dev. the standard deviation, mad the mean absolute deviation, supmod the sup of the modulus
Ncomp is the number of factors included in the factor model, nvar the number of variables included in the replica

The figures are averages over 5000 replications. Monte Carlo standard errors are reported in smaller fonts.



Table 7 - Percentage of variance explained by each factor

Factor 1 2 3
1 90.39 88.23 87.96
2 5.27 4.21 4.22
3 2.78 3.59 3.63
4 0.94 1.66 1.63
5 0.28 0.61 0.62
6 0.17 0.28 0.31
7 0.08 0.23 0.24
8 0.04 0.19 0.22
9 0.03 0.19 0.19
10 0.01 0.16 0.19

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),
of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 2 month moving average of the data (BPF, X=1).



Table 8 - Data on Eurostoxx50, comparison of Factor and OLS on returns based index replication

Naive 1 Naive 2 Naive 3 Factor 1 Factor 2 Factor 3 Level 1 Level 2 Level 3
In sample (1-350)
mean -19.62 -11.12 -5.04 0.10 -0.06 0.02 -1.18 0.02 0.03
std.dev. 6.21 5.37 2.83 3.57 1.04 0.88 5.20 0.96 0.86
mad 5.18 4.20 2.44 2.93 0.83 0.68 4.06 0.78 0.66
supmod 33.20 21.24 11.05 11.70 3.76 2.76 15.83 2.89 3.01
ncomp 6.00 6.00 6.00
nvar 6.00 21.00 19.00 6.00 21.00 19.00 6.00 21.00 19.00
QOut of sample (351-890)
mean -13.46 -5.36 3.44 20.11 -26.84 1.08 14.74 -24.86 2.30
std.dev. 29.48 13.67 16.73 19.56 22.28 5.25 18.16 19.10 6.23
mad 23.68 11.44 13.67 16.05 18.98 3.81 14.16 16.41 4.78
supmod 72.96 28.13 53.48 79.40 82.80 18.12 75.18 68.95 23.73
Out of sample (351-650)
mean -36.55 -13.68 -9.63 5.92 -7.56 -0.93 4.01 -8.00 -1.53
std.dev. 16.54 7.41 5.68 8.51 5.73 2.74 9.26 5.37 3.09
mad 13.86 6.35 493 6.86 4.74 2.14 7.31 4.56 2.43
supmod 72.96 28.13 21.16 26.12 19.22 7.82 21.84 18.35 9.30
Qut of sample (651-890)
mean 6.51 1.84 14.75 32.38 -43.52 2.82 24.03 -39.45 5.62
std.dev. 22.90 13.76 14.78 18.07 17.23 6.20 18.85 14.02 6.35
mad 20.57 12.69 13.10 15.28 14.99 4.47 15.88 12.34 492
supmod 56.28 26.20 53.48 79.40 82.80 18.12 75.18 68.95 23.73
Notes

FactorX indicates the factor based replica using factors extracted from the variance covariance matrix of raw data (Base, X=3),

of the first autocovariance matrix (AC, X=2), or from the variance covariance matrix of a 50 period moving average of the data (BPF, X=1).

NaiveX indicates the OLS on returns based replica, using the same variables as in FactorX, X=1,2,3.

LevelX indicates the OLS on prices based replica, using the same variables as in FactorX, X=1,2,3.

Mean is the mean error of replications, std.dev. the standard deviation, mad the mean absolute deviation, supmod the sup of the modulus

Ncomp is the number of factors included in the factor model, nvar the number of variables included in the replica
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