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Abstract
After the creation of the European Monetary Union (EMU), both the European
Commission (EC) and the European Central Bank (ECB) are focusing more and more on
the evolution of the EMU as a whole, rather than on single member countries. A
particularly relevant issue from a policy point of view is the availability of reliable
forecasts for the key macroeconomic variables. Hence, both the fiscal and the monetary
authorities have developed aggregate forecasting models, along the lines previously
adopted for the analysis of single countries. A similar approach will be likely followed in
empirical analyses on, e.g., the existence of an aggregate Taylor rule or the evaluation of
the aggregate impact of monetary policy shocks, where linear specifications are usually
adopted. Yet, it is uncertain whether standard linear models provide the proper statistical
framework to address these issues. The process of aggregation across countries can
produce smoother series, better suited for the analysis with linear models, by averaging
out country specific shocks. But the method of construction of the aggregate series,
which often involves time-varying weights, and the presence of common shocks across
the countries, such as the deflation in the early ’80s and the convergence process in the
early ’90s, can introduce substantial non-linearity into the generating process of the
aggregate series. To evaluate whether this is the case, we fit a variety of non-linear and
time-varying models to aggregate EMU macroeconomic variables, and compare them
with linear specifications. Since non-linear models often over-fit in sample, we assess
their performance in a real time forecasting framework. It turns out that for several
variables linear models are beaten by non-linear specifications, a result that questions the
use of standard linear methods for forecasting and modeling EMU variables.
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1. Introduction

With the creation of the European Monetary Union, the focus of the economic policy

debate and of macroeconomic analyses is shifting more and more from the single

member countries to the Union as a whole. This poses the question of the proper

econometric methods for empirical analyses in the new context, and this paper

contributes to the debate by studying the relative forecasting performance of a large set of

univariate linear, time-varying, and non-linear models.

In a first stage, both economists and policy makers have analyzed the Union by

looking at differences and similarities among the member countries. For example, several

authors estimated linear Taylor rules for the largest countries in the union, e.g. Clarida,

Gali and Gertler (1998), Gerlach and Schnabel (2000), Favero and Marcellino (2001), to

evaluate whether there were major differences across central banks in the conduct of

monetary policy in the recent past. Similarly, many studies focused on the analysis of

asymmetries across countries in the transmission of monetary policy, and several of them

used linear models (VARs) see e.g. Clements, Kontolemis, Levy (2001), Dornbusch,

Favero, Giavazzi (1998), Favero and Marcellino (2001). Also, when using linear models,

aggregation of country specific forecasts for key macroeconomic variables in general

produced better results than direct forecasts of the aggregates, see e.g. Marcellino, Stock

and Watson (2001).

Are the same linear techniques appropriate for modeling EMU macroeconomic

variables or different econometric methods are required? In particular, is there a role for

models with time-varying parameters or non-linear components? These questions can be

hardly answered from a theoretical point of view, they require a thorough empirical

analysis. In this paper we focus on univariate models, leaving the more complex analysis

of multivariate specifications for future research.

In general, more complicated models tend to fit well in sample, better than linear

specifications, because of their greater flexibility. Yet, often the resulting models are too

specific for the particular estimation sample, and their good performance is not replicated

out of sample, in a forecasting context. For example, Stock and Watson (1999) found

only minor gains from complicated models for forecasting about 200 macroeconomic

variables for the US, on average linear specifications were quite good, and pooled
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forecasts even better. This suggests running the model comparison not in sample but out

of sample, in a pseudo real time forecasting exercise.

Marcellino (2002a, 2002b) conducted a comparison similar to that by Stock and

Watson (1999), but focusing on EMU countries. The main result was that on average

linear models or pooling methods were still the best, but non-linear specifications were

forecasting well for a good percentage of the macroeconomic variables under analysis.

Basically, while linear models forecast reasonably well for all the series, non-linear

models are quite good for some series but quite bad for others, so that on average they are

beaten by simpler methods.

In this paper we evaluate whether this is the case also for EMU aggregate

macroeconomic variables. In particular, since the official Eurostat EMU series are too

short for fitting complex models, we consider longer series of aggregated data

constructed at the ECB by Fagan, Henry and Mestre (2001). We then also focus on two

other aggregate datasets, by Marcellino, Stock and Watson (2001), and Beyer, Doornik

and Hendry (2001). Section 2 provides more details on the variables under analysis,

which include real gdp and its components, prices, interest rates, the real exchange rate

and trade variables.

We compare three main forecasting methods. The linear method, which includes

autoregressive (AR) models, exponential smoothing and random walk models. The time-

varing method, which includes time-varying AR models and smooth transition AR

models. The non-linear method, that includes artificial neural network models. Within

each method we consider several alternative specifications, for a total of 58 models, and

different forecast horizons. The models are described in details in Section 3.

The competing forecasts are compared on the basis of three measures, in increasing

level of disaggregation. First, we compute the average value over all variables of several

loss functions, including the common mean absolute and mean square forecast error.

Second, we rank the models on the basis of the percentage of variables for which they are

among the top-N models, for several values of N. Finally, for each forecasting model we

compute the empirical distribution function (over variables) of its mean square forecast

error, relative to a benchmark AR model, and selected percentiles of this distribution. The

results of the comparison are reported in Section 4. We can anticipate that models outside



3

the linear class perform well for about 40% of the variables, including the components of

gdp and the real exchange rate, though on average they are outperformed by the linear

models.

When none of the models under analysis coincides with the generating mechanism of

the series, it can be possible to improve the forecasting performance by combining

together the different forecasts. The three most common methods in practice are linear

combination, with weights related to the mean square forecast error of each forecast,

median forecast selection, and predictive least squares, where a single model is chosen,

but the selection is recursively updated at each forecasting period on the basis of the past

forecasting performance. The relative merits of these combination methods are analyzed

in Section 5.

In Section 6 we address three additional issues. First, we detect and discuss the best

forecasting model for each of the variables under analysis. Second we evaluate whether

the good performance of models outside the linear class can be explained by the presence

of extensive instability in the variables. Third, we evaluate the robustness of the results

by repeating the analysis with the datasets by Marcellino, Stock and Watson (2001), and

Beyer, Doornik and Hendry (2001).

Section 7 summarizes the main findings of the paper and offers suggestions for

further extensions.

2. The data

The construction of aggregate data for the EMU area poses several problems. A partial

list includes: interpolation of missing observations and disaggregation of annual figures

into quarterly data, which are not available for all variables and countries in the EMU for

a long enough time period; seasonal adjustment, working day adjustment and treatment

of major redefinitions and institutional changes, such as the German reunification; and

choice of the aggregation (over countries) method.

We do not discuss these issues in detail here, or construct our own EMU series.

Instead, we analyze the aggregate variables in Fagan, Henry and Mestre (2001),

Marcellino, Stock and Watson (2001), and Beyer, Doornik and Hendry (2001), to whom
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we refer for additional details on the Euro zone data reconstruction. Unfortunately, the

official series for the EMU area, released by Eurostat, start in the early ’90s and are too

short for the forecasting exercise we wish to conduct.

Fagan, Henry and Mestre (2001) construct an area wide macroeconometric model for

the euro area, and estimate it using quarterly data starting in 1970. The aggregation

method adopted is the so-called “Index Method” where, for instance, the log of aggregate

gdp is a weighted sum of the logs of the country specific gdps. The weight for each

country is constant over time, and equal to its real gdp share in 1995, see also Fagan and

Henry (1998) for more details. The series are available from the ECB web site, with

different ending dates in 1997-1998. We consider the following 15 macroeconomic

variables, for the period 1970:1-1997:4: real gdp (YER) and its components, namely,

personal and government consumption (PCR and GCR), investment and inventories (ITR

and SCR), and imports (MTR) and exports (XTR); consumer prices (HICP) and the gdp

deflator (YED); unit labor cost (ULC) and unemployment (URX); short-term and long-

term interest rates (STN and LTN); and the real exchange rate (EER) and the trade

balance (TBR).

Marcellino, Stock and Watson (2001) follow a similar aggregation method but

construct monthly series for the period 1982:1-1997:8. The resulting series are rather

close to the official Eurostat variables over the ‘90s. From their dataset, we analyze

industrial production (IPMSW) and consumer prices (CPIMSW), while we do not

consider the unemployment rate since the series starts later on.

Finally, Beyer, Doornik and Hendry (2001) adopt a more sophisticated aggregation

procedure, which is based on the aggregation of growth rates of the variables, with time-

varying weights, whose evolution depends also on the behavior of the exchange rate. The

Euro zone aggregate growth series are then cumulated to obtain the levels of the

variables. The method yields real gdp (GDPBDH), the gdp deflator (YEDBDH) and M3

(M3BDH), monthly, over the period 1980:1-1999:2.
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3 Forecasting methods

As in Stock and Watson (1999) and Marcellino (2002a,b), we consider forecasting

models of the type

,);( hthtt
h

ht Zfy ++ += εθ   (1)

where ty  is the variable being forecast, h indicates the forecast horizon, tZ  is a vector of

predictor variables, tε  is an error term, and hθ  is a vector of parameters, possibly

evolving over time. It is worth distinguishing between forecasting methods and

forecasting models. Forecasting methods differ for the specification of the f  function,

i.e., the form of the relationship between h
hty +  and tZ . Each method contains several

models, which differ for the choice of the regressors tZ  and the stationarity

transformation applied to ty .

The h-step forecast can be written as

),ˆ;(ˆ htt
h

ht Zfy θ=+ (2)

and the forecast error is

.ˆ h
ht

h
htht yye +++ −= (3)

When ty  is treated as stationary, it is ht
h

ht yy ++ = , while if ty  is integrated then

tht
h

ht yyy −= ++ . We present results for both cases. Moreover, we also consider a pre-test

forecast where the decision on the stationarity of ty  is based on a unit root test, which

often improves the forecasting performance, see e.g. Diebold and Kilian (2000). In

particular, we use the Elliot, Rothenberg and Stock (1996) DF-GLS statistics, which

performed best in the simulation experiments in Stock (1996). Since hththt yye +++ −= ˆ ,

independently of whether ty  is treated as stationary or not, the forecast errors from the

three different cases (stationary, I(1) and pre-test) are directly comparable.

We consider forecasts 1, 2 and 4 quarters ahead. When the forecast horizon, h, is

larger than one, the "h-step ahead projection" approach in (1), also called dynamic

estimation (e.g. Clements and Hendry (1996)), differs from the standard approach of

estimating a one-step ahead model, then iterating that model forward to obtain h-step

ahead predictions. The h-step ahead projection approach has two main advantages in this
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context. First, the potential impact of specification error in the one-step ahead model can

be reduced by using the same horizon for estimation as for forecasting. Second, we need

not resort to simulation methods to obtain forecasts from non-linear models. The

resulting forecasts could be slightly less efficient, see e.g. Granger and Terasvirta (1993,

Ch.8), but the computational savings in our real time exercise with several series are

substantial.

Because of possible problems in the estimation of non-linear and time-varying

methods with the rather short sample available, a few forecast errors can be very large. In

order not to bias the comparison against these methods, we automatically trim the

forecasts. In particular, when the absolute value of a forecasted change is larger than any

previously observed change, a no change forecast is used.

We now list the methods and models we compare, and briefly discuss their main

characteristics and estimation issues, see Stock and Watson (1996, 1999) for additional

details.

Linear methods

Autoregression (AR). Since the pioneering work by Box and Jenkins (1970), the good

performance of these models for forecasting economic variables has been confirmed by

several studies, see e.g. Meese and Geweke (1984), or Marcellino, Stock and Watson

(2001) for the Euro area. The f  function in (1) is linear, and tZ  only includes lags of the

y variable and a deterministic component. The latter can be either a constant or also a

linear trend. The lag length is either fixed at 4, or it is chosen by AIC or BIC with a

maximum of 4 lags. Since the ty  variable can be treated as stationary, I(1), or pre-tested

for unit roots, overall there are 18 models in this class.

Exponential smoothing (ES).  Makridakis et al. (1982) found this simple method to

perform rather well in practice in a forecast comparison exercise, even though from a

theoretical point of view the resulting forecasts are optimal in the mean square forecast

error sense only when the underlying process follows a particular ARMA structure, see

e.g. Granger and Newbold (1986, Ch.5). We consider both single and double exponential

smoothing, which are usually adopted for, respectively, stationary and trending series.
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Estimation of the parameters is conducted by means of (recursive) non-linear least

squares (see e.g. Tiao and Xu (1993)). The third model in this class is given by a

combination of the single and double forecasts, based on the outcome of the unit root test.

No change.  When a pure random walk model is adopted, the resulting forecast is

.ˆ tht yy =+  Notwithstanding its simplicity, in a few cases it was found to outperform even

forecasts from large-scale structural models, see e.g. Artis and Marcellino (2001).

Time-varying methods

Time-varying autoregression (TVAR).  The parameters of the AR models are allowed

to evolve according to the following multivariate random walk model (see e.g. Nyblom

(1989)):

,1 hththt u+= −θθ      ),,0(~ 22 Qiiduht σλ (4)

where 2σ  is the variance of the error termε  in (1), 1' ))(( −= tt ZZEQ , and we inspect

several values of λ : 0 (no evolution), 0.0025, 0.005, 0.0075, 0.01, 0.015, or 0.020. We

consider a fixed specification with a constant, 2 lags and λ = 0.005, and models where

the number of lags (1,2,4) is jointly selected with the value of λ  by either AIC or BIC. In

each case, ty  can be either stationary, or I(1) or pre-tested, so that we have a total of 9

TVAR models. The models are estimated by the Kalman filter.

Logistic smooth transition autoregression (LSTAR).  The generic model is

,''
htttt

h
ht dy ++ ++= εζβζα (5)

where )),exp(1/(1 10 ttd ζγγ ++=  and ),...,,,1( 11 +−−= ptttt yyyζ  if ty  is treated as

stationary or ),...,,,1( 11 +−− ∆∆∆= ptttt yyyζ  if ty  is I(1). The smoothing parameters 1γ

regulate the shape of parameter change over time. When 01 =γ  the model becomes

linear, while for large values of 1γ  the model tends to a self-exciting threshold model

(SETAR), see e.g. Granger and Terasvirta (1993), Terasvirta (1998) for details. For

models specified in levels we consider the following choices for the threshold variable in

td : tt y=ζ , 1−= tt yζ , 3−= tt yζ , 2−−= ttt yyζ , 4−−= ttt yyζ . For differenced

variables, it can be tt y∆=ζ , 1−∆= tt yζ , 3−∆= tt yζ , 2−−= ttt yyζ , 4−−= ttt yyζ . In

each case the lag length of the model was either 1 or 2 or 4. We report results for the
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following models: 2 lags and tt y=ζ  (or tt y∆=ζ  for the I(1) case); 2 lags and

2−−= ttt yyζ ; AIC or BIC selection of both the number of lags and the specification of

tζ . In each case ty  can be either stationary or I(1) or pre-tested, which yields a total of

12 LSTAR models. Estimation is carried out by (recursive) non-linear least squares,

using an optimizer developed by Stock and Watson (1999).

Non-linear methods

Artificial neural network (ANN).  Artificial neural networks can provide a valid

approximation to the generating mechanism of a vast class of non-linear processes, see

e.g. Hornik, Stinchcombe and White (1989), and Swanson and White (1997) for their use

as forecasting devices. The so called single layer feedforward neural network model with

n1 hidden units (and a linear component) is specified as:

,)(
1

1

'
11

'
0 ht

n

i
tiit

h
ht gy +

=
+ ++= ∑ εζβγζβ (6)

where )(xg  is the logistic function, )1/(1)( xexg += . A more complex model is the

double layer feedforward neural network with n1 and n2 hidden units:

.)(
12

1

'
122

1

'
0 ht

n

i
tijii

n

j
t

h
ht ggy +

==
+ +








+= ∑∑ εζββγζβ (7)

We report results for the following specifications: n1=2, n2=0,p=2 (recall that p is number

of lags in tζ ); n1=2, n2=1,p=2; n1=2, n2=2,p=2; AIC or BIC selection with n1=(1,2,3),

n2=(1,2 with n1=2),p=(1,2). For each case ty  can be either stationary, or I(1) or pre-

tested, which yields a total of 15 ANN models. The models are estimated by (recursive)

non-linear least squares, using an algorithm developed by Stock and Watson (1999).

Overall, there are 58 models in the forecast comparison exercise, 22 belong to the

linear class, 21 are time-varying, and 15 are non-linear. They are summarized in Table 1.

To mimic real time situations, for each variable, method and model the unit-root tests,

estimation and model selection are repeated each month over the forecasting period,

which is 1990:1-1997:4.
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4. Forecast Evaluation

In this section we compare the forecasting performance of the 58 models for the 15

macroeconomic variables in the ECB dataset from Fagan, Henry and Mestre (2001).

Results for the other datasets are summarized in Section 6.3.

To start with, we need to choose a loss function. We define the loss from model m for

variable n as

∑
−

=
+−

=
hT

t
mnhtmn

h e
hT

Loss
1

,,, ,1 ρ
(8)

where hte +  is the h-step ahead forecast error, and ρ  can be equal to 1, 1.5, 2, 2.5 or 3.

The values 1=ρ  and 2=ρ  correspond to the familiar choices of, respectively, the mean

absolute error (mae) and the mean square forecast error (msfe) as the loss function.

In order to compare the loss over the whole set of N=15 variables, we adopt the

following loss function for model m:

∑
=

=
N

n n
h

mn
h

m
h

Loss
Loss

N
Loss

1 1,

, ,1 (9)

namely, a weighted average of the loss for each variable, with weights given by the

inverse of the loss of a benchmark forecast, which makes the magnitude of the losses

comparable across variables. As a benchmark, we adopt throughout an AR model with 4

lags and a constant, specified in levels.

In Table 2 we report the ranking of the models, for different values of ρ . Four main

results emerge. First, the best models for each value of ρ  and for each forecast horizon

are linear. Second, it is worth imposing the presence of a unit root and choosing the lag

length by BIC or AIC. Third, the AR models with random parameters rank second.

Fourth, simple forecasts (ES and No Change) and complex forecasts (STAR and ANN)

are never in the top-10 models.

Overall these results indicate that a linear structure, possibly with random parameters,

provides a proper representation for the 15 variables under analysis, while more complex

models do not yield any forecasting gains. Yet, the bad performance of STAR and ANN

models can be due to the averaging over variables underlying the ranking in Table 2.

These models could forecast well for a few variables and values of h, but very badly for
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the remaining variables, so that on average they are beaten by simpler specifications. To

evaluate whether this is the case, in Table 3a we report the number of series for which a

given method yields the lowest msfe (results for each model are available upon request).

The good qualities of constant and time-varying parameter AR models are confirmed,

as well as the bad ones of exponential smoothing and random walk forecasts. But STAR

and ANN models are now the best for 40% of the variables. A thorough variable by

variable analysis is conducted in Section 6 below, but we can anticipate that STAR and

ANN models work particularly well for the components of gdp, and for the real exchange

rate.

In Table 3b we provide additional results for the models that perform best in the msfe

sense within each method. In particular, we compute the number of series for which these

models are the best or among the top 5, 10, 15 and 20. It turns out that the best AR and

TVAR models are more often also in the top-20 than the best STAR or ANN models.

This confirms the intuition that complex models work well for a few series and badly for

the other ones.

To provide further evidence on this intuition, and to gather additional information on

the relative merits of the competing models, we take an even more disaggregate

approach. First, for each variable we compute the relative msfe (rmsfe) of each

forecasting model with respect to the benchmark AR(4), so that an rmsfe higher than one

indicates that the method under analysis is worse than the benchmark. In formulae, the

rmsfe of model j for variable m is:

./
1

2
,,4

1

2
,,,4 
















= ∑∑

−

=
+

−

=
+−

hT

t
mhtAR

hT

t
mhtjmARj

h eermsfe (10)

Then, for each model, we calculate the empirical distribution of the rmsfe over the

variables. In Table 4 we report the mean of the distribution and some percentiles for

selected models (the best in Table 2 and those in Table 3b, results for all models are

available upon request).

Two main comments are in order. First, the mean of the distribution underlies the

ranking in Table 2 for 2=ρ . Actually, the model ARFT1b has the lowest average msfe

for h=1,2, and ARFT1a for h=4. Their performance is rather similar, with average gains
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with respect to the benchmark AR4 of about 10% when h=1,2, 20% when h=4. The

ARTVFC03 is a close second best for h=1,2, but it is worse when h=4.

Second, the LSP063 and, in particular, the ANN0203 models are substantially worse

than the benchmark on average. Yet, looking at the percentiles of the distribution of the

relative msfe, they are better than the benchmark for at least 25% of the series. Notice

also that the median of the distribution is substantially lower than the mean for these

models, while it is very close for the AR and ARTV models. This characteristic,

combined with the worse performance on the higher percentiles of the distribution, does

confirm the asymmetric performance of the complex models, whose forecasts are quite

good for some series and quite bad for the other ones. On the contrary, AR and ARTV

models have a rather stable forecasting ability.

5. Forecast pooling

It often happens that a combination of the forecasts from different models performs better

than each single forecast, see e.g. Bates and Granger (1969) and Granger and Newbold

(1986) for pooling procedures, and Clements and Hendry (2001) for possible

explanations for such an outcome. In this section we evaluate whether this is the case for

the aggregate variables in the ECB dataset, when using the models in the previous

subsections. First we define the pooling procedures we implement, next we discuss

results.

5.1 Pooling procedures

Linear combination forecasts (C).  These forecasts are obtained by weighted averages

of the single forecasts:

,ˆˆ
1

,,,∑
=

++ =
M

m
mhtthmht yky     ,)/1(/)/1(

1
,,,,,, ∑

=

=
M

j

w
thj

w
thmthm msfemsfek (11)

where m indexes the models, km,h,t denotes the weights, and msfe indicates the mean

square forecast error. Bates and Granger (1969) showed that the weighting scheme that

minimizes the msfe of the pooled forecasts involves the covariance matrix of all the

forecast errors, which is unfeasible in our case because M is very large. Hence, following
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their suggestion, the weight of a model is simply chosen to be inversely proportional to

its msfe, which is equivalent to setting w=1 in equation (8). We also consider the cases

w=0, equal weight for each forecast, and w=5, more weight for the best performing

models. Moreover, we analyze separately pooling the linear models only, the non-linear

models only, and all the models. Thus, overall we have 9 linear combination forecasts.

Median combination forecasts (M).  These are the median forecasts from a set of

models, and are computed because with non-Gaussian forecast errors linear combinations

of the forecasts are no longer necessarily optimal. As in the previous method, we

distinguish among three groups of models: linear, non-linear, and all models. Thus, we

have 3 median combination forecasts.

Predictive least squares combination forecasts (PLS).  In this approach the model is

selected on the basis of its past forecasting performance over a certain period, three years

in our case. Thus, the model that produced the lowest msfe over the past three years is

used as the forecasting model, and the choice is recursively updated each quarter over the

forecast period. We compute 4 of these forecasts, differing for the set of models

compared: all models, all linear models, all non-linear models, all models plus the linear

and the median combination forecasts.

The three pooling procedures and the resulting 16 forecasts are summarized in the last

panel of Table 1.

5.2 Results

We start by looking at the average performance of the methods, ranking them using the

loss function in equation (9). From Table 5, the best pooling method ranks only third for

h=1,2, and fourth for h=4. It is a linear combination with equal weights of either all

models or the linear models only. Median forecasts are ranked ninth or higher, while

predictive least squares does not enter in the top-10 forecasting models.

The picture above emerges also from the more disaggregate analysis in Tables 6a and

6b. Pooling yields the lowest msfe for only 3 variables when h=1, and 1 variable for h=4.

Yet, as we will se in more details below, the 3 variables are quite important: gdp,

personal consumption and imports. For these variables linear forecasts were the best
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before. From Table 6b, the only pooling method that yields good forecasts for at least

50% of the series is PA when h=1.

The percentiles of the distribution of the relative msfe in Table 7 yield additional

information on the characteristics of the pooling procedures. Focusing in particular on

combination and median forecasts, the distribution is more concentrated than for linear

and non-linear models. Hence, their performance is more stable for all the variables, but

they are beaten by different models for different variables.

Overall, there appears to be limited scope for the adoption of pooling procedures,

except for a few variables when h=1. In these cases pooling substitutes linear models as

the best forecasting device, while non-linear models are in general not outperformed.

6. A disaggregate analysis

In this section we evaluate the relative merits of the 74 forecasts for each of the EMU

variables in the ECB dataset. Next we consider whether stability tests could have detected

the problems with constant parameter linear models that emerge from the forecast

comparison. Finally, we address these two issues also for the EMU variables in the BDH

and in the MSW datasets.

6.1 Variable by variable forecasting analysis

In Table 8 we report the best forecasting model for each of the 15 variables under

analysis, using the loss function in equation (8), for different values of ρ  and h. Though

the results vary substantially with the values of these parameters and for different

variables, they can be summarized in six points, focusing on mae and msfe, i.e, on 1=ρ

and 2=ρ .

First, for real gdp (YER) a combination method is preferred for h=1,4 when using the

msfe and for h=2 when using the mae criterion for comparison. Otherwise, a STAR and

an ANN model are the best for, respectively, h=1 and h=4 with mae, and the ARFC1b for

h=2 and msfe. Moreover, linear specifications do not appear in the top-5 models, except

for h=2 and msfe. Overall, there is a clear indication that a linear model does not

represent a good forecasting tool for real gdp.



14

Second, linear models do not perform well also for the components of gdp, namely,

personal and government consumption (PCR and GCR), investment and inventories (ITR

and SCR), and exports (XTR), with the exception of imports (MTR). AR models are the

best only in 5 out of 18 cases when using the msfe, and in 4 cases for mae. They also do

not appear often in the top-5 models for these variables. Among the other forecasting

methods, ANN works rather well according to the mae, models within this method are the

best in 9 out of 18 cases. Using the msfe there is no clear cut ranking of methods.

Third, in general, the best models for prices (consumer prices (HICP) and gdp

deflator (YED)) belong to the ARTV method. In this case linear models rank fourth or

fifth.

Fourth, for the real exchange rate (EER), ANN models in general work well.

Fifth, for the short-term interest rate (STN) the best model is instead linear, and the

result is robust to the choice of ρ  and h. A similar result holds for the long-term rate

(LTN) when h=4, while ARTV are preferred for h=1.

Finally, the linear model performs rather well also for the unit labor cost (ULC),

unemployment (URX), and the trade balance (TBR), though non-linear specifications are

the best for certain values of ρ  and h.

6.2 Variable by variable stability analysis

We now consider whether it is possible to have an indication of the problematic

performance of linear models for aggregate EMU series using standard in-sample tests

for parameter stability. We can anticipate that the answer is rather negative, which

supports the adoption of our forecasting approach for model evaluation.

Following Stock and Watson (1996), who present a detailed analysis of instability for

US macroeconomic variables, we consider three different types of statistics.

First, tests for constant versus randomly time-varying coefficients. This set includes

Nyblom’s (1989, NY) locally most powerful test against the alternative of random walk

coefficients (λ=0 versus λ >0 in equation (4)), and a Breusch and Pagan (1979, BP)

Lagrange multiplier test against the alternative of iid random coefficients with constant

mean and variance.
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Second, tests based on functions of the cumulative sum of OLS residuals from

equation (1), see Ploeberger and Kramer (1992). We consider the supremum of the

cumulative sum (KP1), and its mean square (KP2).

Third, F-tests for constancy of the parameters against the alternative of a single break

at an unknown date. The tests are computed recursively for a range of dates, say [t0,…,t1],

where t0 and t1 are selected in order to discard the first and last 15% of the sample. Three

functions of the resulting sequence of statistics are considered: the supremum (Quandt

(1960, QLR)); the mean (Hansen (1992), Andrews and Ploeberger (1994), MLR); and the

so called average exponential (Andrews and Ploeberger (1994), ALR).

Stationarity transformations, i.e. logarithms and differencing, are applied to all series

when needed (a detailed list is available upon request), and all series are represented as an

AR process in levels, with 4 lags and a constant.

The outcome of the stability tests is summarized in Table 9. According to the figures,

a stable model is accepted for 8 variables: YER, PCR, ITR, MTR, YED, URX, STN, and

TBR. Yet, from the previous subsection, only for STN, and partly for URX and TBR, a

linear model forecasts well. It is also worth noting that for the other 7 variables more than

one test rejects the null hypothesis of stability, and that the KP tests reject less often than

the F-test based statistics.

6.3 Other datasets

As mentioned in Section 2, the BDH and MSW datasets are monthly. The former

includes the gdp (YERBDH), the gdp deflator, and M3 (M#BDH), and the forecasting

period is 1991:1-1999:2. The latter includes the consumer price index (CPIMSW) and

industrial production (IPMSW), and the forecasting period is 1993:1-1997:8. In both

cases the forecasting horizons we consider are h=1,3,6 months.

Table 10a reports the best forecasting models for the BDH variables. For YERBDH

there is a clear preference for ANN models, whose performance is also rather good for

YEDBDH, while the results for M3BDH are more mixed. The latter is the only variable

for which stability of a linear specification is rejected, see Table 10b.
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Linear models do not perform well also for CPIMSW and IPMSW.  For these

variables ANN or pooled forecasts are in general the best, see Table 11a. From Table

11b, stability is rejected for both variables.

Hence, though based on a more limited number of variables, these results also suggest

going beyond linear specifications for forecasting EMU variables.

7. Conclusions

In this paper we have provided a thorough analysis of the relative merits of linear, time-

varying, non-linear and pooled forecasts for aggregate EMU variables. The main result is

that for several variables forecasts from linear models can be substantially improved

upon, even though linear specifications perform well on average.

This finding is interesting for policy purposes, but also more generally for empirical

macroeconomic analysis. For example, it suggests that measures of persistence based on

linear specifications can be inappropriate, as well as impulse response functions. Also,

the use of GMM for the estimation of EMU forward looking Taylor rules is questionable,

since the relationship between future values of inflation and the instruments can be non-

linear or time-varying.

The main limitation of the current analysis is that it lacks a theoretical economic

explanation for the results. The many changes that affected the economies now in the

EMU can explain the failure of the linear model, but they do not provide a clear

indication on the pattern of time variation of the parameter or the type of non-linearity to

be included in the statistical models for the EMU variables. Further research in this area

is required.
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Table 1 – Forecasting models

A. Linear methods

ARF(X,Y,Z) Autoregressive models (18 models)
X = C (const.) or T (trend)
Y = 0 (stationary), 1 (I(1)), P (pre-test)
Z = 4 (4 lags), a (AIC), b (BIC)

EX(X) Exponential smoothing (3 models)
X = 1 (single), 2 (double), P (pre-test)

B.  Non-linear methods

ARTVF(X,Y,Z) Time-varying AR models (9 models)
X = C (const.)
Y = 0 (stationary), 1 (I(1)), P (pre-test)
Z = 3 (3 lags), a (AIC), b (BIC)

LS(X,Y,Z) Logistic smooth transition (6 models)
X = 0 (stationary), 1 (I(1)), P (pre-test)
Y = transition variable, 10 ( tt y=ζ ), 06 ( 6−−= ttt yyζ )
Z = 3 (p, lag length)

LSF(X,W) Logistic smooth transition (6 models)
X = 0 (stationary), 1 (I(1)), P (pre-test)
W = a (AIC on transition variable and p), b (BIC)

AN(X,Y,Z,W) Artificial neural network models (9 models)
X = 0 (stationary), 1 (I(1)), P (pre-test)
Y = 2 (n1)
Z = 0, 1, 2 (n2)
W = 3 (p, lag length)

ANF(X,S) Artificial neural network models (6 models)
X = 0 (stationary), 1 (I(1)), P (pre-test)
S = a (AIC on n1, n2, p), b (BIC)

C.  No Change

NOCHANGE No change forecast (1 model)

D.  Pooling

C(X,Y) Linear combination (9 forecasts)
X = 1 (combine A,B,C), 2 (A only), 3 (B only)
Y = 0, 1, 5 (weight, w in equation (8))

M(X) Median combination (3 forecasts)
X = 1 (combine A,B,C), 2 (A only), 3 (B only)

P(X) Predictive least square combination (4 forecasts)
X = 1 (combine A,B,C), 2 (A only), 3 (B only), A (A,B,C,D)
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Table 2 - Ranking of competing models with different loss functions

Rank/ρ 1 1.5 2 2.5 3

1 h=1 ARFT1b ARFT1b ARFT1b ARFT1b ARFT1b
h=2 ARFT1b ARFT1b ARFT1b ARFT1b ARFT1b
h=4 ARFT1a ARFT1a ARFT1a ARFT1a ARFT1a

2 h=1 ARFT14 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03
h=2 ARTVFC0b ARTVFC0b ARTVFC0b ARTVFC0b ARTVFC0b
h=4 ARFT14 ARFT14 ARFT14 ARFT14 ARFT14

3 h=1 ARTVFC03 ARFT14 ARFT1a ARFT1a ARFT1a
h=2 ARTVFC0a ARTVFC0a ARTVFC03 ARTVFC03 ARTVFC03
h=4 ARFT1b ARFT1b ARFT1b ARFT1b ARFT1b

4 h=1 ARFT1a ARFT1a ARFT14 ARFT14 ARFT14
h=2 ARTVFC03 ARTVFC03 ARTVFC0a ARTVFC0a ARTVFC0a
h=4 ARTVFC0b ARTVFC0b ARTVFC0b ARTVFC0b ARFC0b

5 h=1 ARFTP4 ARFTP4 ARFTPb ARFTPb ARTVFCP3
h=2 ARFT1a ARFT1a ARFT1a ARFT1a ARFT1a
h=4 ARFC0a ARTVFC0a ARTVFC0a ARFC0b ARTVFC0b

6 h=1 ARFTPa ARFT0b ARFT0b ARFT0b ARFTPb
h=2 ARFT14 ARFT14 ARFT14 ARFT14 ARFC0b
h=4 ARFC0b ARFC0b ARFC0b ARFC0a ARFC0a

7 h=1 ARFC14 ARFTPb ARTVFC0b ARTVFC0b ARTVFC0b
h=2 ARFTPb ARFT0b ARFC0b ARFC0b ARFC0a
h=4 ARFC04 ARFC0a ARFC0a ARTVFC0a ARFC04

8 h=1 ARFT0b ARFTPa ARFTPa ARTVFCP3 ARFT0b
h=2 ARFT0b ARFC0b ARFC0a ARFC0a ARFT14
h=4 ARTVFC0a ARFC04 ARFC04 ARFC04 ARTVFC0a

9 h=1 ARFTPb ARFC14 ARFTP4 ARTVFC0a ARTVFC0a
h=2 ANF1b ARFTPb ARFT0b ARFC04 ARFC04
h=4 ARTVFC1b ARTVFC1a ARTVFCPa ARTVFCPa ARTVFCPb

10 h=1 ARFCP4 ARTVFC0b ARTVFC0a ARFTPa ARFC0b
h=2 ARTVFCPb ARFTPa ARFC04 ARFT0b ARFT0b
h=4 ARTVFC1a ARTVFC1b ARTVFCPb ARTVFCPb ARTVFCPa

Notes:
See Table1 for definition of models
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Table 3a – Number of series for which a forecasting method has lowest msfe

Method AR ES NoChange ARTV LSTAR ANN
h=1 5 0 0 4 3 3
h=2 6 0 1 2 2 4
h=4 6 0 1 2 0 6

Table 3b – Number of series for which a forecasting model is in the top-N

Method N = 1 N=5 N=10 N=15 N=20

ARFT1b h=1 3 5 7 10 11
h=2 1 3 5 6 8
h=4 2 6 10 10 11

EX1 h=1 0 0 1 1 2
h=2 0 1 2 3 3
h=4 0 3 3 3 3

NOCHANGE h=1 0 0 1 1 2
h=2 1 1 2 3 3
h=4 1 3 3 3 3

ARTVFC03 h=1 2 4 6 7 10
h=2 1 4 4 5 8
h=4 1 3 5 6 8

LSP063 h=1 0 1 1 1 6
h=2 1 2 2 2 2
h=4 0 1 2 3 4

AN0203 h=1 1 2 2 3 4
h=2 1 3 3 4 4
h=4 1 1 2 3 4

Notes: See Table 1 for definition of models
The figures report the number of series for which a model is among the N models with the lowest msfe.
The reported models are the best performers in each class for N=1.
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Table 4 – Mean and percentiles of relative msfe for selected forecasting models

Forecast Mean 0.02 0.10 0.25 0.50 0.75 0.90 0.98

ARFC04 h=1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
h=2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
h=4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ARFT1a h=1 0.92 0.45 0.77 0.86 0.92 0.97 1.15 1.31
h=2 0.91 0.31 0.71 0.77 0.86 1.01 1.16 1.77
h=4 0.77 0.06 0.26 0.33 0.78 0.93 1.24 2.59

ARFT1b h=1 0.87 0.45 0.74 0.77 0.86 0.94 0.99 1.31
h=2 0.89 0.31 0.67 0.77 0.86 0.97 1.15 1.59
h=4 0.81 0.08 0.26 0.33 0.80 1.00 1.24 2.59

EX1 h=1 2.52 0.80 0.86 0.91 1.28 2.25 4.72 14.38
h=2 3.00 0.35 0.42 1.03 1.48 4.03 9.20 11.52
h=4 3.80 0.27 0.53 0.67 1.49 6.28 12.72 14.86

NOCHANGE h=1 2.52 0.80 0.86 0.91 1.28 2.25 4.71 14.38
h=2 3.00 0.35 0.42 1.03 1.46 4.03 9.20 11.52
h=4 3.84 0.27 0.53 0.67 1.54 6.28 12.72 14.86

ARTVFC03 h=1 0.89 0.69 0.73 0.77 0.85 0.95 1.11 1.25
h=2 0.90 0.56 0.60 0.67 0.85 1.05 1.15 1.73
h=4 1.05 0.24 0.31 0.68 0.99 1.08 2.22 2.75

LSP063 h=1 1.06 0.65 0.81 0.86 0.99 1.21 1.42 1.95
h=2 1.19 0.59 0.64 0.79 1.02 1.55 2.02 2.62
h=4 1.45 0.45 0.60 0.85 1.10 1.89 2.83 3.23

AN0203 h=1 1.88 0.72 0.90 0.98 1.32 2.88 4.04 4.20
h=2 2.41 0.72 0.90 0.95 1.46 3.43 5.25 9.52
h=4 2.16 0.58 0.61 1.08 1.26 2.84 5.64 6.46

Notes:
The models are the best in Table 2 and those in Table 3b
The benchmark model is ARFC04
See Table 1 for the definition of the models
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Table 5 - Ranking of competing models with different loss functions, including pooling

Rank / ρ 1 1.5 2 2.5 3

1 h=1 ARFT1b ARFT1b ARFT1b ARFT1b ARFT1b
h=2 ARFT1b ARFT1b ARFT1b C10 C10
h=4 ARFT1a ARFT1a ARFT1a ARFT1a ARFT1a

2 h=1 ARFT14 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03
h=2 ARTVFC0b ARTVFC0b ARTVFC0b ARFT1b C30
h=4 ARFT14 ARFT14 ARFT14 ARFT14 ARFT14

3 h=1 ARTVFC03 ARFT14 C20 C20 C20
h=2 ARTVFC0a ARTVFC0a C10 ARTVFC0b ARFT1b
h=4 ARFT1b ARFT1b ARFT1b ARFT1b ARFT1b

4 h=1 ARFT1a ARFT1a ARFT1a ARFT1a ARFT1a
h=2 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03 C11
h=4 C10 C10 C10 C10 C10

5 h=1 C20 C20 ARFT14 C21 C21
h=2 ARFT1a ARFT1a ARTVFC0a ARTVFC0a C31
h=4 C20 C20 ARTVFC0b C20 C20

6 h=1 C21 C21 C21 ARFT14 C10
h=2 ARFT14 C10 ARFT1a C30 ARTVFC0b
h=4 C30 ARTVFC0b C20 ARTVFC0b ARFC0b

7 h=1 ARFTP4 C10 C10 C10 m1
h=2 C10 ARFT14 C11 C11 ARTVFC03
h=4 ARTVFC0b C30 ARTVFC0a ARFC0b ARTVFC0b

8 h=1 C10 C11 C11 C11 C11
h=2 C11 C20 C20 C31 m3
h=4 ARFC0a ARTVFC0a ARFC0b ARFC0a ARFC0a

9 h=1 ARFTPa m2 m1 m1 ARFT14
h=2 C31 C11 C30 ARFT1a ARTVFC0a
h=4 ARFC0b ARFC0b ARFC0a ARTVFC0a ARFC04

10 h=1 m2 m1 m2 m2 m2
h=2 C30 C30 C31 C20 C20
h=4 ARFC04 ARFC0a C30 ARFC04 ARTVFC0a

Notes:
See Table1 for definition of models
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Table 6a – Number of series for which a forecasting method has lowest msfe

Method AR ES NoChange ARTV LSTAR ANN C M P
H=1 2 0 0 4 3 3 1 0 2
H=2 6 0 1 2 2 4 0 0 0
H=4 6 0 1 2 0 5 0 0 1

Table 6b – Number of series for which a forecasting model is in the top-N

Method N = 1 N=5 N=10 N=15 N=20

ARFT1a h=1 0 2 6 8 8
h=2 0 1 3 8 9
h=4 3 6 9 9 11

ARFT1b h=1 2 4 7 9 10
h=2 1 3 5 6 7
h=4 0 7 9 10 11

EX1 h=1 0 0 1 1 2
h=2 0 1 2 3 3
h=4 0 3 3 3 3

NOCHANGE h=1 0 0 1 1 2
h=2 1 1 2 3 3
h=4 1 2 3 3 3

ARTVFC03 h=1 2 4 6 6 7
h=2 1 3 4 5 8
h=4 1 3 5 6 6

LSP063 h=1 1 1 1 1 5
h=2 1 2 2 2 2
h=4 0 1 1 3 3

AN0203 h=1 1 2 2 3 3
h=2 1 3 3 4 4
h=4 1 1 1 1 3

C31 h=1 0 1 1 1 2
h=2 0 1 2 5 5
h=4 1 1 2 2 2

m3 h=1 0 0 1 1 3
h=2 0 1 2 4 6
h=4 0 0 0 1 2

PA h=1 1 3 7 9 10
h=2 0 1 2 2 3
h=4 0 2 2 3 5

Notes: See Table 1 for definition of models
The figures report the number of series for which a model is among the N models with the lowest msfe.
The reported models are the best performers in each class for N=1.
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Table 7 – Mean and percentiles of relative msfe for selected forecasting models

Forecast Mean 0.02 0.10 0.25 0.50 0.75 0.90 0.98

ARFC04 h=1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
h=2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
h=4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ARFT1a h=1 0.92 0.45 0.77 0.86 0.92 0.97 1.15 1.31
h=2 0.91 0.31 0.71 0.77 0.86 1.01 1.16 1.77
h=4 0.77 0.06 0.26 0.33 0.78 0.93 1.24 2.59

ARFT1b h=1 0.87 0.45 0.74 0.77 0.86 0.94 0.99 1.31
h=2 0.89 0.31 0.67 0.77 0.86 0.97 1.15 1.59
h=4 0.81 0.08 0.26 0.33 0.80 1.00 1.24 2.59

EX1 h=1 2.52 0.80 0.86 0.91 1.28 2.25 4.72 14.38
h=2 3.00 0.35 0.42 1.03 1.48 4.03 9.20 11.52
h=4 3.80 0.27 0.53 0.67 1.49 6.28 12.72 14.86

NOCHANGE h=1 2.52 0.80 0.86 0.91 1.28 2.25 4.71 14.38
h=2 3.00 0.35 0.42 1.03 1.46 4.03 9.20 11.52
h=4 3.84 0.27 0.53 0.67 1.54 6.28 12.72 14.86

ARTVFC03 h=1 0.89 0.69 0.73 0.77 0.85 0.95 1.11 1.25
h=2 0.90 0.56 0.60 0.67 0.85 1.05 1.15 1.73
h=4 1.05 0.24 0.31 0.68 0.99 1.08 2.22 2.75

LSP063 h=1 1.06 0.65 0.81 0.86 0.99 1.21 1.42 1.95
h=2 1.19 0.59 0.64 0.79 1.02 1.55 2.02 2.62
h=4 1.45 0.45 0.60 0.85 1.10 1.89 2.83 3.23

AN0203 h=1 1.88 0.72 0.90 0.98 1.32 2.88 4.04 4.20
h=2 2.41 0.72 0.90 0.95 1.46 3.43 5.25 9.52
h=4 2.16 0.58 0.61 1.08 1.26 2.84 5.64 6.46

C31 h=1 0.97 0.74 0.80 0.84 0.95 1.07 1.22 1.22
h=2 0.92 0.62 0.66 0.77 0.86 1.03 1.27 1.31
h=4 1.09 0.50 0.63 0.73 1.10 1.31 1.52 2.08

m3 h=1 0.96 0.76 0.80 0.86 0.91 1.11 1.12 1.31
h=2 0.93 0.58 0.73 0.76 0.81 1.09 1.32 1.35
h=4 1.17 0.55 0.57 0.76 1.10 1.51 1.65 2.36

PA h=1 1.00 0.65 0.67 0.76 0.87 1.07 1.39 2.11
h=2 1.26 0.63 0.79 0.96 1.03 1.40 1.56 3.19
h=4 1.65 0.50 0.82 0.86 1.09 1.49 1.88 8.78

Notes:
The models are the best in Table 5 and those in Table 6b
The benchmark model is ARFC04
See Table 1 for the definition of the models
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Table 8 - Best models for each variable with different loss functions

Variable/ρ 1 1.5 2 2.5 3
YER h=1 LSP103 LSP103 PA ARFT0a ARFT0a

h=2 C11 C20 ARFC1b ARFCPb ARFTPb
h=4 ANFPa ANFPa C31 C11 C11

PCR h=1 ANF0b ANF0b C30 C30 C30
h=2 LSF1a LSF1a LSF1a LS0063 LS0063
h=4 C30 ARFC04 ARFT1a ARFT1a ARFT1a

GCR h=1 NOCHANGE AN0203 AN0203 AN0203 AN0203
h=2 AN0213 ARFT1b ARFT1b ARFT1b ARFT1b
h=4 AN0213 AN0203 AN0203 AN0203 AN0203

ITR h=1 ANF0b LSP063 LSP063 ANF0b ANF0b
h=2 ANP213 ANP213 ANP213 ANP213 ANP213
h=4 ARFT04 ARFT04 NOCHANGE EX1 EX1

SCR h=1 ANP223 LSP103 LS0103 LS0103 LS0103
h=2 ANP213 ANP213 ARFCPb ARFCPb ARFCPb
h=4 ARFCPb ARFC0b ARFC0b ARFCPb ARFC0b

MTR h=1 ARFTP4 ARFTP4 P2 P2 P2
h=2 ARFTP4 ARFCP4 ARFTP4 ARFTP4 ARFTP4
h=4 ANP223 AN1223 ANP223 ANP223 ANP223

XTR h=1 ANP203 ANP203 ANP203 AN1203 ARTVFC0a
h=2 LSP063 LS1063 LSP063 LSP063 LSP063
h=4 ARTVFC0a ARTVFC0a ARTVFC0b ARTVFC0b ARTVFC0b

HICP h=1 ARTVFC1b ARTVFC1b ARTVFCPb ARTVFCPa ARTVFC1b
h=2 ARTVFC0b ARTVFC0b ARTVFC0b LSF1a LSF1a
h=4 ANF0a ANF0a AN0223 AN0223 AN0223

YED h=1 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03
h=2 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03
h=4 ARFT14 ARTVFC03 ARTVFC03 ARTVFC03 ARTVFC03

ULC h=1 ARTVFC03 ARTVFC03 ARFT1b ARFT1b ARFT1b
h=2 ARTVFC03 ANF1b ANF1b ANFPb ANF1b
h=4 ARFT1a ARTVFC03 ARFT14 ARFT14 ARTVFC03

URX h=1 ARFT1b ARFT1b ARTVFC03 ARTVFC03 ARTVFC03
h=2 EX1 NOCHANGE NOCHANGE NOCHANGE NOCHANGE
h=4 NOCHANGE PA ANFPb ANF1b PA

LTN h=1 ARTVFCPb P3 ARTVFC1b ARTVFC13 ARTVFC13
h=2 ARFT14 ARFT14 ANF1b ANF1a ANFPb
h=4 ARFT14 ARFT14 ARFT14 ARFT14 ARFT14

STN h=1 ARFTPb ARFTPb ARFT1b ARFT1b ARFT1a
h=2 ARFT14 ARFT14 ARFT14 ARFT14 ARFT14
h=4 ARFT1a ARFT14 ARFT1a ARFT1a ARFT14

EER h=1 m2 AN0223 AN0223 AN0223 AN0223
h=2 ARFT0b m3 AN0203 LS0063 LS0063
h=4 AN0213 AN0213 AN0213 AN0213 AN0213

TBR h=1 ARFT14 ARFC1b LSF1b LSF1b LSFPb
h=2 ARFT1b ARFCPb ARFTPb ARFT1b ARFT1b
h=4 ARTVFC1b ARFT1b ARFT1a ARFT1b ARFT1a

Notes:
See Table1 for the definition of the models
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Table 9 –Stability Tests

Variable NY KP1 KP2 BP QLR MLR ALR

yer 0.91 0.71 0.1 5.07 10.97 5.58 3.73
pcr 0.63 0.73 0.1 0.68 9.33 4.52 3.12
gcr 1.11 1.06 0.48 ** 4.15 14.33 8.86 ** 4.93
itr 0.48 0.62 0.07 3.59 7.36 3.21 2
scr 1.5 ** 0.5 0.04 5.99 25.65 *** 12.88 *** 9.79 ***
mtr 0.58 0.52 0.06 1.46 5.51 3.4 1.92
xtr 1.92 *** 0.58 0.06 1.48 22.15 ** 13.73 *** 8.57 ***
hicp 1.11 1.12 0.32 18.96 *** 23.89 *** 12.22 *** 9.7 ***
yed 0.59 0.96 0.12 1.35 14.85 4.86 4.98
ulc 1.28 * 0.95 0.12 0.84 78.38 *** 12.09 *** 34.83 ***
urx 0.91 0.88 0.22 5.2 11.69 6.01 3.99
ltn 1.23 1.26 * 0.39 * 0.96 21.56 ** 9.21 ** 7.62 **
stn 0.44 0.95 0.17 1.15 10.48 2.74 2.35
eer 1.29 * 0.95 0.21 0.79 39.95 *** 6.94 15.88 ***
tbr 0.61 0.63 0.06 1.11 12.02 3.34 3.1

Notes:
The model is an AR4 with constant for the first differenced variables
NY is Nyblom’s (1989) test
KP1 and KP2 are the Ploeberger and Kramer’s (1992) supremum and mean square tests
BP is Breusch and Pagan’s (1979) Lagrange multiplier test
QLR is Quandt’s (1960) supremum F-test
MLR is Andrews and Ploeberger’s (1994) mean F-test
ALR is Andrews and Ploeberger’s (1994) average exponential F-test
*, **, and *** indicate significance at, respectively, 10%, 5% and 1% level
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Table 10a - Best models for each variable with different loss functions, BDH dataset

Variable/ρ 1 1.5 2 2.5 3

yerbdh h=1 ANFPa ANF1a ANFPa ANFPa ANFPa
h=3 ANF0b ANF0b ANF0b ANF0b ANF0b
h=6 ANF0a ANF0a ANF0a ANF0a ANF0a

yedbdh h=1 LSF0a LSF0a LSF0a LSF0a LSF0a
h=3 ANF0a ANF0a ANF0a ANF0a ANF0a
h=6 ANF0a ANF0a ANF0a ANF0a ANF0a

m3bdh h=1 P1 AN0223 ANF0b ANF0b ANF0b
h=3 LSF0b LSF0b LSF0b LSF0b LSF0b
h=6 P1 ANF0a P3 ANF0a P1

Notes:
See Table1 for the definition of the models
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Table 10b –Stability Tests, BDH dataset

Variable NY KP1 KP2 BP QLR MLR ALR

yerbdh 0.74 0.65 0.09 4.36 10.44 4.6 3.37
yedbdh 0.5 0.73 0.11 6.52 7.11 3.73 2.3
m3bdh 0.96 0.89 0.17 8.39 * 19.5 ** 9.57 ** 7.2 **

Notes:
The model is an AR4 with constant for the first differenced variables
NY is Nyblom’s (1989) test
KP1 and KP2 are the Ploeberger and Kramer’s (1992) supremum and mean square tests
BP is Breusch and Pagan’s (1979) Lagrange multiplier test
QLR is Quandt’s (1960) supremum F-test
MLR is Andrews and Ploeberger’s (1994) mean F-test
ALR is Andrews and Ploeberger’s (1994) average exponential F-test
*, **, and *** indicate significance at, respectively, 10%, 5% and 1% level
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Table 11a - Best models for each variable with different loss functions, MSW dataset

Variable/ρ 1 1.5 2 2.5 3

cpimsw h=1 P3 PA P3 AN0223 AN0223
h=3 AN0203 ANF0a ANF0a ANF0a ANF0a
h=6 AN0223 AN0223 AN0223 AN0223 AN0223

ipmsw h=1 EXP ANP223 LSFPa LSF1a LSP103
h=3 C20 C20 C20 ARTVFC1b ARTVFCPb
h=6 C10 C10 C20 ARFT0b ARFT04

Notes:
See Table1 for the definition of the models
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Table 11b –Stability Tests, MSW dataset

Variable NY KP1 KP2 BP QLR MLR ALR

cpimsw 0.98 0.82 0.16 7.44 14.86 8.05 * 4.93
ipmsw 1.33 * 0.8 0.14 4.65 17.25 * 8.16 * 6.31 **

Notes:
The model is an AR4 with constant for the first differenced variables
NY is Nyblom’s (1989) test
KP1 and KP2 are the Ploeberger and Kramer’s (1992) supremum and mean square tests
BP is Breusch and Pagan’s (1979) Lagrange multiplier test
QLR is Quandt’s (1960) supremum F-test
MLR is Andrews and Ploeberger’s (1994) mean F-test
ALR is Andrews and Ploeberger’s (1994) average exponential F-test
*, **, and *** indicate significance at, respectively, 10%, 5% and 1% level
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