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Abstract

In this paper we compare alternative approaches for dating the Euro area business cycle
and analyzing its characteristics. First, we extend a commonly used dating procedure to allow
for length, size and amplitude restrictions, and to compute the probability of a phase change.
Second, we apply the modified algorithm for dating both the classical Euro area cycle and
the deviation cycle, where the latter is obtained by a variety of methods, including a modified
HP filter that reproduces the features of the BK filter but avoids end-point problems, and a
production function based approach. Third, we repeat the dating exercise for the main Euro
area countries, evaluate the degree of syncronization, and compare the results with the UK
and the US. Fourth, we construct indices of business cycle diffusion, and assess how spread
are cyclical movements throughout the economy. Finally, we repeat the dating exercise using
monthly industrial production data, to evaluate whether the higher sampling frequency can
compensate the higher variability of the series and produce a more accurate dating.
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1 Introduction

The business cycle can be defined as a broadly-based movement of economic variables in a se-
quentially oscillatory manner. The term ’cycle’ is a misnomer to the extent to which it suggests a
regular periodicity; one of its features is that the length and depth (duration and amplitude) of the
cycle seems to vary. Indeed one of the current preoccupations of US business cycle experts (e.g.,
Stock and Watson 2002) is to explain the apparent lengthening of the cycle there in recent history.

There are several other reasons for taking an interest in the cycle. The evolution of the cycle
carries with it an evolution in variables of considerable consequence for policy-makers: indeed,
policy-makers are commonly depicted as endeavouring to reduce the extent of fluctuations by
exercising stabilization policy. A closely related interest has been in the use of business cycle
evidence in the context of optimal currency area theory and its indication for the optimality of
monetary union. Other things equal, business cycle symmetry is a positive indicator for monetary
union as it indicates that a single monetary policy will be broadly appropriate for all participants
in the monetary union. On the other side, an asymmetry of business cycle experience is usually
treated as a negative indicator for participation in monetary union. Now is a good time to begin
the study of the cyclical properties of the Eurozone economy, as it is part of the assembly of facts
about the ”new” economy given life by the commitment to a single monetary policy.

The literature recognizes two broad definitions of the cycle, the so-called classical cycle and
the growth or deviation cycle. The difference between the two is conceptually simple: in the case
of the deviation cycle, turning points are defined with respect to deviations of the rate of growth
of GDP from an appropriately defined trend rate of growth. There is a large technical literature
which is concerned with the best method of extracting a trend from the data, and it turns out
that the method adopted may carry quite important implications for the subsequent dating of the
turning points. The classical cycle, by contrast, selects its tuning points on the basis of an absolute
decline (or rise) in the value of GDP.

In early post-war decades, especially in Western Europe, growth was relatively persistent and
absolute declines in output were comparatively rare; the growth cycle then seemed to be of more
analytical value especially as inflexions in the rate of growth of output could reasonably be related
to fluctuations in the levels of employment and unemployment. In more recent decades, however,
there have been a number of instances of absolute decline in output, and popular description at
any rate has focussed more on the classical cycle (for example there is a widespread impression
that a recession defines itself as two consecutive quarters of absolute decline). In addition, the
concern mentioned above that de-trending methods can affect the information content of the series
in unwonted ways, has reinforced the case for examining the classical cycle.

In this paper we analyze the business cycle in the Eurozone and in its main constituent economies,
comparing both concepts of the cycle. Previous work documenting the cyclical experience of the
Eurozone economy is quite sparse, being limited essentially to the paper by Agresti and Mojon
(2001), which applies the notion of a growth or deviation cycle based on the use of the bandpass
filter, and work by Harding and Pagan (Harding and Pagan, 2001, Pagan, 2002) which focuses also
on the notion of the classical cycle. We adopt Pagan’s dating methodology, but extend it to com-
pute the probability of phase switch, introduce depth or amplitude restrictions, and dating monthly
series. Our results on dating the cycle largely confirm the findings in these previous studies, with
some differences we note below.
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We employ GDP as a basic broad-based measure of economic activity, but also study the cycli-
cal evolution of other variables, such as employment, investment, consumption and net exports to
examine their possible role in relation to the cycle, rather than as giving indications for a different
dating of the cycle itself.

Any study of the Eurozone economy faces a problem of data availability. The Eurozone only
came into being on the 1st January 1999, and the study of business cycles needs a larger sample
than three-and-a-half years. To extend the data back in time encounters the problem of aggregation
when exchange rates are pone to change: in these circumstances there is no ”perfect” method of
aggregation. We have employed, for the most part, the data that have been constructed for the
ECB’s Area-wide model, conducting a check against the main alternatively-generated series, that
produced by Beyer, Doornik and Hendry (2001) in two instances (the comparison allows us to
conclude that our results are relatively robust to the method of aggregation).

In section 2 we present our analysis of the Eurozone broad aggregates. Dating of the classical
cycle is accomplished by employing our modified Harding and Pagan’s algorithm. For the de-
viation cycle we first review the most popular methods of detrending, those due to Hodrick and
Prescott (1997, HP) and to Baxter and King (1999, BK), going on the present our preferred esti-
mates which rely either on a technique suggested by Harvey and Trimbur (2002) or on a modified
HP filter that reproduces the features of the BK filter but avoids end-point problems. In addition
we also experiment with a definition of the trend based on a production function approach of the
type that is used in calculating output gaps.

In section 3 we repeat the estimation for the main Eurozone countries (France, Germany, Italy),
for which we can obtain consistent output series, together with the UK. We compare timing and
other measures of the cycle, in addition including the US in the comparison.

Section 4 seeks to employ higher frequency data (the GDP data are quarterly), namely (monthly)
industrial production data. The advantage of concentrating on this series is that its higher fre-
quency should enable a more precise dating of the cycle whilst it is already known that the most
cyclically-sensitive component of GDP is in fact industrial production. The disadvantages are that
industrial production is a small proportion of total output in many European economies, and has
been declining over the period as a whole. Moreover, its higher variability requires a careful use
of the constrained dating algorithm.

Section 5 constructs indices of business cycle diffusion, and applies econometric techniques
aimed at assessing how spread are cyclical movements throughout the economy. Section 6 exploits
the diffusion indices to evaluate the degree of convergence across the Euro area countries. Section
7 summarizes and concludes. The paper contains a number of appendices which lay out the
technical detail of what has been done.

2 The aggregate cycle

This sections analyses aggregate time series data available for the Eurozone both from the classical
and deviation cycle perspective. The emphasis is on the Euro area GDP, but we also consider
its decomposition into expenditure components and the labour market. The national accounts
aggregates are measured at constant prices.
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2.1 Classical BC

Classical cycle dating commonly follows the algorithm developed by Bry and Boschan (1971),
the so-called BB algorithm, which is designed in its original form for monthly data and claims
to replicate the NBER procedures for a single series (this would commonly be that of industrial
production at a monthly frequency). More recently, the algorithm has been adapted to the quarterly
frequency (by e.g., Harding and Pagan, 2001, in which the resultant algorithm is dubbed the BBQ
algorithm, and McDermott and Scott, 1999).

This is the lead that we follow here. The classical cycle makes relatively few strict definitional
demands: the traditional ones are that a peak (trough) is identified as preceding an absolute fall
(rise) in the chosen measure of economic activity, and that peaks and troughs should alternate.
Such a sparse definition might admit blips and bumps in economic activity which could not be
recognised as cycles and it is normal to add minimum duration requirements for each phase of the
cycle and for the cycle as a whole, as here where cyclical phases must exceed two quarters to be
recognized as such and where the cycle as a whole must last at least five quarters. The algorithm is
explained in more detail in Appendix A, where we show that, using the theory of Markov chains, it
is relatively straightforward to implement minimum duration requirements, alternation of turning
points, and to taylor the dating algorithm for specific needs.

Our classical business cycle chronology is presented compactly in Figure 1. Two alternative
measures of Eurozone GDP are employed: the “ECB series” (this is the data set underlying the
application of the “Area-wide model” (reference) and the ”BDH” series, constructed by Beyer,
Dornik and Hendry (2001) . The former has a longer sample period (1970-2001) than the latter
(1980-2001) and thus reveals one more cycle. Otherwise, the three cycles identified in the shorter
data period overlap almost exactly, the only difference being in the location of the last trough
which is anticipated by one quarter if one takes the BDH measure, and the three decades from
1970 comprise four cycles altogether. The chronology of turning points, not surprisingly, is also
exactly as in Harding and Pagan (2001). It should also be noticed that the two quarters recession
in 1982 is a minor event and would be censored if the dating algorithm was tailored to impose ties
on the depth of recessions and expansions; we will return to this issue shortly.

Figure 1 alo presents and expansion / recession classification based on GDP growth rates,
which basically confirms the previous findings. More details on the relationships among classical,
deviation and growth cycles are provided in Appendix B.1

Table 2 displays some descriptive statistics. For the moment we concentrate on those pertaining
to GDP (denoted YER in the table). There is a notable asymmetry between the average length
of expansions and recessions, the former much longer (28 quarters) than the latter (3 quarters),
which is to be expected of classical cycles in a growing economy. The probabilities of being in
one or other phase reflect the relative values of these phase lengths (about 90% versus 10%). The
amplitudes of the expansion periods are also much bigger than those of the recession periods.
”Steepness”, following the suggestion of Harding and Pagan (2001), is measured as the quotient
of the amplitude and the duration of the phase. Expansions last longer, and are steeper than
recessions, which are quite brief and yet more gently sloped.

Table 2 also displays comparable information for a number of other series - notably the national

1In the comparison of Appendix B we also include the Eurocoin indicator, contructed by Altissimo et al. (2001),
and regularly published by the CEPR at http://www.cepr.org/data/eurocoin/.
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accounts categories pertaining to private and government consumption (PCR and GCR), fixed
capital formation (ITR), imports and exports of goods and srvices, and net exports (MTR, XTR,
Net Imp) and inventory change (SCR), together with employment (LNN), productivity (LPROD),
unemployment (URX) and unit labour costs (ULC). Standard theory would suggest that investment
and inventories are likely to be the most cyclical components of GDP, and this expectation is borne
out in the data: more cycles are identified, the recession and expansion probabilities are more
nearly equal and the steepness of the phases is more nearly equal. It is not surprising perhaps to
find, on the other hand, that the cyclical behaviour of private consumption is much in line with that
of GDP as a whole, whilst government consumption is the smoothest component of all. Exports
and imports of goods and services, and even more, the net of the two, seem to be highly cylical
in their behaviour. Employment and unemployment exhibit more cycles than GDP, which might
seem surprising.

2.2 Deviation Cycles

An alternative business cycle definition refers the recurrent, though not strictly periodic, deviations
around the long term path of the series. The deviation or growth cycle typically represents an
unobserved component and various methods and filters have been proposed to extract it, both
in the model-based and the nonparametric frameworks. Appendices D, E and F review briefly
the univariate methods that will be employed, among which the Baxter and King (1999) filter, a
bandpass version of the Hodrick and Prescott (1997) filter and the Harvey and Trimbur (2002)
cyclical filters derived within an unobserved components model. In the sequel we shall denote the
deviation cycle byψt.

Figure 2 presents several measures of the deviation cycle in the Euro area GDP, with the asso-
ciated turning points detected by the dating algorithm BBQDC2 of appendix A.4, with restrictions
on the size of the fluctuations that will be discussed shortly. The first measure is the Baxter and
King cycle, that is available for the central part of the sample excluding the first and last 12 quar-
ters; the second, displayed on the upper right panel, is the HP bandpass filtered cycle, which results
by subtracting the HP trend with smoothing parameterλ = 0.52, which defines a lowpass filter
dampening the fluctuations with a period smaller than 4 quarters (1.25 years, e.g. high frequency
noise) from the HP trend with smoothing parameterλ = 677, which in turn defines a lowpass
filter cutting off the fluctuations with a period smaller than 8 years; later on we shall refer to these
filters respectively as HP(1.25) and HP(8), and in general HP(·) will denote a lowpass filter with
cut-off period in years indicated in parenthesis. The bandpass filter stemming from the subtrac-
tion extracts the fluctuations with a period between 5 quarters and 8 years, and in this respect
produces estimates of the cycle that are comparable, although slightly noisier to the BK cycle,
without suffering from unavailability of the end of sample estimates.

The bottom panels display measures of the output gap derived respectively from a bivariate
model of GDP and CPI inflation and a multivariate model based on total factor productivity, labour
force participation rates, the unemployment rate, capacity utilisation and CPI inflation, implement-
ing the production function approach, see Proietti, Musso and Westermann (2002) for details.2 The

2The PFA model considered here is the one featuring pseudo-integrated cycles. The paper highlights the uncertainty
issue arising from model-based univariate estimation of the output gap, and performs a rolling forecast exercise whose
outcome is that the bivariate model produces the best forecasting performance in the test period considered.
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first equation of the bivariate model decomposes output into potential,µt, represented as a local
linear trend, and the output gap,ψt, a stationary ARMA(2,1) process:

yt = µt + ψt,

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η)

βt = βt−1 + ζt, ζt ∼ NID(0, σ2
ζ )

ψt = ρ cosλcψt−1 + ρ sinλcψ
∗
t−1 + κt, κt ∼ NID(0, σ2

κ)
ψ∗t = −ρ sinλcψt−1 + ρ cosλcψ

∗
t−1 + κ∗t , κ∗t ∼ NID(0, σ2

κ)

whereηt, ζt, κt, andκ∗t are mutually independent. The price equation is a version of Gordon’s
triangle model of inflation, specified as follows:

pt = τt +
∑

k δk(L)xkt

τt = τt−1 + π∗t−1 + ηπt ηπt ∼ NID(0, σ2
ηπ),

π∗t = π∗t−1 + θπ(L)ψt + ζπt ζπt ∼ NID(0, σ2
ζπ).

where the regressors are commodity pricesxkt and the nominal effective exchange rate of the
Euro. The only link between the prices and output equations is the presence ofψt as a determinant
of underlying inflation,π∗t . The reduced form is

∆2pt = θπ(L)ψt−1 +
∑

k

δk(L)∆2xkt + (1 + ϑL)εt,

so thatθπ(1) = 0 (the level effect is zero) the output gap has only transitory (change) effects on
inflation.

The notion of an output gap is more specialised than the deviation cycle in output, since it
provides a measure of inflationary pressures. This poses a new issue to the dating of the gaps:
Pagan proposes to scoreψt > 0 and ψt < 0, as the interest lies in dating periods in which
the inflationary pressures are positive or negative. However, as the evidence reported in Proietti,
Musso and Westermann (2002) clearly points out, it is the change effect associated to∆ψt that is
more relevant than the level effect exerted by the output gap, which brings us back to the problem
of dating expansions and recessions in the level ofψt. We also notice in passing that the scoring
of the gap according to whether it is positive or negative is a by-product of BBQDC2.

Figure 2 shows a broad agreement in the identified turning points: the 74.1 and 80.1 peaks
are common to the four representations. The location of the start of the 90s recession is more
uncertain since there are two neighbouring local maxima at the beginning of 1990 and 1992,
which is featured by the expenditure components and the GDP of individual countries. Also the
beginning of the 80s expansion is scored differently by the different methods.

As stated above, the BBQDC2 dating algorithm featured restrictions on the amplitude of the
fluctuations: in its first stage, by which change of signs inψt are identified by using the usual BBQ
dating rules on the cumulated cycle, we amended the definition of the expansions and terminating
sequences as in appendix A.6 by settingc = 0.005, which amounts to censor the fluctuations
around zero with amplitude less than 0.5% of total GDP. Amplitude restrictions are perfectly
sensible, although they inevitably underlie some degree of arbitrariness, as the amplitude of the
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deviation cycle differs according to the signal extraction model or technique, see eg. figure 2,
the maximum amplitude usually being achieved by linear detrending of the series. Nevertheless
they enhance one of the three key features (the three “D”s) that are used to characterise economic
fluctuations as business cycle fluctuations: duration is ensured by the ties imposed by the dating
algorithm: complying with the BBQ convention, we impose a minimum duration of 5 quarters for
a full cycle and 2 quarters for a phase. The second characteristic of the business cycle, diffusion,
is automatically enforced when we deal with an overall measure of economic activity, such as
GDP. The third, depth, needs to be enforced setting up additional restrictions as in appendix A.6,
these rules are usually judgemental, but they can be drawn from the history of the series under
investigation.

Table 3 presents some characteristic of the deviation cycles extracted by the HP quarterly band-
pass filter (appendix E.1) not using any censoring rule on the amplitude of the fluctuations. This
results in a relatively large number of turning points, compare e.g. the YER series with figure 2,
and affects the duration and the amplitude statistics. The stylised fact that is however robust to the
choice of censoring rules is that the average amplitude of recessions and expansions is about the
same, as implied by the symmetry of the cyclical model or signal extraction filter. It is important
to stress that this is an implication of the representation of the cycle that is chosen, although a
model based framework allows to test for business cycle nonlinearity and asymmetry (see, e.g..
Proietti, 1998). Table 3 confirms that investment (ITR) is one of the most cyclically variable ex-
penditure component of GDP, featuring an average amplitude of 5% for both phases. Employment
and unemployment are now less cyclical than GDP.

The Harvey and Trimbur (2002) cycles, see Appendix F, estimated by the Kalman filter and
smoother using a second order representation for the trend and the cycle, are reported in figure
3 for a few selected series, along with recession probabilities and the probabilities of peaks and
troughs (on a reverse scale). The estimated parameters imply a smooth representation for the
cycle,(1− φL)2ψt = κt, i.e. a second order autoregressive representation with two common real
roots at the zero frequency. As a result the estimated component is relatively smooth and this has
a bearing on turning points characterisation which need not to be sharp (the ITR series being an
exception). The chronology for GDP arising from this representation is slightly different from that
obtained from the other approaches that we considered. Fundamentally, the depth of the downturn
at the beginning of the 80ies and the subsequent recovery are emphasised; this is a consequence
of the smoothness prior imposed on the cyclical dynamics, which makes the extracted component
much more stable and less responsive to the kind of shorter run fluctuations that occurred in the
mid seventies and at the end of the nineties. For instance, the estimated cycle for ITR does not fall
below zero in 1975 and no trough is detected. We also notice that the recession probabilities are
never sharp, which is again an expression of the fundamental trade-off between smoothness in the
signal evolution and the resolution, or sharpness, in detecting cyclical changes.

3 Country specific cycles

Our analysis of country specific cycles focuses on two data sets, the first relating to the GDP at
constant prices for five countries, Germany, France, Italy, UK and the USA, starting from 1970
and available from various sources, among which the OECD Main economic indicators and the
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US Bureau of Economic Analysis. For Germany the series, made available by the IFO, has been
seasonally adjusted, corrected for working days and the level shift due to reunification, using the
basic structural model with regression effects. The Eurozone series is used for comparison. The
second set is produced by Eurostat and provides a highly comparable set of statistics about real
GDP based on the new system of national accounts (ESA95), but for a shorter sample.

3.1 Classical Cycles

Figure 4 presents the turning points of the classical BC for the Euro Area, Germany, France, Italy,
UK and the USA, identified using the HP(1.25) filtered series on the the first data set. We recall
that this is a low-pass filter dampening the fluctuations with a period less than five quarters, which
strictly do not pertain to the business cycle.

We next address the issue of synchronisation and concordance among the country specific
business cycles. The dating algorithm, applied to the HP(1.25) filtered GDP series furnishes the
indicator variables of the state of the economy,Rt andEt (recession and expansion, respectively).
The index of concordance between the classical BC for the individual countries and the Euro
Area aggregate cycle,Iij , is simply the percentage of time units spent in the same phase, also
known as the simple matching similarity coefficient. The mean corrected concordance index, is
I∗ij = Iij− Īij , whereĪij is the estimate of the expected value of the index under the assumption of
independence, which represents the fraction to be expected if there were no relationship between
the cycle in the two countries. Finally, dividingI∗ij by its asymptotic standard error estimated
nonparametrically using a Newey-West estimator, we get the standardized index, which is reported
in Table 6 and can be interpreted as a t-statistic for the null hypothesis of independence of the
cycles (see Appendix C for details).

Looking at the Euro area as a whole, the concordance is lowest with the UK, though still
statistically different from zero, highest with the countries within the Euro area, as expected, and
intermediate with the US. Germany, France and Italy are also the group of countries with the
highest cross concordances. The highest concordance for the UK is with the US.

Harding and Pagan (2001, Pagan, 2002) also propose to regress the recession indicator for
one country on the same indicator for another country, and evaluate BC independence using the
t-statistic for the significance of the parameters, computed using HAC standard errors. The results,
reported in table 7 now suggest that the UK cycle is even independent of that of the EA, Germany
and France, whereas there is a significant association with Italy and the US and cross independence
across the Euro area countries is strongly rejected.

The analysis of the Eurostat series (see figure 6), available for a shorter time span, beginning
in 1980 for most countries, is useful to pinpoint an additional peak that was not identified from
the other Eurozone series considered before, taking place in the second quarter of 2001. This is
mainly due to Germany, but is also anticipated in the series for Finland, Belgium, the Netherlands
and Austria.

3.2 Deviation Cycles

Figure 7 plots the deviation cycles, and the squared coherence between the Euro area deviation
cycle and that of the countries belonging to the first data set. The plot suggests lower coherence
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with the US and UK cycles, confiriming the previous finding
To investigate further the issues of concordance and synchronisation we also report the stan-

dardised concordance index (table 9) and the robust test for cycle independence (table 10). The
results largely confirm the previous outcome: there is a high degree of sinchronisation within the
Euro area, with the lowest concordance for the US and intermediate for the UK, and in all cases
the hypothesis of business cycle independence is rejected.

4 Monthly indicators

This section focuses on the analysis of business cycles in monthly industrial production series for
most European countries and the US. The series, seasonally adjusted, are drawn from the OECD
Main Economic Indicators and cover a sample period that differs for the individual countries, but
is usually rather long. We set off by identifying the major additive outliers; the strategy was to
add pulse intervention variables one at a time corresponding to the sample observation that had a
standardised auxiliary residual for the irregular component of the local linear trend model greater
than 4 in absolute value. See Harvey and Koopman (1992) for the definition of auxiliary residuals
and their use for outlier and structural break detection.

Despite the outlier correction, too many turning points are identified due to the presence of
high frequency noise that may result from intrinsic volatility, underadjustment of working days
variation and other events such as moving festivals and strikes. This problem may be tackled
either by setting up amplitude restrictions or by smoothing the series. Figures 8 and 9 illustrate the
impact of smoothing by different filtes on dating the classical business cycle. The first plot refers
to HP(1.25), dampening the fluctuations with a period less than 15 months, whereas the second
is based on HP(4), and thus on a smoother signal - compare with the use of different moving
averages in the Bry and Boschan routine. We employ the simulation smoother to estimate the
probability of recessions and of a turning point. HP(1.25) produces a relatively large number of
cycles. However, some stylised facts are common. The turning points characterisation (those of a
trough are plotted on a reversed scale) is not particularly sharp as they have attached a rather low
probability, which is smeared on adjacent data points, but the recession and expansion probabilities
are rather sharp. This results because of the uncertainty surrounding the signal estimates in an
environment where noise contamination is at relatively high levels. The shape of the recession
probabilities highlights some interesting features, among which it is remarkable that expansion
and recession probabilities behave asymmetrically (expansion termination is usually quicker than
recession termination). When average growth is reduced, as it occurs for France in the second half
of the 70s, the probability of recession is higher. For Germany, France and Italy we find a high
degree of synchronisation.

As for concordance analysis, Table 11 reports the standardized concordance index for all avail-
able countries. These are in general all rather high for the countries in the Euro area, whose
business cycles turn out to be also not independent from those of the UK and US. Similar results
are obtained for the HP- deviation cycles, see Table 12.
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5 Diffusion and Multivariate Business Cycle Assessment

An index of business cycle diffusion measures the percentage of economic time series in a certain
state, e.g. recession. It typically aims at assessing on a 0-1 continuous scale how spread are
business cycle movements throughout the economy, by looking at several phenomena that have
know nature, eg. coincident or leading.

There are two ways in which diffusion indexes can be constructed. The first amounts to score
each individual time series and then take the cross-sectional average

Dt =
1
N

N∑

i=1

Sit, t = 1, . . . , T

whereSit takes value 1 in recessions and zero otherwise, andN is the cross-sectional dimension.
It can be worth weighting the series considered according to their economic relevance and/or

their proved efficacy in signalling recessionary events. If a system of (possibly time-varying)
weightswit is available then

Dt =
N∑

i=1

witSit, t = 1, . . . , T,
∑

i

wit = 1.

The underlying model is that the aggregate index,Dt, is a finite mixture of two states Markov
processes, the mixture probabilities being given bywit. Suppose that the individual time series
are the components of an aggregateyt =

∑
i wiyit and that we score recessions according to the

calculus rule, that isSt = I(∆yt < 0), whereI(·) is the indicator function, then

E(St) = P (
∑

i

wi∆yit < 0) > E(Dt) =
N∑

i=1

witE(Sit),

so that the diffusion index does not measure the probability of a recession in the aggregate series;
rather it measures the proportion of the aggregate that is in a recession.

The second method to compute diffusion indexes exploits the dating algorithm of Appendix
A, where the transition probabilities are computed using the probability attached to expansion and
recession terminating sequences (ETS and RTS, respectively) in the following way:

P (ETS)

t =
N∑

i=1

witI(ETSit), P (RTS)

t =
N∑

i=1

witI(RTSit).

Under this rule, the transition probabilities depend on the sum of the weights of the series that are
in those two terminating sequences. Again, the underlying assumption is that the aggregateETSt

is a finite mixture of cross-sectionalETSit and the dating algorithm furnishes probabilities that
must be interpreted asP (Dt = 1), not asP (St = 1), and loosely speaking are a smoothed version
of the previous diffusion index.

Assessing the diffusion of the business cycle in the Euro area requires the evaluation of sector
and country specific data, and many disaggregated time series, but given our data availability for
the present being we consider three sets of data that can be used to produce a multivariate assess-
ment of the classical cycle in the Euro area: the first is made up of the 5 expenditure components
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of GDP (private consumption, government consumption, fixed capital formation, net exports and
variation in stocks) considered in section 2.1. The set of weights is immediately available as the
GDP shares. The second set considers total factor productivity, as measured by the Solow’s resid-
ual using the time averaged labour shareα = 0.35 and a constant returns to scale Cobb-Douglas
technology, total employment, and capital. This yields another decomposition of log output The
weights are proportional to the Cobb-Douglas weights. The third set consists of the 12 industrial
production series for the Euro area countries; the weights were obtained from the total Gross Value
added at basic prices for the year 2001, available from the individual countries account (except for
Greece, Luxembourg and Ireland, for which it was interpolated from total GDP estimates).

Figure 12 presents the diffusion indexes emerging from the three sets. The plot reveals the
following: the diffusion of recessions is higher for industrial production and there is a tendency to
peaking with a short lead, usually one quarter. A recessionary pattern that is idiosyncratic to the
industrial sector can be found in 1987. Industrial production and the variables in the production
function approach signal entry to a recessionary state in 1990 and 1991 respectively, whereas the
GDP by expenditure diffusion peaks in 1992. For the latter, an important contribution is made by
labour which peaks before GDP, as noticed before. The diffusion indexes behave asymmetrically
along the time axis, this feature stems from the fact that the proportion of time series entering a
recession is larger than that leaving it, which explains the positively skewed pattern.

The example also illustrates that weighting is a crucial issue: if we were to combine the three
diffusion indexes into an aggregate one by simple averaging, then we would presumably overstate
the diffusion, due to the influence of the IP diffusion index that dominates the others.

6 Degree of convergence within the Euro Area

If a diffusion index is constructed from country specific business cycles, as we did for industrial
production, it can be argued thatDt provides at least some information on the degree of conver-
gence:Dt(1 − Dt) is a measure of dispersion and it is a maximum whenDt = 0.5, whereas it
gets to zero when all the series are in the same state. In this perspective, figure 12 highlights that
there is no tendency to cluster around the extremes as time progresses, especially compared to the
70s and the 80s.

There appears to be no systematic tendency for convergence or divergence in the classical
business cycle sense. If we look at the cross-sectional dispersion of the member countries growth
rates around the Euro area average (constructed with fixed weights) we can establish that it peaked
in the seventies, declined until around 1985, it is relatively small during 1985-1990 and 1995-1998
and rises again 1990-1995 and 1999-2000. Basically, it increases in recessionary periods, but the
long term trend in the volatility of growth is that in the last 15 years it is lower than in the period
1970-1985. A reduction in volatility implies, cœteris paribus, a smaller frequency of recessionary
events in a given time span. However, the average growth rates characterising several of the
12 countries are reduced, not by the same amount, and this increases the frequency of country
specific cycles in the classical sense. As a result, at the end of the sample we find less ample but
more frequent recessionary patterns, but we have no decisive evidence for either the presence of
convergence or divergence.

When we turn to the deviation cycle, we find stronger support for convergence, by which we
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mean a systematic tendency for cross-sectional dispersion to shrink over time. If the countries
have already converged, we should not assist to any systematic tendency in dispersion to increase
over time. Figure 13 displays the time pattern of the weighted variance measure:

1∑
i wi

N∑

i=1

wi(ψit − ψ̄t)2, ψ̄t =
1∑
i wi

ψit,

whereψit are the country specific deviation cycles extracted by the HP bandpass filter, with the
circle representing the point estimates and the index plot is a two sided exponentially weighted
moving average of those estimates. The alternative measure

∑

i

∑

i<j

wiwj(ψit − ψjt)2,

based on individual contrasts, rather then on the deviation from the average cycle, produces similar
results and is not presented.

From the plot there appears to be a downward tendency interrupted around the turning points.
The plot of the individual cycles and the aggregate cycle illustrates that the dispersion is high
around 1990 with Finland behaving more idiosyncratically. Luxembourg displays more ample
fluctuations.

7 Conclusions

This paper has reported the results of technical exercises in the dating of the Eurozone business
cycle and the cycles of the main constituent economies. We distinguished between the classical
and deviation (or growth) cycle, and used what we regard as best-practice techniques to identify
these cycles, in every case concentrating upon a single, univariate summary of economic activ-
ity, GDP or industrial production. A number of topics for further research are suggested by the
identification we have made. One, which we have already pursued in this paper, is to examine the
issue of synchronicity or coherence between the cycles. In future research one would expect to be
able to track movements in the coherence of the cyclical experience of the Eurozone economies,
whether in the direction of greater convergence or not. Other topics can easily be suggested: thus,
following identification of the cycle, one would hope to be able to build leading indicators; and
to be able to explain the main determinants of cyclical experience and its evolution over time. As
we maintained in the introduction to the paper, this is a particularly good time to initiate further
studies of the European business cycle experience, as the adoption of the Euro gives the Eurozone
economy a new identity and can be expected to have important effects on the Eurozone cycle.

It may indeed be time to ponder on the following. In the United States the NBER’s dating
committee has established a business chronology over a long period of time which is widely re-
garded as the authoritative dating of the US cycle. Economists who come up with a new technique
for business cycle identification “prove” their technique by comparing their results with the NBER
chronology. The NBER’s committee comprises economists with expertise in various sectors of the
economy and its approach is avowedly a multivariate one: techniques such as those we deployed
in this paper applied to a single series can be regarded as ”office assistants”, helpful in establishing
the dating, not dictating it. It would be good for Europe to establish a comparably authoritative
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chronology for its business cycle, perhaps through similar means - perhaps through a different
one. At risk of stating the obvious, it bears pointing out that the European situation is different
in many ways from the one that faces analysts of the American cyclical experience. Not least,
because of the short history of the Eurozone economy, country experts might be needed more than
sectoral experts. Historical analysis would be complicated by national differences, but all the more
necessary for this reason. A complaint that is often made against the NBER procedure is that it
can take a long while, in real time, to establish a turning point, partly for reasons to do with data
revisions and availability; some of those problems are more acute in the European setting. Then
also, it might be argued that with techniques at hand today nothing more is really needed than
reliable GDP estimates, or data from a factor analysis that proxy GDP, with the benefit of being
robust to revision, to provide reliable dating of the cycle. To provide more accurate dating, better
monthly data are certainly needed.
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A The Algorithm for Dating the Business Cycle

For exposition sake we illustrate the dating algorithm with reference to the quarterly case. A few
details concerning the monthly case are deferred to appendix A.5. Despite the apparent complexity
of the algorithm, its implementation requires less than 70 lines of Ox code3.

A.1 The underlying Markov Chain

At any timet the economy can be in either of two mutually esclusive states orphases: expansion
(Et) or recession (Rt). A peak terminates an expansion, whereas a trough terminates a recession.
For the imposition of minimum duration constraint and to enforce the alternation of peaks and
troughs, it is useful to distinguish turning points within the two basic states, by posing:

Et ≡
{

ECt Expansion Continuation
Pt Peak

Rt ≡
{

RCt Recession Continuation
Tt Trough

From ECt we can make a transition toPt+1 or continuate the expansion(ECt → ECt+1), but
not viceversa, since onlyPt → RCt+1 is admissible. Analogously, fromRCt we can visit either
RCt+1 or Tt+1, but fromTt we move toECt+1 with probability 1.

Denoting bypEP = P (Pt+1|ECt) the probability of making a transition to a peak within an
expansionary pattern,pEE = P (ECt+1|ECt) = 1− pEP , and analogouslypRT = P (Tt+1|RCt),
pRR = P (RCt+1|RCt) = 1 − pRT , we define a first order Markov chain (MC) with four states,
denotedSt, with transition matrix:

ECt+1 Pt+1 RCt+1 Tt+1

ECt pEE pEP 0 0
Pt 0 0 1 0
RCt 0 0 pRR pRT

Tt 1 0 0 0

The dating rules impose ties on the minimum duration of a phase, which amounts to two quar-
ters, and this is automatically enforced in the quarterly case by our four states characterisation (as
a matter of fact{ECt−1, Pt}, complies with this requirement, since both events belong to the ex-
pansionary phase; similarly a trough cannot occur immediately after a peak), and on the minimum
duration of a full cycle. The latter is defined in terms of peak-to-peak or trough-to-trough patterns
and amounts to five quarters, as a direct transposition of the Bry and Boschan rule to the quarterly
case. Thus the pattern{Tt−4, ECt−3, Pt−2, RCt−1, Tt} is not admissible. The minimum duration
constraint are important for the characterisation of the chain: that imposed on the full cycle du-
ration determines the order of the MC, whereas that imposed on the phases length determines the
number of admissible states.

3All the computations in the paper were performed using the object oriented matrix programming language Ox 3.0
by Doornik (2001), and the library of state space function SsfPack 2.3 by Koopman et al. (1999).
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Table 1: Description of the Markov chain generated by the quarterly dating rules.
States S∗t = {St−4, St−3, St−2, St−1, St} StatesS∗t+1 that can visited
S∗t St−4 St−3 St−2 St−1 St S∗t+1 Trans. Prob. S∗t+1 Trans. Prob.
S∗1 P RC RC RC RC S∗17 pRR S∗18 pRT

S∗2 P RC RC RC T S∗19 1
S∗3 P RC RC T EC S∗20 p

EE
S∗21 p

EP

S∗4 P RC T EC EC S∗22 p
EE

S∗23 p
EP

S∗5 T EC EC EC EC S∗9 p
EE

S∗10 p
EP

S∗6 T EC EC EC P S∗11 1
S∗7 T EC EC P RC S∗12 p

RR
S∗13 p

RT

S∗8 T EC P RC RC S∗14 p
RR

S∗15 p
RT

S∗9 EC EC EC EC EC S∗9 p
EE

S∗10 p
EP

S∗10 EC EC EC EC P S∗11 1
S∗11 EC EC EC P RC S∗12 pRR S∗13 pRT

S∗12 EC EC P RC RC S∗14 p
RR

S∗15 p
RT

S∗13 EC EC P RC T S∗16 1
S∗14 EC P RC RC RC S∗1 p

RR
S∗2 p

RT

S∗15 EC P RC RC T S∗3 1
S∗16 EC P RC T EC S∗4 1
S∗17 RC RC RC RC RC S∗17 pRR S∗18 pRT

S∗18 RC RC RC RC T S∗19 1
S∗19 RC RC RC T EC S∗20 p

EE
S∗21 p

EP

S∗20 RC RC T EC EC S∗22 p
EE

S∗23 p
EP

S∗21 RC RC T EC P S∗24 1
S∗22 RC T EC EC EC S∗5 pEE S∗6 pEP

S∗23 RC T EC EC P S∗7 1
S∗24 RC T EC P RC S∗8 1

The tie on the full cycle yields a 5th order MC that can be converted to a first order one
by combining elements of the original chain,St. The states of the derived MC are defined by
appropriately combining the original ones into

S∗t = {St−4, St−3, St−2, St−1, St}.

The ties however reduce the number of states to 24. These are listed in table 1: the first column
labels the states and the second spells out how they are formed by combining the elementary states
of the original MC.

The last two columns indicate the states to which a transition is admissible (two at most) and
the associated transition probability. The transition matrix is thus immediately derived from the
above table. It should be noticed that all the states ending with a peak or a trough must visit certain
states with probability one.

The two parameterspEP pRT uniquely specify the Markov chain. In the next section we show
how these are computed with the support of a time series or a stochastic process. As a matter of
fact, the dating algorithm is completed by establishing rules for scoring the transition probabilities.
We conclude this section discussing how the two elementary transition probabilities influence the
features of the chain, by deriving the ergodic probabilities of expansions and recessions and those
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of peaks and troughs: these are easily computed from the ergodic probabilities of the 5th order
MC, by marginalising previous states.

The following table provides the ergodic expansion probabilites for different values ofpRT and
pEP :

pRT

pEP 0.05 0.15 0.25 0.35
0.05 0.50 0.73 0.81 0.85
0.15 0.27 0.50 0.61 0.67
0.25 0.19 0.39 0.50 0.57
0.35 0.15 0.33 0.43 0.50

As far as the ergodic recession probabilities are concerned, these are obtained by transposing the
table. WhenpRT = pEP , these probabilities always equal1/2.

The ergodic probabilities of a peak are presented in the table below. It should be noticed that
the table is symmetric, a fact that underlies a major implication of the chain, namely that the
probability of a peak is equal to that of a trough.

pRT

pEP 0.05 0.15 0.25 0.35
0.05 0.02 0.03 0.04 0.04
0.15 0.03 0.06 0.08 0.08
0.25 0.04 0.08 0.10 0.11
0.35 0.04 0.08 0.11 0.12

Also, these probabilities do not change sensibly as eitherpRT or pEP or both are increased: this
stems from the minimum duration constraints that limit the number of turning points.

A.2 Scoring the transition probabilities

As seen in the previous section, the characterisation of the phases of the business cycle and the
duration constraints define an underlying MC that is fully specified once the core parameters,pRT

andpEP are known. These can be estimated by maximum likelihood techniques from an observed
time series in a model based framework, if it is assumed that the latter is a realisation of a stochastic
process that is dependent upon the state of the economy as represented by the chain. This idea
is at the foundation of the class of Markov-Switching models, that postulate that the growth rate
and/or the innovation variance and/or the transmission mechanism vary according to recessions
and expansions.

In this paper we consider the alternative strategy of scoring the two parameters according to
patterns in the series,yt. There are several ways of doing so, with different degrees of complexity,
but we will concentrate on the BBQ rule by Harding and Pagan (2001). Other, simpler, popular
rules are the calculus and the Okun’s rule.

According to the BBQ dating rule, we define an expansion termination sequence,ETSt, and a
recession terminating sequence,RTSt, respectively as:

ETSt = {(∆yt+1 < 0) ∩ (∆2yt+2 < 0)}
RTSt = {(∆yt+1 > 0) ∩ (∆2yt+2 > 0)} (1)
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The former defines a candidate point for a peak, which terminates the expansion, whereas the latter
defines a candidate for a trough.

The joint distribution of the sequences{ETSt, RTSt, t = 1, . . . , T} depends on the stochastic
process generating the available series and is usually analitically intractable due to the presence of
serial correlation and the mutually non exclusive nature of the termination sequences. As regards
the latter, denoting byETSt the complementary event ofETSt, RTSt that ofRTSt and defining
P (ETS)

t = P (ETSt),P (RTS)

t = P (RTSt), at timet the joint probability distribution of the possible
events is provided by the following table:

ETSt ETSt Marginal

RTSt 0 P (RTS)

t P (RTS)

t

ETSt P (ETS)

t 1− P (ETS)

t − P (RTS)

t 1− P (RTS)

t

Marginal P (ETS)

t 1− P (ETS)

t 1

whence it can be seen thatETSt andRTSt cannot both be true at the same time.
Serial correlation complicates the computation ofP (ETS)

t andP (RTS)

t , since the terminating
sequences are not independent of their past; furthermore it must be stressed that the BBQ rule
induces autocorrelation itself, that is even if∆yt ∼ NID(µ, σ2), e.g. yt is a random walk,
{ETSt, RTSt, t = 1, . . . , T} will be autocorrelated. Therefore it seems that the only way to
go about the characterisation of business cycle for a particular stochastic process is stochastic
simulation.

Let us return to the non parametric scoring of the transition probabilities according to the
available time series. If at timet the chainS∗t is in any of the expansionary states for which a
transition to a peak is possible and an expansion terminating sequence occurs at timet + 1, i.e
ETSt+1 is true, then we move to a new stateS∗t+1, such thatSt+1 = Pt+1 and the previous four
elementary states are common to the last four inS∗t .

It is useful at this point to classify the states ofS∗t by defining the sets:

SEP = {S∗3 , S∗4 , S∗5 , S∗9 , S∗19, S
∗
20, S

∗
22} defines the set of states featuring an expansionary state at

time t (St = ECt) and that are available for a transition to a peak.

SP = {S∗6 , S∗10, S
∗
21, S

∗
23} defines the set of states featuring a peak at timet (St = Pt).

SRT = {S∗1 , S∗7 , S∗8 , S∗11, S
∗
12, S

∗
14, S

∗
17} defines the set of states featuring a recessionary state at

time t (St = RCt) and that are available for a transition to a trough.

ST = {S∗2 , S∗13, S
∗
15, S

∗
18} defines the set of states featuring a peak at timet (St = Pt).

The set of expansionary states,SE , is the union ofSEP ,SP andS∗16, in symbols:

SE = SEP ∪ SP ∪ S∗16

The set of recessionary states,SR, is the union ofSRT ,ST andS∗24, in symbols:

SR = SRT ∪ ST ∪ S∗24

The scoring rules are then formalised in the following algorithm:
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If {S∗t = sEP , sEP ∈ SEP } andETSt+1 is true, then{S∗t+1 = sP , sP ∈ SP }. Hence,
the transition probabilitypEP is computed as:

pEP = P ({S∗t = sEP , sEP ∈ SEP } ∩ ETSt+1)
= I(ETSt+1)

∑
s
EP

∈S
EP

P (S∗t = sEP ) , (2)

whereI(·) is the indicator function. Else, ifETSt+1 is false then the expansion is
continued, that isS∗t+1 = sEP , sEP ∈ SEP ; the associated transition probability is
pEE = 1− pEP .

Else, if {S∗t = sRT , sRT ∈ SRT } andRTSt+1 is true, then{S∗t+1 = sT , sT ∈ ST }.
Hence, the transition probabilitypRT is computed as:

pRT = P ({S∗t = sRT , sRT ∈ SRT } ∩ RTSt+1)
= I(RTSt+1)

∑
s
RT
∈S

RT

P (S∗t = sRT ) , (3)

Else, if RTSt+1 is false, then the recession is continued, that isS∗t+1 = sRT , sRT ∈
SRT ; the associated transition probability ispRR = 1− pRT .

The case whenETSt+1 andRTSt+1 are both false is implicitly covered by the above dating
rule. Probabilistic dating based on a maintained stochastic process replaces the indicator function,
I(·), with the probability of the terminating sequences,P (ETS)

t+1 ,P (RTS)

t+1 .
Let nowF t denote the collection ofI(ETSj), I(RTSj), j = 1, 2, . . . , t, and letP (S∗t |F t)

denote the probability of being in any particular state at timet conditional on this information set.
Assuming that this probability is known we can compute recursively the probability of the chain
at subsequent times by the following filter:

i. Given the availability ofP (S∗t |F t) at timet, let us denote byπ∗t them × 1 vector containing
them, withm = 24 in the quarterly case. Define the twom × 1 selection vectorsvEP ,
with ones corresponding to the elements ofSEP and zero otherwise, andvRT , with ones
corresponding to the elements ofSRT and zero otherwise.

ii. Compute the transition probabilities of the chain according to (2) and (3), that ispEP =
I(ETSt+1)v′EP

π∗t , pRT = I(RTSt+1)v′RT
π∗t , pEE = 1 − pEP , pRR = 1 − pRT and insert

them in the transition matrix of the chain, hereby denoted byT .

iii. Compute the probabilitiesP (S∗t+1|F t+1) belonging to the vectorπ∗t+1 as

π∗t+1 = T ′π∗t

The algorithm is initialised by assigning values toπ∗1: if one knows that at the beginning of
the sample we are in expansion,π∗1 ∝ vE , wherevE is the selection vector corresponding toSE ,
whereas if we know that the system was in recession,π∗1 ∝ vR , wherevR selects the elements of
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SR . Otherwise, we can learn from the first observations about the initial probability vector, and in
the case these are ambiguous use a uniform prior, which amounts to set the elements ofπ∗1 equal
to 1/m.

The algorithm recursively producesP (S∗t |F t), for all t = 1, . . . , T , and hence, marginalising
previous statesSt−j , j = 1, 2, 3, 4, the probabilities of each elementary event,P (St|F t), and
P (Et|F t) = P (ECt|F t) + P (Pt|F t), P (Rt|F t) = P (RCt|F t) + P (Tt|F t), can be obtained.
For instance,

P (Et|F t) =
∑

s
E
∈S

E

P (S∗t = sE ) .

A.3 Dating unobserved components

In real applications it is usually the case that we date the business cycle on a signal extracted from
a time series, rather then on the original series itself. For instance, all the series considered in
this paper are seasonally adjusted (in a broad sense, including working days adjustment for the
industrial production series). For deviation cycles, that are dealt with in the next section, this is
usually the only available option. Therefore, we entertain unobserved components more often than
we are actually aware of.

If the unobserved component, here denoted byςt, arises from model based signal extraction
techniques (for instance we aim at dating the business cycle on the seasonally adjusted series
obtained from the combination of a trend-cycle component and an irregular component of known
parametric form), then, apart from the obvious option of dating the sequenceς̃t|T , which denotes
some inference (usually the expectation) on the signal conditional on the full available sample, we
can score the transition probabilities using the probability of the terminating sequences, referred
to theςt, P (ETS)

t+1 ,P (RTS)

t+1 , rather than the indicator function. The virtues of this option is that we
are more aware of the uncertainty surrounding e.g. turning point estimation. These probabilities
can be estimated via the simulation smoother of de Jong and Shephard (1995) implemented in
SsfPack. This repeatedly draws simulated samples from the posterior distributionς̃

(i)
t ∼ ψt|YT , so

that repeating the draws a sufficient number of times we can get Monte Carlo estimates of different
aspect of the marginal and joint distribution of the terminating sequences.

Other plausible reasons for considering unobserved components are to make our dating pro-
cedure more resistant to outlier contamination and to censor variability that is not relevant to the
analysis of business cycle fluctuations, such as high frequency noise. The need for the latter usually
arises with reference to monthly industrial production, that even after a working days adjustment
usually displays relevant high frequency components. This motivates us to employ a low pass fil-
ter, dealt with in the subsequent sections, that dampens all the fluctuations with a periodicity less
than the minimum cycle duration, i.e. five quarters or 15 months.

A.4 Dating the deviation cycle

The dating algorithm of the previous section is tailored for dating classical business cycles. When
we are dealing with deviation cycles (also know as growth cycles), we want to prevent that a peak
is located when output is below trend levels; this is so since an expansion must have brought output
above trend. Therefore, for a zero mean deviation cycle, we may want to amend the BBQ rule (and
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call it BBQDC) by redefining the terminating sequences as follows:

ETSt = {(yt > 0) ∩ (∆yt+1 < 0) ∩ (∆2yt+2 < 0)}
RTSt = {(yt < 0) ∩ (∆yt+1 > 0) ∩ (∆2yt+2 > 0)} (4)

The algorithm scores the cycle in real time; thus, nothing prevents that, within a period in which
yt < 0, the first local minimum is flagged as a trough and that this is above the global minimum.
A solution would be to run the algorithm on the reversed series, but this strategy is effective only
if just two minima occur within that period. Our experience is that multiple minima are likely to
occur, and thus our preferred alternative strategy works out as follows:

• Run the usual BBQ algorithm on the cumulatedyt series,c(y)t. The turning points detected
by this procedure correspond to the crossing of the zero line. For instance a peak inc(y)t

coincides with the latestyt > 0; all subsequent values will be below zero until a trough is
found, which is the last point such thatyt < 0. Minimum duration constraints continue to
operate, but are no longer defined in terms of P-T or P-P onyt; they relate to successive
crossing of zero.

• Between two adjacent T-P turning points find the maximum ofyt so as to locate the global
peak ofyt; Between two adjacent P-T turning points find the minimum ofyt so as to locate
the global trough ofyt.

This strategy works effectively in sorting out the local minima problem and will be labelled
BBQDC2.

A.5 Dating monthly time series

For monthly time series the nature of the proposed algorithms is the same. Following Bry and
Boschan the minimum durations are respectively 5 months for each phase and 15 months for full
cycles. This yields a 15th order MC that can be represented as a first order MC withm = 122
states.

The terminating sequences are defined as follows:

ETSt = {⋂5
j=1(∆jyt+j < 0)}

RTSt = {⋂5
j=1(∆jyt+j > 0)}

where∆j = 1− Lj .

A.6 Depth (amplitude) restrictions

The algorithms presented above can be readily modified to enhance depth or amplitude restrictions
on the definition of expansions and recessions terminating sequences. These aim at isolating major
fluctuations thereby robustifying the dating process.

Given a threshold valuec > 0, in the quarterly case we can define

ETSt = {(∆yt+1 < −c) ∩ (∆2yt+2 < −c)}
RTSt = {(∆yt+1 > c) ∩ (∆2yt+2 > c)}

19



For instance, if the series we are entertaining is in logarithmsc = 0.005 could be a candidate
value.

The problem posed by amplitude constraints in dating the classical business cycle is posed by
the difference in amplitude that usually characterises the two phases: expansions are longer but
characterised by a lower average drift rate. This suggests that it might be the case thatc should
vary according to the phase.

An alternative strategy uses signal extraction techniques, e.g. low-pass filters in the classical
case, to isolate the most ample fluctuations. This is of course at odds with sharp turning points
identification, since the probability of peaks and troughs is smeared on adjacent sample points,
but certainly offers a robustification of the algorithm with respect to outliers and high frequency
components.

B Classical cycles, deviation cycles and growth

It is perhaps useful to recall a few basic facts underlying the dating of the classical and deviation
cycle, and illustrate them:

• Neglecting duration ties, classical recessions (i.e. P-T dynamics in the log-levelyt), cor-
respond to periods of prevailing negative growth,∆yt < 0. In effect, negative growth is
sufficient, but not necessary under Bry and Boschan dating rules. Periods of positive growth
can be observed during a recession, provided that they are so short lived that they do not
determine an exit from the recessionary state.

• As a matter of fact, it is immediately established that turning points inyt correspond to∆yt

crossing zero (from above zero if the turning point is a peak, from below in the presence of
a trough inyt). This is strictly true under the calculus rule.

• If yt is I(1) with constant driftµ, turning points in the linearly detrended series,

yt − µ0 − µt,

correspond to∆yt crossing the mean. As a consequence, recessions correspond to periods
of below average growth,∆yt < µ.

• If yt admits the log-additive decomposition,yt = µt + ψt, whereψt denotes the deviation
cycle, then growth is in turn decomposed into trend and cyclical changes:

∆yt = ∆µt + ∆ψt.

Hence, deviation cycle recessions correspond to periods of growth below potential growth,
that is∆yt < ∆µt. This is so since, prolonged declines inψt, i.e. ∆ψt < 0 (a deviation
cycle recession), imply∆yt − ∆µt < 0. Using the same arguments, turning points corre-
spond to∆yt crossing∆µt. A classical recession requires that thesumof potential growth
and cyclical growth is below zero, that is∆µt + ∆ψt < 0.
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• Drawing from the previous facts, classical recessions are always a subset of deviation cy-
cle recessions, and there may be multiple classical recession episodes within a period of
deviation cycle recessions.

• Current depth of recession: Beaudry and Koop (1993) proposed a measure of the depth of
recession based on the deviation of current output from its historical maximum:

CRDt = yt −max
j≤t

yj

This measure is in the spirit of classical business cycle analysis since it is valid for series
displaying systematic upward trends and takes (negative) non-zero values when an absolute
decline in output occurs. However, it is a much more extreme view, as the end of the
recession takes place when output catches up its historical maximum value. On the positive
side it provides a measure of the amplitude of the recessionary movements. With respect to
the classical definition implemented in this paper, peaks will be coincident, althoughCRDt

does not impose duration ties, but a trough in our dating algorithm will tend to correspond
to a trough inCRDt, which starts moving towards zero, but will continue to be negative,
signalling a recession. More local definitions. e.g.CRDt = yt −maxk=0,1,...,m yt−k, are
possible and the resulting chronology will get closer to the classical one.

• Growth rate cycle: turning points in growth rates delimit patterns of positive and negative ac-
celeration (∆2yt). ECRI produces such chronologies; according to their definition, “Growth
rate cycle downturns are pronounced, pervasive and persistent declines in the growth rate
of aggregate economic activity. The procedures used to identify peaks and troughs in the
growth rate cycle are entirely analogous to those used to identify business cycle turning
points, except that they are applied to the growth rates of the same time series, rather than
their levels”. We shall return shortly to growth rate cycles when discussing the chronology
arising from the EuroCoin index.

Figure 10 illustrates all these facts with respect to the Euro area GDP series, that was prelim-
inarily smoothed by HP(1.25), although we will continue to refer to it as the series,yt, and then
decomposed into a trend component and a cyclical one using respectively HP(8) and the residuals
from it (which amounts to the HP bandpass filter HP(1.25)-HP(8)). The first two plots present the
turning points of the classical and deviation cycle. We draw attention on the facts that the classical
recessionary episode is strictly contained in the deviation one, and that the troughs are located at
the same data point; although this is coincidental, the trough inyt cannot sequitur that inψt. The
third plot reproduces∆yt and potential growth,∆µt, highlighting that deviation cycle peaks cor-
respond to the last period of a sequence of growth above potential growth. Similarly, the deviation
cycle trough corresponds to the last period of actual below potential growth. Coincidentally, this
also corresponds to the last period of growth below the zero threshold. A classical peak, instead,
corresponds to the last period of a sequence of positive growth rates,∆yt > 0.

EuroCoin, built by Altissimo et al. (2001) using dynamic factor analysis, is a composite co-
incident index of the Euro areagrowth ratecycle. As a matter of fact, it extracts the common
dynamics from a large set of indicators that are made stationary by differencing.

Figure 11 presents and compares the growth rate cycle chronologies for the index and for GDP
growth, using the Eurostat series from 1991.1 onwards. The turning point for the former were
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determined on the original monthly series and then, for comparison purposes, we aggregate the
series and the dates at the quarterly frequency of observation. For GDP growth we also plot, in the
third panel, the filtered series HP(1.25), removing high frequency variation, and the corresponding
chronology.

ECRI states that dating the growth rate cycle requires the same rules as the classical cycle, in
which case a recession implies an absolute decline in growth; when growth is stationary there is
some scope also for scoring growth rate cycle as a deviation cycle, where the deviation is intended
from the average growth rate: in such circumstance, a recession still implies a deceleration of
growth, but it can be terminated only if growth is below its mean (a trough cannot be found if
∆yt > µ.

There are two main noticeable facts: the first deals with the different chronology of GDP
growth arising from filtering; the second is that the EuroCOIN phases agree more closely with
those determined on the HP(1.25) filtered growth rates. The concordance indexIij between the
EuroCOIN and HP(1.25) filtered GDP growth amounts to 0.8 (its expected value under the inde-
pendence assumption is 0.5) and the concordance test statistic is 3.12. There is not much evidence
for significant concordance with the raw GDP chronology (Iij = 0.65 and the concordance statis-
tic is 1.51, which is not significant). The closer agreement with the HP(1.25) has somehow to be
expected, since dynamic factor techniques smooth away high frequency movements.

C The Analysis of Business Cycle Information

Harding and Pagan (2001) have stressed that, aside from the dating of their turning points, business
cycles can be analysed for other information concerning their duration, amplitude and “shape”.
They suggest a number of measures of which we retain the three mentioned, accompanied by
an expression of the probability of being in one of the two phases. The basic concept is that
of the phase, of which we distinguish two - an expansion phase which lasts from the quarter
following the identified trough to (and including) the peak; and a recession, which lasts from the
quarter following the peak until (and including) the trough. Average phase duration is simply
the number of periods (here, quarters) which an expansion, on average, contains. Amplitude is
a measure of the depth of a cycle, that is the cumulative increase, during the expansion phase,
of the measure of economic activity in question, whilst average amplitude is simply the average
value over all expansion phases of this quantity. Dividing amplitude by duration gives a measure
of steepness. Harding and Pagan (2001) suggest a ”triangle analogy”, for thinking about these
measures, in which the upright is the amplitude, the length the duration and the hypotenuse is
the expansion or recession phase. There is quite a large literature devoted to examining the exact
shape of the expansion phase, in particular investigating whether the early part of the expansion
of the expansion is steeper than the later part. We do not have a sufficiently large sample of
cycles to make this an interesting exercise here. We do, however, also measure the probabilities
(frequencies) of expansion and recession phase experience. Thus for a sample of complete cycles
the probability of being in expansion is simply the ratio of average expansion duration to the sum
of average expansion and recession durations.

The sharpness of peak and troughs can be assessed by comparing the value of the series with
a weighted average ofm preceding and subsequent values; for instance, in the quarterly case we
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may use, if the series peaks att,

yt − (
3
9
yt +

2
9
(yt−1 + yt+1) +

1
9
(yt−2 + yt+2),

such that the weighting function is triangular. An alternative is to use a cosine window, e.g.

yt −
yt +

∑m
j=1 cos(ωj)(Lj + L−j)yt

1 + 2
∑m

j=1 cos(ωj)

whereω is some proposed cyclical frequency. If we further divide for the moving average, a
standardised measure is obtained that is comparable across different series.

Concordance statistic Given a panel of binary indicators of the state of the economy,Sit, t =
1, . . . , T, i = 1, . . . , N , available forN countries, a measure of business cycle concordance be-
tween the pair of countriesi andj is the simple matching similarity coefficient:

Iij =
1
T

T∑

t=1

[SitSjt + (1− Sit)(1− Sjt)] .

Let S̄i = T−1 ∑
t Sit denote the estimated probability of being in state 1 (e.g. recession); then,

under the assumption thatSit andSjt are independent the estimate of the expected value of the
concordance index is2S̄iS̄j = 1 − S̄i − S̄j . Subtracting this fromIij gives the mean corrected
concordance index (Harding and Pagan, 2001):

I∗ij = 2
1
T

T∑

t=1

(Sit − S̄i)(Sjt − S̄j).

The asymptotic test proposed in the paper is based on a standardised concordance index. For
this purpose we need to divideI∗ij by a consistent estimate of the standard error ofI∗ij under the
null of independence. Now, under the null

Var(Iij) = 4
T 2 E

[∑T
t=1(Sit − E(Sit)(Sjt −E(Sjt))

]2

= 4
T

[
γi(0)γj(0) + 2

∑T−1
τ=1

T−τ
T γi(τ)γj(τ)

]

whereγi(0) = E[(Sit − E(Sit))(Si,t−τ −E(Sit))].
Hence,

T 1/2I∗ij → N(0, 4σ2), σ2 = γi(0)γj(0) + 2
∞∑

τ=1

γi(τ)γj(τ),

and a consistent estimate ofσ2 is

σ̂2 = γ̂i(0)γ̂j(0) + 2
l∑

τ=1

(
1− τ

T

)
γ̂i(τ)γ̂j(τ),

wherel is the truncation parameter.
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D Band-Pass filters

A traditional definition of the business cycle, attributed to Burns and Mitchell (1946), considers all
the fluctuations with a specified range of periodicities, namely those ranging from one and a half
to eight years. Thus, ifs is the number of observations in a year, the fluctuations with periodicity
between1.5s and8s are included.

Baxter and King (1999) argue that the ideal filter for cycle measurement must be customised
to retain unaltered the amplitude of the business cycle periodic components, while removing high
and low frequency components. This is known as aband-passfilter (see, e.g. Priestley, 1981), and
its theoretical frequency response function takes the rectangular form:w(ω) = I(2π/(8s) ≤ ω ≤
2π/(1.5s)), whereI(·) is the indicator function. This is depicted in the second panel of figure??
(dotted line).

Moreover, the phase displacement of the filter should always be zero, if it is to preserve the
timing of peaks and troughs; the latter requirement is satisfied by a symmetric filter.

A band-pass filter is easily constructed from alow-passfilter; the latter is a filter retaining the
low frequencies up to a cutoffω0. Its ideal frequency response function has the form:

wlp(ω) =

{
1 if |ω| ≤ ωc

0 if ωc < |ω| ≤ π

The notion of a high-pass filter is complementary as its frequency response function iswhp(ω) =
1− wlp(ω).

The coefficients of the low-pass filter are then given by the inverse Fourier transform ofwlp(ω):

wlp(L) =
ωc

π
+

∑

j

sin(ωcj)
πj

(Lj + L−j).

Now, given the two business cycle frequencies,ωc1 = 2π/(8s) andωc2 = 2π/(1.5s), the
band-pass filter is

wbp(L) =
ωc2 − ωc1

π
+

∞∑

j=1

sin(ωc2j)− sin(ωc1j)
πj

(Lj + L−j). (5)

Thus, the ideal band-pass filter exists and is unique, but entails an infinite number of leads and
lags, so in practice an approximation is required.

Baxter and King (1999) show that theK-terms approximation to the ideal filter (5) that is
optimal in the sense of minimising the integrated squared approximation error is simply (5) trun-
cated at lagK. They propose using a three years window, i.e.K = 3s, as a valid rule of
thumb for macroeconomic time series. They also constrain the weights to sum up to zero, so
that the resulting approximation is a detrending filter: denoting the truncated filterwbp,K(L) =
w0 +

∑K
1 wj(Lj + L−j), the weights of the adjusted filter will bewj − wbp,K(1)/(2K + 1).

E The Hodrick-Prescott Filter

Often the specification of the model for the trend embodies the analyst’s smoothness prior on this
component (see Kitagawa and Gersh, 1996). One popular example is thead hoctrend extraction
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filter proposed by Hodrick and Prescott (1997), on the following grounds: “Our prior knowledge
is that the growth component varies ‘smoothly’ over time”.

HP define the estimator of the trend,µt, as the minimiser of the penalised least square criterion:

PLS =
T∑

t=1

(yt − µt)2 + λ
T∑

t=3

(∆2µt)2, (6)

where the first summand measures fidelity and the second roughness;λ is thesmoothness param-
etergoverning the trade-off between them.

In vector notation, settingy = (y1, . . . , yT )′ andµ = (µ1, . . . , µT )′,

PLS = (y − µ)′(y − µ) + λµ′D2′D2µ,

whereD denotes theT × T matrix corresponding to first differences, withdii = 1, di,i−1 = −1
and zero otherwise. Differentiating with respect toµ, the first order conditions yield:̃µ = (IT +
λD2)−1y, but the component is more efficiently computed by the Kalman filter and smoother, see
Harvey (1989) and Durbin and Koopman (2001), thereby avoiding the inversion of a potentially
very large matrix.

As a matter of fact, the HP filter coincides with the smoothed estimator of the trend component
of the local linear trend model:

yt = µt + εt, εt ∼ NID(0, σ2
ε ), t = 1, 2, . . . , T,

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η),

βt = βt−1 + ζt, ζt ∼ NID(0, σ2
ζ ),

(7)

with the restrictionsσ2
η = 0 andσ2

ε /σ2
ζ = λ.

This is so since the fixed-interval smoother under Gaussianity will provide the mode of the dis-
tribution ofµ conditional ony, whose kernel takes exactly the form (6), asf(µ|y) ∝ f(y|µ)f(µ) =∏

t f(yt|µt)
∏

t(µt|µt−1, µt−2). Notice also that the PLS problem (6) is a discrete version of the
cubic spline smoothing problem.

The connection with the signal-noise ratio makes clear that the Lagrange multiplier,λ, mea-
sures the variability of the (noise) cyclical component relative to that of the trend, and regulates
the smoothness of the long-term component. Asσ2

η approaches zero,λ tends to infinity, and the
limiting representation of the trend is a straight line.

HP purposively select the valueλ = 1600 for quarterly time series; this rule has sometimes
be generalised to any frequencys of observations asλ = 100s2. The value100 is used by
the European Commission for measuring potential output on yearly series which are used in the
calculation of cyclically adjusted budget balances. The HP detrended or cyclical component is the
smoothed estimate of the irregular component in (7) and, although the maintained representation
for the deviations from the trend is a purely irregular component, the filter has been one of the
most widely employed tools in macroeconomics to extract measures of the business cycle.

E.1 Designing the HP filter as a Lowpass filter

The theoretical properties of the HP filter are better understood assuming the availability of a
doubly infinite sample,yt+j , j = −∞, . . . ,∞. In such setting, the Wiener-Kolmogorov filter (see
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Whittle, 1963) provides the minimum mean square linear estimator (MMSLE) of the trend:

µ̃t|∞ = wHP (L)yt,

where

wHP (L) =
σ2

ζ

σ2
ζ + |1− L|2σ2

ε

=
1

1 + λ|1− L|4 (8)

and we have written|1 − L|2 = (1 − L)(1 − L−1). ReplacingL = 1 in the above expression, it
can be seen that the weights sum up to one.

The frequency response function of the filter is:

wHP (e−ıω) =
1

1 + 4λ(1− cosω)2
;

notice that this is 1 at the zero frequency and decreases monotonically to zero asω approaches
π. Its behaviour enforces the interpretation of (8) as a low-pass filter, and the corresponding
detrending filter,1− wHP (L), is the high-pass filter derived from it.

The implicit cut-off frequency is the valueωc corresponding to a gain|wHP (e−ıω)| = 1/2.
This satisfies the equation

λ = [4(1− cosωc)2]−1; (9)

for a given smoothness parameter (9) can be solved with respect to the cut-off frequencyωc, giving
ωc = arccos(1− 0.5λ−1/2). For instance, settingλ = 1600 we get that the HP filter for quarterly
data is a low-pass filter withωc = 0.158 corresponding to a period of 39.69 e.g. 10 years, which
is strictly outside the range proposed by Baxter and King (1999). Similar arguments enable to
conclude that the valueλ = 100 defines a low-pass filter retaining fluctuations with period larger
than 20 years.

Solving equation (9) forλ, given a specific cutoffωc, provides a way of designing the filter as
a low-pass filter. As a first application, let us express the the period as a function ofs, e.g.p = p̄s,
wherep̄ is a fixed period in years, replacing intoωc = 2π/p = 2π/(p̄s), (9) shows that there are
no simple rules of the kindλ ∝ s2 for different frequencies of observations, if one wants to keep
the period in years̄p constant; see Kaiser and Maravall (2001).

As a second application, we can use the result to design a band-pass filter for business cycle
extraction as the difference of two HP detrending filters, the first forωc = 2π/(1.5s) and the
second forωc = 2π/(8s): for quarterly data it is easy to show that the cycle will result from the
difference of two trend estimates, the first withλ = 1 and the second withλ = 677.13.

F Model-based filters

In a recent paper, Harvey and Trimbur (2002) have proposed a general class of model based filters
for extracting trend and cycles in macroeconomic time series, showing that the design of low-
pass and band-pass filters can be considered as a signal extraction problem in an unobserved
components framework.
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They consider the class ofm-th order stochastic trend:

µ1t = µ1,t−1 + ζt

µit = µi,t−1 + µi−1,t, i = 2, . . . , m
(10)

This is the recursive definition of anm-fold integrated random walk, such that∆mµmt = ζt.
When the observational model isyt = µmt + εt, the Wiener-Kolmogorov trend extraction filter is
a low-pass filter belonging to the Butterworth family:

wµ,m(L) =
1

1 + q−1|1− L|2m
, q = σ2

ζ/σ2
ε

Notice thatm = 2 gives exactly the HP filter;m = 1 produces the signal extraction filter for local
level model, producing an exponentially two-sided moving average of the available observations.
As m increases, the filter is a close approximation to the ideal low-pass filter.

Similarly, ann-th order stochastic cycle is defined as:
[

ψ1t

ψ∗1t

]
= ρ

[
cosλc sinλc

− sinλc cosλc

] [
ψ1,t−1

ψ∗1,t−1

]
+

[
κt

0

]
,

[
ψit

ψ∗it

]
= ρ

[
cosλc sinλc

− sinλc cosλc

] [
ψi,t−1

ψ∗i,t−1

]
+

[
ψi−1,t

0

]
, (11)

The univariate representation for such a process is:

ψnt =
[

1− ρ cosλcL

1− 2ρ cosλcL + ρ2L2

]n

κt

and Harvey and Trimbur show that if the model is

yt = µmt + ψnt + εt

the optimal estimators of the trend and the cycle are the generalised low and band pass Butterworth
filters of order (m, n). In finite sample they are produced by the Kalman filter and smoother.
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Figure 1: Classical cycle turning points, expansions and recessions, in the Euro area quarterly
real GDP (seasonally adjusted, logarithms); ECB series and Beyer, Doornik and Hendry (2000)
estimates.
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Figure 2: Turning points for four alternative measures of the Euro Area deviation cycle. An
asterisk (*) denotes a turning point that was censored according to amplitude considerations (see
text for details).
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Figure 4: Classical cycle turning points for EA, Germany, France, Italy, UK and the USA, based
on HP(1.25) filtered quarterly real GDP.
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Figure 6: Classical cycle turning points, for the Euro zone countries based on estimates of a trend
resulting from HP(1.25).
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Figure 7: Coherence of the Euro Area HPB deviation cycle and those of selected countries.
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Figure 8: Classical BC dating of monthly industrial production based on HP(1.25); recession and
turning points probabilities.
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Figure 9: Classical BC dating of monthly industrial production based on HP(4); recession and
turning points probabilities.
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Table 4: Classical BC: Index of Concordance,Iij .
EA D UK F I US

EA 1.00 0.98 0.85 0.96 0.94 0.88
D 0.98 1.00 0.83 0.94 0.92 0.91
UK 0.85 0.83 1.00 0.87 0.82 0.88
F 0.96 0.94 0.87 1.00 0.90 0.86
I 0.94 0.92 0.82 0.90 1.00 0.86
US 0.88 0.91 0.88 0.86 0.86 1.00

Table 5: Classical BC: Mean corrected Concordance Index,I∗ij .
EA D UK F I US

EA - 0.18 0.07 0.13 0.16 0.08
D 0.18 - 0.06 0.12 0.16 0.13
UK 0.07 0.06 - 0.07 0.07 0.11
F 0.13 0.12 0.07 - 0.10 0.04
I 0.16 0.16 0.07 0.10 - 0.09
US 0.08 0.13 0.11 0.04 0.09 -

Table 6: Classical BC: Standardised Concordance Index.
EA D UK F I US

EA - 7.15 2.48 6.29 6.35 3.40
D 7.15 - 1.93 5.41 5.43 4.43
UK 2.48 1.93 - 3.00 2.33 3.50
F 6.29 5.41 3.00 - 4.59 1.92
I 6.35 5.43 2.33 4.59 - 3.20
US 3.40 4.43 3.50 1.92 3.20 -

Table 7: Test for BC independence using HAC standard errors (Newey-West estimator with trun-
cation parameter equal to 5).

EA D UK F I US
EA - 52.52 1.80 4.41 12.15 2.62
D 7.85 - 1.53 3.07 6.73 3.33
UK 1.87 1.66 - 1.90 2.37 4.25
F 10.47 9.02 1.89 - 5.49 1.51
I 4.86 4.79 1.82 2.94 - 2.57
US 3.02 4.02 2.65 1.52 3.70 -

41



Table 8: Correlation between HP bandpass cycles.
EA D UK F I US

EA 1.00 0.85 0.54 0.85 0.86 0.55
D 0.85 1.00 0.43 0.66 0.64 0.60
UK 0.54 0.43 1.00 0.62 0.42 0.67
F 0.85 0.66 0.62 1.00 0.66 0.47
I 0.86 0.64 0.42 0.66 1.00 0.39
US 0.55 0.60 0.67 0.47 0.39 1.00

Table 9: Standardised Concordance Index.
EA D UK F I US

EA - 4.83 3.42 4.71 5.77 2.75
D 4.83 - 2.95 2.66 3.48 2.53
UK 3.42 2.95 - 2.07 2.33 2.26
F 4.71 2.66 2.07 - 3.67 2.47
I 5.77 3.48 2.33 3.67 - 1.90
US 2.75 2.53 2.26 2.47 1.90 -

Table 10: Test for deviation cycle independence using HAC standard errors (Newey-West estima-
tor with truncation parameter equal to 5).

EA D UK F I US
EA - 15.27 4.96 12.93 11.12 4.45
D 8.89 - 2.06 4.53 4.49 2.75
UK 3.68 2.14 - 5.39 3.33 6.56
F 8.38 4.68 4.91 - 4.81 2.87
I 13.02 6.30 5.55 5.32 - 3.22
US 3.60 3.78 4.27 2.28 2.79 -

42
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Figure 10: Classical and deviation cycles turning points and their relation with growth.
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Figure 11: Growth rate cycles for EuroCOIN index and raw and filtered GDP growth.
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Figure 12: Three sets of diffusion indices for classical business cycles in the Euro area.
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Figure 13: Cross-sectional dispersion of HP bandpass deviation cycles for EA member countries
industrial production series.
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