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Abstract

We provide a summary updated guide for the construction, use and evaluation of
leading indicators, and an assessment of the most relevant recent developments in this
field of economic forecasting. To begin with, we analyze the problem of selecting a
target coincident variable for the leading indicators, which requires coincident indica-
tor selection, construction of composite coincident indexes, choice of filtering methods,
and business cycle dating procedures to transform the continous target into a binary
expansion/recession indicator. Next, we deal with criteria for choosing good leading
indicators, and simple non-model based methods to combine them into composite in-
dexes. Then, we examine models and methods to transform the leading indicators into
forecasts of the target variable. Finally, we consider the evaluation of the resulting
leading indicator based forecasts, and review the recent literature on the forecasting
performance of leading indicators.
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1 Introduction

Since the pioneering work of Mitchell and Burns (1938) and Burns and Mitchell (1946), lead-
ing indicators have attracted considerable attention, in particular by politicians and busi-
ness people, who consider them as a useful tool for predicting future economic conditions.
Economists and econometricians have developed more mixed feelings towards the leading
indicators, starting with Koopmans’s (1947) critique of the work of Burns and Mitchell, con-
sidered as an exercise in “measurement without theory”. The resulting debate has stimulated
the production of a vast literature that deals with the different aspects of the leading indi-
cators, ranging from the choice and evaluation of the best indicators, possibly combined in
composite indexes, to the development of more and more sophisticated methods to relate
them to the target variable.
In this chapter we wish to provide a summary updated guide for the construction, use

and evaluation of leading indicators and, more important, an assessment of the most relevant
recent developments in this field of economic forecasting, starting with a series of contribu-
tions that were published in 1989 and have substantially changed the way to construct, use
and evaluate leading indicators.
Stock and Watson (1989, SW) improved in five main respects the by then current practice

in indicator analysis. First, they formalized Burns and Mitchell’s (1946) notion that business
cycles represent co-movements in a set of series by estimating a coincident index of economic
activity as the unobservable factor in a dynamic factor model for four coincident indicators,
industrial production, real disposable income, hours of work and sales. Similar variables were
tracked by the members of the NBER’s business cycle dating committee, and were combined
with equal weights, after a proper standardization, in the Department of Commerce composite
coincident indicator, now produced by the Conference Board, CCICB. In practice, Stock
and Watson’s index, CCISW , turns out to be very similar to the CCICB, but the former is
derived in a formal framework that provides a sounder statistical basis for its construction
and evaluation.
Their second important contribution is in the selection of candidate leading indicators.

The latter were typically chosen on the basis of correlation analysis, spectral coherence, or
the lead-time in their turning points with respect to the target variable. Stock and Watson
conducted a systematic regression based analysis, starting with a large set of indicators,
whose major benefit is that indicators are not evaluated in isolation but as a group. Perhaps
the most interesting result in this part of their research is that several financial indicators
turned out to have good leading properties. Burns and Mitchell themselves stressed the
potential usefulness of stock price indexes, but the term structure of interest rates was rarely
used until Stock and Watson pointed out its relevance.
The third contribution of Stock and Watson (1989) is to jointly model the coincident

and the leading indicators. This stresses the importance of a clear definition of the target
variable and its relationship with the leading indicator. In particular, their composite leading
indicator, CLISW , aims at predicting the future 6-month growth in the CCISW . This is for
example rather different from the goal of the Conference Board leading index, CLICB, which
is to anticipate turning points in the level of the CCICB.
The fourth contribution is to cast the problem in a state space framework, which allows the

joint resolution of a set of data problems such as the identification and removal of outliers,
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the treatment of data revisions, and the use of non-timely indicators whose most recent
unavailable data can be substituted with forecasts. The seasonal adjustment of seasonal series
could be also included in the framework, though Stock and Watson worked with seasonally
adjusted data.
The final main contribution of Stock and Watson (1989) is to develop an index of leading

indicators that produces early warnings of recession, CRISW , in the form of a probability that
a recession will take place in the next six months. This required two main innovations. First,
after a careful discussion of how to formally define a recession, they developed a pattern
recognition algorithm that classifies future forecasted paths of the coincident indicator as
belonging to a recessionary phase or not. Second, they introduced simulation methods to
compute these forecasts of the coincident indicator and transform them into a probability
of recession forecast. Though simulation methods were used earlier in the leading indicator
literature, e.g. Wecker (1979) and Kling (1987), their use became widespread only in the
’90s.
These five points were further developed in Stock and Watson (1991, 1992), while the

performance of the CLISW and CRISW in the recessions of the early 90’s and beginning of
this century was evaluated in Stock and Watson (1993, 2003b). Unfortunately, the indicators
did not perform particularly well in these two episodes, as most other forecasts. The main
reason is that the leading characteristics of the variables change over time, and the financial
indicators that worked very well in the ‘80s and got relevant weights in the CLISW were not
particularly useful in the two subsequent recessions. We will discuss in more details this issue
in the text, since it is the biggest problem and challenge for leading indicator forecasts. But
the theoretical contributions of SW retain their importance, as testified by the substantial
amount of additional research they have generated. The latter is reviewed in the chapter,
together with suggestions for further improvements.
The main criticism Sims (1989) raised in his comment to Stock and Watson (1989) is the

use of a constant parameter statistical model (estimated with classical rather than Bayesian
methods). This belongs to the old debate on the characterization of business cycles as
extrinsic phenomena, i.e. generated by the arrival of external shocks propagated through a
liner model, versus intrinsic phenomena, i.e., generated by the nonlinear development of the
endogenous variables. The main problem with the latter view, at least implicitly supported
also by Burns and Mitchell that treated expansions and recessions as two different periods,
was the difficulty of casting it into a simple and testable statistical framework, an issue
addressed, again in 1989, by Hamilton.
Hamilton (1989) proposed a model were the mean of a random variable evolves according

to an unobservable two-state Markov process, an idea developed in a different and simpler
context also by Neftci (1982). Hamilton’s main contribution to the business cycle literature,
and in particular to that part related to leading indicators, is threefold. First, using the
available data on one or more coincident series it is possible to infer the probability of being
in an expansion or in a recession. Therefore, it is possible to substitute the judgemental
dating of the business cycle, and the resulting categorization of observations into expansions
and recessions, with a proper statistical method, which in addition can be easily implemented
in real time.
Second, it is possible to jointly model coincident and leading indicators, since the latter

should be driven by the same Markov process but with a lead. This intuition is formalized
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in Hamilton and Perez-Quiros (1996), and in a set of other studies reviewed below, who
use the CLICB and other leading indicators to improve forecasts of the future status of the
economy. Similarly, the method could be used for indicator selection or for the construction
of composite indicators, along the lines suggested in a linear framework by SW.
Third, and related to the previous point, the method can be easily used to produce

point or probability forecasts of the coincident variable, and also analytical forecasts of the
probability of being in recession in or within a certain future date.
As in the case of Stock and Watson (1989), and perhaps even more, Hamilton (1989) has

generated an impressive amount of subsequent research, with the part more closely related
to business cycle analysis, and in particular to leading indicators, reviewed below. Here it is
worth mentioning the work by Diebold and Rudebusch (1996), which allows the parameters
of the model for the factor in Stock and Watson (1989) to change over the business cycle
according to a Markov process. Kim and Nelson (1998) estimated the same model but in a
Bayesian framework using the Gibbs sampler, as detailed below, therefore addressing both
of Sims’ criticisms reported above. Unfortunately, both papers confine themselves to the
construction of a coincident indicator and do not consider the issue of leading indicators.
The third very relevant contribution to the leading indicator literature published in 1989

is Diebold and Rudebusch (1989). They used an extension of Neftci’s (1982) rule to trans-
form the CLICB into probabilities of recession, and compared them with the actual NBER
peak and trough dates using a set of scoring rules. Among them, the quadratic probability
score, which is the counterpart of the mean square forecast error in the probability forecast
context, is by now currently adopted in the literature. In two follow-up papers, Diebold
and Rudebusch (1991a,1991b), they repeated the evaluation exercise for, respectively, point
and probability forecasts, but using a real time dataset rather than the latest available time
series for the CLICB. The results were striking and pointed to a substantial deterioration
in the predictive ability of the CLICB. The lessons are that real time data are particularly
important for the evaluation of leading indicators since often revisions are driven by the past
performance of the indicators, even though this practice has been substantially reduced in
the ‘90s, and that indicators subject to only minor or no revisions, e.g. financial variables,
can be more easily scored.
Perhaps as a consequence of the focus of Diebold and Rudebusch (1989) on the prediction

of 0/1 events, a large literature was developed in the ‘90s on the use of binary models to
predict business cycle phases, e.g., Estrella and Mishkin (1998) and Birchenhall et al. (1999).
The basic logit or probit specifications have been also extended in a variety of ways, and a
comprehensive survey of contributions in this area is presented below.
The chapter is organized as follows. In Section 2 we analyze the problem of selecting

a target coincident variable for the leading indicators, which can be split into coincident
indicator selection, construction of composite coincident indexes, choice of filtering meth-
ods, and business cycle dating procedures to transform the continuos target into a binary
expansion/recession indicator. In section 3 we deal with criteria for choosing good leading
indicators, and simple non model based methods to combine them into composite indexes. In
section 4 we examine models and methods to transform the leading indicators into forecasts
of the target variable, possibly after grouping the single leading indicators into a composite
index. In Section 5 we consider the evaluation of the resulting leading indicator based fore-
casts, discuss several empirical examples, and review the recent literature on the forecasting
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performance of leading indicators. Finally, in Section 6 we summarize what we have learned
about leading indicators from the recent literature and suggest directions for further research.

2 Selection of the target variable

The starting point for the construction of leading indicators is the choice of the target variable,
namely, the variable that the indicators are supposed to lead. Such a choice is discussed in
the first subsection. The second subsection analyzes a set of variable transformations and
dating procedures, which are relevant, respectively, to emphasize the cyclical properties of
the target variable and to transform it into a binary expansion/recession indicator. The final
subsection presents some empirical examples as an illustration of the theoretical material.

2.1 Choice of variable

Burns and Mitchell (1946, p. 3) proposed that:

”...a cycle consists of expansions occurring at about the same time in many eco-
nomic activities....”

Yet, later on in the same book (p. 72) they stated:

”Aggregate activity can be given a definite meaning and made conceptually mea-
surable by identifying it with gross national product.”

These quotes underlie the two most common choices of target variable: either a single indica-
tor that is closely related to GDP but available at the monthly level, a case considered in the
first sub-subsection, or a composite index of coincident indicators, as detailed in the second
sub-subsection.

2.1.1 Single variables

As mentioned above, GDP could provide a reliable summary of the current economic condi-
tions if it were available on a monthly basis. Though both in the US and in Europe there is
a growing interest in increasing the sampling frequency of GDP from quarterly to monthly,
the current results are still too preliminary to rely on them.
In the past, industrial production provided a good proxy for the fluctuations of GDP,

and it is still currently monitored for example by the NBER business cycle dating committee
and by the Conference Board in the US, in conjunction with other indicators. Yet, the ever
rising share of services compared with the manufacturing, mining and gas and electric utility
industries casts more and more doubts on the usefulness of IP as a single coincident indicator.
Another common indicator is the volume of sales of the manufacturing, wholesale and

retail sectors, adjusted for price changes so as to proxy real total spending. Its main drawback,
as in the case of IP, is its partial coverage of the economy.
A variable with a close to global coverage is real personal income less transfers, that

underlies consumption decisions and aggregate spending. Yet, unusual productivity growth
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and favorable terms of trade can make income behave differently from payroll employment,
the other most common indicator with economy wide coverage. More precisely, the monitored
series is usually the number of employees on non-agricultural payrolls, whose changes reflect
the net hiring (both permanent and transitory) and firing in the whole economy, with the
exception of the smallest businesses and the agricultural sector.
Some authors focused on unemployment rather than employment, e.g. Boldin (1994) or

Chin, Geweke and Miller (2000), on the grounds that the series is timely available and subject
to minor revisions. Yet, typically unemployment is slightly lagging and not coincident.
Overall, it is difficult to identify a single variable that provides a good measure of current

economic conditions and is available on a monthly basis. Therefore, it is preferable to consider
combinations of several coincident indicators.

2.1.2 Composite indexes

The monitoring of several coincident indicators can be done either informally, for example
the NBER business cycle dating committee examines the joint evolution of IP, employment,
sales and real disposable income, see e.g. Hall et al. (2003), or formally, by combining the
indicators into a composite index. A composite coincident index can be constructed in a non
model based or in a model based framework, and we now review the main approaches within
each category.
In the non model based framework, the coincident indicators are first transformed to

have similar ranges, and then aggregated using equal or different weights. A clear illustra-
tion is provided by (a slightly simplified version of) the step-wise procedure implemented
by the Conference Board, CB (previously by the Department of Commerce, DOC), see
www.globalindicators.com for details.
First, for each individual indicator, xit, month-to-month symmetric percentage changes

(spc) are computed as xit spc = 200 ∗ (xit − xit−1)/(xit + xit+1). Second, for each xit spc a
volatility measure, vi, is computed as the inverse of its standard deviation. Third, each xit spc
is adjusted to equalize the volatility of the components, the standardization factor being
si = vi/

P
i vi. Fourth, the standardized components, mit = sixit spc, are summed together

with equal weights, yielding mt =
P

imit. Fifth, the index in levels is computed as

CCIt = CCIt−1 ∗ (200 +mt)/(200−mt) (1)

with the starting condition

CCI1 = (200 +m1)/(200−m1).

Finally, rebasing CCI to average 100 in 1996 yields the CCICB.
Within the model based approaches, two main methodologies have emerged: dynamic

factor models and Markov switching models. In both cases there is a single unobservable
force underlying the current status of the economy, but in the former approach this is a
continuous variable, while in the latter it is a discrete variable that evolves according to a
Markov chain. We now review these two methodologies, highlighting their pros and cons.
Dynamic factor models were developed by Geweke (1977) and Sargent and Sims (1977),

but their use became well known to most business cycle analysts after the publication of
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Stock and Watson’s (1989, SW) attempt to provide a formal probabilistic basis for Burns and
Mitchell’s coincident and leading indicators, with subsequent refinements of the methodology
in Stock and Watson (1991, 1992). The rationale of the approach is that a set of variables
is driven by a limited number of common forces and by idiosyncratic components that are
either uncorrelated across the variables under analysis or in any case common to only a
limited subset of them. The particular model that SW adopted is the following,

∆xt = β + γ(L)∆Ct + ut (2)

D(L)ut = et (3)

φ(L)∆Ct = δ + vt (4)

where xt includes the (logs of the) four coincident variables used by the CB for their CCICB,
the only difference being the use of hours of work instead of employment since the former
provides a more direct measure of fluctuations in labor input. Ct is the single factor driving all
variables, while ut is the idiosyncratic component; ∆ indicates the first difference operator,
L is the lag operator and γ(L), D(L), φ(L) are, respectively, vector, matrix and scalar
lag polynomials. SW used first differenced variables since unit root tests indicated that the
coincident indexes were integrated, but not cointegrated. The model is identified by assuming
that D(L) is diagonal and et and vt are mutually and serially uncorrelated at all leads and
lags, which ensures that the common and the idiosyncratic components are uncorrelated.
Moreover, ∆Ct should affect contemporaneously at least one coincident variable. Notice
that the hypothesis of one factor, ∆Ct, does not mean that there is a unique source of
aggregate fluctuations, but rather that different shocks have proportional dynamic effects on
the variables.
For estimation, the model in (2)-(4) is augmented by the identity

Ct−1 = ∆Ct−1 + Ct−2, (5)

and cast into state-space form. The Kalman filter can then be used to write down the
likelihood function, which is in turn maximized to obtain parameter and factor estimates, all
the details are presented in Stock and Watson (1991).
A few additional comments are in order. First, the composite coincident index, CCISWt,

is obtained through the Kalman filter as the minimum mean squared error linear estimator of
Ct using information on the coincident variables up to period t. Hence, the procedure can be
implemented in real time, conditional on the availability of data on the coincident variables.
By using the Kalman smoother rather than the filter, it is possible to obtain end of period
estimates of the state of the economy, i.e., Ct|T . Second, it is possible to obtain a direct
measure of the contribution of each coincident indicator in xt to the index by computing the
response of the latter to a unit impulse in the former. Third, since data on some coincident
indicator are published with delay, they can be treated as missing observations and estimated
within the state-space framework. Moreover, the possibility of measurement error in the first
releases of the coincident indicators can be also taken into consideration by adding an error
term to the measurement equation. This is an important feature since data revisions are
frequent and can be substantial, as for example testified by the revised US GDP growth
rate data for 2001. Fourth, a particular time varying pattern in the parameters of the lag
polynomials D(L) and φ(L) can be allowed by using a time-varying transition matrix. Fifth,

6



standard errors around the coincident index can be computed, even though they were not
reported by SW.
The cyclical structure of CCISW closely follows the NBER expansions and recessions, and

the correlation of two quarters growth rates in CCISW and real GDP was about .86 over the
period 1959-87. Stock and Watson (1991) also compared their CCISW with the DOC’s one,
finding that the overall relative importance of the single indicators is roughly similar (but the
weights are different since the latter index is made up of contemporaneous indicators only),
the correlation of the levels of the composite indexes was close to 0.94, again over the period
1959-87, and the coherence of their growth rates at business cycle frequency was even higher.
These findings provide support for the simple averaging methodology originated at the

NBER and then further developed at the DOC and the CB, but they also question the
practical usefulness of the SW’s approach, which is substantially more complicated. Overall,
the SWmethodology, and more generally model based index construction, are worth their cost
since they provide a proper statistical framework that, for example, permits the computation
of standard errors around the composite index, the unified treatment of data revisions and
missing observations, the possibility of using time-varying parameters and, as we will see in
more details in Section 4, a coherent framework for the development of composite leading
indexes.
A possible drawback of SW’s procedure is that it requires an ex-ante classification of

variables into coincident and leading or lagging, even though this is common practice in
this literature, and it cannot be directly extended to analyze large datasets because of com-
putational problems, see Section 4.2 for details. Forni, Hallin, Lippi and Reichlin (2000,
2001 FHLR henceforth) proposed an alternative factor based methodology that addresses
both issues, and applied it to the derivation of a composite coincident indicator for the Euro
area. They analyzed a large set of macroeconomic time series for each country of the Euro
area using a dynamic factor model, and decomposed each time series into a common and
an idiosyncratic component, where the former is the part of the variable explained by com-
mon Euro area shocks, the latter by variable specific shocks. The CCIFHLR is obtained as
a weighted average of the common components of the interpolated monthly GDP series for
each country, where the weights are proportional to GDP, and takes into account both within
and across-countries cross correlations.
More specifically, the model FHLR adopted is

xit = b
0
i(L)vt + ξit, i = 1, ..., N, t = 1, ..., T, (6)

where xit is a stationary univariate random variable, vt is a q × 1 vector of common shocks,
χit = xit − ξit is the common component of xit, and ξit is its idiosyncratic component. The
shock vt is an orthonormal white noise process, so that var(vjt) = 1, cov(vt, vt−k) = 0, and
cov(vjt, vst−k) = 0 for any j 6= s, t and k. ξN = {ξ1t, ..., ξNt}0 is a wide sense stationary
process, and cov(ξjt, vst−k) = 0 for any j, s, t and k. bi(L) is a q × 1 vector of square
summable, bilateral filters, for any i. Notice that SW’s factor model (2) is obtained as a
particular case of (6) when there is one common shock (q = 1), bi(L) = γi(L)/φ(L), and the
idiosyncratic components are assumed to be orthogonal.
Grouping the variables into xNt = {x1t, ..., xNt}0 , FHLR also required xNt (and χNt, ξNt

that are similarly defined) to have rational spectral density matrices, Σx
N , Σ

χ
N , and Σξ

N ,
respectively. To achieve identification, they assumed that the first (largest) idiosyncratic
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dynamic eigenvalue, λξN1, is uniformly bounded, and that the first (largest) q common dy-
namic eigenvalues, λχN1, ..., λ

χ
Nq, diverge, where dynamic eigenvalues are the eigenvalues of the

spectral density matrix, see e.g. Brillinger (1981, Chap. 9). In words, the former condition
limits the effects of ξit on other cross-sectional units. The latter, instead, requires vt to affect
infinitely many units.
Let us assume for the moment that the number of common shocks is known. Then, FHLR

suggested to estimate the common component of χit with the following step-wise procedure.
(i) Estimate the spectral density matrix of xNt as

ΣT
N(θh) =

MX
k=−M

ΓTNkωke
−ikθh , θh = 2πh/(2M + 1), h = 0, ..., 2M, (7)

where ΓTNk is the sample covariance matrix of xNt and xNt−k, ωk is the Bartlett lag window
of size M (ωk = 1− k/(M + 1)), and M diverges but M/T tends to zero.
(ii) Calculate the first q eigenvectors of ΣT

N(θh), p
T
Nj(θh), and the associated eigenvalues

λxjθ, j = 1, ..., q, for h = 0, ..., 2M .
(iii) Define pTNj(L) as

pTNj(L) =
MX

k=−M
pTNj,kL

k, pTNj,k =
1

2M + 1

2MX
h=0

pTNj(θh)e
ikθh , k = −M, ...,M. (8)

pTNj(L)xNt, j = 1, .., q, are the first q estimated dynamic principal components of xNt.
(iv) The estimated common component of xit, bχit, is the projection of xit on present,

past, and future dynamic principal components. FHLR proved that, under mild conditions,bχit is a consistent estimator of χit when N and T diverge. Once the common component is
estimated, the idiosyncratic one is obtained simply as a residual, namely, bξit = xit − bχit.
In practice, M and the number of leads (s) and lags (g) of pTNj(L)xNt to be included in

the projection can be either chosen a priori or determined by minimizing the information
criterion

T

N

NX
i=1

log bσi + 2q(g + s+ 1), (9)

where bσi is the estimated variance of bξit. Finally, FHLR suggested to determine the number
of factors, q, on the basis of two properties: (a) the average over frequencies of the first q
dynamic eigenvalues diverges, while the average of the q + 1th does not; (b) there should be
a big gap between the variance of xNt explained by the first q dynamic principal components
and that explained by the q + 1th principal component. An information criterion could be
also used. In particular, the criterion that FHLR suggested for selection of g and s, equation
(9) above, could be minimized also with respect to q.
The methodology was further refined by Altissimo et al. (2001) for real time implemen-

tation, and it is currently adopted to produce the CEPR’s composite coincident indicator
for the euro area, Eurocoin (see www.cepr.org). In particular, they exploited the large cross-
sectional dimension for forecasting indicators available with delay and for filtering out high
frequency dynamics. An alternative coincident index for the Euro area following the SW
methodology was proposed by Proietti and Moauro (2003).

8



As mentioned in the Introduction, the main criticism Sims (1989) raised in his comment
to Stock and Watson (1989) is the use of a constant parameter model (even though, as
remarked above, their framework is flexible enough to allow for parameter variation), and a
similar critique can be addressed to the FHLR’s method. Hamilton’s (1989) Markov switching
model is a powerful response to this criticism, since it allows the growth rate of the variables
(and possibly their dynamics) to depend on the status of the business cycle. A basic version
of the model can be written as

∆xt = cst +Ast∆xt−1 + ut, (10)

ut ∼ i.i.d.N(0,Σ) (11)

where, as in (2), xt includes the coincident variables under analysis (or a single composite
index), while st measures the status of the business cycle, with st = 1 in recessions and
st = 0 in expansions, and both the deterministic component and the dynamics can change
over different business cycle phases. The binary state variable st is not observable, but the
values of the coincident indicators provide information on it.
With respect to the factor model based analysis, there is again a single unobservable force

underlying the evolution of the indicators but, first, it is discrete rather than continuous and,
second, it does not directly affect or summarize the variables but rather indirectly determines
their behaviour that can change substantially over different phases of the cycle.
To close the model and estimate its parameters, an equation describing the behaviour of

st is required, and it cannot be of autoregressive form as (4) since st is a binary variable.
Hamilton (1989) proposed to adopt the Markov switching (MS) model, where

Pr(st = j|st−1 = i) = pij , (12)

as previously considered by Lindgren (1978) and Neftci (1982) in simpler contexts. For
expositional purposes we stick to the two states hypothesis, though there is some empirical
evidence that three states can further improve the specification, representing recession, high
growth and normal growth, see e.g. Kim and Murray (2002) for the US and Artis, Krolzig
and Toro (2003) for the Euro area.
In our business cycle context, the quantity of special interest is an estimate of the un-

observable current status of the economy and, assuming a mean square error loss function,
the best estimator coincides with the conditional expectation of st given current and past
information on xt, which in turn is equivalent to the conditional probability

ζt|t =
µ
Pr(st = 0|xt, xt−1, ..., x1)
Pr(st = 1|xt, xt−1, ..., x1)

¶
. (13)

Using simple probability rules, it follows that

ζt|t =

Ã
f(xt|st=0,xt−1,...,x1) Pr(st=0|xt−1,...,x1)

f(xt|xt−1,...,x1)
f(xt|st=1,xt−1,...,x1) Pr(st=1|xt−1,...,x1)

f(xt|xt−1,...,x1)

!
, (14)
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where

Pr(st = i|xt−1, ..., x1) =
1X

j=0

pji Pr(st−1 = j|xt−1, ..., x1), (15)

f(xt|st = i, xt−1, ..., x1) =
1

(2π)T/2
|Σ|−1/2 exp[−(∆xt − ci −Ai∆xt−1)0Σ−1(∆xt − ci −Ai∆xt−1)/2],

f(xt, st = i|xt−1, ..., x1) = f(xt|st = i, xt−1, ..., x1) Pr(st = i|xt−1, ..., x1),

f(xt|xt−1, ..., x1) =
1X

j=0

f(xt, st = j|xt−1, ..., x1), i = 0, 1.

Hamilton (1994) or Krolzig (1997) provide additional details on these computations, and
formulae to calculate ζt|T , i.e., the smoothed estimator of the probability of being in a given
status in period t. Notice also that the first and last rows of (15) provide, respectively, the
probability of the state and the density of the variables conditional on past information only,
that will be used in Section 4 in a related context for forecasting.
For comparison and since it is rather common in empirical applications (see e.g. Neimira

and Klein (1994) for the US and Artis et al. (1995) for the UK), it is useful to report Neftci’s
(1982) formula to compute the (posterior) probability of a turning point given the available
data, as refined by Diebold and Rudebusch (1989). Defining

Πt = Pr(st = 1|xt, , ..., x1), (16)

the formula is

Πt =
A1

B1 + C1
, (17)

A1 = (Πt−1 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
B1 = (Πt−1 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
C1 = (1−Πt−1)(1− p01)f(xt|st = 0, xt−1, ..., x1).

The corresponding second element of ζt|t in (14) can be written as

Πt =
A2

B2 + C2
, (18)

A2 = (Πt−1 −Πt−1p01 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
B2 = (Πt−1 −Πt−1p01 + p01(1−Πt−1))f(xt|st = 1, xt−1, ..., x1),
C2 = ((1−Πt−1)(1− p01) +Πt−1p01)f(xt|st = 0, xt−1, ..., x1).

Since in practice the probability of transition from expansion to recession, p01, is very small
(e.g., Diebold and Rudebusch (1989) set it at .02), the term Πt−1p01 is also very small and
the two probabilities in (17) and (18) are very close. Yet, in general it is preferable to use
the expression in (18) which is based on a more general model. Notice also that when Πt = 1
the formula in (17) gives a constant value of 1 (e.g., Diebold and Rudebusch (1989) put an
ad-hoc upper bound of .95 for the value that enters the recursive formula), while this does
not happen with (18).
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The model in (10)-(12) can be extended in several dimensions, for example to allow for
more states and cointegration among the variables, see e.g. Krolzig, Marcellino and Mizon
(2002), or time-varying probabilities, as e.g. in Diebold, Lee and Weinbach (1994) or Filardo
(1994). The latter case is of special interest in our context when past values of the leading
indicators, y, are the driving forces of the probabilities, as in Filardo (1994), who substituted
(12) with

Pr(st = i|st−1 = j, xt−1, ..., x1, yt−1, ..., y1) =
exp(θyt−1)

1 + exp(θyt−1)
, (19)

so that the first row of (15) should be modified into

Pr(st = i|xt−1, ..., x1) = (20)

=
exp(θyt−1)

1 + exp(θyt−1)
Pr(st−1 = j|xt−1, ..., x1) + 1

1 + exp(θyt−1)
Pr(st−1 = i|xt−1, ..., x1).

Another example is provided by Filardo and Gordon (1998), who used a probit model rather
than a logistic specification for Pr(st = i|st−1 = j, xt−1, ..., x1, yt−1, ..., y1), while Ravn and
Sola (1999) warned against possible parameter instability of relationships such as (19). Raj
(2002) provides a more detailed review of these and other extensions of the MS model.
As mentioned in the Introduction, factor models and Markov switching specifications

capture two complementary and fundamental features of business cycles, namely, the diffusion
of slow-down and recovery across many series and the different behavior of several indicators
in expansions and recessions. They are not only flexible and powerful statistical tools but
can be also given sound justifications from an economic theory point of view, see e.g. the
overview in Diebold and Rudebusch (1996). The latter article represents also one of the
earliest attempts to combine the two approaches, by allowing the factor underlying SW’s
model to evolve according to a Markov switching model. To provide support for their ideas,
they fitted univariate and multivariate MS models to, respectively, the DOC’s composite
coincident indicator and its components, finding substantial evidence in favor of the MS
specifications. Yet, they did not jointly estimate the factor MS model. Such a task was
tackled by Chauvet (1998) and Kim and Yoo (1995), using an approximated maximum
likelihood procedure developed by Kim (1994), and by Kim and Nelson (1998) and Filardo
and Gordon (1999) using Gibbs sampler techniques introduced by Albert and Chib (1993a),
Carter and Kohn (1994), and Shepard (1994).
In particular, Kim and Nelson (1998) substituted equation (4) in SW’s model with

φ(L)(∆Ct − µst − δ) = vt, (21)

µst = µ0 + µ1st,

where the transition probabilities are either constant or follow a probit specification. They
compared the (posterior) regime probabilities from the factor MS model estimated with the
four SW’s components with those from a univariate MS model for IP, concluding that the
former are much more closely related with the NBER expansion/recession classification. Yet,
such a result is not surprising since Filardo (1994) showed that time-varying probabilities are
needed for the univariate MS model to provide a close match with the NBER classification.
When the original SW’s model is estimated using the Gibbs sampling approach, the posterior
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distributions of the parameters are very close to those obtained using (21) instead of (4), the
main difference being a slightly larger persistence of the estimated factor. Filardo and Gordon
(1999), focusing on the 1990 recession, also found a similar performance of the standard and
MS factor model, while a multivariate MS model with time-varying probabilities performed
best during the recessionary part of 1990 (but not significantly better in the remaining
months). Finally, Kim and Nelson (1998) also found a close similarity of their composite
coincident indicator and the equal weighted DOC’s one, with correlation in the growth rates
above .98.
Overall, no clear cut ranking of the multivariate model based approaches to coincident

indicators construction emerges, but the resulting indexes are in general very similar, and
close to the equal weighted ones. The positive aspect of this result is that estimation of
the current economic condition is rather robust to the choice of method. Another impli-
cation is that pooling methods can be expected to yield no major improvements because
of high correlation of all the indicators, but this is an issue that certainly deserves further
investigation.
To conclude, notice that if the probability of the states is time varying, e.g. as in (19), and

the indicators in yt include a measure of the length of the current recession (or expansion),
it is possible to allow and test for duration dependence, namely, for whether the current
or past length of a business cycle phase influences its future duration. The test is based
on the statistical significance of the parameter associated with the duration indicator in an
equation such as (19). Earlier studies using non-parametric techniques, such as Diebold
and Rudebusch (1990) or Diebold, Rudebusch and Sichel (1993), detected positive duration
dependence for recessions but not for expansions. Such a finding was basically confirmed by
Durland and McCurdy (1994) using a semi-Markov model with duration depending only on
calendar time, by Filardo and Gordon (1998) in a univariate Markov switching framework
that also relates duration to macroeconomic variables, and by Kim and Nelson (1998) in
their multivariate factor MS model. Therefore, another interesting question to be addressed
in Section 4 is whether leading indicators can be used to predict the duration of a business
cycle phase.

2.2 Filtering and dating procedures

Once the choice of the measure of aggregate activity is made, two issues emerge: first the
selection of the proper variable transformation, if any, and second the adoption of a business
cycle dating rule that identifies the peaks and troughs in the series, and the associated
expansionary and recessionary periods and their durations.
The choice of the variable transformation is related to the two broad definitions of the

cycle recognized in the literature, the so-called classical cycle and the growth or deviation
cycle. In the case of the deviation cycle, the focus is on the deviations of the rate of growth
of the target variable from an appropriately defined trend rate of growth, while the classical
cycle relies on the levels of the target variable.
Besides removing long term movements as in the deviation cycle, high frequency fluctua-

tions can be also eliminated to obtain a filtered variable that satisfies the duration requirement
in the original definition of Burns and Mitchell (1946, p.3):
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”... in duration business cycles vary from more than one year to ten or twelve
years; they are not divisible into shorter cycles of similar character with ampli-
tudes approximating their own.”

There is a large technical literature on methods of filtering the data. In line with the
previous paragraph, Baxter and King (1999) argued that the ideal filter for cycle mea-
surement must be customized to retain unaltered the amplitude of the business cycle pe-
riodic components, while removing high and low frequency components. This is known as
a band-pass filter and, for example, when only cycles with frequency in the range 1.5-8
years is of interest, its theoretical frequency response function takes the rectangular form:
w(ω) = I(2π/(8s) ≤ ω ≤ 2π/(1.5s)), where I(·) is the indicator function. Moreover, the
phase displacement of the filter should always be zero, to preserve the timing of peaks and
troughs; the latter requirement is satisfied by a symmetric filter.
Given the two business cycle frequencies, ωc1 = 2π/(8s) and ωc2 = 2π/(1.5s), the band-

pass filter is

wbp(L) =
ωc2 − ωc1

π
+

∞X
j=1

sin(ωc2j)− sin(ωc1j)
πj

(Lj + L−j). (22)

Thus, the ideal band-pass filter exists and is unique, but entails an infinite number of leads
and lags, so in practice an approximation is required. Baxter and King (1999) showed that
the K-terms approximation to the ideal filter (22) that is optimal in the sense of minimizing
the integrated squared approximation error is simply (22) truncated at lagK. They proposed
using a three years window, i.e. K = 3s, as a valid rule of thumb for macroeconomic time
series. They also constrained the weights to sum up to zero, so that the resulting approxima-
tion is a detrending filter: denoting the truncated filter wbp,K(L) = w0 +

PK
1 wj(L

j + L−j),
the weights of the adjusted filter are wj − wbp,K(1)/(2K + 1), see e.g. Stock and Watson
(1999a) for an application.
As an alternative, Christiano and Fitzgerald (1999) proposed to project the ideal filter on

the available sample. If ct = wbp(L)xt denotes the ideal cyclical component, their proposal
is to consider bct = E(ct|x1, ..., xT ), where xt is given a parametric linear representation, e.g.
an ARIMA model. They also found that for a wide class of macroeconomic time series the
filter derived under the random walk assumption for xt is feasible and handy.
Baxter and King (1999) did not consider the problem of estimating the cycle at the

extremes of the available sample (the first and last three years), which is inconvenient for
a real-time assessment of current business conditions. Christiano and Fitzgerald (1999)
suggested to replace the out of sample missing observations by their best linear prediction
under the random walk hypothesis. Yet, this can upweight the last and the first available
observations. As a third alternative, Artis, Marcellino and Proietti (2003, AMP) designed
a band-pass filter as the difference of two Hodrick Prescott (1997) detrending filters with
parameters λ = 1 and λ = 677.13, where these values are selected to ensure that ωc1 =
2π/(8s) and ωc2 = 2π/(1.5s). The resulting estimates of the cycle are comparable to the
Baxter and King cycle, although slightly noisier, without suffering from unavailability of the
end of sample estimates
Working with growth rates of the coincident variables rather than levels, a convention

typically adopted for the derivation of the composite indexes in the previous subsection, cor-
responds to the application of a filter whose theoretical frequency response function increases
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monotonically, starting at zero at the zero frequency. Therefore, growth cycles and deviation
cycles need not be very similar.
In early post-war decades, especially in Western Europe, growth was relatively persistent

and absolute declines in output were comparatively rare; the growth or deviation cycle then
seemed to be of more analytical value, especially as inflexions in the rate of growth of output
could reasonably be related to fluctuations in the levels of employment and unemployment.
In more recent decades, however, there have been a number of instances of absolute decline
in output, and popular description at any rate has focussed more on the classical cycle.
The concern that de-trending methods can affect the information content of the series in
unwanted ways, see e.g. Canova (1998), has reinforced the case for examining the classical
cycle. The relationships among the three types of cycles are analyzed in more details below,
after defining the dating algorithms.
In the U.S., the National Bureau of Economic Research (http://www.nber.org) provides

a chronology of the classical business cycle since the early 1920s, based on the consensus of a
set of coincident indicators concerning production, employment, real income and real sales,
that is widely accepted among economists and policy makers, see e.g. Moore and Zarnowitz
(1986). A similar chronology has been recently proposed for the euro area by the Center for
Economic Policy Research (http://www.cepr.org).
Since the procedure underlying the NBER dating is informal and subject to substantial

delays in the announcement of the peak and trough dates (which is rational to avoid later
revisions), several alternative methods have been put forward and tested on the basis of their
ability to closely reproduce the NBER classification.
The simplest approach, often followed by practitioners, is to identify a recession with at

least two quarters of negative real GDP growth. Yet, the resulting chronology differs with
respect to the NBER in a number of occasions, see e.g. Watson (1991) or Boldin (1994).
A more sophisticated procedure was developed by Bry and Boschan (1971) and further

refined by Harding and Pagan (2001). In particular, for quarterly data on the log-difference of
GDP or GNP (∆xt), Harding and Pagan defined an expansion terminating sequence, ETSt,
and a recession terminating sequence, RTSt, as follows:

ETSt = {(∆xt+1 < 0) ∩ (∆∆xt+2 < 0)}
RTSt = {(∆xt+1 > 0) ∩ (∆∆xt+2 > 0)} (23)

The former defines a candidate point for a peak in the classical business cycle, which termi-
nates the expansion, whereas the latter defines a candidate for a trough. When compared
with the NBER dating, usually there are only minor discrepancies. Stock and Watson (1989)
adopted an even more complicated rule for identifying peaks and troughs in their composite
coincident index.
Within the Markov switching framework, a classification of the observations is automati-

cally produced if the probability of being in a recession, Pr(st = 1|xt, xt−1, ..., x1) in (13) or its
smoothed version, is complemented with a threshold such that when Pr(st = 1|xt, xt−1, ..., x1)
is beyond the threshold the observation is marked as belonging to a recession. The turning
points are then easily obtained as the dates of switching from expansion to recession, or
vice versa. Among others, Boldin (1994) reported encouraging results using a MS model for
unemployment, and Layton (1996) for the ECRI coincident index. Chauvet and Piger (2003)
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confirmed the positive results also with a real-time dataset and for a more up-to-date sample
period.
Harding and Pagan (2004) compared their non-parametric rule with the MS approach,

and further insight can be gained from Hamilton’s (2004) comments on the paper and the
authors’ rejoinder. While the non-parametric rule produces simple, replicable and robust
results, it lacks a sound economic justification and cannot be used for probabilistic state-
ments on the current status of the economy. On the other hand, the MS model provides a
general statistical framework to analyze business cycle phenomena, but the requirement of a
parametric specification introduces a subjective element into the analysis and can necessitate
a careful tailoring. Moreover, if the underlying model is linear, the MS recession indicator is
not identified while pattern recognition works in any case.
AMP developed a dating algorithm based on the theory of Markov chains that retains

the attractive features of the non-parametric methods, but allows the computation of the
probability of being in a certain regime or of a phase switch. Moreover, the algorithm can
be easily modified to introduce depth or amplitude restrictions, and to construct diffusion
indices. Basically, the transition probabilities, pij in (12), are scored according to the pattern
in the series xt rather than within a parametric MS model. The resulting chronology for the
euro area is very similar to the one proposed by the CEPR, and a similar result emerges for
the US with respect to the NBER dating, with the exception of the last recession, see Table
3 and Section 2.3 below.
An alternative parametric procedure to compute the probability of being in a certain

cyclical phase is to adopt a probit or logit model where the dependent variable is the NBER
expansion/recession classification, and the regressors are the coincident indicators. For ex-
ample, Birchenhall, Jessen, Osborn and Simpson (1999) showed that the fit of a logit model
is very good in sample when the four NBER coincident indicators are used. They also found
that the logit model outperformed a MS alternative, while Layton and Katsuura (2001)
obtained the opposite ranking in a slightly different context.
The in-sample estimated parameters from the logit or probit models can be also used in

combination with future available values of the coincident indicators to predict the future
status of the economy, which is for example useful to conduct a real time dating exercise
because of the mentioned delays in the NBER announcements.
So far, in agreement with most of the literature, we have classified observations into two

phases, recessions and expansions, which are delimited by peaks and troughs in economic
activity. However, multiphase characterizations of the business cycle are not lacking in the
literature: the popular definition due to Burns and Mitchell (1946) postulated four states:
expansion, recessions, contractions, recovery; see also Sichel (1994) for an ex-ante three phases
characterization of the business cycle, Artis, Krolzig and Toro (2001) for an ex-post three-
phases classification based on a model with Markov switching, and Layton and Katsuura
(2001) for the use of multinomial logit models.
To conclude, having defined several alternative dating procedures, it is useful to return

to the different notions of business cycle and recall a few basic facts about their dating,
summarizing results in AMP.
First, neglecting duration ties, classical recessions (i.e. peak-trough dynamics in xt), cor-

respond to periods of prevailing negative growth, ∆xt < 0. In effect, negative growth is a
sufficient, but not necessary, condition for a classical recession under the Bry and Boschan
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dating rule and later extensions. Periods of positive growth can be observed during a re-
cession, provided that they are so short lived that they do not determine an exit from the
recessionary state.
Second, turning points in xt correspond to ∆xt crossing the zero line (from above zero if

the turning point is a peak, from below in the presence of a trough in xt). This is strictly
true under the calculus rule, according to which ∆xt < 0 terminates the expansion.
Third, if xt admits the log-additive decomposition, xt = ψt + µt, where ψt denotes the

deviation cycle, then growth is in turn decomposed into cyclical and residual changes:

∆xt = ∆ψt +∆µt.

Hence, assuming that ∆µt is mostly due to growth in trend output, deviation cycle recessions
correspond to periods of growth below potential growth, that is ∆xt < ∆µt. Using the same
arguments, turning points correspond to ∆xt crossing ∆µt. When the sum of potential
growth and cyclical growth is below zero, that is ∆µt + ∆ψt < 0, a classical recession also
occurs.
Finally, as an implication of the previous facts, classical recessions are always a subset of

deviation cycle recessions, and there can be multiple classical recessionary episodes within a
period of deviation cycle recessions. This suggests that an analysis of the deviation cycle can
be more informative and relevant also from the economic policy point of view, even though
more complicated because of the filtering issues related to the extraction of the deviation
cycle.

2.3 Examples

In Figure 1 we graph four composite coincident indexes for the US: the Conference Board’s
equal weighted non model based CCI, the OECD coincident reference series which is a
transformation of IP, the Stock and Watson’s (1989) factor model based CCI, and the
Kim and Nelson’s (1998) bayesian MS factor model based CCI computed using the four
coincident series combined in the CCICB. All indexes are normalized to have zero mean and
unit standard deviation.
The Figure highlights the very similar behavior of all the CCIs, which in particular share

the same pattern of peaks and troughs. The visual impression is confirmed by the correlations
for the levels, and by those for the 6-month percentage changes reported in Table 1, the lowest
value being 0.916 for CCIKN and CCIOECD. These values are in line with previous studies,
see Section 2.1, and indicate that is possible to achieve a close to complete agreement on the
status of the economy.
In Figure 2 we consider dating the US classical and deviation cycles. In the upper panel

we graph the CCICB and the NBER expansion/recession classification. The figure highlights
that the NBER recessions virtually coincide with the peak-trough periods in the CCICB. In
the middle panel we graph the CCICB and the expansion/recession classification resulting
from the AMP dating. The results are virtually identical with respect to the NBER (see also
the first two columns of Table 3), with the noticeable difference that AMP identifies a double
dip at the beginning of the new century with recessions in 2000:10-2001:12 and 2002:7-2003:4
versus 2001:3-2001:11 for the NBER. In the lower panel of Figure 2 we graph the HP band
pass filtered CCICB, described in Section 2.2, and the AMP dating for the resulting deviation16



cycle. As discussed above, the classical cycle recessions are a subset of those for the deviation
cycle, since the latter capture periods of lower growth even if not associated with declines in
the level of the CCI.
Finally, in Figure 3 we report the (filtered) probability of recessions computed with two

methods. In the upper panel we graph the probabilities resulting from the Kim and Nelson’s
(1998) bayesian MS factor model applied to the four coincident series combined in the CCICB.
In the lower panel those from the AMP non-parametric MS approach applied to the CCICB.
The results in the two panels are very similar, and the matching of peaks in these probabilities
and NBER dated recessions is striking. The latter result supports the use of these methods
for real-time dating of the business cycle. It is also worth noting that both methods attribute
a probability close to 60% for a second short recession at the beginning of the century, in
line with the AMP dating reported in the middle panel of Figure 2 but in contrast with the
NBER dating.

3 Choice of the leading indicators

Once the target variable is identified, the leading indicators have to be selected. We discuss
selection criteria in the first subsection; composite indexes in the second subsection; and a
few examples in the final subsection.

3.1 Indicator selection

Since the pioneering work of Mitchell and Burns (1938), variable selection has rightly at-
tracted considerable attention in the leading indicator literature, see e.g. Zarnowitz and
Boschan (1975a,b) for a review of early procedures at the NBER and Department of Com-
merce. Moore and Shiskin (1967) formalized an often quoted scoring system (see e.g. Boehm
(2001), Phillips (2003)), based mostly upon (i) consistent timing as a leading indicator (i.e.,
to systematically anticipate peaks and troughs, possibly with a rather constant lead time);
(ii) conformity to the general business cycle (i.e., have good forecasting properties not only
at peaks and troughs); (iii) economic significance (i.e., being supported by economic theory
either as possible causes of business cycles or, perhaps more importantly, as quickly reacting
to negative or positive shocks); (iv) statistical reliability of data collection (i.e., provide an
accurate measure of the quantity of interest); (v) prompt availability without major later
revisions (i.e., being timely and regularly available for an early evaluation of the expected
economic conditions, without requiring subsequent modifications of the initial statements);
(vi) smooth month to month changes (i.e., being free of major high frequency movements).
Some of these properties can be formally evaluated at different levels of sophistication.

In particular, if a dating procedure is applied both to the coincident variable or index and to
the candidate leading indicator, the resulting peak/trough dates can be compared and used
to evaluate whether the peak structure of the leading indicator systematically anticipated
that of the coincident indicator, with a stable lead time (property i) ). An alternative
procedure can be based on the statistical concordance of the binary expansion/recession
indicators (resulting from the peak/trough dating) for the coincident and lagged leading
variables, where the number of lags of the leading variable can be either fixed or chosen to

17



maximize the concordance. A formal test for no concordance is defined below in Section
5.1. A third option is to run a logit/probit regression of the coincident expansion/recession
binary indicator on the leading variable, evaluating the explanatory power of the latter. The
major advantage of this procedure is that several leading indicators can be jointly considered
to measure their partial contribution. Details on the implementation of this procedure are
provided in Section 4.6.
To assess whether a leading indicator satisfies property ii), conformity to the general

business cycle, it is preferable to consider it and the target coincident index as continuos
variables rather than transforming them into binary indicators. Then, the set of available
techniques includes frequency domain procedures (such as the spectral coherence and the
phase lead), and several time domain methods, ranging from Granger causality tests in
multivariate linear models, to the evaluation of the marginal predictive content of the leading
indicators in sophisticated non-linear models, possibly with time varying parameters, see
Section 4 for details on these methods. Within the time domain framework it is also possible
to consider a set of additional relevant issues such as the presence of cointegration between
the coincident and leading indicators, the determination of the number lags of the leading
variable, or the significance of duration dependence. We defer a discussion of these topics to
Section 4.
Property iii), economic significance, can be hardly formally measured, but it is quite

important both to avoid the measurement without theory critique, e.g. Koopmans (1947),
and to find indicators with stable leading characteristics. On the other hand, the lack of a
commonly accepted theory of the origin of business cycles, see e.g. Fuhrer and Schuh (1998),
makes it difficult to select a single indicator on the basis of its economic significance.
Properties iv) and v) have received considerable attention in the recent years and, together

with economic theory developments, underlie the more and more widespread use of financial
variables as leading indicators (due to their exact measurability, prompt availability and
absence of revisions), combined with the adoption of real-time datasets for the assessment
of the performance of the indicators, see Section 5 for details on these issues. Time delays
in the availability of leading indicators are particularly problematic for the construction of
composite leading indexes, and have been treated differently in the literature and in practice.
Either preliminary values of the composite indexes are constructed excluding the unavailable
indicators and later revised, along the tradition of the NBER and later of the Department
of Commerce and the Conference Board, or the unavailable observations are substituted
with forecasts, as in the factor based approaches described in Section 2.1 with reference to
the composite coincident index. The latter solution is receiving increasing favor also within
the traditional methodology, see e.g. McGuckin, Ozyildirim and Zarnowitz (2003). Within
the factor based approaches the possibility of measurement error in the components of the
leading index, due e.g. to data revisions, can be also formally taken into account, as discussed
in Section 2.1, but in practice also the resulting composite indexes require later revisions.
Yet, both for the traditional and for the more sophisticated methods, the revisions in the
composite indexes due to the use of later releases of their components are minor.
The final property vi), a smooth evolution in the leading indicator, can require a careful

choice of variable transformations and/or filter. In particular, the filtering procedures dis-
cussed in Section 2.2 to enhance the business cycle characteristics of the coincident indicator
can be applied also to the leading indicators, and in general should be if the target variable
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is filtered. In general, they can provide improvements with respect to the standard choice of
month to month differences of the leading indicator. Also, longer differences can be useful to
capture sustained growth or lack of it, see e.g. Birchenhall et al. (1999), or differences with
respect to the previous peak or trough to take into consideration the possible non-stationary
variations of values at turning points, see e.g. Chin et al. (2000).

3.2 Composite indexes

The use of a single leading indicator is dangerous because economic theory and experience
teach that recessions can have different sources and characteristics. For example, the twin
US recessions of the early 80’s were mostly due to tight monetary policy, that of 1991 to
a deterioration in the expectations climate because of the first Iraq war, and that of 2001
to the bursting of the stock market bubble and, more generally, to over-investment, see e.g.
Stock and Watson (2003b). In the euro area, the three latest recessions according to the
CEPR dating are also rather different, with the one in 1974 lasting only three quarters and
characterized by synchronization across countries and coincident variables, as in 1992-93 but
contrary to the longer recession that started at the beginning of 1980 and lasted 11 quarters.
A combination of leading indicators into composite indexes can therefore be more useful

in capturing the signals coming from different sectors of the economy. The construction of a
composite index requires several steps and can be undertaken either in a non model based
framework or with reference to a specific econometric model of the evolution of the leading
indicators, possibly jointly with the target variable. The latter case is analyzed in details in
the next Section, while here we focus on the non model based approach to composite leading
indexes construction, see e.g. Niemira and Klein (1994, Ch.3) for details. Examples are
provided in the next subsection.
The first element is the selection of the index components. Each component should satisfy

the criteria mentioned in the previous subsection. In addition, a balanced representation of
all the sectors of the economy should be achieved, or at least of those more closely related to
the target variable.
The second element is the transformation of the index components. This includes the

transformations discussed above, namely, seasonal adjustment, outlier removal, treatment of
measurement error in first releases of indicators subject to subsequent revision, and possibly
forecast of unavailable most recent observations for some indicators. These steps can be
implemented either in a univariate framework, mostly by exploiting univariate time series
models for each indicator, or in a multivariate context. In addition, the transformed indicators
should be made comparable to be included in a single index. Therefore, they are typically
detrended (using different procedures such as differencing, regression on deterministic trends,
or the application of more general band-pass filters), possibly smoothed to eliminate high
frequency movements (using moving averages or, again, band pass filters), and standardized
to make their amplitudes similar or equal (as in the case of the composite coincident index
of Section 2.1).
The final element for the construction of a composite leading index is the choice of a

weighting scheme. The typical choice, once the components have been standardized, is to
give them equal weights. This seems a sensible averaging scheme in this context, unless
there are particular reasons to give larger weights to specific sectors, depending on the target
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variable or on additional information on the economic situation.
From an econometric point of view, composite indexes constructed following the proce-

dure sketched above are subject to several criticisms, some of which are derived in a formal
framework in Emerson and Hendry (1996). First, even though the single indicators are typi-
cally chosen according to some formal or informal bivariate analysis of their relationship with
the target variable, there is no explicit reference to the target variable in the construction
of the composite index, e.g. in the choice of the weighting scheme. Second, the weighting
scheme is fixed over time, with periodic revisions mostly due either to data issues, such as
changes in the production process of an indicator, or to the past unsatisfactory performance
of the index. Endogenously changing weights that track the possibly varying relevance of
the single indicators over the business cycle and in the presence of particular types of shocks
could produce better results, even though their derivation is difficult. Third, lagged values
of the target variable are typically not included in the leading index, while there can be
economic and statistical reasons underlying the persistence of the target variable that would
favor such an inclusion. Fourth, lagged values of the single indicators are typically not used
in the index, while they could provide relevant information, e.g. because not only the point
value of an indicator but also its evolution over a period of time matter for anticipating
the future behavior of the target variable. Fifth, if some indicators and the target variable
are cointegrated, the presence of short run deviations from the long run equilibrium could
provide useful information on future movements of the target variable. Finally, since the
index is a forecast for the target variable, standard errors should be also provided, but their
derivation is virtually impossible in the non model based context because of the lack of a
formal relationship between the index and the target.
The main counterpart of these problems is simplicity. Non model based indexes are easy

to build, easy to explain, and easy to interpret, which are very valuable assets, in particular
for the general public and for policy makers. Moreover, simplicity is often a plus also for
forecasting. With this method there is no estimation uncertainty, no major problems of
overfitting, and the literature on forecast pooling suggests that equal weights work pretty
well in practice, see e.g. Stock and Watson (2003a), even though here variables rather than
forecasts are pooled.
Most of the issues raised for the non model based composite indexes are addressed by

the model based procedures described in the next Section, which in turn are in general much
more complicated and harder to understand for the general public. Therefore, while from the
point of view of academic research and scientific background of the methods there is little to
choose, practitioners may well decide to base their preferences on the practical forecasting
performance of the two approaches to composite index construction.

3.3 Examples

To provide an illustration of the points made in this Section, we now analyze the indicator
selection process for Stock and Watson’s (1989, SW) model based composite leading index,
described in details later on in Section 4.2, and the construction of two non model based
indexes for the US produced by official agencies, the Conference Board, CLICB, and the
OECD, CLIOECD.
SW started with a rather large dataset of about 280 series, yet smaller than Mitchell
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and Burns’ original selection of 487 candidate indicators. The series can be divided into ten
groups: ”measures of output and capacity utilization; consumption and sales; inventories and
orders; money and credit quantity variables; interest rates and asset prices; exchange rates
and foreign trade; employment, earnings and measures of the labor force; wages and prices;
measures of government fiscal activity; and other variables”, SW (p.365).
The bivariate relationships between each indicator, properly transformed, and the growth

of the CCIDOC were evaluated using frequency domain techniques (the coherence and the
phase lead), and time domain techniques (Granger causality tests and marginal predictive
content for CCIDOC beyond that of CLIDOC). The choice of CCIDOC rather than CCISW as
the target variable can raise some doubts, but the latter was likely not developed yet at the
time, and in addition the two composite coincident indexes are highly correlated. Some series
were retained even if they performed poorly on the basis of the three criteria listed above,
because either economic theory strongly supported their inclusion or they were part of the
CLIDOC . After this first screening, 55 variables remained in the list of candidate components
of the composite leading index.
It is interesting that SW mentioned the possibility of using all the 55 series for the

construction of an index, but abandoned the project for technical reasons (at the time con-
struction of a time series model for all these variables was quite complicated) and because
it would be difficult to evaluate the contribution of each component to the index. About
ten years later, the methodology to address the former issue became available, see Stock and
Watson (2001a, 2001b) and the discussion in Section 4.2 below, but the latter issue remains,
the trade-off between parsimony and broad coverage of the index is still unresolved.
The second indicator selection phase is based on a step-wise regression procedure. The

dependent variable is CCISWt+6 −CCISWt i.e., the six months growth rate in the SW com-
posite coincident index, that is also the target variable for SW composite leading index, see
Section 4.2. Different sets of variables (including their lags as selected by the AIC) are used
as regressors, variables in each set are retained on the basis of their marginal explanatory
power, the best variables in each original set are grouped into other sets of regressors, and
the procedure is repeated until a small number of indicators remains in the list.
At the end, seven variables (and their lags) were included in the composite index, as

listed in Table 1 in SW. They are: i) an index of new private housing authorized, ii) the
growth rate of manufacturers’ unfilled orders for durable goods industries, iii) the growth
rate in a trade weighted nominal exchange rate, iv) the growth rate of part-time work in
non-agricultural industries, v) the difference of the yield on constant-maturity portfolio of 10-
years US treasury bonds, vi) the spread between interest rates on 6-months corporate paper
and 6-months US treasury bills, vii) the spread between the yield on 10-years and 1-year US
Treasury bonds. The only change in the list so far took place in 1997, when the maturity in
vi) became 3 months. SW also discussed theoretical explanations for the inclusion of these
variables (and exclusion of others). As mentioned in the first subsection, the most innovative
variables in SW’s CLISW are the financial spreads, whose forecasting ability became the
focus of theoretical and empirical research in subsequent years. Yet, following an analysis
of the performance of their CLISW during the 1990 recession, see Section 5.2.3, Stock and
Watson (1992) also introduced a non-financial based index (CLI2SW ).
A potential problem of the extensive variable search underlying the final selection of index

components, combined with parameter estimation, is overfitting. Yet, when SW checked the
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overall performance of their selection procedure using Monte Carlo simulations, the results
were satisfactory. Even better results were obtained by Hendry and Krolzig (1999, 2001) for
their automated model selection procedure, PcGets, see Banerjee and Marcellino (2003) for
an application to leading indicator selection for the US.
A final point worth noting about SW’s indicator selection procedure is the use of variable

transformations. First, seasonally adjusted series are used. Second, a stationarity transfor-
mation is applied for the indicator to have similar properties as the target. Third, some
series are smoothed because of high frequency noise, in particular, ii), iii), iv), and v) in the
list above. The adopted filter is f(L) = 1 + 2L + 2L2 + L3. Such a filter is chosen with
reference to the target variable, the 6-month growth of CCI, and to the use of first differ-
enced indicators, since f(L)(1 − L) is a band-pass filter with gains concentrated at periods
of four months to one year. Finally, if the most recent values of some of the seven indicators
are not available, they are substituted with forecasts in order to be able to use as timely
information as possible. Zarnowitz and Braun (1989), in their comment to SW, pointed out
that smoothing the indicators contributes substantially to the good forecasting performance
of SW’s CLI, combined with the use of the most up-to-date information.
The practice of using forecasts when timely data are not available is now supported also

for the CLICB, see McGuckin et al. (2003), but not yet implemented in the published version
of the index. The latter is computed following the same steps as for the coincident index, the
CCICB described in Section 2.1, but with a different choice of components. In particular,
the single indicators combined in the index include average weekly hours, manufacturing;
average weekly initial claims for unemployment insurance; manufacturers’ new orders, con-
sumer good and materials (in 1996$); vendor performance, slower deliveries diffusion index;
manufacturers’ new orders, non-defense capital goods; building permits, new private housing
units; stock prices, 500 common stocks; money supply (in 1996$); interest rate spread, 10-
year Treasury bond less federal funds; and the University of Michigan’s index of consumer
expectations.
This list originates from the original selection of Mitchell and Burns (1938), but only two

variables passed the test of time: average weekly hours in the manufacturing sector and the
Standard and Poor’s stock index (that replaces the Dow Jones index of industrial common
stock prices), see Moore (1983) for an historical perspective. Both variables are not included
in the CLISW , since their marginal contribution in forecasting the 6-month growth of the
CCISW is not statistically significant. Other major differences in the components of the two
composite leading indexes are the inclusion in CLICB of M2 and of the index of consumer
expectations (the relationship of M2 with the CCISW is found to be unstable, while consumer
expectations were added to CLICB in the ’90s so that the sample is too short for a significant
evaluation of their role); and the exclusion from CLICB of an exchange rate measure and of
the growth in part time work (yet, the former has a small weight in the CLISW , while the
latter is well proxied by the average weekly hours in manufacturing and the new claims for
unemployment insurance).
The final example we consider is the OECD composite short leading index, CLIOECD, for

the US (see www.oecd.org). Several points are worth making. First, the target is represented
by the turning points in the growth cycle of industrial production, where the trend component
is estimated using a modified version of the phase average trend (PAT) method developed at
the NBER (see OECD (1987), Niemira and Klein (1994) for details), and the Bry-Boschan
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(1971) methodology is adopted for dating peaks and troughs. All of these choices are rather
questionable, since industrial production is a lower and lower share of GDP, though still
one of the most volatile components, theoretically sounder filters such as those discussed in
Section 2.2 are available for detrending, and more sophisticated procedures are available for
dating, see again Section 2.2. On the other hand, since the OECD computes the leading
index for a wide variety of countries, simplicity and robustness are also relevant for them.
Second, the criteria for the selection of the components of the index are broadly in line

with those listed in Section 3.1. The seven chosen indicators as listed in the OECD web
site include dwellings started; net new orders for durable goods, share price index; consumer
sentiment indicator; weekly hours of work, manufacturing; purchasing managers index; and
the spread of interest rates. Overall, there is a strong similarity with the elements of the
CLICB.
Third, as for CLICB, the components are first standardized and then aggregated with

equal weights. More precisely, each indicator is detrended with the PAT method; smoothed
according to its months for cyclical dominance (MCD) values to reduce irregularity (see
OECD (1987) for details); transformed to homogenize the cyclical amplitudes; standardized
by subtracting the mean from the observed values and then dividing the resulting difference
by the mean of the absolute values of the differences from the mean; and finally aggregated.
When timely data for an indicator are not available, it is not included in the preliminary
release of the composite leading index.
Finally, the composite index is adjusted to ensure that its cyclical amplitude on average

agrees with that of the detrended reference series. The trend restored version of the index is
also computed and published, to get comparability with the IP series.
To provide an empirical illustration of the issues discussed in this Section, in Figure 4

we graph four composite leading indexes for the US: the Conference Board’s leading index
(CLICB), the OECD leading index (CLIOECD), the Economic Cycle Research Institute’s
(ECRI, see www.businesscycle.com) weekly leading index (CLIECRI), and a transformation
of Stock and Watson’s (1989) composite leading index (TCLISW ), their leading index plus
their coincident index that yields a 6-month ahead forecast for the level of the coincident
index, see Section 3.2. All indexes are normalized to have zero mean and unit standard
deviation. In the same figure we graph the NBER dated recessions (shaded areas).
Visual inspection suggests that the four indices move closely together, and their peaks

anticipate NBER recessions. These issues are more formally evaluated in Tables 2 and 3.
In Table 2 we report the correlations of the 6-month percentage changes of the four indices,
which are indeed high, in particular when the ’60s are excluded from the sample, the lowest
value being 0.595 for CLISW and CLIECRI .
In Table 3 we present a descriptive analysis of the peak and trough structure of the four

leading indexes (obtained with the AMP algorithm), compared either with the NBER dating
or with the dating of the CCICB resulting from the AMP algorithm. The TCLISW has
the worst performance in terms of missed peaks and troughs, but it is worth recalling that
the goal of the CLISW is not predicting turning points but the 6-month growth rate of the
CCISW . The other three leading indexes missed no peaks or troughs, with the exception
of the 2002 peak identified only by the AMP dating algorithm. Yet, they gave three false
alarms, in 1966, 1984-85, and 1994-95. The average lead for recessions is about 9-10 months
for all indexes (slightly shorter for TCLISW ), but for expansions it drops to only 3-4 months
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for CLIOECD and CLIECRI . Based on this descriptive analysis, the CLICB appears to yield
the best overall leading performance. Yet, these results should be interpreted with care since
they are obtained with the final release of the leading indicators rather than with real time
data, see Section 5.
In Figure 5 we report the HP band pass filtered versions of the four composite leading

indexes, with the AMP deviation cycle dating (shaded areas). Again the series move closely
together, slightly less so for the HPBP-TCLISW , and their peaks anticipate dated recessions.
From Table 4, the HPBP-TCLISW is the least correlated with the other indexes, corre-

lation coefficients are in the range 0.60 − 0.70, while for the other three indexes the lowest
correlation is 0.882.
From Table 5, the ranking of the indexes in terms of lead-time for peaks and troughs is

similar to that in Table 3. In this case there is no official dating of the deviation cycle, so
that we use the AMP algorithm applied to the HPBP-CCICB as a reference. The HPBP-
CLICB confirms its good performance, with an average lead time of 7 months for recessions,
10 months for expansions, and just one missed signal and two false alarms. The HPBP-
CLIECRI is a closed second, while the HPBP-TCLISW remains the worst, with 3-4 missed
signals.
Finally, the overall good performance of the simple non model based CLICB deserves

further attention. We mentioned that it is obtained by cumulating, using the formula in (1),
an equal weighted average of the one month symmetric percent changes of ten indicators. The
weighted average happens to have a correlation of 0.960 with the first principal component
of the ten members of the CLICB. The latter provides a non parametric estimator for the
factor in a dynamic factor model, see Section 4.2 and Stock and Watson (2001a, 2001b) for
details. Therefore, the CLICB can be also considered as a good proxy for a factor model
based composite leading indicator.

4 Prediction with leading indicators

Leading indicators are hardly of any use without a rule to transform them into a forecast for
the target variable. These rules range from simple non-parametric procedures that monitor
the evolution of the leading indicator and transform it into a recession signal, e.g. the three-
consecutive-declines in the CLICB rule (e.g. Vaccara and Zarnowitz (1977)), to sophisticated
non-linear models for the joint evolution of the leading indicators and the target variable,
which can be used to predict growth rates, turning points, and expected duration of a certain
business cycle phase. In this section we provide an overview of these methods. In particular,
Section 4.1 deals with linear models, 4.2 with factor based models, 4.3 with Markov switching
models, 4.4 with smooth transition models, 4.5 with neural network and non-parametric
methods, 4.6 with binary models, and 4.7 with forecast pooling procedures. Examples are
provided in the next Section, after having defined evaluation criteria for leading indicator
based forecasts.
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4.1 Linear models

A linear VAR provides the simplest model based framework to understand the relationship
between coincident and leading indicators, the construction of regression based composite
indexes, the role of the latter in forecasting, and the consequences of invalid restrictions or
unaccounted cointegration.
Let us group the m coincident indicators in the vector xt, and the n leading indicators

in yt. For the moment, (xt, yt) is weakly stationary and its evolution is described by the
VAR(1): µ
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It immediately follows that the expected value of xt+1 conditional on the past is

E(xt+1|xt, xt−1, ...yt, yt−1, ...) = cx +Axt +Byt, (25)

so that for y to be a useful set of leading indicators it must be B 6= 0. When A 6= 0,
lagged values of the coincident variables also contain useful information for forecasting. Both
hypotheses are easily testable and, in case both A = 0 and B = 0 are rejected, a composite
regression based leading indicator for xt+1 (considered as a vector) can be constructed as

CLI1t = bcx + bAxt + bByt, (26)

where thebindicates the OLS estimator. Standard errors around this CLI can be constructed
using standard methods for VAR forecasts, see e.g. Lütkepohl (2004). Moreover, recursive
estimation of the model provides a convenient tool for continuous updating of the weights.
A similar procedure can be followed when the target variable is dated t+ h rather than

t. For example, when h = 2,

CLI1h=2t = bcx + bAbxt+1|t + bBbyt+1|t (27)

= bcx + bA(bcx + bAxt + bByt) + bB(bcy + bCxt + bDyt).

As an alternative, the model in (24) can be re-written asµ
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where aeindicates that the new parameters are a combination of those in (24), and eext andeeyt are correlated of order h− 1. Specifically,µ ecxecy
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The specification in (28) can be estimated by OLS, and the resulting CLI written as

ĈLI1
h

t =
becx + beAxt + beByt. (30)

The main disadvantage of this latter method, often called dynamic estimation, is that a
different model has to be specified for each forecast horizon h. On the other hand, no model
is required for the leading indicators, and the estimators of the parameters in (28) can be
more robust than those in (24) in the presence of mis-specification, see e.g. Clements and
Hendry (1996) for a theoretical discussion and Marcellino, Stock and Watson (2004) for an
extensive empirical analysis of the two competing methods (showing that dynamic estimation
is on average slightly worse than the iterated method for forecasting US macroeconomic time
series). For the sake of simplicity, in the rest of the paper we will focus on h = 1 whenever
possible.
Consider now the case where the target variable is a composite coincident indicator,

CCIt = wxt, (31)

where w is a 1×m vector of weights as in Section 3.2. To construct a model based CLI for
the CCI in (31) two routes are available. First, and more common, we could model CCIt
and yt with a finite order VAR, sayµ

CCIt
yt

¶
=

µ
dCCI
dy

¶
+

µ
e(L) F (L)
g(L) H(L)

¶µ
CCIt−1
yt−1

¶
+

µ
uCCIt
uyt

¶
, (32)

where L is the lag operator and the error process is white noise. Repeating the previous
procedure, the composite leading index for h = 1 is

CLI2t = bdCCI + be(L)CCIt + bF (L)yt. (33)

Yet, in this case the VAR is only an approximation for the generating mechanism of (wxt, yt),
since in general the latter should have an infinite number of lags or an MA component.
The alternative route is to stick to the model in (24), and construct the CLI as

CLI3t = wCLI1t, (34)

namely, aggregate the composite leading indicators for each of the components of the CCI,
using the same weights as in the CCI. Lütkepohl (1987) showed in a related context that in
general aggregating the forecasts (CLI3) is preferable than forecasting the aggregate (CLI2)
when the variables are generated by the model in (24), while this is not necessarily the case if
the model in (24) is also an approximation and/or the x variables are subject to measurement
error. Stock and Watson (1992) overall found little difference in the performance of CLI2
and CLI3.
Both CLI2 and CLI3 are directly linked to the target variable, incorporate distributed

lags of both the coincident and the leading variables (depending on the lag length of the VAR),
the weights can be easily periodically updated using recursive estimation of the model, and
standard errors around the point forecasts (or the whole distribution under a distributional
assumption for the error process in the VAR) are readily available. Therefore, this simple
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linear model based procedure already addresses several of the main criticisms to the non
model based composite index construction, see Section 3.2.
In this context the dangers of using a simple average of the y variables as a composite

leading index are also immediately evident, since the resulting index can provide an inefficient
forecast of the CCI unless specific restrictions on the VAR coefficients in (24) are satisfied.
In particular, indicating by in a 1 × n vector with elements equal to 1/n, the equal weight
composite leading index

CLIEWt = inyt (35)

is optimal and coincides with CLI3 if and only if

wcx = 0, wA = 0, wB = in, (36)

which imposes 1+m+n restrictions on the parameters of the x equations in (24). In higher
order VARs, the product of the weights w and the coefficients of longer lags of x and y in
the x equations should also be equal to zero. Notice that these are all testable assumptions
as long as m + n is small enough with respect to the sample size to leave sufficient degrees
of freedom for the VAR parameter estimation. For example, in the case of the Conference
Board, m+n = 14 and monthly data are available for about 45 years for a total of more than
500 observations. Auerbach (1982) found that a regression based CLI in sample performed
better than the the equal weighted CLICB for industrial production and the unemployment
rate, but not out of sample.
If the restrictions in (36) are not satisfied but it is desired to use in any case CLIEW

(or more generally a given CLI) to forecast the CCI, it can be possible to improve upon
its performance by constructing a VAR for the two composite indexes CCI and CLIEW
(wxt, inyt), sayµ
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and construct the new composite index as

CLI4t = bfCCI + be(L)CCIt + bf(L)CLIEWt. (38)

This is for example the methodology adopted by Kock and Rasche (1988), who analyzed a
VAR for IP, as a coincident indicator, and the equal weighted DOC leading index. Since CLI4
has a dynamic structure and exploits also past information in the CCI, it can be expected
to improve upon CLIEW . Moreover, since the VAR in (37) is much more parsimonious than
both (24) and (32), CLI4 could perform in practice even better than the other composite
indexes, in particular in small samples.
A point that has not deserved attention in the literature but can be of importance is the

specification of the equations for the (single or composite) leading indicators. Actually, in all
the models we have considered so far, the leading variables depend on lags of the coincident
ones, which can be an unreliable assumption from an economic point of view. For example,
the interest rate spread depends on future expected short term-interest rates and the stock
market index on future expected profits and dividends, and these expectations are positively
and highly correlated with the future expected overall economic conditions. Therefore, the
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leading variables could depend on future expected coincident variables rather than on their
lags. For example, the equations for yt in the model for (xt, yt) in (24) could be better
specified as:

yt = cy + Cxet+1|t−1 +Dyt−1 + eyt, (39)

where xet+1|t−1 indicates the expectation of xt+1 conditional on information available in period
t− 1. Combining these equations with those for xt in (24), it is possible to obtain a closed
form expression for xet+1|t−1, which is

xet+1|t−1 = (I −BC)−1(cx +Acx +Bcy +A2xt−1 + (AB +BD)yt−1). (40)

Therefore, a VAR specification such as that in (24) can be also considered as a reduced form
of a more general model where the leading variables depend on expected future coincident
variables. A related issue is whether the coincident variables, xt, could also depend on their
future expected values, as it often results in new-Keynesian models, see e.g. Walsh (2003).
Yet, the empirical evidence in Fuhrer and Rudebusch (2002) provides little support for this
hypothesis.
Another assumption we have maintained so far is that both the coincident and the leading

variables are weakly stationary, while in practice it is likely that the behaviour of most of
these variables is closer to that of integrated process. Following Sims, Stock and Watson
(1990), this is not problematic for consistent estimation of the parameters of VARs in levels
such as (24), and therefore for the construction of the related CLIs, even though inference
is complicated and, for example, hypotheses on the parameters such as those in (36) could
not be tested using standard asymptotic distributions. An additional complication is that
in this literature, when the indicators are I(1), the VAR models are typically specified in
first differences rather than in levels, without prior testing for cointegration. Continuing the
VAR(1) example, the adopted model would beµ
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where β is the matrix of cointegrating coefficients and α contains the loadings of the error
correction terms. As usual, omission of relevant variables yields biased estimators of the pa-
rameters of the included regressors, which can translate into biased and inefficient composite
leading indicators. See Emerson and Hendry (1996) for additional details and generalizations
and, e.g., Clements and Hendry (1999) for the consequences of omitting cointegrating rela-
tions when forecasting. As long as m+n is small enough with respect to the sample size, the
number and composition of the cointegrating vectors can be readily tested, see e.g. Johansen
(1988) for tests within the VAR framework, and the specification in (42) used as a basis
to construct model based CLIs that take also cointegration into proper account. Hamilton
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and Perez-Quiros (1996) found cointegration to be important for improving the forecasting
performance of the CLIDOC .
Up to now we have implicitly assumed, as it is common in most of the literature that

analyzes CCIs and CLIs within linear models, that the goal of the composite leading index is
forecasting a continuous variable, the CCI. Yet, leading indicators were originally developed
for forecasting business cycle turning points. Simulation based methods can be used to
derive forecasts of a binary recession/expansion indicator, and these in turn can be exploited
to forecast the probability that a recession will take place within, or at, a certain horizon.
Let us consider the model in (32) and assume that the parameters are known and the

errors are normally distributed. Then, drawing random numbers from the joint distribution
of the errors for period t + 1, ..., t + n and solving the model forward, it is possible to get
a set of simulated values for (CCIt+1,∆yt+1), ..., (CCIt+n,∆yt+n). Repeating the exercise
many times, a histogram of the realizations provides an approximation for the conditional
distribution of (CCIt+1,∆yt+1), ..., (CCIt+n,∆yt+n) given the past. Given this distribution
and a rule to transform the continuous variable CCI into a binary recession indicator, e.g.
the three months negative growth rule, the probability that a given future observation can
be classified as a recession is computed as the fraction of the relevant simulated future values
of the CCI that satisfy the rule.
A related problem that could be addressed within this framework is forecasting the be-

ginning of the next recession, which is given by the time index of the first observation that
falls into a recessionary pattern. Assuming that in period t the economy is in expansion,
the probability of a recession after q periods, i.e., in t + q, is equal to the probability that
CCIt+1, ...., CCIt+q−1 belong to an expansionary pattern while CCIt+q to a recessionary one.
The procedure can be easily extended to allow for parameter uncertainty by drawing

parameter values from the distribution of the estimators rather than treating them as fixed.
Normality of the errors is also not strictly required since re-sampling can be used, see e.g.
Wecker (1979), Kling (1987) and Fair (1993) for additional details and examples.
Bayesian techniques are also available for forecasting turning points in linear models,

see e.g. Geweke and Whiteman (2004). In particular, Zellner and Hong (1991) and Zellner,
Hong and Gulati (1990) addressed the problem in a decision-theoretic framework, using fixed
parameter AR models with leading indicators as exogenous regressors. In our notation, the
model can be written as

xt = z
0
tβ + ut, ut ∼ i.i.d.N(0, σ2), (43)

where z
0
t = (xt−1, yt−1), xt is a univariate coincident variable or index, yt is the 1× n vector

of leading indicators, and β is a k × 1 parameter vector, with k = n+ 1.
Zellner et al. (1990, 1991) used annual data and declared a downturn (DT ) in year T +1

if the annual growth rate observations satisfy

xT−2, xT−1 < xT > xT+1, (44)

while no downturn (NDT ) happens if

xT−2, xT−1 < xT ≤ xT+1. (45)

Similar definitions were proposed for upturns and no upturns.
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The probability of a DT in T + 1, pDT , can be calculated as

pDT =

Z xT

−∞
p(xT+1|A1, DT )dxT+1, (46)

where A1 indicates the condition (xT−2, xT−1 < xT ), DT denotes the past sample and prior
information as of period T , and p is the predictive probability density function (pdf) defined
as

p(xT+1|DT ) =

Z
θ

f(xT+1|θ,DT )π(θ|DT )dθ, (47)

where f(xT+1|θ,DT ) is the pdf for xT+1 given the parameter vector θ = (β, σ
2) and DT , while

π(θ|DT ) is the posterior pdf for θ obtained by Bayes’ Theorem.
The predictive pdf is constructed as follows. First, natural conjugate prior distributions

are assumed for β and σ, namely, p(β|σ) ∼ N(0, σ2I × 106) and p(σ) ∼ IG(v0s0), where IG
stands for inverted gamma and v0 and s0 are very small numbers, see e.g. Canova (2004,
Ch.9) for details. Second, at t = 0, the predictive pdf p(x1|D0) is a Student-t, namely,

tv0 = (x1 − z
0
1
bβ0)/s0a0 has a univariate Student-t density with v0 degrees of freedom, where

a20 = 1 + z
0
1z110

6 and bβ0 = 0. Third, the posterior pdfs obtained period by period using the
Bayes’ Theorem are used to compute the period by period predictive pdfs. In particular, the
predictive pdf for xT+1 is again Student-t and

tvT = (xT+1 − z
0
T+1

bβT )/sTaT (48)

has a univariate Student-t pdf with vT degrees of freedom, wherebβT = bβT−1 + (Z 0
T−1ZT−1)−1zT (xT − z

0
T
bβT−1)/[1 + z

0
T (Z

0
TZT )

−1zT ],

a2T = 1 + z
0
T+1(Z

0
TZT )

−1zT+1,
vT = vT−1 + 1,

vT s
2
T = vT−1sT−1 + (xT − z

0
T
bβT )2 + (bβT − bβT−1)0Z 0

T−1ZT−1(bβT − bβT−1),
and Z

0
T = (zT , zT−1, ..., z1). Therefore, Pr(xT+1 < xT |DT ) = Pr(tvT < (xT−z0T+1bβT )/sTaT |DT ),

which can be analytically evaluated using the Student-t distribution with vT degrees of free-
dom.
Finally, if the loss function is symmetric (i.e. the loss from wrongly predicting NDT in

the case of DT is the same as predicting DT in the case of NDT ), then a DT is predicted
in period T + 1 if pDT > 0.5. Otherwise, the cut-off value depends on the loss structure, see
also Section 4.6.
While the analysis in Zellner et al. (1990) is univariate, the theory for Bayesian VARs is

also well developed, starting with Doan, Litterman and Sims (1984). A recent model in this
class was developed by Zha (1998) for the Atlanta FED, and its performance in turning point
forecasting is evaluated by Del Negro (2001). In this case the turning point probabilities are
computed by simulations from the predictive pdf rather than analytically, in line with the
procedure illustrated above in the classical context.
To conclude, a common problem of VAR models is their extensive parameterization,

which prevents the analysis of large data sets. Canova and Ciccarelli (2001, 2003) proposed
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Bayesian techniques that partly overcome this problem, extending previous analysis by e.g.
Zellner, Hong and Min (1991) and providing applications to turning point forecasting, see
Canova (2004, Ch.10) for an overview. As an alternative, factor models can be employed, as
we discuss in the next subsection.

4.2 Factor based models

The idea underlying Stock and Watson’s (1989, SW) methodology for the construction of a
CCI, namely that a single common force drives the evolution of several variables, can be also
exploited to construct a CLI. In particular, if the single leading indicators are also driven
by the (leads of the) same common force, then a linear combination of their present and past
values can contain useful information for predicting the CCI.
To formalize the intuition above, following SW, the equation (4) in Section 2.2 is substi-

tuted with
∆Ct = δC + λCC(L)∆Ct−1 + ΛCy(L)∆yt−1 + vct. (49)

and, to close the model, equations for the leading indicators are also added

∆yt = δy + λyC(L)∆Ct−1 + Λyy(L)∆yt−1 + vyt, (50)

where vct and vyt are i.i.d. and uncorrelated with the errors in (3).
The model in (2), (3), (49), (50) can be cast into state space form and estimated by

maximum likelihood through the Kalman filter. SW adopted a simpler two-step procedure,
where in the first step the model (2), (3), (4) is estimated, and in the second step the
parameters of (49), (50) are obtained conditional on those in the first step. This procedure
is robust to mis-specification of the equations (49), (50), in particular the estimated CCI
coincides with that in Section 2.2, but it can be inefficient when either the whole model is
correctly specified or, at least, the lags of the leading variables contain helpful information for
estimating the current status of the economy. Notice also that the “forecasting” system (49),
(50) is very similar to that in (32), the main difference being that here Ct is unobservable
and therefore substituted with the estimate obtained in the first step of the procedure, which
is CCISW . Another minor difference is that SW constrained the polynomials λyC(L) and
Λyy(L) to eliminate higher order lags, while λCC(L) and ΛCy(L) are left unrestricted, see SW
for the details on the lag length determination.
The SW composite leading index is constructed as

CLISW = bCt+6|t − Ct|t, (51)

namely, it is a forecast of the 6-momth growth rate in the CCISW , where the value in t+ 6
is forecasted and that in t is estimated. This is rather different from the NBER tradition,
represented nowadays by the CLICB that, as mentioned, aims at leading turning points in
the level of the CCI. Following the discussion in Section 2.1, focusing on growth rather than
on levels can be more interesting in periods of prolonged expansions.
A few additional comments are in order about the SW’s procedure. First, the leading

indicators should depend on expected future values of the coincident index rather than on its
lags, so that a better specification for (50) is along the lines of (39). Yet, we have seen that
in the reduced form of (39) the leading indicators depend on their own lags and on those
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of the coincident variables, and a similar comment holds in this case. Second, the issue of
parameter constancy is perhaps even more relevant in this enlarged model, and in particular
for forecasting. Actually, in a subsequent (1997) revision of the procedure, SW made the
deterministic component of (49), δC , time varying; in particular, it evolves according to a
random walk. Third, dynamic estimation of equation (49) would avoid the need of (50). This
would be particularly convenient in this framework where the dimension of yt is rather large,
and a single forecast horizon is considered, h = 6. Fourth, rather than directly forecasting the
CCISW , the components of xt could be forecasted and then aggregated into the composite
index using the in sample weights, along the lines of (34). Fifth, while SW formally tested
for lack of cointegration among the components of xt, they did not do it among the elements
of yt, and of (xt, yt), namely, there could be omitted cointegrating relationships either among
the leading indicators, or among them and the coincident indicators. Finally, the hypothesis
of a single factor driving both the coincident and the leading indicators should be formally
tested.
Otrok and Whiteman (1998) derived a Bayesian version of SW’s CCI and CLI. As in

the classical context, the main complication is the non-observability of the latent factor. To
address this issue, a step-wise procedure is adopted where the posterior distribution of all
unknown parameters of the model is determined conditional on the latent factor, then the
conditional distribution of the latent factor conditional on the data and the other parameters
is derived, the joint posterior distribution for the parameters and the factor is sampled using
a Markov Chain Monte Carlo procedure using the conditional distributions in the first two
steps, and a similar route is followed to obtain the marginal predictive pdf of the factor,
which is used in the construction of the leading indicator, see Otrok and Whiteman (1998),
Kim and Nelson (1998), Filardo and Gordon (1999) for details and Canova (2004, Ch.11) for
an overview.
The SW’s methodology could be also extended to exploit recent developments in the

dynamic factor model literature. In particular, the step-wise procedure described in Section
2.1 to reduce the set of candidate leading indicators could be substituted with a factor model
for all the indicators, and the estimated factors used to forecast the coincident index or its
components. Let us sketch the steps of this approach, more details can be found in Stock
and Watson (2004).
The model for the leading indicators in (50) can be replaced by

∆yt = Λft + ξt, (52)

where the dimension of∆yt can be very large, possibly larger than the number of observations
(so that no sequential indicator selection procedure is needed), ft is an r×1 vector of common
factors (so that more than one factor can drive the indicators), and ξt is a vector containing
the idiosyncratic component of each leading indicator. Precise moment conditions on ft and
ξt, and requirements on the loadings matrix Λ, are given in Stock and Watson (2002a, 2002b).
Notice that ft could contain contemporaneous and lagged values of factors, so that the model
is truly dynamic even though the representation in (52) is static.
Though the model in (52) is a simple extension of that for the construction of the SW’s

composite coincident index in (2), its estimation is complicated by the possibly very large
number of parameters, that makes maximum likelihood computationally not feasible. There-
fore, Stock and Watson (2002a, 2002b) defined the factor estimators, bft, as the minimizers32



of the objective function

VnT (f,Λ) =
1

nT

nX
i=1

TX
t=1

(yit − Λift)
2. (53)

It turns out that the optimal estimators of the factors are the r eigenvectors corresponding
to the r largest eigenvalues of the T × T matrix n−1

Pn
i=1 yiy

0
i
, where y

i
= (yi1, ..., yiT ), and

these estimators converge in probability to the space spanned by the true factors ft. See Bai
(2003) for additional inferential results, Bai and Ng (2002) for results related to the choice
of the number of factors, r, Boivin and Ng (2003) for issues related to the choice of the
size of the dataset (i.e. the number of leading indicators in our case), and Kapetanios and
Marcellino (2003) for an alternative (parametric) estimation procedure.
The factors driving the leading indicators, possibly coinciding with (leads of) those driving

the coincident indicators, can be related to the coincident composite index by replacing
equation (49) with

∆Ct = δC + λCC(L)∆Ct−1 + λCy(L)ft−1 + vct. (54)

Another important result proved by Stock and Watson (2002a, 2002b) is that the factors in

the equation above can be substituted by their estimated counterparts, bft, without (asymp-
totically) modifying the mean square forecast error, see also Bai and Ng (2003) for additional
results.
A forecasting procedure based on the use of (52) and (54), produced good results for

the components of the CCISW , Stock and Watson (2002a, 2002b), but also for predicting
macroeconomic variables for the Euro area, the UK, and the Accession countries, see, re-
spectively, Marcellino, Stock and Watson (2003), Artis, Banerjee and Marcellino (2004), and
Banerjee, Marcellino and Masten (2003). Yet, in these studies the set of indicators for factor
extraction was not restricted to those with leading properties, and the target variable was not
the composite coincident index. Camba-Mendez, Kapetanios, Smith and Weale (2001) used
only leading indicators on the largest European countries for factor extraction (estimating
iteratively the factor model cast in state-space form), and confirmed the good forecasting
performance of the estimated factors when inserted in a VAR for predicting GDP growth.
The alternative factor based approach by FHLR described in Section 2.1 can be also used

to construct a CLI. The leading variables are endogenously determined using the phase
delay of their common components with respect to CCIFHLR (the weighted average of the
common components of interpolated monthly GDP for Euro area countries). An equal weight
average of the resulting leading variables is the CLIFHLR. Future values of the CCIFHLR

are predicted with a VAR for CCIFHLR, CLIFHLR. Further refinements of the methodology
are presented in Forni et al. (2003a), with applications in Forni et al. (2003b).
All the factor based methods we have considered up to now focus on predicting continuous

variables. Therefore, as in the case of linear models, we now discuss how to forecast discrete
variables related to business cycle dynamics. In particular, we review the final important
contribution of SW, further refined in Stock and Watson (1992), namely, the construction of
a pattern recognition algorithm for the identification of recessions, and the related approach
for computing recession probabilities.
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As mentioned in Section 2.2, a recession is broadly defined by the three Ds: duration, a
recession should be long enough; depth, there should be a substantial slowdown in economic
activity; and diffusion, such a slowdown should be common to most sectors of the economy.
Diffusion requires several series or a composite index to be monitored, and SW were in favor
of the latter option, using their CCI (which, we recall, in the cumulated estimate of ∆Ct in
equation (2)). Moreover, SW required a recession to be characterized by ∆Ct falling below a
certain boundary value, brt (depth), for either (a) six consecutive months or (b) nine months
with no more than one increase during the middle seven months (duration), where (b) is the
same as requiring ∆Ct to follow for seven of nine consecutive months including the first and
the last month. Expansions were treated symmetrically, with bet being the counterpart of
brt, and both brt and bet were treated as i.i.d. normal random variables.
A particular month is classified as a recession if it falls in a recessionary pattern as

defined above. In particular, suppose that it has to be decided whether month t belongs to
a recessionary pattern. Because of the definition of a recessionary pattern, the longest span
of time to be considered is given by ∆Ct−8, ...,∆Ct−1 and ∆Ct+1, ...,∆Ct+8. For example, it
could be that ∆Ct is below the threshold brt and also ∆Ct−i < brt−i for i = 1, ..., 5; in this
case the sequence ∆Ct−5, ...,∆Ct is sufficient to classify period t as a recession. But it could
be that ∆Ct−i > brt−i for i = 1, ..., 8, ∆Ct < brt, ∆Ct+1 > brt+1, and ∆Ct+i < brt+i for i =
2, ..., 8, which requires to consider the whole sequence of 17 periods ∆Ct−8, ...∆Ct, ...,∆Ct+8

to correctly classify period t as a recession. Notice also that the sequence for ∆Ct has to be
compared with the corresponding sequence of thresholds, brt−8, ...brt, ..., brt+8.
The binary recession indicator, Rt, takes the value 1 if ∆Ct belongs to a recessionary

pattern, and 0 otherwise. The expansion indicator is defined symmetrically, but is also worth
noting that the definition of recession is such that there can be observations that are classified
neither as recessions nor as expansions. Also, there is no role for duration dependence or
correlation, in the sense that the probability of recession is independent of the length of the
current expansion or recession, and of past values of Rt.
The evaluation of the probability of recession in period t+ h conditional on information

on the present and past of the CCI and of the leading indicators (and on the fact that t+ h
belongs either to an expansionary or to a recessionary pattern), requires the integration of a
34-dimensional distribution, where 17 dimensions are due to the evaluation of an (estimated
and forecasted) sequence for ∆Ct that spans 17 periods, and the remaining ones from integra-
tion with respect to the distribution of the threshold parameters. Stock and Watson (1992)
described in details a simulation based procedure to perform numerically the integration, and
reported results for their composite recession indicator, CRISW , that evaluates in real time
the probability that the economy will be in a recession 6-months ahead.
Though a rule that transforms the CRISW into a binary variable is not defined, high

values of the CRISW should be associated with realizations of recessions. Using the NBER
dating as a benchmark, SW found the in-sample performance of the CRI quite satisfactory,
as well as that of the CLI. Yet, out of sample, in the recessions of 1990 and 2001, both
indicators failed to provide early strong warnings, an issue that is considered in more detail
in Section 5.
To conclude, it is worth pointing out that the procedure underlying SW’s CRI is not

specific to their model. Given the definition of a recessionary pattern, any model that relates
a CCI to a set of leading indicators or to a CLI can be used to compute the probability of
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recession in a given future period using the same simulation procedure as SW but drawing
the random variables from the different model under analysis. The simplest case is when the
model for the coincident indicator and the leading indexes is linear, which is the situation
described at the end of the previous subsection.

4.3 Markov switching models

The MS model introduced in Section 2.1 to define an intrinsic coincident index, and in 2.2 to
date the business cycle, can be also exploited to evaluate the forecasting properties of a single
or composite leading indicator. In particular, a simplified version of the model proposed by
Hamilton and Perez-Quiros (1996) can be written as

∆xt − cst = a(∆xt−1 − cst−1) + b(∆yt−1 − dst+r−1) + uxt, (55)

∆yt − dst+r = c(∆xt−1 − cst−1) + d(∆yt−1 − dst+r−1) + uyt,

ut = (uxt, uyt)
0 ∼ i.i.d.N(0,Σ),

where x and y are univariate, st evolves according to the constant transition probability
Markov chain defined in (12), and the leading characteristics of y are represented not only
by its influence on future values of x but also by its being driven by future values of the state
variable, st+r.
The main difference between (55) and the MS model used in Section 2.1, equation (10),

is the presence of lags and leads of the state variable. This requires to define a new state
variable, s∗t , such that

s∗t =



1
2
3
...
2r+2

if st+r = 1, st+r−1 = 1, ..., st−1 = 1,
if st+r = 0, st+r−1 = 1, ..., st−1 = 1,
if st+r = 1, st+r−1 = 0, ..., st−1 = 1,

...
if st+r = 0, st+r−1 = 0, ..., st−1 = 0.

(56)

The transition probabilities of the Markov chain driving s∗t can be derived from (12), and in
the simplest case where r = 1 they are summarized by the matrix

P =



p11 0 0 0 p11 0 0 0
p10 0 0 0 p10 0 0 0
0 p01 0 0 0 p01 0 0
0 p00 0 0 0 p00 0 0
0 0 p11 0 0 0 p11 0
0 0 p10 0 0 0 p10 0
0 0 0 p01 0 0 0 p01
0 0 0 p00 0 0 0 p00


, (57)

whose ith, jth element corresponds to the probability that s∗t = i given that s∗t−1 = j.
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The quantity of major interest is the probability that s∗t assumes a certain value given
the available information, namely,

ζt|t =


Pr(s∗t = 1|xt, xt−1, ..., x1, yt, yt−1, ..., y1)
Pr(s∗t = 2|xt, xt−1, ..., x1, yt, yt−1, ..., y1)

...
Pr(s∗t = 2

r+2|xt, xt−1, ..., x1, yt, yt−1, ..., y1)

 , (58)

which is the counterpart of equation (13) in this more general context. The vector ζt|t and
the conditional density of future values of the variables given the past, f(xt+1, yt+1| s∗t+1,
xt, ..., x1, yt, ..., y1), can be computed using the sequential procedure outlined in Section 2.1,
see Hamilton and Perez-Quiros (1996), Krolzig (2003) for details. The latter can be used for
forecasting future values of the coincident variable, the former to evaluate the current status
of the economy or to forecast its future status up to period t+r. For example, the probability
of being in a recession today is given by the sum of the rows of ζt|t corresponding to those
values of s∗t characterized by st = 1, while the probability of being in a recession in period
t+ r is given by the sum of the rows of ζt|t corresponding to those values of s∗t characterized
by st+r = 1. To make inference on states beyond period t+r, it is possible to use the formula

ζt+m|t = Pmζt|t, (59)

which is a direct extension of the first row of (15).
Hamilton and Perez-Quiros (1996) found that their model provides only a weak signal of

recession in 1960, 1970 and 1990. Moreover, the evidence in favor of the nonlinear cyclical
factor is weak and the forecasting gains for predicting GNP growth or its turning point are
minor with respect to a linear VAR specification. Even weaker evidence in favor of the MS
specification was found when a cointegrating relationship between GNP and lagged CLI is
included in the model. The unsatisfactory performance of the MS model could be due to
the hypothesis of constant probability of recessions, as in the univariate context, see e.g.,
Filardo (1994). Evidence supporting this claim, based on the recession of 1990, is provided
by Filardo and Gordon (1999).
Chauvet (1998) found a good performance also for the factor MS model in tracking the

recession of 1990 using the proper version of ζt|t in that context. This is basically the only
forecasting application of the factor MS models described in Section 2.1, so that further
research is needed to close the gap. For example, SW’s procedure for the CLI construction
could be implemented using Kim and Nelson’s (1998) MS version of the factor model, or a
switching element could be introduced in the SW’s VAR equations (49) and (50).
The MS model can be also used to derive analytic forecasts of recession (or expansion)

duration. Suppose that xt follows the simpler MS model in (10)-(12) and that it is known
that in period t the economy is in a recession, i.e., st = 1. Then,

Pr(st+1 = 1|xt, ..., x1) = p11, (60)

Pr(st+2 = 1, st+1 = 1|xt, ..., x1) = Pr(st+2 = 1|st+1 = 1, xt, ..., x1) Pr(st+1 = 1|xt, ..., x1) = p211,

...

and the probability that the recession ends in period t+ n is

Pr(st+n = 0, st+n−1 = 1, ..., st+1 = 1|xt, ..., x1) = (1− p11)p
n−1
11 . (61)
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If instead (12) is substituted with (19), i.e. the state probabilities are time-varying, then

Pr(st+n = 0, st+n−1 = 1, ..., st+1 = 1|xt, ..., x1) = (1− bp11,t+n)n−1Y
j=1

bp11,t+j (62)

with bp11,t+j = E

µ
exp(θyt+j−1)

1 + exp(θyt+j−1)

¯̄̄̄
xt, ..., x1, yt, ..., y1

¶
. (63)

It follows that an estimator of the expected remaining duration of the recession, τ , in
period t is given by

bτ = E(τ |st = 1) =
∞X
i=1

i(1− bp11,t+i)i−1Y
j=1

bp11,t+j, (64)

which simplifies to

bτ = E(τ |st = 1) =
∞X
i=1

i(1− p11)p
i−1
11 , (65)

for constant probabilities. An interesting issue is therefore whether the leading indicators
are useful to predict τ or not.
To conclude, Bayesian methods for the estimation of Markov switching models were devel-

oped by Albert and Chib (1993a), Mc Cullock and Tsay (1994), Filardo and Gordon (1994)
and several other authors, see e.g. Filardo and Gordon (1999) for a comparison of bayesian
linear, MS and factor models for coincident indicators, and Canova (2004, Ch.11) for an
overview. Yet, to the best of our knowledge, there are no applications to forecasting turning
points with Bayesian MS models while, for example, a bayesian replication of the Hamilton
and Perez-Quiros (1996) exercise would be feasible and interesting.

4.4 Smooth transition models

In the class of MS models, the transition across states is abrupt and driven by an unobservable
variable. As an alternative, in smooth transition (ST) models the parameters evolve over
time at a certain speed, depending on the behavior of observable variables. In particular, the
ST-VAR, that generalizes the linear model in (24) can be written as

∆xt = cx +A∆xt−1 +B∆yt−1 + (cx +A∆xt−1 +B∆yt−1)Fx + uxt, (66)

∆yt = cy + C∆xt−1 +D∆yt−1 + (cy + C∆xt−1 +D∆yt−1)Fy + uyt,

ut = (uxt, uyt)
0 ∼ i.i.d.N(0,Σ),

where

Fx =
exp(θ0 + θ1zt−1)

1 + exp(θ0 + θ1zt−1)
, Fy =

exp(φ0 + φ1zt−1)
1 + exp(φ0 + φ1zt−1)

, (67)

and zt−1 contains lags of xt and yt.
The smoothing parameters θ1 and φ1 regulate the shape of parameter change over time.

When they are equal to zero, the model becomes linear, while for large values the model
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tends to a self-exciting threshold model (see e.g. Potter (1995), Artis, Galvao and Marcellino
(2003)), whose parameters change abruptly as in the MS case. In this sense the ST-VAR
provides a flexible tool for modelling parameter change.
The transition function Fx is related to the probability of recession. In particular, when

the values of zt−1 are much smaller than the threshold value, θ0, the value of Fx gets close
to zero, while large values lead to values of Fx close to one. This is a convenient feature in
particular when Fx depends on lags of yt only, since it provides direct evidence on the use-
fulness of the leading indicators to predict recessions. As an alternative, simulation methods
as in Section 4.1 can be used to compute the probabilities of recession.
Details on the estimation and testing procedures for ST models, and extensions to deal

with more than two regimes or time-varying parameters, are reviewed, e.g., by van Dijk,
Teräsvirta and Franses (2002), while Teräsvirta (2004) focuses on the use of ST models in
forecasting. In particular, as it is common with nonlinear models, forecasting more than
one-step ahead requires the use of simulation techniques, unless dynamic estimation is used
as, e.g., in Stock and Watson (1999b) or Marcellino (2004b).
Univariate versions of the ST model using leading indicators as transition variables were

analyzed by Granger, Teräsvirta and Anderson (1993), while Camacho (2004), Anderson and
Vahid (2001) and Camacho and Perez-Quiros (2002) considered the VAR case. The latter
authors found a significant change in the parameters only for the constant, in line with the
MS specifications described in the previous subsection and with the time-varying constant
introduced by SW to compute their CLI.
Finally, Bayesian techniques for the analysis of smooth transition models were developed

by Lubrano (1995), and by Geweke and Terui (1993) and Chen and Lee (1995) for thresh-
old models, see Canova (2004, Ch.11) for an overview. Yet, there are no applications to
forecasting using leading indicators.

4.5 Neural networks and non-parametric methods

The evidence reported so far, and that in Section 5 below, is not sufficient to pin down
the best parametric model to relate the leading to the coincident indicator, different sample
periods or indicators can produce substantially different results. A possible remedy is to
use artificial neural networks, which can provide a valid approximation to the generating
mechanism of a vast class of non-linear processes, see e.g. Hornik, Stinchcombe and White
(1989), and Swanson and White (1997), Stock and Watson (1999b), Marcellino (2004b) for
their use as forecasting devices.
In particular, Stock andWatson (1999b) considered two types of univariate neural network

specifications. The single layer model with n1 hidden units (and a linear component) is

xt = β00zt +
n1X
i=1

γ1ig(β
0
1izt) + et, (68)

where g(z) is the logistic function, i.e., g(z) = 1/(1 + e−z), and zt includes lags of the
dependent variable. Notice that when n1 = 1 the model reduces to a linear specification
with a logistic smooth transition in the constant. A more complex model is the double layer
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feedforward neural network with n1 and n2 hidden units:

xt = β00zt +
n2X
j=1

γ2jg

Ã
n1X
i=1

β2jig(β
0
1izt)

!
+ et. (69)

The parameters of (68) and (69) can be estimated by non-linear least-squares, and forecasts
obtained by dynamic estimation.
While the studies using NN mentioned so far considered point forecasts, Qi (2001) focused

on turning point prediction. The model she adopted is a simplified version of (69), namely,

rt = g

Ã
n1X
i=1

β2ig(β
0
1izt)

!
+ et, (70)

where zt includes lagged leading indicators in order to evaluate their forecasting role, and
rt is a binary recession indicator. Actually, since g(.) is the logistic function, the predicted
values from (70) are constrained to lie in the [0, 1] interval. As for (68) and (69), the model is
estimated by non-linear least-squares, and dynamic estimation is adopted when forecasting.
An alternative way to tackle the uncertainty about the functional form of the relationship

between leading and coincident indicators is to adopt a non-parametric specification, with
the cost for the additional flexibility being the required simplicity of the model. Based on
the results from the parametric models they evaluated, Camacho and Perez-Quiros (2002)
suggested the specification,

xt = m(yt−1) + et, (71)

estimated by means of the Nadaraya-Watson estimator, see also Hardle and Vieu (1992).
Therefore,

bxt = Ã TX
j=1

K

µ
yt−1 − yj

h

¶
xj

!,Ã
TX
j=1

K

µ
yt−1 − yj

h

¶!
, (72)

where K(.) is the Gaussian kernel and the bandwidth h is selected by leave-one-out cross
validation.
The model is used to predict recessions according to the two negative quarters rule. For

example,

Pr(xt+2 < 0, xt+1 < 0|yt) =
Z
yt+2<0

Z
yt+1<0

f(xt+2, xt+1|yt)dxt+2dxt+1, (73)

and the densities are estimated using an adaptive kernel estimator, see Camacho and Perez-
Quiros (2002) for details.
Another approach that imposes minimal structure on the leading-coincident indicator

connection is the pattern recognition algorithm proposed by Keilis-Borok, Stock, Soloviev
and Mikhalev (2000). The underlying idea is to monitor a set of leading indicators, comparing
their values to a set of thresholds, and when a large fraction of the indicators rise above the
threshold a recession alarm, At, is sent. Formally, the model is

At =

 1 if
NX
k=1

Ψkt ≥ N − b

0 otherwise

, (74)
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where Ψkt = 1 if ykt ≥ ck, and Ψkt = 0 otherwise. The salient features of this approach
are the tight parameterization (only N + 1 parameters, b, c1, ..., cN), which is in general a
plus in forecasting, the transformation of the indicators into binary variables prior to their
combination, (from ykt to Ψkt and then summed with equal weights), and the focus on the
direct prediction of recessions, At is a 0/1 variable.
Keilis-Borok et al. (2000) used 6 indicators: SW’s CCI defined in Section 2.1 and five

leading indicators, the interest rate spread, a short term interest rate, manufacturing and
trade inventories, weekly initial claims for unemployment, and the index of help wanted
advertising. They analyzed three different versions of the model in (74) where the parameters
are either judgementally assigned or estimated by non-linear least squares, with or without
linear filtering of the indicators, finding that all versions perform comparably and satisfactory,
producing (in a pseudo out-of-sample context) an early warning of the five recessions over
the period 1961 to 1990. Yet, the result should be interpret with care because of the use of
the finally released data and of the selection of the indicators using full sample information,
consider e.g. the use of the spread which was not common until the end of the ’80s.

4.6 Binary models

In the models we have analyzed so far to relate coincident and leading indicators, the de-
pendent variable is continuous, even though forecasts of business cycle turning points are
feasible either directly (MS or ST models) or by means of simulation methods (linear or
factor models). A simpler and more direct approach treats the business cycle phases as a
binary variable, and models it using a logit or probit specification.
In particular, let us assume that the economy is in recession in period t, Rt = 1, if the

unobservable variable st is larger than zero, where the evolution of st is governed by

st = β0yt−1 + et. (75)

Therefore,
Pr(Rt = 1) = Pr(st > 0) = F (β0yt−1), (76)

where F (.) is either the cumulative normal distribution function (probit model), or the lo-
gistic function (logit model). The model can be estimated by maximum likelihood, and the
estimated parameters combined with current values of the leading indicators to provide an
estimate of the recession probability in period t+ 1, i.e.,bRt+1 = Pr(Rt+1 = 1) = F (bβ0yt). (77)

The logit model was adopted, e.g., by Stock and Watson (1991) and the probit model
by Estrella and Mishkin (1998), while Birchenhall et al. (1999) provided a statistical jus-
tification for the former in a Bayesian context (on the latter, see also Zellner and Rossi
(1984) and Albert and Chib (1993b)). Binary models for European countries were investi-
gated by Estrella and Mishkin (1997), Bernard and Gerlach (1998), Estrella, Rodrigues and
Schich (2000), Birchenhall, Osborn and Sensier (2001), Osborn, Sensier and Simpson (2001),
Moneta (2003).
Several points are worth discussing about the practical use of the probit or logit models

for turning point prediction. First, often in practice the dating of Rt follows the NBER40



expansion/recession classification. Since there are substantial delays in the NBER’s an-
nouncements, it is not known in period t whether the economy is in recession or not. Several
solutions are available to overcome this problem. Either the model is estimated with data up
to period t−k and it is assumed that β remains constant in the remaining part of the sample;
or Rt is substituted with an estimated value from an auxiliary binary model for the current
status of the economy, e.g. using the coincident indicators as regressors, see e.g. Birchenhall
et al. (1999); or one of the alternative methods for real-time dating of the cycle described in
Section 2.2 is adopted.
Second, as in the case of dynamic estimation, a different model specification is required

for each forecast horizon. For example, if a h-step ahead prediction is of interest, the model
in (75) should be substituted with

st = γ0hyt−h + ut,h. (78)

This approach typically introduces serial correlation and heteroskedasticity into the error
term ut,h, so that the logit specification combined with nonlinear least squares estimation
and robust estimation of the standard errors of the parameters can be preferred over standard
maximum likelihood estimation, compare for example (70) in the previous subsection which
can be considered as a generalization of (78). Notice also that bγ0hyt−h can be interpreted as
a h-step ahead composite leading indicator. As an alternative, the model in (75) could be
complemented with an auxiliary specification for yt, say,

yt = Ayt−1 + vt (79)

so that

Pr(Rt+h = 1) = Pr(st+h > 0) = Pr(β
0Ah−1yt + ηt+h−1 + et+h > 0) = Fη+e(β

0Ah−1yt) (80)

with ηt+h−1 = β0vt+h−1 + β0Avt+h−2 + ... + β0Ah−1vt. In general, the derivation of Fη+e(.) is
quite complicated, and the specification of the auxiliary model for yt can introduce additional
noise. Dueker (2003) extended and combined equations (75) and (79) intoµ

st
yt

¶
=

µ
a B
c D

¶µ
st−1
yt−1

¶
+

µ
est
eyt

¶
, (81)

which is referred to as Qual-VAR because of its similarity with the models considered in
Section 4.1. The model composed of the equation for st alone is the dynamic ordered probit
studied by Eichengreen, Watson and Grossman (1985), who derived its likelihood and the
related maximum likelihood estimators. Adding the set of equations for yt has the main
advantage of closing the model for forecasting purposes. Moreover, Dueker (2003) showed
that the model can be rather easily estimated using Gibbs sampling techniques, and Dueker
andWesche (2001) found sizeable forecasting gains with respect to the standard probit model,
in particular during recessionary periods.
Third, the construction of the probability of a recession within a certain period, say t+2,

is complicated within the binary model framework. The required probability is given by
Pr(Rt+1 = 0, Rt+2 = 1) + Pr(Rt+1 = 1, Rt+2 = 0) + Pr(Rt+1 = 1, Rt+2 = 1). Then, either
from (78)

Pr(Rt+1 = 1, Rt+2 = 1) = Pr(st+1 > 0, st+2 > 0) = Pr(ut+1,1 > −γ01yt, ut+2,2 > −γ02yt), (82)41



or from (80)

Pr(Rt+1 = 1, Rt+2 = 1) = Pr(st+1 > 0, st+2 > 0) = Pr(β
0yt+et+1 > 0, β0Ayt+β0vt+1+et+2 > 0),

(83)
and similar formulae apply for Pr(Rt+1 = 0, Rt+2 = 1) and Pr(Rt+1 = 1, Rt+2 = 0). As long
as the joint distributions in (82) and (83) are equivalent to the product of the marginal ones,
as in this case assuming that vt are uncorrelated with et, and the error terms are i.i.d., an
analytic solution can be found. For higher values of h simulation methods are required. For
example, a system made up of the models resulting using equation (78) for different values
of h can be jointly estimated and used to simulate the probability values in (82). A similar
approach can be used to compute the probability that an expansion (or a recession) will have
a certain duration. A third, simpler alternative, is to define another binary variable directly
linked to the event of interest, in this case,

R2t =

½
0 if no recession in period t+ 1, t+ 2
1 if at least one recession in t+ 1, t+ 2

, (84)

and then model R2t with a probit or logit specification as a function of indicators dated up to
period t−1. The problem of this approach is that it is not consistent with the model for Rt in
equations (75), (76). The extent of the mis-specification should be evaluated in practice and
weighted with the substantial simplification in the computations. A final, more promising,
approach is simulation of the Qual-VAR model in (81), along the lines of the linear model in
Section 4.1.
Fourth, an additional issue that deserves investigation is the stability of the parameters

over time, and in particular across business cycle phases. Chin et al. (2000) proposed to
estimate different parameters in expansions and recessions, using an exogenous classification
of the states based on their definition of turning points. Dueker (1997, 2002) suggested
to make the switching endogenous by making the parameters of (75) evolve according to a
Markov chain. Both authors provided substantial evidence in favor of parameters instability.
Fifth, an alternative procedure to compute the probability of recession in period t consists

of estimating logit or probit models for a set of coincident indicators, and then aggregating
the resulting forecasts. The weights can be either those used to aggregate the indicators into
a composite index, or they can be determined within a pooling context, as described in the
next subsection.
Finally, as in the case of MS or ST models, the estimated probability of recession, brt+1,

should be transformed into a 0/1 variable using a proper rule. The common choices are of
the type brt ≥ c where c is either 0.5, a kind of uninformative Bayesian prior, or equal to
the sample unconditional recession probability. Dueker (2002) suggested to make the cutoff
values also regime dependent, say c0 and c1, and to compare the estimated probability with
a weighted combination of c0 and c1 using the related regime probabilities. In general, as
suggested e.g. by Zellner et al. (1990) and analyzed in details by Lieli (2004), the cutoff
should be a function of the preferences of the forecasters.

4.7 Pooling

Since the pioneering work of Bates and Granger (1969), it is well known that pooling several
forecasts can yield a mean square forecast error (msfe) lower than that of each of the individual
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forecasts, see Timmermann (2004) for a comprehensive overview. Hence, rather than selecting
a preferred forecasting model, it can be convenient to combine all the available forecasts, or
at least some subsets.
Several pooling procedures are available. The three most common methods in practice

are linear combination, with weights related to the msfe of each forecast (see e.g. Granger
and Ramanathan (1984)), median forecast selection, and predictive least squares, where a
single model is chosen, but the selection is recursively updated at each forecasting round on
the basis of the past forecasting performance.
Stock and Watson (1999b) and Marcellino (2004a) presented a detailed study of the

relative performance of these pooling methods, using a large dataset of, respectively, US and
Euro area macroeconomic variables, and taking as basic forecasts those produced by a range
of linear and non-linear models. In general simple averaging with equal weights produces
good results, more so for the US than for the Euro area. Stock and Watson (2003) focused
on the role of pooling for GDP growth forecasts in the G-7 countries, using a larger variety
of pooling methods, and dozens of models. They concluded that median and trimmed mean
pooled forecasts produce a more stable forecasting performance than each of their component
forecasts. Incidentally, they also found pooled forecasts to perform better than the factor
based forecasts discussed in Section 4.2.
Camacho and Perez-Quiros (2002) focused on pooling leading indicator models, in par-

ticular they considered linear models, MS and ST models, probit specifications, and the
non-parametric model described in Section 4.5, using regression based weights as suggested
by Granger and Ramanathan (1984). Hence, the pooled forecast is obtained as

bxt+1|t = w1bxt+1|t,1 + w2bxt+1|t,2 + ...+ wpbxt+1|t,p, (85)

and the weights, wi, are obtained as the estimated coefficients from the linear regression

xt = ω1bxt|t−1,1 + ω2bxt|t−1,2 + ...+ ωpbxt|t−1,p + ut (86)

which is estimated over a training sample using the forecasts from the single models to be
pooled, bxt|t−1,i, and the actual values of the target variable.
Camacho and Perez-Quiros (2002) evaluated the role of pooling not only for GDP growth

forecasts but also for turning point prediction. The pooled recession probability is obtained
as brt+1|t = F (a1brt+1|t,1 + a2brt+1|t,2 + ...+ apbrt+1|t,p), (87)

where F (.) is the cumulative distribution function of a normal variable, and the weights, ai,
are obtained as the estimated parameters in the probit regression

rt = F (α1brt|t−1,1 + α2brt|t−1,2 + ...+ αpbrt|t−1,p) + et, (88)

which is again estimated over a training sample using the recession probabilities from the
single models to be pooled, brt|t−1,i, and the actual values of the recession indicator, rt.
The pooling method described above was studied from a theoretical point of view by Li

and Dorfman (1996) in a Bayesian context. A more standard Bayesian approach to forecast
combination is the use of the posterior odds of each model as weights, see e.g. Min and
Zellner (1993). When all models have equal prior odds, this is equivalent to the use of the
likelihood function value of each model as its weight in the pooled forecast.
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5 Evaluation of leading indicators

In this section we deal with the evaluation of the forecasting performance of the leading
indicators when used either in combination with simple rules to predict turning points, or
as regressors in one of the models described in the previous Section to forecast either the
growth rate of the target variable or its turning points. In the first subsection we consider
methodological aspects. In the second subsection we discuss examples. In the final one we
provide a rapid survey of the recent literature on the actual forecasting performance of single
and composite leading indicators.

5.1 Methodology

A first assessment of the goodness of leading indicators can be based on standard in-sample
specification and mis-specification tests of the models that relate the indicators to the target
variable.
The linear model in (24) provides the simplest framework to illustrate the issues. A first

concern is whether it is a proper statistical model of the relationships among the coinci-
dent and the leading variables. This requires the estimated residuals to mimic the assumed
i.i.d. characteristics of the errors, the parameters to be stable over time, and the absence of
non-linearity. Provided these hypotheses are not rejected, the model can be used to assess
additional properties, such as Granger causality of the leading for the coincident indicators,
or to evaluate the overall goodness of fit of the equations for the coincident variables (or for
the composite coincident index). The model also offers a simple nesting framework to eval-
uate the relative merits of competing leading indicators, whose significance can be assessed
by means of standard testing procedures. For a comprehensive analysis of the linear model
see, e.g., Hendry (1995).
The three steps considered for the linear model, namely, evaluation of the goodness of the

model from a statistical point of view, testing of hypotheses of interest on the parameters, and
comparison with alternative specifications should be performed for each of the approaches
listed in the previous Section. In particular, Hamilton and Raj (2002) and Raj (2002) provide
up-to-date results for Markov-switching models, van Dijk, Teräsvirta and Franses (2002)
for smooth transition models, while, e.g., Marcellino and Mizon (2004) present a general
framework for model comparison.
Yet, in-sample analyses are more useful to highlight problems of a certain indicator or

methodology than to provide empirical support in their favor, since they can be biased by
over-fitting and related problems due to the use of the same data for model specification,
estimation, and evaluation. A more sound appraisal of the leading indicators can be based
on their out of sample performance, an additional reason for this being that forecasting is
their main goal.
When the target is a continuos variables, such as the growth of a CCI over a certain

period, standard forecast evaluation techniques can be used. In particular, the out-of-sample
mean square forecast error (MSFE) or mean absolute error (MAE) provide standard summary
measures of forecasting performance. Tests for equal forecast accuracy can be computed along
the lines of Diebold and Mariano (1995), Clark and McCracken (2001), the standard errors
around the MSFE of a model relative to a benchmark can be computed following West (1996),
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and tests for forecast encompassing can be constructed as in Clark and McCracken (2001).
West (2004) provides an up-to-date survey of forecast evaluation techniques.
Moreover, as discussed in Section 4, simulation methods are often employed to compute

the joint distribution of future values of the CCI to produce recession forecasts. Such a joint
distribution can be evaluated using techniques developed in the density forecast literature,
see e.g. Corradi and Swanson (2004).
When the target variable, Rt, is a binary indicator while the (out of sample) forecast

is a probability of recession, Pt, similar techniques can be used since the forecast error is a
continuous time variable. For example, Diebold and Rudebusch (1989) defined the accuracy
of the forecast as

QPS =
1

T

TX
t=1

2(Pt −Rt)
2, (89)

where QPS stands for quadratic probability score, which is the counterpart of the MSFE.
The range of QPS is [0, 2], with 0 for perfect accuracy. A similar loss function that assigns
more weight to larger forecast errors is the log probability score,

LPS = − 1
T

TX
t=1

((1−Rt) log(1− Pt) +Rt logPt) . (90)

The range of LPS is [0,∞], with 0 for perfect accuracy.
Furthermore, Stock and Watson (1992) regressed Rt+k − CRIt+k|t, i.e. the difference of

their indicator of recession and the composite recession index, on available information in
period t, namely

Rt+k − CRIt+k|t = ztβ + et, (91)

where the regressors in zt are indicators included or excluded in SW’s CLI. The error term
in the above regression is heteroskedastic, because of the discrete nature of Rt, and serially
correlated, because of the k-period ahead forecast horizon. Yet, robust t- and F-statistics
can be used to test the hypothesis of interest, β = 0, that is associated with correct model
specification when zt contains indicators included in the CLI, or with an efficient use of the
information in the construction of the recession forecast when zt contains indicators excluded
from the CLI. Of course, the model in (91) can be also adopted when the dependent variable
is a growth rate forecast error.
If the CRI or any probability of recession are transformed into a binary indicator, St,

by choosing a threshold such that if the probability of recession increases beyond it then the
indicator is assigned a value of one, the estimation method for the regression in (91) should
be changed, since the dependent variable becomes discrete. In this case, a logistic or probit
regression with appropriate corrections for the standard errors of the estimated coefficients
would suit.
Contingency tables can be also used for a descriptive evaluation of the methodology in

the case of binary forecasts and outcomes. They provide a summary of the percentage of
correct predictions, missed signals (no prediction of slowdown when it takes place), and false
alarms (prediction of slowdown when it does not take place). A more formal assessment can
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be based on a concordance index, defined as

IRS =
1

T

TX
t=1

[RtSt + (1− St)(1−Rt)] , (92)

with values in the interval [0, 1], and 1 for perfect concordance. Under the assumption that
St and Rt are independent, the estimate of the expected value of the concordance index is
2SR = 1−R− S, where R and S are the averages of Rt and St. Subtracting this quantity
from IRS yields the mean-corrected concordance index (Harding and Pagan (2001, 2002)):

I∗RS = 2
1

T

TX
t=1

(St − S)(Rt −R). (93)

AMP showed that under the null hypothesis of independence of St and Rt

T 1/2I∗RS → N(0, 4σ2), σ2 = γR(0)γS(0) + 2
∞X
τ=1

γR(τ)γS(τ), (94)

where γS(τ) = E[(St −E(St))(St−τ −E(St))] and γS(τ) is defined accordingly. A consistent
estimator of σ2 is

σ̂2 = γ̂R(0)γ̂S(0) + 2
lX

τ=1

³
1− τ

T

´
γ̂R(τ)γ̂S(τ), (95)

where l is the truncation parameter and γ̂R(τ) and γ̂S(τ) are the sample counterparts of
γR(τ) and γS(τ). As an alternative, Harding and Pagan (2001, 2002) proposed to regress Rt

on St, and use a robust t-test to evaluate the significance of St.
Notice that since the predictive performance of the leading indicators can vary over ex-

pansions and recessions, and/or near turning points, it can be worth to provide a separate
evaluation of the models and the indicators over these subperiods, using any of the methods
mentioned so far. The comparison should be also conducted at different forecast horizons,
since the ability to provide early warnings is another important property for a leading indi-
cator, though difficult to be formally assessed in a statistical framework.
A final comment concerns the choice of the loss function, that in all the forecast evaluation

criteria considered so far is symmetric. Yet, when forecasting growth or a recession indicator
typically the losses are greater in case of a missed signal than for a false alarm, for example
because policy makers or firms cannot take timely counteracting measures. Moreover, false
alarms can be due to the implementation of timely and effective policies as a reaction to
the information in the leading indicators, or can signal major slowdowns that do not turn
into recessions but can be of practical policy relevance. These considerations suggest that an
asymmetric loss function could be a more proper choice, and in such a case using the methods
summarized so far to evaluate a leading indicator based forecast or rank competing forecasts
can be misleading. For example, a model can produce a higher loss than another model even
if the former has a lower MSFE or MAE, the best forecast can be biased, or an indicator
can be significant in (91) without reducing the loss, see e.g. Artis and Marcellino (2001),
Elliott, Komunjer and Timmermann (2003), Patton and Timmermann (2003), and Granger
and Machina (2004) for an overview. More generally, the construction itself of the leading
indicators and their inclusion in forecasting models should be driven by the loss function and,
in case, take its asymmetry into proper account.
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5.2 Examples

To illustrate the methodology for model evaluation discussed in the previous subsection, and
the use of some of the models reviewed in Section 4, we now consider four empirical examples.
The first application focuses on the use of linear models for the (one-month symmetric

percent changes of the) CCICB and the CLICB. We focus on the following six specifications.
A bivariate VAR for the CCICB and the CLICB, as in equation (37). A univariate AR for
the CCICB. A bivariate ECM for the CCICB and the CLICB, as in equation (42), where one
cointegrating vector is imposed and its coefficient recursively estimated. A VAR for the four
components of the CCICB and the CLICB, as in equation (32). A VAR for the CCICB and
the ten components of the CLICB. Finally, a VAR for the four components of the CCICB
and the ten components of the CLICB, as in equation (24). Notice that most of these models
are non-nested, except for the AR which is nested in some of the VARs, and for the bivariate
VAR which is nested in the ECM.
The models are compared on the basis of their forecasting performance one and six month

ahead over the period 1989:1-2003:12, which includes the two recessions of July 1990 - March
1991 and March 2001 - November 2001. The forecasts are computed recursively with the first
estimation sample being 1959:1-1988:12 for one step ahead forecasts and 1959:1-1988:6 for six
step ahead forecasts, using the final release of the indexes and their components. While the
latter choice can bias the evaluation towards the usefulness of the leading indicators, this is
not a major problem when the forecasting comparison excludes the 70s and 80s and when, as
in our case, the interest focuses on the comparison of alternative models for the same vintage
of data, see the next subsection for details. The lag length is chosen by BIC over the full
sample. Recursive BIC selects smaller models for the initial samples, but their forecasting
performance is slightly worse. The forecasts are computed using both the standard iterated
method, and dynamic estimation (as described in equation (28)).
The comparison is based on the MSE and MAE relative to the bivariate VAR for the

CCICB and the CLICB. The Diebold and Mariano (1995) test for the statistical significance
of the loss differentials is also computed. The results are reported in the upper panel of Table
6.
Five comments can be made. First, the simple AR model performs very well, there are

some very minor gains from the VAR only six step ahead. This finding indicates that the
lagged behaviour of the CCICB contains useful information that should be included in a
leading index. Second, taking cointegration into account does not improve the forecasting
performance. Third, forecasting the four components of the CCICB and then aggregating
the forecasts, as in equation (34), decreases the MSE at both horizons, and the difference
with respect to the bivariate VAR is significant one-step ahead. Fourth, disaggregation of the
CLICB into its components is not useful, likely because of the resulting extensive parameter-
ization of the VAR and the related increased estimation uncertainty. Finally, the ranking of
iterated forecasts and dynamic estimation is not clear cut, but for the best performing VAR
using the four components of the CCICB the standard iterated method decreases both the
MSE and the MAE by about 10%.
In the middle and lower panels of Table 6 the comparison is repeated for, respectively,

recessionary and expansionary periods. The most striking result is the major improvement of
the ECM during recessions, for both forecast horizons. Yet, this finding should be interpreted
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with care since it is based on 18 observations only.
The second empirical example replicates and updates the analysis of Hamilton and Perez-

Quiros (1996). They compared univariate and bivariate models, with and without Markov
switching, for predicting one step ahead the turning points of (quarterly) GNP using the
CLICB as a leading indicator, named CLIDOC at that time. They found a minor role for
switching (and for the use of real time data rather than final revisions), and instead a positive
role for cointegration. Our first example highlighted that cointegration is not that relevant for
forecasting during most of the recent period, and we wonder whether the role of switching
has also changed. We use monthly data on the CCICB and the CLICB, with the same
estimation and forecast sample as in the previous example. The turning point probabilities
for the linear models are computed by simulations, as described at the end of Section 4.1,
using a two consecutive negative growth rule to identify recessions. For the MS we use
the filtered recession probabilities. We also add to the comparison a probit model where the
NBER based expansion/recession indicator is regressed on six lags of the CLICB. The NBER
based expansion/recession indicator is also the target for the linear and MS based forecasts,
as in Hamilton and Perez-Quiros (1996).
In Table 7 we report the MSE and MAE for each model relative to the probit, where the

MSE is just a linear transformation of the QPS criterion of Diebold and Rudebusch (1989),
and the Diebold and Mariano (1995) test for the statistical significance of the loss differentials.
The results indicate a clear preference for the bivariate MS model, with the probit a far second
best, notwithstanding its direct use of the target series as dependent variable. The turning
point probabilities for the five models are graphed in Figure 6, together with the NBER dated
recessions (shaded areas). The figure highlights that the probit model misses completely the
2001 recession, while both MS models indicate it, and also provide sharper signals for the
1990-91 recession. Yet, the univariate MS model also gives several false alarms.
Our third empirical application is a more detailed analysis of the probit model. In partic-

ular, we consider whether the other composite leading indexes discussed in Section 3.3, the
CLIECRI , CLIOECD, and CLISW , or the three-month ten-year spread on the treasury bill
rates have a better predictive performance than the CLICB. The estimation and forecasting
sample is as in the first empirical example, and the specification of the probit models is as in
the second example, namely, six lags of each CLI are used as regressors (more specifically,
the symmetric one month percentage changes for CLICB and the one month growth rates
for the other CLIs). We also consider a sixth probit model where three lags of each of the
five indicators are included as regressors.
From Table 8, the model with the five indexes is clearly favoured for one-step ahead

turning point forecasts of the NBER based expansion/recession indicator, with large and
significant gains with respect to the benchmark, which is based on the CLICB. The second
best is the ECRI indicator, followed by OECD and SW. Repeating the analysis for six month
ahead forecasts, the gap across models shrinks, the term spread becomes the first or second
best (depending on the use of MSE or MAE), and the combination of the five indexes remains
a good choice. Moreover, the models based on these variables (and also those using the ECRI
and OECD indexes) provided early warnings for both recessions in the sample, see Figures
7 and 8.
The final empirical example we discuss evaluates the role of forecast combination as a tool

for enhancing the predictive performance. In particular, we combine together the forecasts
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we have considered in each of the three previous examples, using either equal weights or
the inverse of the MSEs obtained over the training sample 1985:1-1988:12. The results are
reported in Table 9.
In the case of forecasts of the growth rate of the CCICB, upper panel, the pooled forecasts

outperform most models but are slightly worse than the best performing single model, the
VAR with the CLICB and the four components of the CCICB (compare with Table 6).
The two forecast weighting schemes produce virtually identical results. For NBER turning
point prediction, middle panel of Table 9, pooling linear and MS models cannot beat the
best performing bivariate MS model (compare with Table 7), even when using the better
performing equal weights for pooling or adding the probit model with the CLICB index as
regressor into the forecast combination. Finally, also in the case of probit forecasts for the
NBER turning points, lower panel of Table 9, a single model performs better than the pooled
forecast for both one and six month horizons (compare Table 8), and equal weights slightly
outperforms MSE based wieghts for pooling.

5.3 Review of the recent literature on the performance of leading
indicators

Four main strands of research can be identified in the recent literature on the evaluation of the
performance of leading indicators. First, the consequences of the use of real time information
on the composite leading index and its components rather than the final releases. Second,
the assessment of the relative performance of the new models for the coincident-leading
indicators. Third, the evaluation of financial variables as leading indicators. Finally, the
analysis of the behavior of the leading indicators during the two most recent US recessions
as dated by the NBER, namely, July 1990 - March 1991 and March 2001 - November 2001
(see e.g. McNees (1991) for results on the previous recessions). We now review in turn the
main contributions in each field, grouping together the first two.

5.3.1 The performance of the new models with real time data

The importance of using real time data rather than final releases when evaluating the per-
formance of the composite leading indicators was emphasized by Diebold and Rudebusch
(1991a, 1991b). The rationale is that the composite indexes are periodically revised because
of a variety of reasons including changes in data availability, timing or definition, modifica-
tions in the standardization factors, but also the past tracking performance of the index or
some of its components, see Diebold and Rudebusch (1988), Swanson, Ghysels and Callan
(1998) for an assessment of the revision process for the DOC-CB CLI, and Croushore (2004)
for an updated overview on the use of real time data when forecasting. Therefore, an assess-
ment of the usefulness of a composite leading index, even in a pseudo-real time framework
but using the final release of the data, can yield biased results.
Diebold and Rudebusch (1991b) estimated a linear dynamic model for IP and the CLI,

using dynamic estimation, and evaluated the marginal predictive content of the CLI in
sample and recursively out of sample (for 1969-1988) using both finally and first released data
for the CLI. While in the first two cases inclusion of the CLI in the model systematically
reduces the MSFE, in the third one the results are not clear cut and depend on the lag-length
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and the forecast horizon. A similar finding emerges using the CCI instead of IP as the target
variable, and when the Neftci’s (1982) algorithm is adopted to predict turning points in IP
(Diebold and Rudebusch (1991a)). Instead, using a MS model for predicting turning points,
Lahiri and Wang (1994) found the results to be rather robust to the use of historical or
revised data on the DOC CLI.
Filardo (1999) analyzed the performance of simple rules of thumb applied to the CLICB

and of the recession probabilities computed using Neftci’ (1982) formula, a linear model, a
probit model, and SW’s CRI, using both final and first released data over the period 1977-
1998. Overall, rules of thumb and the Neftci’s formula applied to the CLICB performed
poorly, better with ex-post data; probit and linear models were robust to the adoption of the
real-time data, because of the use of mostly financial variables as regressors, while SW’s CRI
was not evaluated in real time. Since the models were not directly compared on the same
grounds, a ranking is not feasible but, overall, the results point towards the importance of
using real-time data for the CLI also over a different and more recent sample than Diebold
and Rudebusch (1991a, 1991b).
Hamilton and Perez-Quiros (1996) evaluated the usefulness of the DOC-CB CLI using lin-

ear and MS VARs, with and without cointegration, finding that the best model for predicting
GDP growth and turning points over the period 1975-1993 is the linear VAR (cointegration
matters in sample but not out of sample), and in this framework the CLI appears to have
predictive content also with real-time data. A similar conclusion emerged from the analysis
of Camacho and Perez-Quiros (2002) for the period 1972-1998, even though they found that
non-linearity matters, the MS model was the best in and out of sample. Even better is a
combination of the MS model with the non-parametric forecast described in Section 4.5.
A few studies compared the models described in Section 4 using the final release of the

data. Notice that is less problematic in comparative analyses than in single model evaluation
since all the methods can be expected to be equally advantaged. Layton and Katsuura
(2001) considered logit and probit models, and a Filardo (1994) type time-varying (static)
MS model, using the ECRI coincident and leading indexes. The latter model performed best
in a pseudo real time evaluation exercise over the period 1979-1999, and was found to be
quite useful in dating the business cycle in Layton (1998), confirming the findings in Filardo
(1994). Instead, Birchenall et al. (1999) found more support for the probit model than for
the MS specification.

5.3.2 Financial variables as leading indicators

Though financial variables have a long history as leading indicators, e.g. Mitchell and Burns
(1938) included the Dow Jones composite index of stock prices in their list of leading indi-
cators for the US economy, a systematic evaluation of their forecasting performance started
much later, in the ’80s, and since then attracted increased attention.
Stock and Watson (2003b) reviewed over 90 articles dealing with the usefulness of finan-

cial indicators for predicting output growth (and inflation), and we refer to them and to
Kozicki (1997) and Dotsey (1998) for details on single studies. They also provided their own
evaluation using several indicators for the G7 countries and, on the basis of the survey and
of their results, concluded that some asset prices have significant predictive content at some
times in some countries, but it is not possible to find a single indicator with a consistently
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good performance for all countries and time periods. While pooling provided a partial solu-
tion to the instability problem, Stock and Watson (2003a) suggested that ”... the challenge is
to develop methods better geared to the intermittent and evolving nature of these predictive
relations” (p. 4).
The evidence reported in the previous and next subsections indeed points towards the

usefulness of models with time-varying parameters, and also confirms the necessity of a careful
choice of the financial variables to be used as leading indicators and of a continuos monitoring
of their performance. A rapid survey of the literature on the interest rate spreads provides a
clear and valuable illustration and clarification for this statement.
As mentioned in Section 3, Stock and Watson (1989) included two spreads into their

CLI, a paper-bill spread (the difference between the 6-month commercial paper rate and the
6-month Treasury bill rate) and a term spread (the difference between the 10-year and the
1-year Treasury bond rates.
The paper-bill spread tends to widen before a recession reflecting expectations of business

bankruptcies, corporations’ growing cash requirements near the peak of the business cycle,
and tighter monetary policy (the paper rate rises because banks deny loans due to the
restricted growth of bank reserves, so that potential borrowers seek funds in the commercial
paper marker). Yet, the paper bill-spread could also change for other reasons unrelated to
the business cycle, such as changes in the Treasury’s debt management policy, or foreign
central banks interventions in the exchange market since a large amount of their reserves in
dollars are invested in Treasury bills, see e.g. Friedman and Kutnner (1998), who found these
reasons capable of explaining the bad leading performance of the paper-bill spread for the
1990-91 recession, combined with the lack of a tighter monetary policy. The performance for
the 2001 recession was also unsatisfactory, the spread was small and declining from August
2000 to the end of 2001, see also the next subsection.
The term spread has two components, expected changes in interest rates and the term

premium for higher risk and/or lower liquidity. Therefore the commonly observed negative
slope of the term structure prior to recession, i.e. long term rates becoming lower than short
term ones, can be due either to lower expected short term rates (signaling expansionary
monetary policy) or to lower term premia. Hamilton and Kim (2002) found both components
to be relevant for forecasting output growth, with the former dominating at longer forecast
horizons. The bad leading performance of the term spread for the 1990-91 recession is also
typically attributed to the lack of a tighter monetary policy in this specific occasion. The
term spread became instead negative from June 2000 through March 2001, anticipating the
recession of 2001, but the magnitude was so small by historical standards that, for example,
SW’s composite leading index did not signal the recession, see also the next subsection.
Gertler and Lown (2000) suggested to use the high-yield (junk) / AAA bond spread as

a leading indicator, since it is less sensitive to monetary policy and provides a good proxy
for the premium for external funds, i.e., for the difference between the costs of external
funds and the opportunity costs of using internal funds. The premium for external funds
moves countercyclically, since during expansions the borrowers’ financial position typically
improves, and this further fosters the aggregate activity, see e.g. Bernanke and Gertler
(1989) for a formalization of this final accelerator mechanism. Therefore, a widening high-
yield spread signals a deterioration of economic conditions. Gertler and Lown (2000) found
that after the mid 80’s the high-yield spread had a better forecasting performance than both
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the paper-bill and the term spreads for the US GDP growth, providing also a warning for the
1990-91 recession. Yet, as for the paper-bill spread, the high-yield spread can also change
for reasons unrelated with the business cycle, such as confidence crises in emerging markets.
In particular, Duca (1999) indicated that the widening of the spread prior to the 1990-91
recession could be an accidental event related with the thrift crisis and the associated sale of
junk bonds in an illiquid market.
A related question of interest is whether it is better to use a financial indicator in isolation

or as a component of a composite index. Estrella and Mishkin (1998) ran probit regressions
using the term-spread, the CLICB, the CLISW , and some of their components, concluding
that both in sample and out of sample the spread yields the largest forecasting gains. More-
over, addition of other regressors is in general harmful, except for the NYSE index returns.
Similar conclusions emerged from the analysis in Dueker (1997), who also used more compli-
cated versions of the probit model, allowing for dynamics and Markov switching parameters.
Qi (2001) also obtained a similar finding using the neural network model described in Sec-
tion 4.5. The CLISW was best at 1-quarter forecast horizon, but the term spread at 2- to
6-quarter horizon. Yet, she also detected substantial instability of the results over different
decades, namely, the ’70s, ’80s, and ’90s. Estrella, Rodrigues and Schich (2000) also found
some instability for the US, more so when the dependent variable is the GDP growth rate
than when it is a binary expansion/recession indicator.
Chauvet and Potter (2001a) detected substantial instability also in the probit model when

it is estimated with the Gibbs sampler. Moreover, the date of the break has a major role in
determining the predictive performance of the spread, for example the probability of a future
recession are about 45% in December 2000 when no break is assumed but increase to 90%
imposing a break in 1984. Unfortunately, there is considerable uncertainty about the break
date, so that the posterior mean probability of recession across all break dates is 32% with a
95% interval covering basically the whole [0, 1] interval. Chauvet and Potter (2001b) extended
the basic probit model to allow for parameter instability, using a time-varying specification,
and also for autocorrelated errors. Though the more complicated models performed better,
along the lines of Dueker (1997), they provided a weaker signal of recession in 2001 in a
real-time evaluation exercise.
Finally, positive results on the leading properties of the term spread and other financial

variables for other countries were reported, e.g. by Davis and Henry (1994), Davis and Fagan
(1997), Estrella and Mishkin (1997), Estrella et al. (2000), and Moneta (2003). Yet, Moneta
(2003) found also for the Euro area a deterioration in the relative leading characteristics of
the spread after the ’80s, and an overall unsatisfactory performance in predicting the Euro
area recession of the early ’90s.

5.3.3 The 1990-91 and 2001 US recessions

Stock and Watson (1993) conducted a detailed analysis of possible reasons for the failure of
their CRI to produce early warnings of the 1990-91 recession. They could not detect any signs
of model failure or mis-specification and therefore concluded that the major problem was the
peculiar origin of this recession compared with its predecessors, namely, a deterioration in
the expectations climate followed by a drop in consumption. In such a case, the treasury bill
yield curve, exchange rates, and partly IP provided wrong signals. Only three other leading
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indicators in their set gave moderate negative signals, part-time work, building permits and
unfilled orders, but they were not sufficiently strong to offset the other indicators.
Phillips (2003) compared the performance of the CRISW , and of the CLICB and the term

spread, transformed into probabilities of recession using Neftci’s (1982) formula, for forecast-
ing the 1990-91 recession using real time data. He found that that the CLICB produced the
best results. Moreover, the SW’s index modified to allow for longer lags on the term and
quality spreads worked better in sample but not for this recession.
Chauvet (1998) also used a real time dataset to produce recession forecasts from her

dynamic MS factor model, and found that the filtered probability of recession peaked beyond
0.5 already at the beginning of 1990 and then in May of that year.
Filardo and Gordon (1999) contrasted a linear VAR model, a MS model with time-varying

parameters, the SW’s model, and a MS factor model with time-varying parameters, along
the lines of Chauvet (1998). All models were estimated using Gibbs sampling techniques,
and compared on the basis of the marginalized likelihoods and Bayes factors in 1990, as
suggested by Geweke (1994), since these quantities are easily computed as a by-product
of the estimation. They found that all models performed comparatively over the period
January-June, but in the second part of the year, when the recession started, the MS model
was ranked first, the VAR second, and the factor model third, with only minor differences
between the two versions.
Filardo (2002), using the same models as in Filardo (1999) found that the two-month rule

on the CLICB worked well in predicting the 2001 recession, but sent several false alarms in the
’90s. A probit model with a 3-month forecast horizon and the term spread, corporate spread,
S&P500 returns and the CLICB as regressors also worked well, predicting the beginning of
the recession in January 2001 using a 50% rule. Instead, the CRISW did not perform well
using a 50% rule, while SW’s CRI−C (contemporaneous) worked better but was subject to
large revisions.
Stock and Watson (2003a) analyzed in details the reasons for the poor performance of the

CRI, concluding that is was mostly due to the particular origin of the recession (coming from
the decline in stock prices and business investment), which is not properly reflected by most
of the indicators in their CRI. In particular, the best indicators for the GDP growth rate
were the term spread, the short term interest rate, the junk bond spread, stock prices, and
new claims for unemployment. Notice that most of these variables are included in Filardo’s
(2002) probit models. Moreover, they found that pooled forecasts worked well, but less well
than some single indicators in the list reported above.
Dueker (2003) found that his Qual-VAR predicted the timing of the 2001 recession quite

well relative to the professional forecasters, while the evidence in Dueker and Welshe (2001)
is more mixed. Dueker (2002) noticed that a MS-probit model with the CLICB as regressor
worked also rather well in this occasion, providing a 6-month warning of the beginning of the
recession (but not in the case of the previous recession).
Overall, some differences in the ranking of models and usefulness of the leading indicators

emerged because of the choice of the specific coincident and leading variables, sample period,
criteria of evaluation, etc. Yet, a few findings are rather robust. First, indicator selection and
combination methods are important, and there is hardly a one fits all choice, even though
financial variables and the equal weighted CLICB seem to have a good average performance.
Second, the model that relates coincident and leading indicators also matters, and a MS fea-
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ture is systematically helpful. Finally, pooling the forecasts produced good results whenever
applied, even though there is only a limited evidence as far as turning points are concerned.

6 What have we learned?

The experience of the last two recessions in the US confirmed that these are difficult events to
predict, because the generating shocks and their propagation mechanism change from time to
time, and there is a very limited sample to fit the more and more complex models that try to
capture these time-varying features. Nonetheless, the recent literature on leading indicators
provided several new useful insights for the prediction of growth rates and turning points of
a target variable.
The first set of improvements is just in the definition of the target variable. In Section 2

we have seen that several formal procedures were developed to combine coincident indicators
into a composite index, which is in general preferable to monitoring a single indicator because
of its narrower coverage of the economy. In practice, the new model based CCIs are very
similar to the old-style equal averages of the (standardized) coincident indicators, such as
the CCICB, but they provide a sounder statistical framework for the use and evaluation of
the CCIs. More sophisticated filtering procedures were also developed to emphasize the
business cycle information in a CCI, even though substantial care should be exerted in their
implementation to avoid phase shifts and other distortions. New methods were also developed
for dating the peaks and troughs in either the classical or the deviation cycle. They closely
reproduce the NBER dating for the US and the CEPR dating for the euro area, but are more
timely and can also provide a probabilistic measure of uncertainty around the dated turning
points.
The second set of advances concerns the construction of leading indicators. While there

was general agreement on the characteristics of a good leading indicator, such as consistent
timing or conformity to the general business cycle, in Section 3 we have seen that there are
now better methods to formally test the presence of these characteristics and assess their ex-
tent. Moreover, there were several developments in the construction of the composite leading
indexes, ranging from taking into explicit account data problems such as missing values or
measurement error, to an even more careful variable selection relying on new economic and
statistical theories, combined with sounder statistical procedures for merging the individual
leading indicators into a CLI.
The third, and perhaps most important, set of enhancements is in the use of the leading

indicators. In Section 4 we have seen that simple rules to transform a CLI into a turning
point forecasts have been substituted with sophisticated non-linear and time-varying models
for the joint evolution of the coincident and leading indicators. Moreover, mainly using
simulation-based techniques, it is now rather easy to use a model to produce both point and
probability and duration forecasts.
The final set of improvements is in the evaluation of leading indicators. In Section 5

we have seen that formal statistical methods are now available to assess the forecasting
performance of leading indicators, possibly combined with the use of real time data to prevent
biased favorable results due to revisions in the composition of the CLIs. Moreover, an
overview of the forecasting performance over the two most recent recessions in the US has
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provided some evidence in favor of the forecasting capabilities of CLIs, in particular when
simple weighting procedures are applied to a rather large set of indicators, combined with
sophisticated models for the resulting CLI and the target variable.
Notwithstanding the substantial progress in the recent years, there is still considerable

scope for research in this area. For example, it might be useful to achieve a stronger consen-
sus on the choice of the target variable, and in particular on whether the classical cycle is
really the target of interest or a deviation cycle could provide more useful information. The
collection of higher quality monthly series and the development of better methods to handle
data irregularities also deserve attention. But the crucial element remains the selection of
the leading variables, and of the weighting scheme for their combination into a CLI. Both
choices should be made endogenous and frequently updated to react to the changing shocks
that hit the economy, and further progress is required in this area. Forecast pooling could
provide an easier method to obtain more robust predictions, but very limited evidence is
available for turning point and duration forecasts. It is also worth mentioning that while in
this chapter we have focused on real activity as the target variable, other choices are possible
such as inflation or a stock market index, see e.g. the contributions in Lahiri and Moore
(1991), and most of the developments we have surveyed could be usefully applied in these
related contexts.
To conclude, most of what we have learned in the recent period about leading indicators

builds upon ideas originally developed in a set of papers all published in 1989. 1989 is also
the year of the fall of the Berlin’s wall, which opened the way to the transition of most
previously communist countries towards the market economy. Since

”Business cycles are a type of fluctuation found in the aggregate economic
activity of nations that organize their work mainly in business enterprises”, Burns
and Mitchell (1946, p.3),

leading indicators have an even wider market now, and the construction of indicators for
these new members of the market economy is the final item we would include in the “to do
list”.
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Figure 1: Composite Coincident Indexes 
 

 
 

Note: The figure reports the Conference Board’s composite coincident indicator (CCICB), the 
OECD reference coincident series (CCIOECD), Stock and Watson’s coincident index 
(CCISW), and the coincident index derived from the four components in CCICB modeled with 
a dynamic factor model as in Kim and Nelson (1998) (CCIKN). All indexes have been 
normalized to have zero mean and unit standard deviation. 
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Figure 2: Classical and deviation cycles 
 
 

 
 
 

Note: Upper panel: CCICB and NBER dated recessions (shaded areas). 
Middle panel: CCICB and recessions dated with Artis, Marcellino, Proietti (2003) algorithm 
(shaded areas). 
Lower panel: HP-band pass filtered CCICB and recessions dated with Artis, Marcellino, 
Proietti (2003) algorithm (shaded areas). 
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Figure 3: Probability of recession and NBER dated recessions 
 

 
 
 

Note: The upper panel reports the (filtered) probability of recession computed from a dynamic 
factor model for the four components in the CCICB using the Kim and Nelson’s (1998) 
methodology. 
The lower panel reports the (filtered) probability of recession computed using the algorithm 
in Artis, Marcellino, Proietti (2003) applied to the CCICB. 
The shaded areas are the NBER dated recessions. 
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Figure 4: Composite Leading Indexes 
 

 
 
 

Note: The figure reports the Conference Board composite leading index (CLICB), the OECD leading 
index (CLIOECD), a transformation of Stock and Watson’s leading index (TCLISW, see text), 
the ECRI leading index (CLIECRI), and the NBER dated recessions (shaded areas). All indexes 
have been normalized to have zero mean and unit standard deviation. 
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Figure 5: Filtered composite leading indexes with AMP dated  
recessions for deviation cycle of CCICB 

 

 
 

Note: The figure reports the HP-band pass filtered versions of the four CLIs in Figure 4, and the 
Artis, Marcellino, Proietti (2003) dating of the HP band pass filtered versions of the CCICB 
(shaded areas). 
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Figure 6: One month ahead recession probabilities 
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Note: The models are those in Table 7. Shaded areas are NBER dated recessions. 
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Figure 7: One month ahead recession probabilities for alternative probit models 
 

0.0

0.2

0.4

0.6

0.8

1.0

1990 1992 1994 1996 1998 2000 2002

PROBITcb

0.0

0.2

0.4

0.6

0.8

1.0

1990 1992 1994 1996 1998 2000 2002

PROBITsw

0.0

0.2

0.4

0.6

0.8

1.0

1990 1992 1994 1996 1998 2000 2002

PROBITecri

0.0

0.2

0.4

0.6

0.8

1.0

1990 1992 1994 1996 1998 2000 2002

PROBIToecd

0.0

0.2

0.4

0.6

0.8

1.0

1990 1992 1994 1996 1998 2000 2002

PROBITspread

0.0

0.2

0.4

0.6

0.8

1.0

1990 1992 1994 1996 1998 2000 2002

PROBITall

 
 
 
 

Note: The models are those in Table 8. Shaded areas are NBER dated recessions. 
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Figure 8: Six months ahead recession probabilities for alternative probit models 
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Note: The models are those in Table 8. Shaded areas are NBER dated recessions. 
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Table 1: Correlation of composite coincident indexes (6-month percentage change) 
 
 

  CCICB CCIOECD CCISW CCIKN 
CCICB 1       
CCIOECD 0.941 1    
CCISW 0.979 0.969 1   
CCIKN 0.943 0.916 0.947 1 

 
 

Note: Common sample is 1970:01 – 2003:11. 
 
 
 
 
 
 
 
 
 
 

Table 2: Correlation of composite leading indexes (6-month percentage change) 
 
 

  CLICB CLIOECD CLIsw CLIECRI 
CLICB  1     
CLIOECD  0.891  1    
CLIsw  0.719  0.601  1   
CLIECRI  0.817  0.791  0.595  1 

 
 

Note: Common sample is 1970:01 – 2003:11. 
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Table 3: Classical cycles, dating of coincident and leading indexes 
 
 

Peak  Trough 
             

Coincident Leading (AMP)   Coincident Leading (AMP) 
NBER AMP CB OECD ECRI SW   NBER AMP CB OECD ECRI SW 

             
Apr 1960 May 1960 Jan 1959 *  Jan 1960 *  Jan 1959  Aug 1959 *  Feb 1961 Feb 1961 Mar 1960 Dec 1960 Oct 1960 May 1960 
     Jan 1962        Jun 1962  
   Apr 1966 Apr 1966 Apr 1966 Feb 1966     Dec 1966 Nov 1966 Dec 1966 Jul 1966 
Dec 1969 Nov 1969 May 1969 Jan 1969 Jan 1969 MISSING  Nov 1970 Nov 1970 Apr 1970 Apr 1970 Jul 1970 MISSING 
Nov 1973 Dec 1973 Feb 1973 Feb 1973 Jun 1973 Jan 1973  Mar 1975 Mar 1975 Jan 1975 Dec 1974 Jan 1975 Aug 1974 
Jan 1980 Feb 1980 Nov 1978 Aug 1978 Nov 1978 Jun 1979  Jul 1980 Jul 1980 Apr 1980 Apr 1980 May 1980 Aug 1981 
Jul 1981 Aug 1981 Nov 1980 Nov 1980 May 1981 MISSING  Nov 1982 Dec 1982 Jan 1982 Feb 1982 Aug 1982 MISSING 
    Feb 1984  Oct 1985      Sep 1984  Jun 1986 
   Jul 1988        Jun 1989    
Jul 1990 Jul 1990 Feb 1990 Mar 1990 Oct 1989 Feb 1990  Mar 1991 Mar 1991 Jan 1991 Dec 1990 Dec 1990 Jan 1991 
   Nov 1994 Dec 1994       May 1995 Apr 1995   
     May 1998        Oct 1998  
Mar 2001 Oct 2000 Feb 2000 Feb 2000 Feb 2000 MISSING  Nov 2001 Dec 2001 Mar 2001 Oct 2001 Oct 2001 MISSING 
 Jul 2002 MISSING May 2002 MISSING Feb 2002   Apr 2003 MISSING MISSING Apr 2003 MISSING 
             
  NBER  AMP NBER  AMP NBER  AMP NBER  AMP   NBER  AMP NBER  AMP NBER  AMP NBER  AMP 
Average Lead 10  |  11 9  |  9 9  |  10 7  |  8    9  |  9 4  |  4 3  |  3 8  |  9 
St. Dev.  4.23  |  4.28 4.30  |  5.31 5.13  |  4.75 3.78  |  2.50    4.30  |  5.31 2.89  |  3.04 1.11  |  1 5.38  |  5.80 
False Alarms 3  |  3 3  |  3 3  |  3 2  |  2    3  |  3 3  |  3 3  |  3 2  |  2 
Missing   0  |  1 0  |  0 0  |  1 2  |  4       0  |  1 0  |  0 0  |  1 3  |  4 

 
 

Note: Shaded values are false alarms, 'MISSING' indicates a missed turning point. Leads longer than 18 months are considered false alarms. 
Negative leads are considered missed turning points. * indicates no previous available observation. Based on final release of data. 
AMP: Dating based on algorithm in Artis, Marcellino, Proietti (2003). 
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Table 4: Correlations of HP band pass filtered composite leading indexes 
 
 

  HPBP-CLICB HPBP-CLIOECD HPBP-CLIECRI HPBP-CLISW
HPBP-CLICB  1    
HPBP-CLIOECD  0.919  1   
HPBP-CLIECRI  0.906  0.882  1  
HPBP-CLISW  0.703  0.595  0.645  1 

 
 

Note: Common sample is 1970:01 – 2003:11. 
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Table 5: Deviations cycles, dating of coincident and leading indexes 
 
 

Peak  Trough 
           

Coincident Leading   Coincident Leading 
CB CB OECD ECRI SW   CB CB OECD ECRI SW 

           
Mar 1960 May 1959 Feb 1960 Jul 1959 Sep 1959  Mar 1961 Nov 1960 Jan 1961 Oct 1960 Jan 1961 
May 1962 Jan 1962 Jan 1962 Dec 1961 MISSING  Jan 1964 Sep 1962 Nov 1962 Sep 1962 MISSING 
     Apr 1963       May 1964 
Jul 1967 Feb 1966 Mar 1966 Feb 1966 Jan 1967  Aug 1967 Feb 1967 Jan 1967 Dec 1966 Jan 1967 
Aug 1969 Feb 1969 Dec 1968 Feb 1969 Dec 1967  Mar 1971 Jul 1970 Jun 1970 Aug 1970 Jun 1970 
Dec 1973 Feb 1973 Jan 1973 May 1973 Jan 1973  Jun 1975 Feb 1975 Jan 1975 Jan 1975 Oct 1974 
Mar 1979 Sep 1978 Sep 1978 Dec 1978 May 1979  Jul 1980 May 1982 Apr 1980 Jun 1982 Feb 1980 
Jul 1981 MISSING Mar 1981 MISSING Sep 1980  Jan 1983 MISSING May 1982 MISSING Jun 1982 
Nov 1984 Jan 1984 Dec 1983 Oct 1983 Apr 1985  Jan 1987 Jan 1986 May 1985 Oct 1985 Aug 1987 
    Jun 1987       Apr 1988  
May 1990 Sep 1987 Aug 1987 Nov 1989 Jan 1990  Dec 1991 Dec 1990 Jan 1991 Nov 1990 Jul 1991 
   Feb 1993       Jul 1993   
Jan 1995 Jun 1994 Jun 1994 Oct 1993 Jan 1994  Mar 1997 Nov 1995 Aug 1995 Feb 1995 Oct 1994 
     Aug 1995       May 1997 
   Nov 1997       Oct 1998   
Aug 2000 Jan 2000 Mar 2000 Mar 2000 Jan 2001  Dec 2003 * May 2001 Dec 2003 * Dec 2003 * Nov 2003 * 
 May 2002       Dec 2003 *    
           
Aver. Lead 7 6 7 8   10 7 10 6 
St. Dev. 2.28 3.21 3.80 3.25   4.67 4.03 4.47 2.31 
False Alarms 2 2 1 2   1 4 2 1 
Missing 1 0 1 4     1 0 1 3 

 
 

Note: Shaded values are false alarms, 'MISSING' indicates a missed turning point. Leads longer than 18 months are considered false 
alarms. Negative leads are considered missed turning points. * indicates last available observation. Based on final release of data. 
AMP: Dating based on algorithm in Artis, Marcellino, Proietti (2003). 
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Table 6: Forecast comparison of alternative VAR models for CCICB and CLICB 
 

    1 step-ahead 6 step-ahead 
DYNAMIC 

6 step-ahead 
ITERATED 

    
Relative 

MSE 
Relative 

MAE 
Relative 

MSE 
Relative 

MAE 
Relative 

MSE 
Relative 

MAE 
  whole sample 
              
CCI + CLI VAR(2) 1  1  1  1  1  1  
CCI AR(2) 1.001  1.010  0.982  0.963 * 1.063  1.032  
CCI + CLI coint VECM(2) 1.042   1.074 * 1.067   1.052   1.115   1.100   
4 comp. of CCI + CLI VAR(2) 0.904 ** 0.976  0.975  0.973  0.854 ** 0.911 ** 
CCI + 10 comp. of CLI VAR(1) 1.158 *** 1.114 *** 1.035  1.017  1.133 ** 1.100 ***
4 comp. CCI + 10 comp. CLI VAR(1) 0.995  1.029  1.090  1.035  0.913  0.967  
                            
                       
  MSE MAE MSE MAE MSE MAE 
 VAR(2) 0.075 0.186 0.079 0.216 0.075 0.201 
                            
  recessions 
              
CCI + CLI VAR(2) 1  1  1  1  1  1  
CCI AR(2) 0.988  0.975  0.949  0.940  1.303 ** 1.154 ** 
CCI + CLI coint VECM(2) 0.681 *** 0.774 *** 0.744   0.882   0.478 *** 0.626 ***
4 comp. of CCI + CLI VAR(2) 0.703 * 0.784 ** 0.825  0.879  0.504 *** 0.672 ***
CCI + 10 comp. of CLI VAR(1) 1.095  1.009  1.151  1.131  1.274 * 1.117  
4 comp. CCI + 10 comp. CLI VAR(1) 0.947  0.852  1.037  1.034  0.614 *** 0.714 ***
                            
                        
  MSE MAE MSE MAE MSE MAE 
 VAR(2) 0.087 0.258 0.096 0.252 0.163 0.368 
                            
  expansions 
              
CCI + CLI VAR(2) 1  1  1   1   1  1  
CCI AR(2) 1.002  1.016  0.977   0.956 * 0.997  1.005  
CCI + CLI coint VECM(2) 1.090 * 1.123 *** 1.118   1.081   1.292 *** 1.206 ***
4 comp. of CCI + CLI VAR(2) 0.931 * 1.007  0.987   0.980   0.952  0.964  
CCI + 10 comp. of CLI VAR(1) 1.166 *** 1.132 *** 1.015   0.997   1.093 * 1.096 ** 
4 comp. CCI + 10 comp. CLI VAR(1) 1.001  1.058  1.087   1.029   0.997  1.023  
                            
                      
  MSE MAE MSE MAE MSE MAE 
 VAR(2) 0.074 0.177 0.076 0.208 0.065 0.183 
                            

 
 
Note: Forecast sample is: 1989:1 – 2003:12. First estimation sample is 1959:1 – 1988:12 (for 1 

step-ahead) or 1959:1 – 1988:6 (for 6 step-ahead), recursively updated. Lag lenght selection 
by BIC. MSE and MAE are mean square and absolute forecast error. VAR for CCICB and 
CLICB is benchmark. *, **, *** indicate significance at 10%, 5%, 1% of the Diebold-
Mariano test for the null hypothesis of no significant difference in MSE or MAE with 
respect to the benchmark. 
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Table 7: Turning point predictions  
 
 

Target Model 
Relative 

MSE 
Relative 

MAE 
     

univariate 1.0302  1.2685 *** 
univariate MS 1.3417  1.0431  
bivariate 1.0020  1.0512  
bivariate MS 0.6095  0.4800 *** 

NBER          
(1 step-ahead) 

probit CLI_CB 1  1  
           
      
  MSE MAE  
 probit 0.0754 0.1711  
           

 
 
Note: One-step ahead turning point forecasts for the NBER expansion/recession indicator. Linear 

and MS models (as in Hamilton and Perez-Quiros (1996)) for CCICB and CLICB. Six lags of 
CLICB are used in the probit model. *, **, *** indicate significance at 10%, 5%, 1% of the 
Diebold-Mariano test for the null hypothesis of no significant difference in MSE or MAE 
with respect to the benchmark. 
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Table 8: Forecasting performance of alternative CLIs using probit models  
for NBER recession/expansion classification 

 
 

Target Model 
Relative 

MSE 
Relative 

MAE 
      

CLI_CB 1  1  
CLI_SW 1.01  0.664 *** 
CLI_ECRI 0.588  0.597 *** 
CLI_OECD 0.719  0.714 *** 
termspread 0.952  0.937  

NBER         
(1 step-ahead) 

4 CLI+spread 0.565 ** 0.404 *** 
            

      
CLI_CB 1  1  
CLI_SW 1.085  0.956  
CLI_ECRI 0.888  0.948  
CLI_OECD 0.912  0.834 ** 
termspread 0.736 ** 0.726 *** 

NBER         
(6 step-ahead) 

4 CLI+spread 0.837 ** 0.692 *** 
            
      
  MSE  MAE  

CLI_CB 1 step-ahead 0.073  0.169  
 6 step-ahead 0.085  0.191  
            

 
 
Note: Forecast sample is: 1989:1 – 2003:12. First estimation sample is 1959:1 – 1988:12, 

recursively updated. Fixed lag lenght: 6 lags for the first four models and 3 lags for the 
model with all four CLIs (see text for details). MSE and MAE are mean square and absolute 
forecast error. Probit model for CLICB is benchmark. *, **, *** indicate significance at 10%, 
5%, 1% of the Diebold-Mariano test for the null hypothesis of no significant difference in 
MSE or MAE with respect to the benchmark. 
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Table 9: Evaluation of forecast pooling 
 

Combine 
Relative 

MSE 
Relative 

MAE 
Relative 

MSE 
Relative 

MAE 
 Predicting CCI_CB growth 
         
 MSE-weighted simple average 
         
6 linear models (1month) 0.9474 ** 0.9824  0.9418 ** 0.9781  
6 linear models (6month dynamic) 0.8873  0.9100  0.8863  0.9082  
6 linear models (6month iterated) 0.9352 ** 0.9776  0.9255 ** 0.9701  
                  
 Predicting NBER turning points 
         
 MSE-weighted simple average 
         
4 linear and MS models (1m) 0.8683  1.1512  0.6676  0.9607  
4 linear and MS models + probit (1m) 0.8300  1.0989  0.6695  0.9686  
                  
 Predicting NBER turning points 
         
 MSE-weighted simple average 
         
5 single index PROBIT (1m) 0.7423 ** 0.8028 *** 0.7014 ** 0.7844 ***
5 single index PROBIT + all (1m) 0.6900 ** 0.7579 *** 0.6395 ** 0.7234 ***
5 single index PROBIT (6m) 0.8863 *** 0.9069 ** 0.8667 *** 0.8956 ** 
5 single index PROBIT + all (6m) 0.8707 *** 0.8695 *** 0.8538 *** 0.8569 ***
                  

 
 
Note: Forecast sample is 1989:1 – 2003:12. The forecasts pooled in the upper panel are from the 

six models in Table 6 and the benchmark is the VAR(2). The forecasts pooled in the middle 
panel are from the models in Table 7, including or excluding the probit, and the benchmark is 
the probit model with 6 lags of CLICB as regressor. The forecasts pooled in the lower panel 
are from the models in Table 8, including or excluding the probit with all indicators, and the 
benchmark is as in the middle panel. *, **, *** indicate significance at 10%, 5%, 1% of the 
Diebold-Mariano test for the null hypothesis of no significant difference in MSE or MAE 
with respect to the benchmark. 

 


