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Abstract

We study the relationship between the term structure of interest rates and

fiscal policy by considering the Italian case. Empirical analysis has been so

far rather inconclusive on this important topic. We abscribe such evidence

to three problems: identification, regime-switching and maturity effects. All

these aspects are particularly relevant to the Italian case. We propose a par-

simonious model with three factors to represent the whole yield curve, and we

consider yield differentials between Italian and German Government bonds.

To take into account the possibility of regime-switching, we explicitly include

a hidden two-state Markov chain that represents market expectations. The

model is estimated using Bayesian econometric techniques. We find that gov-

ernment debt and its evolution significantly influence the yield of government

bonds, that such effects are maturity dependent and regime-dependent. Hence

when investigating the effect of fiscal policy on the term-structure it is of cru-

cial importance to allow for multiple regimes in the estimation.

JEL Classification Numbers: E0, G0

Keywords: Fiscal Policy, Term Structure, regime switching, Bayesian es-

timation
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1 Introduction

The relationship between the term structure of interest rates and fiscal policy is a

topic of central relevance to policymakers and market participants given its impli-

cation for optimal public debt management and portfolio allocation.

Economic theory does not provide a definitive solution to the issue under study.

As Elmendorf and Mankiw (1999) and Engen and Hubbard (2004) point out, differ-

ent models predict very different effects of government debt and deficit on interest

rates, depending on the assumptions and the macroeconomic framework of each

model. Empirical analysis has been mostly inconclusive in solving the problem: in

the last 20 years many studies have undertaken the task of testing various theoreti-

cal hypotheses, obtaining very different results depending on the data employed and

the variables used1.

The heterogeneity of the empirical evidence can be explained by a number of

issues that we will explicitly address in this paper:

i) identification. As clearly pointed out by Laubach(2004) estimating the effects

of government debt and deficits on the yield curve is complicated by the need to

isolate the effects of fiscal policy from the effects of the business cycle and associated

monetary policy actions.

ii) regime-switching. The effects of fiscal fundamentals on the term structure

are not constant over time. The impact of current deficit and debt on the term

structure could be different under different expectations for the full path of future

fiscal fundamentals (see, for example, Gale and Orszag (2003) or Engen and Hub-

bard(2004)) or under different attitude towards risk in international bond markets

(see, for example,Codogno et al (2004).

iii) Maturity effects. The response to fiscal policy of the yield curve could be a

function of maturity and modelling empirically the response of entire yield curve to

fiscal fundamentals is a complicated task (see Dai and Philippon(2005) for a recent

attempt).

In this paper we use the evidence from the Italian case to address the first issue

explicitly, we shall then deal with the second and third issues using respectively a

regime switching econometric model and a factor model of the term structure.

Starting from the choice of Italian data note first that the evolution of Italian

1See Engen and Hubbard (2004) for a review of the main empirical findings to date.
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fiscal fundamentals over time offers definitely some variability. As shown in Figure

1, from the beginning of the nineties to now (the period in which we have a well

established market for government bonds and reliable data on the yield curve) the

debt to GDP ratio and the deficit to GDP ratio went through different regimes with

a strong expansion of the debt to GDP ratio in the first part of the sample followed

by a contraction in the central part of the sample and a stabilization in the late

observations.

Second, the existence of EMS in the first part of the sample and of EMU from

1999 onwards allows us to measure the impact of Italian fundamentals on the yield

curve by considering spreads of Italian yields on German yields. Germany is the

reference country for Europe on which the country risk premium is negligible and

which was the clear leader in setting monetary policy during the EMS. As a conse-

quence the identification of the effect of fiscal policy on the Italian yield curve should

be made easier by analyzing the impact of fiscal variables on spreads on German

rates. We believe that this choice helps us to isolate the effects of fiscal policy from

the effects of the business cycle and associated monetary policy actions.

Third, we use the Nelson-Siegel decomposition of the yield curve in three factors,

to extract at each sample point three factors to model the entire Italian and Ger-

man term structure . We then follow Diebold and Li (2003) and apply time-series

techniques on the NS factors to forecast bond-yield differentials between Italy and

Germany and we explicitly model these factors as functions of macroeconomic and

fiscal variables (debt/GDP ratio and its change over time).

Finally, we adopt an econometric regime switching technique in which we use

some discrete-state hidden Markov variables to represent regimes of various sort

in the economy. Since one of the main problems in studying fiscal policy is to

understand the role of the expectations, we explicitly include nonobservable market

expectations, modeling them as a hidden two-state Markov chain that influences the

effects of the fiscal variables on the yield curve at any point in time. In particular,

the hidden Markov variable is in state 1 when markets beliefs are pessimistic on

fiscal fundamentals and the country is in a high-risk situation. When instead the

hidden Markov chain is in state 0, markets beliefs are consistent with a low-risk

scenario . This obviously introduces a strong nonlinearity in the model. The need

for such nonlinearity can be seen once again from Figure 1, which plots together the

spread between the Italian and German long-term component of the yield curve, the
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Italian debt/GDP ratio and its change over time.

[ Insert Figure 1 here ]

Importantly, our modeling approach allows us to forecast the evolution of the

yield curve in relation with different scenarios for the main economic variables,

together with different regimes, and to compare the predicted curves under the

alternative regimes. We estimate our model with data ranging from 1991 to 2006, a

period of time that on the one hand is sufficiently long to allow a complete estimation

of the model, and on the other hand presents evidence of the existence of different

regimes. We employ Bayesian econometric techniques, which treat all the parameters

in the model and the hidden Markov chain as random variables on which we assume

a prior and obtain a posterior distribution at the end of the estimation process.

The rest of this paper is organized as follows: Section 2 presents our empirical

model, together with the estimation techniques, Section 3 discusses the results,

Section 4 presents some forecasting issues and Section 5 concludes. The Appendix

reports extensive details on the Bayesian estimation methods employed.

2 The empirical model

In this section we present the empirical framework we use to study the effect of

the fiscal policy variables on the yield curve. First we discuss how we model the

German and the Italian yield curves then using three factors, then we illustrate our

specification for the relation between factors macroeconomic and fiscal variables.

2.1 The yield curve and the Nelson-Siegel decomposition

Our basic data set consists of a set of zero-coupon equivalent German and Italian

yields, measured at the following maturities2: 3-month, 6-month, 1-year, 2-year,

3-year, 5-year, 7-year, 10-year.

From this data set we construct financial factors by estimating at each point of

our time series t, by non-linear least squares, on the cross-section of eight yields, the

following Nelson-Siegel model:

2The data were extracted from DataStream, and they are posted on Favero’s website at the
following address: http:/www.igier.uni-bocconi.it/personal/favero
in the section working papers
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The parameter τ 1 is kept constant over time3, as this restriction decreases the

volatility of the Lt, SLt, Ct,making them more predictable in time. As discussed in

Diebold and Li (2002) the above interpolant is very flexible and capable of accommo-

dating several stylized facts on the term structure and its dynamics. In particular,

Lt, SLt, Ct, which are estimated as parameters in a cross-section of yields, can be in-

terpreted as latent factors. Lt has a loading that does not decay to zero in the limit,

while the loading on all the other parameters do so, therefore this parameter can

be interpreted as the long-term factor, the level of the term-structure. The loading

on SLt is a function that starts at 1 and decays monotonically towards zero; it may

be viewed a short-term factor, the slope of the term structure. In fact, f1t = Lt+

SLt is the limit when k goes to zero of the spot and the forward interpolant. We

naturally interpret f1t as the risk-free rate or the monetary policy instrument. Ob-

viously SLt, the slope of the yield curve, is nothing else than minus the spread in

Campbell-Shiller. Ct is a medium term factor, in the sense that its loading starts

at zero, increases and then decays to zero. Such factor captures the curvature of

the yield curve. In fact, Diebold and Li show that it tracks very well the difference

between the sum of the shortest and the longest yield and twice the yield at a mid

range (2-year maturity). The three loadings are plotted in Figure 2.

[ Insert Figure 2 here ]

The repeated estimation of loadings using a cross-section of yields at different

maturities allows to construct a time-series for our factors. We report in Figure 3

the three factors for Germany and Italy, while Figure 4 shows the goodness of fit of

the Nelson and Siegel interpolation for all yields considered in our sample.

3We restrict τ1 at the value of 0.87, which is the median, over the time series, of the estimated
value of τ1 in a four parameter version of the Nelson-Siegel interpolant.
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[ Insert Figure 3 here ]

[ Insert Figure 4 here ]

In the remaining part of the work we will be referring to three "factors":

• f1t = Lt + SLt, the monetary policy instrument

• f2t = Lt, the long term component

• f3t = Ct, the medium term component

The aim of our work will be to assess the impact of fiscal policy variables and

market expectations on each of these factors and to evaluate the use of these variables

for predicting future values for the three factors.

Note that there are a number of alternatives to the approach that we have

followed in extracting factors. In particular, Nelson and Siegel factors are not in

general consistent with no-arbitrage and an alternative path to extracting factors is

the estimation of a no-arbitrage term-structure model with fiscal indicators (see,

Dai-Philippon(2005)). We favoured the NS approach because of its established

superior forecasting performance (Diebold-Li(2005)) and because of the feasibility

of the regime-switching analysis within this framework. We feel that having a model

capable of accommodating regime switches is vital to identify the response of the

yield curve to fiscal policy and such a step is practically impossible to implement

within a no-arbitrage model of the term structure. Of course, as a consequence of

this strategy care must be exercised in the interpretation of the extracted factors,

as the no-arbitrage conditions have not been imposed to identify them.

2.2 The macroeconomic framework

The empirical model we present is based on the idea that by concentrating on the

yield spreads between Italian and German bonds we shall be able to identify how

market expectations and fiscal policy affect the Italian yield curve by changing the

risk premium markets impose on bond yields. In particular, we concentrate on the

difference between factors for the Italian and German yield curve relying upon the

fact that Germany has been the reference country for monetary policy during the

EMS with fundamentals always in line with the Maastricht Treaty; in the EMU
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period, with a common monetary policy, Germany has continued to be the reference

country for Italy for the medium and the long end of the yield curve. We shall

therefore concentrate on the difference between the monetary policy factor, the

medium term factor and the level of the Italian and German yield curve.

In modelling the response of the yield curve to fiscal fundamentals we will allow

explicitly for a regime switching model. In particular we focus on two regimes: a

high-risk regime and a low-risk regime. This two regimes will be represented as an

unobserved Markov chain, St, with only two states: 0 and 1. When the variable

is in state 1, we are in the high risk regime. Notice that since we model St as a

Markov chain, the information on future market expectations is all contained in

St, and does not depend on what happened before. The probability of a regime

switching depends on the current state and is completely determined once we know

the transition probabilities of the Markov chain. The transition matrix will be:

0 1

0 q 1− q

1 1− p p

2.2.1 The first factor: the monetary policy instrument

Following most literature, the monetary policy instrument is modeled as a Taylor

rule, where the monetary authorities set the short term rate based on inflation and

the output gap. However, we modify the traditional Taylor rule in two directions.

First of all, we model the spread between the Italian and the German instrument as

the dependent variable, since we aim to explain the difference between the monetary

policies of the two countries. Second, we make the rule depend on an exogenous

monetary regime Rt, that coincides with the EMU regime (0 when the two countries

have a unique monetary authority, 1 when they are separate; the reason for this

choice is an easier comparison with the market expectations regime, St).

In our model, the spread between the Italian and the German instrument depends

on a constant term, an autoregressive term, the spread between the Italian and the

German inflation (supposing an implicit targeting of the German inflation) and the

Italian output gap.
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The first equation will be:

f1t − f g1t = αR + γR1 (f1t−1 − f g1t−1) + γR2 (πt−1 − πgt−1) + γR3 (yt−1 − yNt−1) + e1t

where f1 represents the first factor in Italy, f
g
1 the first factor in Germany, α

R

is the monetary-regime-dependent constant of the equation, π is Italian inflation,

πg is German inflation, (y − yN) is the Italian output gap, and e1 is a random

error with mean 0 and variance σ21. Notice that all the parameters depend on the

exogenous monetary regime Rt. In the pre-EMU period the Italian reaction function

is specified as that of a small open-economy Taylor-rule where the central bank

implements the objective of exchange rate stability by defining the target values of

the macroeconomic variables as those assumed by these variables in the reference

country . Importantly the long-run equilibrium policy rates for Italy is equal to the

German policy rates, but discrepancies between the two rates might occur in the

short-run. The EMU period is instead characterized by interest rate equalization

between Germany and Italy and the monetary policy instrument becomes a purely

exogenous variable in the context of our adopted model.

2.2.2 The second factor (the long-term component) and the third factor
(the medium-term component)

In order to concentrate on the effects of fiscal policy on the long term and medium

term components of the yield curve, we use only two fiscal variables to explain

the difference between the Italian and German factors: the level of the debt/GDP

ratio over time and its variation. The variation of the debt/GDP ratio represents

the direction of its evolution, and can be interpreted as the difference between the

actual deficit/GDP ratio and the one that would stabilize the debt/GDP ratio. We

model this relationship quite flexibly, allowing each of the variables to impact on the

factors differently, depending on the regime of market expectations. This approach

allows us to leave the burden of stating the relative importance of the variables to the

data, while retaining a framework that allows for a direct economic interpretation

of the results.
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The second and third equations of our model will be:

f2t − f g2t = δS1 (Dt −Dt−1) + δS2 (Dt − 60) + e2t

f3t − f g3t = θS1 (Dt −Dt−1) + θS2 (Dt − 60) + e3t

where f2 and f3 are the second and third factors for Italy, f
g
2 and f g3 are the

ones for Germany, Dt is total Italian debt over GDP at time t, and e2 and e3 are

errors with mean 0 and variances σ22 and σ23. The first regressor in the two models

is defined the difference between current budget surplus and the debt stabilizing

surplus. This term penalizes divergent debt dynamics but it is silent on the relative

penalization of different level of the debt to GDP ratio. To this end we include a

second regressor in which the Maastricht reference criterion is adopted to pin down

60 per cent as the optimal level for the debt-GDP ratio 4.

To estimate the model presented above we use a Bayesian approach. In par-

ticular, we approximate the joint posterior distribution of the parameters and the

hidden Markov chain St using Gibbs sampling techniques. In this section we present

the theory of Gibbs sampling and Bayesian estimation as they can be applied to es-

timating our model. Detailed technical details are provide in the Appendix.

2.3 The Bayesian approach

The estimation of our model requires computing marginal posterior distributions for

the 16 parameters of the model (each parameter subject to switching regime actually

consists of two parameters, one for each regime), the 3 variances, the transition

matrix of the Markov chain and the T periods of the Markov chain. Obtaining

these distributions analytically by integrating a large joint posterior distribution is

a nearly impossible task.

To estimate our model we therefore use an approximation technique, the Gibbs

sampler. This is a Markov Chain Monte Carlo simulation method for approximat-

ing joint and marginal distributions by sampling from conditional distributions. In

particular, suppose that we are interested in obtaining the marginal posterior dis-

4Other empirical studies (see for example Ardagna, Caselli and Lane 2004) introduce quadratic
terms and interactions among these variables to capture nonlinear effects. In our model, however,
nonlinear effects are already captured by the hidden Markov chain, and adding those terms would
strongly interefere with its estimation. Consequently, we leave all nonlinearities to St.
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tribution

f(zj | y) =
Z
· · ·
Z

f(z1, ..., zk | y)dz1...dzj−1dzj+1...dzk

the marginal distribution of the variable zj | y from the joint distribution

f(z1, ..., zk | y). The idea of the Gibbs sampling is that we can obtain the mar-
ginal distribution as the limit of a procedure in which it is not required to know

the joint distribution nor to integrate it. Instead, we just need to know the distri-

bution of each variable conditional on the other variables. Note that since we use

conditional posterior distributions, we need to obtain them from conditional prior

distributions using standard Bayesian techniques before starting the sampler.

Given an arbitrary set of starting values for the remaining k − 1 variables,
(z02 , ..., z

0
k), the procedure goes as follows:

1. Draw z11 from the known conditional distribution f(z1 | z02, ..., z0k, y)

2. Then, draw z12 from the known conditional distribution f(z2 | z11, z03 ..., z0k, y)

3. Then, draw z13 from the known conditional distribution f(z2 | z11, z12 , z04 ..., z0k, y)
...

4. Finally, draw z1k from the known conditional distribution f(zk | z11 , ..., z1k−1, y)

At this point, we have drawn a whole set of values (z11 , ..., z
1
k), which constitutes

the first iteration of the procedure. Now, iterating steps 1 to 4 J times, always using

the most recent draws when conditioning, gives us J sets (zj1, ..., z
j
k). As Geman

and Geman (1984) have shown, the joint and marginal distributions of (zj1, ..., z
j
k)

converge at an exponential rate to the joint and marginal posterior distributions of

z1, ..., zk as J → ∞. Therefore, the empirical distributions obtained by iterating
the Gibbs sampler enough times can be used as an approximations of the joint and

marginal distributions of the parameters.

To insure the convergence of the sampling procedure, usually the first M results

of the sampler are discarded, and only the remaining J − M draws are used to

approximate the joint and marginal distribution.

2.4 The Gibbs sampler applied to the model

As explained earlier, the model can be summarized by the following equations (where

the superscript S indicates the dependence of the parameter on the unobserved
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Markov chain St whose states can be 0 or 1, and the superscript R indicates the

dependence on the known variable Rt representing the monetary regime).

f1t − fg1t = αR + γR1 (f1t−1 − fg1t−1) + γR2 (πt−1 − πgt−1) + γR3 (yt−1 − yNt−1) + e1t

f2t − fg2t = δS1 (Dt −Dt−1) + δS2 (Dt − 60) + e2t

f3t − fg3t = θS1 (Dt −Dt−1) + θS2 (Dt − 60) + e3t

Every time a coefficient depends on the hidden Markov variable St, or on the

observable EMU regime variable Rt, this dependence can be expressed as the sum

of two components. For example, γS1 can be written, expliciting the hidden Markov

variable, as γ01 + γ11St . We can therefore rewrite the model as:

f1t − f g1t = α0 + α1Rt + γ01(f1t−1 − fg1t−1) + γ11(f1t−1 − fg1t−1)Rt + γ02(πt−1 − πgt−1)

+γ12(πt−1 − πgt−1)Rt + γ03(yt−1 − yNt−1) + γ13(yt−1 − yNt−1)Rt + e1t

f2t − f g2t = δ01(Dt −Dt−1) + δ11(Dt −Dt−1)St + δ02(Dt − 60) + δ12(Dt − 60)St + e2t

f3t − f g3t = θ01(Dt −Dt−1) + θ11(Dt −Dt−1)St + θ02(Dt − 60) + θ12(Dt − 60)St + e3t

where the variance-covariance matrix of the error is:

Q =

⎡⎢⎣σ
2
1 0 0

0 σ22 0

0 0 σ23

⎤⎥⎦
since the errors of the various equations are assumed to be independent.

Notice that while Rt is known and therefore enters the model simply as a dummy

variable, the chain St is not observed and must therefore be estimated along with the

other parameters: it is the presence of St to introduce nonlinearities in the model.

Using the Bayesian approach to the estimation problem, and considering that we

observe all the exogenous variables except for St, the random variables on which we

have a prior distribution and for which we want to obtain a posterior distribution,

are:

• The time series S1..., ST , that we will indicate as S̃T

• The transition values of the Markov chain (in particular, we need only two of
them to represent the whole transition matrix: p and q)
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• C1 = {α0, α1, γ01, γ11, γ02, γ12, γ03, γ13} : the coefficients of the first equation

• C2 = {δ01, δ11, δ02, δ12} : the coefficients of the second equation

• C3 = {θ01, θ11, θ02, θ12} : the coefficients of the third equation

• σ21, σ
2
2, σ

2
3 : the three variances of the equation errors

To estimate the model, we use the Gibbs sampling technique by generating draws

from the conditional posterior distribution of each of the variables (or groups of

variables) above conditional on the values of the other variables. To insure the

convergence of the Gibbs sampler, we run it for 15, 000 iterations, discarding the

first 5, 000.

The details of the procedure to obtain the conditional posterior distribution for

the parameters above are left for the Appendix. While some of them (such as the

variances or the coefficients) employ standard Bayesian techniques, others, such as

drawing a value for the entire Markov chain St, require special calculations.

2.5 The data

To estimate our model, we use quarterly data ranging from 1991:2 to 2006:1. The

source for the Nelson-Siegel factor series are the yields of Italian and German bonds

as reported by DataStream (for the short term rate, series ECITLxM and ECWG-

MxM where x=3,6,12 ; for the longer term, series BMITxxY and BMBDxxY where

xx=02, 03, 05, 07, 10). After the bootstrap procedure to extract zero-coupon yields,

we estimate the Nelson-Siegel factors for each of the 60 time periods of our sample,

thus obtaining the time series for the three factors from 1991:2 to 2006:1.

The output gap and the debt/GDP ratio series for Italy were constructed by

interpolating the annual OECD data, while for Italian and German inflation (CPI)

quarterly data were directly available from the OECD dataset.

3 Results

In this section we discuss the main estimation results, stressing in particular the

importance of market expectations and fiscal policy.

For each coefficient of the three equations that we modeled as regime-dependent

we estimate two different quantities. The first one, with superscript 0, is the estimate
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of the effect of the variable on the factor when the regime (Rt for the monetary

instrument equation and St for the long and medium term equations) is 0. The

second one, with superscript 1, is the estimate of the variation of the effect of the

variable due to the switch of regime to 1. For example, for the coefficient δ2, which

measures the effect of the debt/GDP ratio on the long-term spread, we estimate two

separate parameters. δ02 measures the effect of a change of the the debt/GDP ratio

on the spread when markets expect a low-risk situation (St = 0). δ
1
2 measures the

variation of this effect due exclusively to the regime change, i.e. if markets begin not

to trust the future of the Italian economic situation (switch from St = 0 to St = 1).

Thus, the total effect of the debt/GDP ratio on the long-term spread when St = 1

can be calculated as δ02+ δ12.

We also generate estimates for the historical realization of the Markov chain St.

This allows us to assess market expectations about the economy for each point in

time from 1991 to 2006.

3.1 The monetary policy instrument

The following Table shows the Bayesian estimates for the parameters of the first

equation. For each parameter we report the mean and standard deviation of the prior

distribution used and the mean (estimate) and standard deviation of the marginal

posterior distribution. Notice that when the mean or SD of a prior distribution is

not reported, a noninformative prior was used. All estimates in bold are significant

at the 5% level.

Prior Posterior

Mean SD Mean SD

α0 0 0.01 -0.0003 0.0017

α1 0.01 0.01 0.0083 0.0045

γ01 0 0.3 -0.04 0.22

γ11 0.8 0.3 0.76 0.23

γ02 0 0.03 0.007 0.029

γ12 0.1 0.03 0.11 0.03

γ03 0 0.03 -0.0005 0.0018

γ13 0.1 0.03 0.0005 0.0024

σ21 - - 0.00008 0.00001
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Remember that the first equation was:

f1t − f g1t = αR + γR1 (f1t−1 − f g1t−1) + γR2 (πt−1 − πgt−1) + γR3 (yt−1 − yNt−1) + e1t

and that the regime it refers to is the (observable) EMU regime.

As we can see from the table, we have a clear differentiation of the equation

depending on the monetary regime. When Rt = 0 (EMU regime), there is only

one monetary authority, policy rates for Germany and Italy coincide and, as we

expect, all the parameters with superscript 0 are not significantly different from 0.

Outside the EMU, when Rt = 1, we find a strong coefficient for the persistence of the

spread between the monetary instruments of Italy and Germany (γ11 + γ01 = 0.72).

Besides, we find evident signs of a pure inflation targeting, since the coefficient for

the difference between the Italian and German inflation is positive and significant

while the coefficient for the output gap is not. Remember, however, that what is

explained here is not the level of the Italian monetary instrument, but the spread

between the Italian and the German one. The results indicate that, before the

EMU, an increase of the Italian inflation over the level of the German inflation

would prompt the Italian authorities to react increasing the overnight interest rate

relative to the level of the German one. The fact that the long-run response of

the monetary policy differential with respect to the inflation differential is less than

one does not imply that the Italian central bank has not been following the Taylor

principle of tightening monetary policy so as to cause an increase in real policy rates

in presence of an inflationary shocks, it just tell us that the Bundesbank has been

more aggressive toward inflation than the bank of Italy.

3.2 The second factor: the long-term component or level of

the yield curve

The following Table shows the estimates of the parameters of the second equation:
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Prior Posterior

Mean SD Mean SD

δ01 0 0.1 0.004 0.003

δ11 0.1 0.1 0.0042 0.0024

δ02 0 0.1 0.015 0.004

δ12 0.1 0.1 0.043 0.005

σ22 - - 0.00006 0.00002

Remember that the equation was:

f2t − f g2t = δS1 (Dt −Dt−1) + δS2 (Dt − 60) + e2t

Fiscal policy seems to be a very significant factor in explaining long term yields.

The level of the debt/GDP ratio is significant in explaining the long-term spread of

the two yield curves, with a positive effect under both states of market expectations.

Whenever the debt/GDP ratio increases, markets react increasing the risk premium

on the long-term component of the curve.

Notice however the large and significant effect that market expectations have on

determining the size of the effect of government debt on bond yields. While the

coefficient in the situation of low perceived risk is only δ02 = 0.015, the coefficient

when markets are worried is δ02 + δ12 = 0.058, four time as much as the case St = 0.

When markets are worried and perceive the situation as high-risk, the weight given

to fiscal policy in determining the risk premia increases noticeably.

We can also interpret the results considering the effect of a regime switch keeping

everything else constant (including the debt/GDP ratio). If markets become worried

about the potential negative consequences of the government’s fiscal policy, and

thus their expectations change to St = 1, the long term risk premium increases

by 0.43 percentage points for every 10 percentage points in the Italian debt/GDP

ratio. Since yields at longer maturities depend almost completely on this factor,

this means that these coefficients capture most of the effect of fiscal policy at long

maturities. Besides, since the second factor is the level of the yield curve, it means

that the whole yield curve is shifted above by 0.43 percentage points. For short

maturities, instead, one must take into account that fiscal policy has an indirect

additional effect through the other factors, that may increase or decrease the size of

this relation.
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A similar argument holds for the change in the debt/GDP ratio. In this case,

however, even if the estimates are positive (meaning that if the government sets a

deficit higher than the stabilizing one, markets react increasing the risk premia),

they are not very significant, being the coefficient for the case St = 1 significant

only at the 10% level.

3.3 The third factor: the medium-term component or cur-

vature of the yield curve

The Table below presents the estimates for the parameters of the third equation:

f3t − fg3t = θS1 (Dt −Dt−1) + θS2 (Dt − 60) + e3t

Prior Posterior

Mean SD Mean SD

θ01 0 0.1 0.014 0.008

θ11 0.1 0.1 -0.008 0.012

θ02 0 0.1 0.007 0.010

θ12 0.1 0.1 0.076 0.014

σ23 - - 0.00040 0.00009

The estimates clearly indicate that in periods when markets fear an unsustainable

behavior of the Italian policymakers, the weight given to fiscal policy is significant,

although not as large as the one for the level (second factor). In particular, notice the

estimate of 0.076 for the additional effect of the debt/GDP ratio on the medium term

rates in periods of worried markets. Translating it to the effect on the yield curve, it

means that, for every 10 percentage points in the Italian debt/GDP ratio, markets

increase the risk premium, in the high-risk scenario, by around 0.25 percentage

points in the medium term range (3 - 4 years maturities).

Notice that medium term yields bear the summed effects of the second and third

factor: combining them, we can see that an increase of the debt/GDP ratio by

10 percentage points results in a total increase of about 0.7 percentage points for

the medium-term yields. Summing these effects up, it appears that fiscal policy

is extremely relevant in explaining the medium-term risk premium, and market

expectations are a very significant factor in determining this effect.
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3.4 Market expectations

Figure 5 below shows (solid line) the estimate of the states of the Markov chain

St in each period. In each iteration of the Gibbs sampler, a whole realization of

the chain was generated randomly from its posterior distribution, and the estimate

corresponds to the mean of the empirical distribution.

[ Insert Figure 5 here ]

Remember that St = 1 when markets put a higher risk premium on long term

and medium-term rates in response to fiscal policy. Notice how Italy was perceived

to be in a high-risk situation until 1997 (with a decrease between 1993 and 1994),

while since then it has converged to a low-risk situation, that is still going on today,

in which markets do not penalize the fiscal policy of Italian governments with higher

risk premia.

The same Figure plots the exogenous monetary regime (EMU) Rt with a dotted

line. What emerges comparing the two regimes is the extent to which markets

anticipated in 1997 the positive effects of the convergence that brought Italy to the

EMU in 1999. The expectations regime switches to the low-risk situation two years

before the monetary regime switch.

Finally, the following table reports the estimated transitionmatrix for theMarkov

chain St.

0 1

0 0.94 0.06

1 0.16 0.84

It is interesting to note that, while both states are heavily persistent, the prob-

ability of switching from the bad-case situation to the good one is more than twice

as much as the opposite. That is, persistence is lower in the high-risk situation.

As we can see from the Figures above, nowadays both the monetary regimes and

the expectations regime are in a favorable state (zero). However, in the future we

may see changes of one, or both, regimes. The effects of these switches on the Italian

yield curve, even if all the other variables remained equal, would be very large. The

next section explores this issue.
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4 A forecast exercise

In this section we use the estimated model to forecast the evolution of the Italian

yield curve up until 2007:4 under various scenarios for the regimes.

In order to forecast future Italian yields, we must make projections for the macro-

economic variables and the German factors into the future, since all these variables

are exogenous in the model. To do that, we use OECD forecasts for the variables

for which they are available (Italian inflation, italian output gap, and italian debt)

while we project the values as of 2006:1 to the future for the other variables. We

then use these predicted future paths to generate the future italian yield curve under

different scenarios for St and Rt.

Our forecast exercise aims more to underline how market expectations affect the

yield curve, than to predict its actual future evolution, since we do not have reli-

able forecasts for all the exogenous variables. However, it is an important exercise,

because it shows how, all the exogenous variables being equal across the different

scenarios, the underlying monetary and expectations regimes affect the evolution of

the yield curve.

We build our scenarios combining different values for the two regimes. In the

good-case scenario (Rt = 0, St = 0), Italy remains in the EMU and markets have

low-risk expectations about the Italian economic situation. Since the Italian debt

is projected to rise, we expect only a slight increase of the long-term component of

the yield curve, while we expect the short-run component to remain stable.

In the second scenario, Italy is in the EMU but markets become worried and

expect a high-risk situation (Rt = 0, St = 1), so that the short-term component is

still tied to the German one but the long-term component will reflect the change of

market perceptions.

The third scenario is the bad-case scenario in which Italy exits the EMU and

markets switch to a high-risk situation. We ignore the case where Italy exits the

EMU but markets remain in a low-risk situation as very little realistic

Figure 6 below plots together the current Italian curve and the predicted curves

for Germany and Italy under the three scenarios.

[ Insert Figure 6 here ]

As we can see, in the cases in which Italy remains in the EMU, market expecta-

tions play a major role in determining the long-term component of the yield curve
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(more than 2 percentage points). In the bad-case scenario, the monetary instru-

ment jumps at 6%, and the rest of the curve is shifted upwards due to the negative

expectations, reaching yields of 8% for the medium-term maturities.

In the following graph (Figure 7) we plot the evolution of the yield curve from

2006:1 to 2007:4 in the bad-case scenario (i.e. imagining that since 2006:2 Italy

exits the EMU and markets switch to the high-risk regime). After an initial jump

upwards due to the regime change, the short-term rate increases steadily responding

to the projected path for inflation, and so does the long-term component in response

to the evolution of debt.

[ Insert Figure 7 here ]

5 Conclusions

To study the impact of fiscal policy and the yield curve we have considered NS

factors and modelled the difference between the Italian and German yield curves

as a function of macroeconomic and fiscal policy variables. We modelled the non-

linearity in the relation between the yield curve and fiscal fundamentals with a

regime switching model, where different regimes are captured by a nonobservable

Markov chain with two possible states. When the state is 1 (according to our

estimates, before 1996-97) markets put a higher risk premium on government bonds,

especially at longer maturities. When the state is 0 (after 1996-97) markets perceived

to be in a low-risk regime.

Our results clearly show that fiscal fundamentals help in forecasting the yield

curve. However, the use of hidden Markov chains as a way of capturing changes in

regime is crucial to pin down these effects. Within this framework, Bayesian econo-

metric methods provide us with a very efficient estimation procedure (an application

of the Gibbs sampling), to tackle the problem of the underlying nonlinearity.

6 Appendix A: Econometric Details

In this appendix we show how to obtain the conditional posterior distribution of

each parameter (or group of parameters as defined in Section 3), explicitly stating

the corresponding prior we used and how we obtained the posterior used in the

Gibbs sampler to draw a value in each iteration.

19



6.0.1 Generating S̃T conditional on p, q, C1, C2, C3, σ
2
1, σ

2
2, σ

2
3 and the data.

Generating S̃T from the conditional distribution is the most complicated part of the

process, because the chain is completely unobserved and is therefore considered as

a series of T random variables. In particular, we want to extract a value from the

conditional distribution

g(S̃T | p, q, C1, C2, C3, σ21, σ22, σ23, ỹT )

where ỹT represents the data up to time T (in our case, the vector of the three

factors).

Suppressing for ease of notation the dependence on the various parameters, we

want to obtain:

g(S̃T | ỹT )

In order to do that, we follow the procedure presented in Kim and Nelson (1998):

1. First of all, obtain the series Pr{St | ỹt} for every t. This can be achieved
using the Hamilton filter.

2. Then, starting from the value of ST generated from Pr{ST | ỹT} , obtain the
whole series S̃T generated recursively from Pr{S̃T | ỹT}.

The two steps are described below.

The Hamilton filter Let ψt be the information set at time t. The Hamilton

filter is a procedure that allows to recursively obtain the series Pr{St | ψt} given the
set of parameters and the series ηi,jt|t−1 and vi,jt|t−1, respectively the forecast error and

variance, which are used to calculate the likelihood function of the data.

The filter is initialized using the steady-state probability of the Markov chain,

and proceeds as follows, for each t, and for each i and j:

1. Given Pr{St−1 = i | ψt−1} calculate:

Pr{St−1 = i, St = j | ψt−1} = Pr{St−1 = i | ψt−1} · Pr{St = j | St−1 = i}

where the last term is the known transition probability (on which we are

conditioning when generating S̃t).
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2. When yt becomes available at the end of time t, we can update the probability

in the following way:

Pr{St−1 = i, St = j | ψt} = Pr{St−1 = i, St = j | ψt−1, yt}

=
g(yt | St−1 = i, St = j, ψt−1) · Pr{St−1 = i, St = j | ψt−1}

g(yt | ψt−1)

where the likelihood g(yt | St−1 = i, St = j, ψt−1) can be calculated obtaining

the forecast error and variance ηi,jt|t−1 and v
i,j
t|t−1 and applying the decomposition

of the likelihood function as:

g(yt | St−1 = i, St = j, ψt−1) =

= (2π)−
1
2 | vi,jt|t−1 |

1
2 exp{−1

2

³
ηi,jt|t−1

´0 ³
vi,jt|t−1

´−1 ³
ηi,jt|t−1

´
}

and where

g(yt | ψt−1) =
2X

i=1

2X
j=1

£
g(yt | St−1 = i, St = j, ψt−1) · Pr{St−1 = i, St = j, ψt−1}

¤
3. Finally, obtain Pr{St = j | ψt} as

P
i Pr{St−1 = i, St = j | ψt} and repeat

from step 1.

Generating S̃t - the Kim filter With the Hamilton filter we have obtained the

whole series of g{St | ψt}, or g{St | ỹt}. We can now recursively generate the whole
series S1, ..., ST | ỹT using the following result:

g(S̃T | ỹT ) = g(S1, ..., ST | ỹT )
= g(ST | ỹT ) · g(S̃T−1 | ST, ỹT )
= g(ST | ỹT ) · g(ST−1 | ST, ỹT ) · g(ST−2 | ST−1, ST , ỹT ) · ... ·

g(S1 | S2, ..., ST−1, ST , ỹT )
= g(ST | ỹT ) · g(ST−1 | ST, ỹT−1) · g(ST−2 | ST−1, ỹT−2) · ... ·

g(S1 | S2, y1)

= g(ST | ỹT ) ·
T−1Y
t=1

g(St | St+1, ỹt)
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where the derivation depends on the Markov property of St: conditional on St, all

values of St from t+1 to T, and all values of yt from t to T , contain no information

beyond that in St.

The Kim filter starts generating ST from the distribution obtained as the last

step of the Hamilton filter. We then proceed backwards to generate each St from

g(St | St+1, ỹt), using the St+1 generated in the preceding iteration. In particular,
we generate it using:

g(St | St+1, ỹt) =
g(St, St+1 | ỹt)

g(St+1 | ỹt)

=
g(St+1 | St, ỹt) · g(St | ỹt)

g(St+1 | ỹt)

=
g(St+1 | St) · g(St | ỹt)

g(St+1 | ỹt)

∝ g(St+1 | St) · g(St | ỹt)

where the first term is the (known) transition probability and the second term

was derived with the Hamilton filter.

6.0.2 Generating the regression coefficients (C1, C2 and C3) conditional
on S̃T , p, q, σ

2
1, σ

2
2, σ

2
3 and the data

Conditional on S̃T , p, q, σ
2
1, σ

2
2 and σ23 the three equations are independent of one

other. Each equation can be written as a standard linear model

Y = Xβ + ε

where the variance of the error is known. In particular, the three representations

will be:
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⎡⎢⎢⎢⎢⎢⎣
f12 − fg12
f13 − fg13

...

f1T − fg1T

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 R2 f11 − fg11

�
f11 − fg11

�
R2 π1 − πg1

1 R3 f12 − fg12
�
f12 − fg12

�
R3 π2 − πg2

...
...

...
...

...

1 RT f1T−1 − fg1T−1

�
f1T−1 − fg1T−1

�
RT πT−1 − πgT−1

�
π1 − πg1

�
R2 y1 − yN1

�
y1 − yN1

�
R2�

π2 − πg2
�
R3 y2 − yN2

�
y2 − yN2

�
R3

...
...

...�
πT−1 − πgT−1

�
RT yT−1 − yNT−1

�
yT−1 − yNT−1

�
RT

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

α1

γ01
γ11
γ02
γ12
γ03
γ13

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣
e12

e13
...

e1T

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
f22 − fg22
f23 − fg23

...

f2T − fg2T

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

D2 −D1 (D2 −D1)S2 D2 − 60 (D2 − 60)S2
D3 −D2 (D3 −D2)S3 D3 − 60 (D3 − 60)S3

...
...

...
...

DT −DT−1 (DT −DT−1)ST DT − 60 (DT − 60)ST

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
δ01
δ11
δ02
δ12

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
e22

e23
...

e2T

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
f32 − fg32
f33 − fg33

...

f3T − fg3T

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

D2 −D1 (D2 −D1)S2 D2 − 60 (D2 − 60)S2
D3 −D2 (D3 −D2)S3 D3 − 60 (D3 − 60)S3

...
...

...
...

DT −DT−1 (DT −DT−1)ST DT − 60 (DT − 60)ST

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
θ01
θ11
θ02
θ12

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣
e32

e33
...

e3T

⎤⎥⎥⎥⎥⎥⎦

Therefore, while the three sets of coefficients will be generated separately (each

from its own matrix representation), they can be treated using the same family of

priors and posteriors, since they can all be reduced to the case of a linear regression

model with known variance. Notice that St (contrary to Rt) is in general not known.

In this step of the Gibbs sampler, however, we condition on the whole series S̃T :

therefore, it behaves here as an observed dummy variable.

Let the prior distribution we use for the coefficient vector β (that, in the three

cases, is made of the parameter sets C1, C2 or C3, depending on which coefficient

set we are generating) be a Multivariate Normal distribution with mean b0 and

covariance matrix B0:

β | σ2 ∼ N(b0, B0)

with b0 and B0 known and set by the researcher.
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Then,

g(β | σ2) = (2π)−
k
2 |B0|−

1
2 exp{−1

2
(β − b0)

0B−10 (β − b0)}

∝ exp{−1
2
(β − b0)

0B−10 (β − b0)}

Given that by hypothesis

ε ∼ N(0, σ2IT )

where σ2 will be equal to σ21 for the first equation, σ
2
2 for the second and σ23 for

the last one, the likelihood of the model will be:

L(β | σ2, Y ) = (2πσ2)−
T
2 exp{− 1

2σ2
(Y −Xβ)0(Y −Xβ)}

α exp{− 1

2σ2
(Y −Xβ)0(Y −Xβ)}

The posterior distribution can therefore be obtained as:

g(β | σ2, Y ) ∝ exp{−1
2
(β − b0)

0B−10 (β − b0)} · exp{−
1

2σ2
(Y −Xβ)0(Y −Xβ)}

= exp{−1
2
(β − b0)

0B−10 (β − b0)−
1

2σ2
(Y −Xβ)0(Y −Xβ)}

Rearranging terms (see Judge et al. 1982) it can be shown that the posterior

distribution will be a multivariate Normal distribution as well, so that the Normal

distribution is the prior conjugate to the model:

β | σ2, y ∼ N(b1, B1)

where

b1 = (B−10 + σ−2X 0X)−1(B−10 b0 + σ−2X 0Y )

B1 = (B−10 + σ−2X 0X)−1

We can therefore sample the values for the coefficient sets from the three Normal

posterior distributions obtained above.
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6.0.3 Generating the variances σ21, σ22, σ23 conditional on S̃T , p, q, C1, C2, C3

and the data

Conditional on S̃T , the regression coefficients, the transition probabilities and the

data, each equation can be treated independently from the others. Since we assume

that the errors are independent and homoskedastic, in each case we can sample the

variance σ2 of each of the three equations using the known results for the Bayesian

linear regression model. Again, the same results can be obtained to generate values

for σ21, σ
2
2 and σ23 in each equation independently, using the matrix representation

described above.

Let the prior for σ2, conditional on β, be the noninformative prior:

g
¡
σ2 | β

¢
∝ 1

σ2

The distribution of the inverse, 1
σ2
, will be:

g

µ
1

σ2
| β
¶
∝ σ2

The likelihood function for 1
σ2
is (from the normality assumption about ε):

L(
1

σ2
| β, Y ) =

¡
2πσ2

¢−T
2 exp{− 1

2σ2
(Y −Xβ)0(Y −Xβ)}

∝
µ
1

σ2

¶T
2

exp{− 1
σ2
(Y −Xβ)0(Y −Xβ)

2
}

Combining that with the likelihood function obtained above, we get the posterior:

g(
1

σ2
| β, y) ∝ σ2 ·

µ
1

σ2

¶T
2

exp{− 1
σ2
(Y −Xβ)0(Y −Xβ)

2
}

=

µ
1

σ2

¶T
2
−1
exp{− 1

σ2
(Y −Xβ)0(Y −Xβ)

2
}

=

µ
1

σ2

¶v1
2
−1
exp{− 1

σ2
δ1
2
}
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where

v1 = T

δ1 = (Y −Xβ)0(Y −Xβ)

The posterior distribution of 1
σ2
is a Gamma with parameters v1

2
and 2

δ1
. There-

fore, the posterior distribution of σ2, from which we sample, will be an inverted

gamma, with parameters v1
2
and δ1

2
:

σ2 | β, Y ∼ IG(
v1

2
,
δ1

2
)

6.0.4 Generating the transition probabilities conditional on S̃T , σ
2
1, σ

2
2, σ

2
3,

C1, C2, C3 and the data

Conditional on S̃T , the transition probabilities p and q are independent on the other

parameters and the data. We use again a Bayesian approach to generate p and q.

We will have two priors for p and q and consider the information in S̃T as the data

needed to obtain the posterior distribution.

Let the priors for the two probabilities be from the Beta family:

p ∼ beta(u11, u10)

q ∼ beta(u00, u01)

with u11, u10, u00, u01 known.

Assuming that p and q are independent, we have

g(p, q) ∝ pu11−1(1− p)u10−1qu00−1(1− q)u01−1

The likelihood function for p and q is given by:

L(p, q | S̃T ) = pn11(1− p)n10qn00(1− q)n01

where nij represents the number of transitions from i to j in S̃T , since it is the

likelihood of obtaining exactly that sequence of states.
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The posterior distribution will be:

g(p, q | S̃T ) ∝ g(p, q)L(p, q | S̃T )
= pu11−1(1− p)u10−1qu00−1(1− q)u01−1pn11(1− p)n10qn00(1− q)n01

= pu11+n11−1(1− p)u10+n10−1qu00+n00−1(1− q)u01+n01−1

The two independent posterior distributions will therefore be Beta again (it is

the conjugate prior):

p | S̃T ∼ beta(u11 + n11, u10 + n10)

q | S̃T ∼ beta(u00 + n00, u01 + n01)

From these two distributions the two parameters will be generated for the Gibbs

sampler.
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Figure 1: ITA-GER long term spread, Italian Debt/GDP ratio and its variation

31



2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

Maturity (years)

Lo
ad

in
gs

Long term
Short term
Medium term

Figure 2: The three functions of the Nelson-Siegel decomposition
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Figure 3a: monetary policy instrument
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Figure 3c: medium term factor
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Figure 4a: Italian plots of actual vs. estimated (Nelson-Siegel) bond yields
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Figure 4b: German plots of actual vs. estimated (Nelson-Siegel) bond yields
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Figure 5: the expectations regime and the monetary regime
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