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Abstract

This paper addresses the issue of forecasting the term structure.
We provide a uni�ed state-space modelling framework that encom-
passes di¤erent existing discrete-time yield curve models. within such
framework we analyze the impact on forecasting performance of two
crucial modelling choices, i.e. the imposition of no-arbitrage restric-
tions and the size of the information set used to extract factors. Using
US yield curve data, we �nd that: a. macro factors are very useful in
forecasting at medium/long forecasting horizon; b. �nancial factors
are useful in short run forecasting; c. no-arbitrage models are e¤ec-
tive in shrinking the dimensionality of the parameter space and, when
supplemented with additional macro information, are very e¤ective in
forecasting; d. within no-arbitrage models, assuming time-varying risk
price is more favorable than assuming constant risk price for medium
horizon-maturity forecast when yield factors dominate the informa-
tion set, and for short horizon and long maturity forecast when macro
factors dominate the information set; e. however, given the complex-
ity and the highly non-linear parameterization of no-arbitrage models,
it is very di¢ cult to exploit within this type of models the additional
information o¤ered by large macroeconomic datasets.
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1 Introduction

Yields of maturities longer than one period are risk-adjusted averages of ex-
pected future short-rates. Short term rates are monetary policy instruments,
controlled by central banks. Forecasting the term structure requires forecast-
ing risk as perceived by the market and forecasting future monetary policy
rates. This paper asks what is the best model and the best information set
to be used towards this objective.
The traditonal approach to modelling the yield curve in �nance has fol-

lowed the "parsimony principle": all the relevant information to price bonds
at any given point in time is summarized by a small number of factors. Yield
curve models �t di¤erent yields to maturity with a small number of factors
(Litterman and Scheinkman, 1991). Such factors are obtained by using a
variety of decomposition methods, the information set typically used is that
of a number of observable yields.
One of the preferred modelling choices uses interpolation methods to ex-

tract latent factors from observed yields. The Nelson-Siegel (1987) approach
is the most popular among market and central-bank practitioners. Nelson
and Siegel three factor model explains most variances of yields at di¤er-
ent maturity with a very good in-sample �t. Recently, Diebold-Li (2005)
have successfully considered the out-of-sample forecasting performance of
this model by assuming that the three factors follow AR (1) or VAR(1)
processes.
An alternative strand of the literature concentrated on no-arbitrage latent

factor models, in which a linear model is adopted for the latent factors and
restrictions on their loadings are imposed to rule out arbitrage strategies on
bonds of di¤erent maturities. No-arbitrage restrictions hence serve not only
for reducing the dimension of the parameter space, but also contribute to the
theoretical consistency of the model. Dai and Singleton (2000) and Piazzesi
(2003) have surveyed the speci�cation issues of a¢ ne term structure models
in continuous time and discrete time respectively. Du¤ee (2002) showed the
usefulness of essentially a¢ ne term structure model (A0(3)) in forecasting
among a group of a¢ ne models. In A0(3), yields and risk prices are a¢ ne
functions of three latent factors and there is no dependence between the
conditional variances and the number of state variables. The recent popular
discrete a¢ ne models (Ang, Piazzesi (2003), Ang, Dong and Piazzesi (2005))
also belong to this category.
Models mentioned above are traditionally based only on the information

contained in the term structure. However, �nancial markets are not insulated
from the rest of the economy. The feedback from the state of the economy
to the short term interest rate is explicitly considered in the monetary pol-
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icy reaction function introduced by Taylor (1993) and by now very widely
adopted to explain the behaviour of central banks.
Several papers indicate that macroeconomic variables have strong e¤ects

on future movements of the yield curve (among others, Ang and Piazzesi
(2003), Diebold, Rudebusch, and Aruoba (2005) and Rudebusch ad Wu
(2003)). Ang and Piazzesi (2003) show that a mixed factor model (with
three latent �nancial factors plus output and in�ation) performs better than
a yields-only model in terms of one step ahead forecast at quarterly frequency.
One question that may arise in this context is how to e¢ ciently summa-

rize the large amount of macroeconomic information used by Central Banks
in forming policy for forecasting purposes. Factors models suited to deal
with large cross-sections have therefore become increasingly popular in the
profession. As shown in Stock and Watson (2002) and Forni, Hallin, Lippi,
and Reichlin (2003), by decomposing large panels of time series in common
and idiosyncratic components, the dimensionality can be greatly reduced
and forecasting e¢ ciency improved. Giannone, Reichlin and Sala (2004)
show that a two dynamic factor model produces forecasting accuracy of the
federal funds rate similar to that of the market.
Recently Moench (2005) has proposed a no-arbitrage macro factor-augmented

VAR and �nds better forecasts results at horizon from 6 to 12 months ahead,
compared to a model with only �nancial factors.
In this paper we shall concentrate on understanding the relative impor-

tance of no-arbitrage restrictions versus large information set in forecasting
the yield curve.
The paper is organized as follows.
In Section 2 we propose a uni�ed state-space framework to evaluate the

e¤ects of incorporating factor information and/or no-arbitrage restrictions
on the forecasting performance of empirical models of the yield curve. In
Section 3 we apply our framework to the US yield curve and to a panel of
171 macroeconomic time-series and evaluate the forecasting performance of
various models. The models will di¤er on how factors are extracted and
on how additional macroeconomic information is incorporated . Section 4 is
devoted to the discussion of our empirical results and Section 5 to conclusions.

2 The general state-space representation

We study the dynamics of the term structure in the following state-space
framework. yt;t+n is the yield-to-maturity at time t of a bond maturing at
time t + n: Yields with di¤erent maturities are collected in a vector yt =
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[yt;t+1 ; yt;t+2 ; : : : ; yt;t+k]
0. Equation (1) is the measurement equation, in

which di¤erent yields yt;t+n are assumed to be determined by a set of state
variables, collected in the vector Xt:

yt;t+n =
�1
n
(An +B

0
nXt) + "t;t+n "t � i:i:d:N(0; �2I) (1)

Xt = �+ �Xt�1 + vt vt � i:i:d:N(0;
) (2)

The variables in Xt can be either endogenous (that is, some of the ele-
ments of yt are also included in Xt) or exogenous, observable or latent.
Equation (2) is the state equation in which the states Xt are assumed to

follow a VAR(1) process.
The system composed by (1) and (2) is very general and can accommodate

very di¤erent speci�cation strategies. Equation (1) illustrates how the yield
curve is �tted. This can be done either by pure interpolation methods or
by using models that impose no-arbitrage restrictions. When no-arbitrage
restrictions are imposed a more parsimonious parameterization emerges as
cross-equations restrictions are derived from economic theory. In equation
(2) di¤erent speci�cations of the information set can be adopted according
to the choice of what variables to include in Xt. As we shall see below, some
models will include only factors extracted from yield curve data, while others
a combination of factors from the yield curve and factors frommacroeconomic
data. Additional speci�cations are possible, as di¤erent choices are available
to measure the relevant factors.
We take the forecasting performance as the metric to evaluate alternative

speci�cations.
We shall consider the following alternative speci�cations (see Table 1 for

a summary):

1. Three factors extracted à la Nelson and Siegel (NS, henceforth), as-
sumed to follow an unrestricted VAR (Diebold-Li (2005)). In this case we
have:

B0n =

�
�n ;�

�
1� e��n

�

�
;�
�
1� e��n

�
� ne��n

��
and An = 0

We denote the three factors as NSt = [NS1;t NS2;t NS3;t]
0 and de�ne

Xt = NSt. Equation (1) takes the form:

yt;t+n = NS1;t +NS2;t

�
1� e��n
�n

�
+NS3;t

�
1� e��n
�n

� e��n
�
+ "t;t+n (3)
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The vector NSt is assumed to follow an unrestricted VAR(1):

NSt = �+ �NSt�1 + vt (4)

NS1;t, NS2;t, and NS3;t are estimated as parameters in a cross-section
of yields, letting n, the maturity date, vary. In the time series dimension,
NS1;t, NS2;t, and NS3;t have an immediate interpretation as latent factors.
The loading on NS1;t is the only element in B0n that does not decay to zero as
n tends to in�nity and can be interpreted as the long-term factor, the level of
the term-structure. The loading on NS2;t is a monotone function that starts
at 1 and decays to zero; it can be viewed as a short-term factor, the slope
of the term structure. If we de�ne f1t = NS1;t+ NS2;t we can interpret it
as the risk-free rate or the monetary policy instrument. NS3;t is a medium
term factor: its loading starts at zero, increases and then decays to zero, with
the speed of decay determined by the parameter �. This factor is usually
interpreted as the curvature of the yield curve (more on this below).
The dynamics of the three factors is described by an unrestricted VAR.

Forecasts for yields at any future date and at any maturity can be constructed
by iterating the VAR forward and exploiting the relations between factors
in equation (3) and the yields. This model is considered as the benchmark
among the unrestricted models.

2. No-arbitrage VAR, in which long yields are risk-adjusted expectations
of average future short-rates: the coe¢ cients of the state-space model are
restricted so as to rule out arbitrage opportunities (see Appendix 1 for de-
tails). In this case, de�ning the market price for risk associated with the
state variables Xt as �t = �0 + �1Xt and given the measurement equation
of the short rate, yt;t+1 = � (A1 +B01Xt) + "t;t+1, it is possible to show that
no-arbitrage imposes the following structure on the coe¢ cients of the mea-
surement equation (for n > 1):

An+1 = An +B
0
n (�� 
�0) + 1

2
B0n
Bn + A1

B0n+1 = B
0
n (�� 
�1) +B01

The restrictions imply that once the coe¢ cients on the short rate equation
(A1; B

0
1) are �xed, all the other coe¢ cients for longer maturity yields are

determined by the parameters in the state equation and the risk pricing
equation:

Bn+1 =

�
nP
i=0

(�0 � �01
)
i

�
B1

An+1 = (n+ 1)A1 +
nP
i=0

B(i), where B(i) = B0i (�� 
�0) + 1
2
B0i
Bi.
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In this setup, following Chen and Scott (1993), factors are unobservable
and are extracted by inverting the measurement equation by assuming that
a number of yields equal to the number of factors is observed without error
(see details in Appendix 2). The Chen and Scott factors are denoted as
CSt = [CS1;t CS2;t CS3;t]

0 : We de�ne Xt = CSt.
In the class of no-arbitrage models, we estimate both a model with con-

stant risk price (�0 6= 0 and �1 = 0) and a model with time-varying risk
prices (�0 6= 0 and �1 6= 0):

A second taxonomy considers small versus large information sets.

3. In the class of small information set models we consider the following
speci�cations.
3a) In the unrestricted case, in addition to the NSt factors, we also con-

sider the unemployment rate (ut) and the in�ation rate (�t) as additional
states.
3b) In the restricted case, in addition to the CSt factors, we also consider

the unemployment rate (ut) and the in�ation rate (�t) as additional states.
3c) We use the standard Taylor rule variables as state vector: Xt =

[FFRt ut �t]
0. The Federal Funds Rate (FFRt) in this case can be inter-

preted as a yield factor.

4. In the class of large information set models, we extract common factors
from a large panel of macroeconomic variables (N = 171). We estimate
factors by static principal components, as suggested by Stock and Watson
(2002) and we call them mft = [mf1;t mf2;t : : :mfk;t]

0. We evaluate the
forecasting performance of "large N" macroeconomic factors in the following
speci�cations:
4a) The states are the macro factors: Xt = mft
4b) In the unrestricted case, the macro factors are added to the factors

from the yield curve: Xt = [NS
0
t mf 0t ]

0:
4c) In the restricted case, the macro factors are added to the factors from

the yield curve: Xt = [CS
0
t mf 0t ]

0:
4d) The macro factors are used as explanatory variables in a sort of "gen-

eralized" Taylor rule (see Bernake and Boivin, 2003): Xt = [FFRt mf 0t ]
0,

both in the unrestricted and restricted model.
Moench (2005) has showed that this class of models has good forecasting

performance. We will introduce two to four (k = 2; 3; 4) macro factors.
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3 Data and econometric methodology

3.1 Data and macro factor construction

Our basic data set consists of a set of zero-coupon equivalent US yields
(1974:02-2001:12), provided by Brousseau, V. and B. Sahel (1999). We con-
sider zero-coupon equivalent yields for US data measured at the following 11
maturities: 1-month, 2-month, 3-month, 6-month, 9-month, 1-year, 2-year,
3-year, 5-year, 7-year, and 10-year. The dynamics of the yield curve is shown
in Figure 1.
The macro panel which contains 171 US macro monthly time series for

the sample 1974:2-2002:12 is the same as used in Giannone, Reichlin and
Sala (2004). In extracting common factors from the macro panel we have
made the following methodological choices.
First, we transform the data so as to obtain stationarity. We take annual

log-di¤erence for the series that contain trends (production indices, price
indices including asset prices, money stock) while series stationary by their
nature (interest rates, capacity utilization, surveys, etc.) are considered in
levels.

# of series Categories Transformation
21 IP indices lnXt� lnXt�12
39 Labor market:

(employment, payroll, hrs worked, wages) lnXt� lnXt�12
17 Sales, consumption spending lnXt� lnXt�12
12 Inventory and orders lnXt� lnXt�12
22 Financial markets, money and loans lnXt� lnXt�12
25 Price indices lnXt� lnXt�12
3 Import & export lnXt� lnXt�12
9 Interest rates Xt

23 Capacity utilisation, ISM mfg production and
inventory indices, surveys, etc. Xt

Second, we estimate the factors by principal components (Stock and Wat-
son (2002))
Third, we extract common factors from the whole panel in which also

some of the yields used to describe the term structure. Our results are robust
to excluding them.
Fourth, the �rst 4 common factors are used in our analysis. We rank the

factors according to their explanatory power for the whole macro panel1.
1This is di¤erent from Ng and Ludvigson (2006). They construct a composite factor by
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As reported in Table 2, the �rst four factors explain up to 68% of the total
variance in the transformed macro panel. The �rst factor highly correlates
with output growth, the second represents in�ation, the third is close to
change in inventory, and the fourth is close to a factor of e¤ective exchange
rate.
When we use observed macro variables in the state equation, we choose

the unemployment rate and the yearly CPI in�ation. We choose these two
series as they are not subject to revisions and are available in real-time. They
are plotted in Figure 3.

3.2 Estimation speci�cation

In the unrestricted model, the NS factors are modelled as a VAR(1).
In the restricted model under no-arbitrage, we assume that the factors

have zero mean � = 0, and that the VAR matrix � is lower triangular, with
diagonal variance covariance matrix 
 for the error term. This is the most
general identi�ed representation of the class of essential A0(3) models (Dai
and Singleton (2000)). As explained above, we estimate two speci�cations.
The �rst one assumes constant prices of risk: �0 6= 0 and �1 = 0. The
second one assumes time-varying prices of risk, �1 6= 0. As discussed in Dai
and Singleton (2002), this speci�cation is the combination of nonzero factor
correlations through the matrix, �; and state-dependent market prices of risk,
�1. In order to reduce the number of parameters to be estimated, we assume
�1 to be diagonal. Also, since the price of risk is associated with shocks to
states, vt (s i.i.d. N(0, 
)), which are generally assumed to be independent
(hence 
 diagonal), it is reasonable to assume independent pricing of such
risks.
In addition, we normalise the latent factor loadings in the short rate

equation, (�B1), to be a vector of ones, and we restrict (�A1) to be the
historical mean of the short rate.
When the state vector is assumed to be composed by both CSt factors

and macro variables or factors, we still assume that the VAR matrix � is
lower triangular, but we order the macro variables or factors before the CSt
factors, and order the unemployment rate (or the real factor) before in�ation
(or the nominal factor). In the restricted model with observable states (FFR
with macro variables/factors or only macro factors), we follow a two step

combining several common factors according to their in sample signi�cance in explaining
the bond risk premia. We have tried to rank the factors according to their contribution
to R-squares of yields, but we did not �nd clear evidence suggesting that such a strategy
improves out-of-sample forecasting.
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procedure. We �rst estimate the VAR for the states, then given
�
�̂; �̂; 
̂

�
,

we estimate the prices of risk, �0 and �1. In this setting, we do not restrict �
to be lower triangular. In the short rate equation, we normalise the loadings
on the latent factors to be one, and set �A1 = �r +B01 �X.

3.3 Forecast

We analyze the properties of forecasts at di¤erent horizons. In our multi-
period ahead forecast, we choose iterated forecast procedure, where multiple
step ahead states are obtained by iterating the one-step model forward2:

X̂t+hjt =
hX
i=0

�̂i�̂+ �̂hX̂t

Forecasts based on di¤erent speci�cations are computed as follows:

3.3.1 Unrestricted models

1. Diebold-Li (2005).
We obtain the Nelson and Siegel factors from equation (3). We �x �,

the parameter governing the speed of decay in the exponential function, at
0:077, as calibrated in Diebold, Rudebusch and Aruoba (2006)3. Figure 4
shows the NS factors as well as their empirical correpondants. The �rst NS
factor closely represents the 10 year yield level. Empirically, the second NS
factor corresponds to the spread between long and short yields: (10-year
- 1-month). The third NS factor is close to: ( 2� 2-year � (10-year +
3-month)).
After having extracted the factors and estimated the unrestricted VAR(1),

we obtain forecasts by iterated projections:

N̂St+hjt =
hP
i=0

�̂i�̂+ �̂hN̂St

and by using the NS parameterization:

2We choose iterated forecast X̂t+hjt =
hP
i=0

�̂i�̂ + �̂hX̂t, instead of direct forecast

X̂t+hjt = �̂h + �̂hX̂t. Though the direct forecast might have an advantage when the
model is misspeci�ed. We �nd from our unrestricted VAR forecast, that except the Taylor
Rule VAR with two macro variables or two macro factors, iterated forecast does always
better than direct forecast. Further, the no-arbitrage model is restricted such that only
one period model can be estimated, hence only iterated forecast can be implemented.

3The factors extracted are insensitive to the choice of �.
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ŷt+hjt = N̂S1;t+hjt + N̂S2;t+hjt

�
1�e��n
�n

�
+ N̂S3;t+hjt

�
1�e��n
�n

� e��n
�

2. Diebold-Li (2005) �nancial factors with macro variables/factors in
unrestricted VAR form.

Here, the Nelson-Siegel factors are extracted as before. The factors to-
gether with macro variables/factors are modeled as a VAR(1). The state
vector in this case becomes: Xt = [NSt zt]

0, where zt contains the macro
information.
We disregard the speci�c shape of the NS interpolants and project directly

the yields on the states:

ŷt+hjt = â+ b̂X̂t+hjt

X̂t+hjt =
hX
i=0

�̂i�̂+ �̂hX̂t (5)

We �nd that this leads to better forecast than �xing the loadings on NS
factors as speci�ed by equation (3). An interpretation of this is that the good
forecasting performance of the Diebold-Li model largely comes from the NS
factor extraction in the �rst step and not from the restrictions imposed by
the exponential functions.
3. Interest rate rule type VAR with the state equation in the unrestricted

form.

In this setting, the yields are directly projected onto the states. The esi-
mation of both measurement equation and state dynamics are implemented
by OLS as in (5).

3.3.2 Models with no-arbitrage restrictions

The forecast of the no-arbitrage model is obtained by following the iterated
procedure for h step ahead as in (5), where the parameters in the relevant
forecasting model are subject to the no-arbitrage restrictions.

4 Empirical Results

To describe our empirical results we need to de�ne a measure of forecasting
performance, a sample for estimation and a forecasting horizon.
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Our chosen measure of forecasting performance is the ratio of the root
mean square forecast error (RMSFE) of each models to the RMSFE of a
random walk forecast.
We set the sample size �xed at 212 periods. By moving the sample

forward one observation at a time, we implement rolling estimation.
We consider a range of forecasting horizons (denoted by h): 1 month, 3

months, 6 months, 9 months, 12 months, 18 months, and 24 months.
For each forecasting horizon, we conduct our exercise for all dates in the

period 1995:11 - 2001:12, for a total of 74 periods. For example, yield values
realised at 1995:11 are compared with their one-month ahead forecast made
at period 1995:10, three-month ahead forecast made at 1995:8, etc., up to
24-month ahead forecast made at 1993:11.
We show comparisons of forecasting results from di¤erent groups of mod-

els in Tables 3-6. Our empirical results are reported by indicating better
forecasts with respect to the random walk by bold characters. The best
model for each combination of horizon-maturity forecast is indicated with
white numbers on a black background.

In the restricted estimation under no-arbitrage with latent factors, we
extract yield-curve factors with the method proposed by Chen-Scott (1993)4

and implement one-step joint estimation of both the state and the measure-
ment equation. In the restricted estimation with fully observable factors, we
follow two-step procedure to estimate state VAR by OLS and measurement
equation by MLE subsequently.
We consider constant risk price (�1 = 0, second row), and time-varying

risk price (�1 diagonal, third row).

Table 3 shows results from models in which the states are either three
factors extracted from the yield curve (�rst column) or four mf factors ex-
tracted from the macro panel (second column).
Results in the �rst column indicate that when only factors extracted from

the yield curve are considered, no-arbitrage models (second and third row)
o¤er better forecasting performance with respect to the unrestricted Diebold

4See Appendix 2 for technincal details. In the restricted case with Chen-Scott (1993)
method, the selection of yields priced without error is crucial. In general, di¤erent yields
carry di¤erent information, so that forecast performance varies along the selection. In the
one latent factor case, 2 year yield provides better anchor for forecasting the whole curve.
In the two factor case, (1 month, 2 year) or (2 year, 7 year) combination forecasts better,
but have di¤erent pattern. In the three factor case, it is important to keep 2 year in the
set, then choosing short yield from (1 month, 3 month) and long yield from (7 year, 10
year) gives similar result. We show result of (3 month, 2 year, 10 year) as the set of yields
measured without error. Comparisons are available upon request.
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and Li model. It can also be noticed that especially for models with macro
factors (second column), models with and without no-arbitrage performs very
similarly.

When comparing models with yield curve factors to models with macro
factors (�rst vs. second column), we notice a few features.
First, both approaches provide good forecasting performance but at dif-

ferent horizon-maturity combinations: yield curve factors deliver better fore-
casts at the short end of the curve for short forecasting horizons; macro
factors deliver excellent forecasts (the best among the models we consider)
for medium maturities and medium forecast horizons. The performance of
macro factors is remarkable: they combine macroeconomic information with-
out any explicit focus on the term structure but still they obtain a very good
forecasting performance for the term structure.
It is also interesting to notice that macro factors in isolation do not im-

prove upon the random walk forecast for very short forecasting horizon. We
will comment more on this below.

When comparing models with and without no-arbitrage restrictions (�rst
vs. second and third rows), we observe the following features:
First, in the yield factor models (�rst column), no-arbitrage restrictions

help to improve te medium horizon-maturity forecast. However, the dynam-
ics of the two types of yield factors in the restricted and unrestricted models
is very similar. Figure 5 compares the Nelson-Siegel factors estimated from
the unrestricted models and the CS latent factors extracted from the re-
stricted models. The three NS factors and the three CS no-arbitrage factors
are highly correlated.
Second, in macro factor models (second column), the gains from no-

arbitrage restrictions for the medium horizon-maturity are at the price of
short horizon and long maturity forecast.
Third, within the no-arbitrage models (second and third rows), models

with time-varying risk price (third row) improves upon the models with con-
stant risk price (second row), fore medium horizon-maturity forecast in yield
factor model and short horizon and long maturity forecast in macro factor
model.

Table 4 shows the results from models with four factors: three yield
factors and one macro variable/factor. In the �rst row we report the results
for models estimated without imposing no-arbitrage restrictions in which the
state equation is an unrestricted VAR. The three NS factors are included in
the state equation along with the unemployment rate (left column) or the
�rst macro factor (right column). In the second and third rows we report the
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results by imposing the no-arbitrage restrictions. As in Table 3, we consider
explicitly the cases of constant risk premia (second row) and of time-varying
risk premia (third row).
Results show that the inclusion of the �rst macro factor improves upon

the basic Diebold-Li speci�cation at short-medium horizon for short-medium
maturities, while the inclusion of unemployment in general does not: the
information summarized in the �rst macro factor dominates upon the macro
information contained in the single real macro variable we use.
The same is true for restricted models. The inclusion of unemployment

among the states does not in general improve with respect to the 3 CS factors
speci�cation.
On the contrary, the inclusion of the �rst macro factor does improve the

forecasting performance of the model, especially at short forecasting hori-
zon and for medium maturities and improves even more when no-arbitrage
restrictions are imposed (as one can see by moving downwards in the right
column of Table 4). It is interesting to notice how the short term forecasting
performance depends strongly on the inclusion of �nancial factors: if �nan-
cial factors are not included, the 1-step ahead forecast is always worse than
the random walk benchmark. If �nancial factors are included, the forecasting
performance consistently improves with respect to the random walk.

When comparing models with or without no-arbitrage restrictions, we
still �nd that no-arbitrage restrictions help to improve the medium horizon-
maturity forecast. Within no-arbitrage models, time-varying risk price is
preferred to constant risk price for short-to-medium horizon-maturity fore-
cast.

Table 5 shows the results from richer models. The left column contains
the forecasting performance of models estimated with 2 macro variables in
addition to the three �nancial factors. The two macro variables, unemploy-
ment and in�ation, are taken as representative of the real and the nominal
side of the economy (see Giannone, Reichlin and Sala, 2004). The right
column reports results from models in which macro factors are added to �-
nancial factors. In the �rst row we consider models with an unrestricted
state equation. The second and third rows illustrate results obtained by im-
posing no-arbitrage restrictions with constant risk premia (second row) or
time-varying risk-premia (third row).

The inclusion of in�ation along with unemployment improves the fore-
casting performance (top-left quadrant) with respect to both the no-macro
variables case and the unemployment-only case in unrestricted models. In
no-arbitrage models with in�ation among the states (second and third row

13



of the left column), the forecasting performance slightly deteriorates with
respect to previous cases, with one signi�cant exception: models with time
varying price of risk deliver very precise forecasts at long forecast horizon
and for long maturities.
When macro factors are included (right column), the unrestricted model

with 4 macro factors along with 3 NS yield factors obtains the largest number
of black cells, especially for 2 sets of horizon- maturity: long forecasting hori-
zons and short maturity and short forecasting horizons and long maturities.
When no-arbitrage is imposed the performance of the model with 4 macro

factor deteriorates dramatically (results not displayed5): the interaction be-
tween a large number of parameters to be estimated and the imposition of
non-linear restrictions does not allow to obtain good forecasts. When only
2 macro factors are considered together with 3 CS factors, the forecasting
performance does not improve (and in some circumstances deteriorates) with
respect to models without macro factors or with only 1 macro factor.

Within the no-arbitrage models, the advantage of time-varying risk price
with respect to constant risk price is still evident for short-to-medium horizon-
maturity forecast.

In Table 6 we consider generalized Taylor rules by comparing the perfor-
mance of forecast based on unrestricted Taylor rules VAR with those based
on no-arbitrage Taylor rules. These results show clearly that the exclusion
of factors extracted from the term structure causes a sizeable worsening in
the forecasting performance especially for short horizon and long maturity
yields.
It is nevertheless clear (see especially Table 6-bis) that Taylor rules with

macro factors do better than Taylor rules with observable macro variables.
As in the pure macro factor case (Table 3, second column), when macro

factors dominate in the information set, the no-arbitrage restrictions do not
bring much gains in the forecast in general.
However, as long as no-arbitrage restrictions are imposed, assuming time-

varying risk price is preferrable to constant risk price for short horizon and
long maturity forecast.

Let us come back to the �nding that macro factors alone do not pro-
duce good forecasts at the 1-step ahead horizon. We interpret this result
as not surprising. As macro factors capture comovements among variables
and as comovement manifests itself especially at business cycle frequency, it
is reasonable to expect that the forecasting power of macro factors becomes

5Results are available by request from the authors.
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signi�cant at longer horizon than 1 or 3 months ahead. In the very short run
macroeconomic variables are driven by noise than signal and their use does
not improve upon term structure information.

5 Conclusions

In this paper we evaluate term structure models from the perspective of
their forecasting performance. We have used a common state-space repre-
sentation to nest di¤erent classes of term structure models. We have then
investigated the impact on forecasting performance of alternative choices in
the modelling strategy. In particular we concentrated on the e¤ect of the no-
arbitrage restrictions and on the choice of the information set in constructing
factor models for the term structure. Our aim was to decompose the speci�c
contribution to forecast of these two aspects and to answer to the follow-
ing questions: how do no-arbitrage restrictions and macro information a¤ect
the forecasting performance individually and jointly? What is the optimal
forecasting strategy for di¤erent yields at di¤erent horizons?
Our results point to the following conclusions:
a. macro factors are very useful in forecasting at medium/long forecasting

horizon;
b. �nancial factors are useful in short run forecasting;
c. no-arbitrage models are e¤ective in shrinking the dimensionality of the

parameter space and, when supplemented with additional macro information,
are very e¤ective in forecasting;
d. within no-arbitrage models, assuming time-varying risk price is more

favorable than assuming constant risk price for medium horizon-maturity
forecast when yield factors dominate the information set, and for short hori-
zon and long maturity forecast when macro factors dominate the information
set;
e. however, given the complexity and the highly non-linear parameteriza-

tion of no-arbitrage models, it is very di¢ cult to exploit within this type of
models the additional information o¤ered by large macroeconomic datasets.
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7 Appendix 1. No-Arbitrage Restrictions on
Bond Pricing Parameters

1. State variable dynamics.

Transition equation for Xt follows VAR(1):

Xt = �+ �Xt�1 + vt,

vt is i.i.d. N(0, 
).

2. Short rate equation.

rt = �0 + �
0
1Xt

�0: a scalar.
�1: K � 1 vector.

3. Time-varying prices of risk (associated with the sources of uncer-
tainty vt).

�t = �0 + �1Xt

�t: K � 1 vector.
�0: K � 1 vector.
�1: K �K matrix.
If investors are risk-neutral, �0 = 0 and �1 = 0, hence �t = 0, no risk

adjustment. If �0 6= 0 and �1 = 0, then price of risk is constant.

4. Pricing kernel.

No arbitrage opportunity between bonds with di¤erent maturities im-
plies that there is a discount factor m linking the price of yield of
maturity n this month with the yield of maturity n� 1 next month.

P
(n)
t = Et

h
mt+1P

(n�1)
t+1

i
The stochastic discount factor is related to the short rate and risk per-

ceived by the market,

mt+1 = exp
�
�rt � 1

2
�0t
�t � �0tvt+1

�
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No-arbitrage recursive relation can be derived from the above equations
as:

P
(n)
t = Et

h
mt+1P

(n�1)
t+1

i
= Et

h
mt+1mt+2P

(n�2)
t+2

i
= Et

h
mt+1mt+2:::mt+nP

(0)
t+n

i
= Et [mt+1mt+2:::mt+n � 1]

= Et

�
exp

�
�
n�1P
i=0

�
rt+i +

1
2
�0t+i
�t+i + �

0
t+ivt+1+i

���
= Et [exp (An +B

0
nXt)] = Et [exp (�nyt;n)]

= EQt

�
exp

�
�
n�1P
i=0

rt+i

��
EQt denotes the expectation under the risk-neutral probability measure,

under which the dynamics of the state vector Xt are characterised by the
risk-neutral vector of constants and autoregressive matrix:

�Q = �� 
�0
�Q = �� 
�1

A¢ ne functions of the state variables for yields are:

pt;t+n � lnP (n)t = An +B
0
nXt

yt;t+n = an + b
0
nXt =

�1
n
(An +B

0
nXt)

where the coe¢ cients and follow the di¤erence equations:

An+1 = An +B
0
n (�� 
�0) + 1

2
B0n
Bn + A1

B0n+1 = B
0
n (�� 
�1) +B01

with a1 = �0 = �A1 and b1 = �1 = �B1.
These can be derived from the pricing kernel equation.

P
(n+1)
t = Et

h
mt+1P

(n)
t+1

i
= Et

�
exp

�
�rt � 1

2
�0t
�t � �0tvt+1

	
exp fAn +B0nXt+1g

�
= exp

�
�rt � 1

2
�0t
�t + An

	
Et [exp f��0tvt+1 +B0nXt+1g]

= exp
�
��0 � �01Xt � 1

2
�0t
�t + An

	
�Et [exp f��0tvt+1 +B0n (�+ �Xt + vt+1)g]
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= exp
�
��0 � �01Xt � 1

2
�0t
�t + An +B

0
n (�+ �Xt)

	
�Et [exp f��0tvt+1 +B0nvt+1g]

= exp
�
��0 + An +B0n�+ (B0n�� �01)Xt � 1

2
�0t
�t

	
�Et [exp f(��0t +B0n) vt+1g]

= exp
�
��0 + An +B0n�+ (B0n�� �01)Xt � 1

2
�0t
�t

	
� exp

�
Et [(��0t +B0n) vt+1] + 1

2
var [(��0t +B0n) vt+1]

	
= exp

�
��0 + An +B0n�+ (B0n�� �01)Xt � 1

2
�0t
�t

	
exp

�
1
2
var [(��0t +B0n) vt+1]

	
= exp

�
��0 + An +B0n�+ (B0n�� �01)Xt � 1

2
�0t
�t

	
� exp

�
1
2
Et
�
(��0t +B0n) vt+1v0t+1 (��t +Bn)

�	
= exp

�
��0 + An +B0n�+ (B0n�� �01)Xt � 1

2
�0t
�t

	
� exp

�
1
2
[�0t
�t � 2B0n
�t +B0n
Bn]

	
= exp

�
��0 + An +B0n�+ (B0n�� �01)Xt �B0n
�t + 1

2
B0n
Bn

	
= exp

�
��0 + An +B0n�+ (B0n�� �01)Xt �B0n
�t + 1

2
B0n
Bn

	
= exp

�
��0 + An +B0n�+ (B0n�� �01)Xt �B0n
 (�0 + �1Xt) +

1
2
B0n
Bn

	
= exp

�
��0 + An +B0n (�� 
�0) + 1

2
B0n
Bn + (B

0
n��B0n
�1 � �01)Xt

	
= exp

��
A1 + An +B

0
n (�� 
�0) + 1

2
B0n
Bn

�
+ [B0n��B0n
�1 +B01]Xt

	
5. An alternative presentation for the no-arbitrage coe¢ cients.

In order to understand intuitively how these restrictions are imposed di-
rectly on the coe¢ cients in the yield equation, we can write them in the
following a¢ ned form.
Given that

pt;t+n = An +B
0
nXt

yt;t+n = an + b
0
nXt =

�1
n
(An +B

0
nXt)

we can derive

bn+1 =
1

(n+1)

�
nP
i=0

(�0 � �01
)
i

�
b1

an+1 = a1 � 1
(n+1)

nP
i=1

B(i)

where B(i) = B0i (�� 
�0) + 1
2
B0i
Bi.
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8 Appendix 2. The likelihood function with
Chen-Scott (1993) method

(The likelihood function representation follows closely to Ang, Piazzesi (2003).)
In order to be able to extract factors under no-arbitrage restrcitions, we

employ the method by Chen and Scott (1993). Assume that there are K fac-
tors in the state equation and that among them, K2 factors are unobserved.
When the number of yields N exceeds number of unobserved factors, K2, fol-
lowing Chen and Scott (1993), we assume that K2 yields, yNEt , are observed
without measurement errors, and that N �K2 yields, yEt , are measured with
error umt . The state vector contains both observed variables X

o
t and latent

factors Xu
t , thus Xt = [X

o
t ; Xu

t ]
The measurement equation can be written as following:

yt = a+ b
oXo

t + b
uXu

t + b
mumt

where yt =
�
yNEt
yEt

�
, a =

�
aNE

aE

�
, bo =

�
bNE;o

bE;o

�
; bu =

�
bNE;u

bE;u

�
; and

bm =

�
0
¯ (K2�(N�K2))

bE;m

�
For a given parameter vector � = (�;�;
; �0; �1; �0; �1), the unobserved

factors Xu
t will be solved from the yields and the observed variables Xo

t as:
Xu
t =

�
bNE;u

��1 �
Y NEt � aNE � bNE;oXo

t

�
.

Denoting the normal density functions of the state variables Xu
t and the

error umt as fX and fum respectively, the joint likelihood £ (�) of the observed
data on zero coupon yields Yt and the observable factors Xo

t is given by:

$ (�) =
TQ
t=2

f
�
yt; X

o
t jyt�1; Xo

t�1
�

log(£ (�)) =
TP
t=2

log jdet (J�1)j+ log fX
�
Xo
t ; X

u
t jXo

t�1; X
u
t�1
�
+ log fum (u

m
t )

= � (T � 1) log jdet (J )j � (T�1)
2
log(det(
))

�1
2

TP
t=2

(Xt � �� �Xt�1)
0
�1 (Xt � �� �Xt�1)

� (T�1)
2
log

N�K2P
i=1

�2i � 1
2

TP
t=2

N�K2P
i=1

(umt;i)
2

�2i

(The constant terms like (T�1)
2
log(2�) are ignored.)

The Jacobian term is: J =
�
IK�K2 0(K�K2)�K2 0(K�K2)�(N�K2)

Bo Bu Bm

�
.
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Figure 1.  Yield data 
 

 (1974:02-2001:12) 
 
 
 
 

1975
1980

1985
1990

1995
2000

0

50

100

0

5

10

15

time

Yield Maturity (month)

%

 22



 
Figure 2.  Macro variables 
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Figure 3.  First four macro factors 
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Figure 4.  Nelson-Siegel Factors and Yields 
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Note: This figure shows Nelson-Siegel factors and corresponding empirical proxies 

directly obtained by yields.  
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Figure 5.  Nelson-Siegel Factors and No-arbitrage Factors 
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Note: No-arbitrage factors shown here are extracted under time-varying risk price 

( 01 ≠λ ). They are rescaled to make the comparison. No-arbitrage factors extracted 

under non time-varying risk price ( 01 =λ ) are very similar. The correlations between the 

corresponding factors are all 0.999. 



26

Tabel 1.  Modeling Framework  
 

State variables Unrestricted model Restricted Model (No-arbitrage)  

# Financial 
factors 

# Macro 
Variables
/factors 

Small information set: 
{Yield factors, 

unempl., inflation} 

Large information 
set: 

{Macro factors} 

Small information set: 
{Yield curve, output, 

inflation} 

Large information 
set: 

{Macro factors} 

Reported  
in table 

0 3 Nelson Siegel (NS)  
factors (Diebold-Li, 2003)  3 latent factors by Chen-

Scott (CS) (1993) method 
 

Table 3 

1 unempl. + 3 NS mf1 + 3 NS unempl. + 3 CS mf1 + 3 CS Table 4 3 

2-4 unempl., inflation + 3 NS mf1, mf2,mf3,mf4 + 3 NS unempl., inflation + 3 CS mf1, mf2 + 3 CS Table 5* 

1 unempl. + 2 NS mf1 + 2 NS unempl. + 2 CS  mf1 + 2 CS  

2 unempl., inflation  + 2 NS mf1, mf2 + 2 NS unempl., inflation + 2 CS mf1, mf2 + 2 CS  2 

3-4  mf1, mf2, mf3 + 2 NS  mf1, mf2, mf3 + 2 CS  

2 unempl., inflation + FFR mf1, mf2 +  FFR unempl., inflation +  FFR mf1, mf2 +  FFR 

3  mf1, mf2, mf3 +  FFR  mf1, mf2, mf3 +  FFR 
1 

(Generalised 
Taylor Rule)

4  mf1, mf2, mf3, mf4 + 
FFR 

 mf1, mf2, mf3, mf4  +  
FFR 

Table 6 

0  4 mf1, mf2, mf3, mf4 
 

mf1, mf2, mf3, mf4 Table 3 

 
NS: Nelson-Siegel factors used in Diebold-Li model; CS: Latent factor extracted by using Chen-Scott method; mf: macro common factors. 
We report forecast comparison for highlighted models in Table 3 to Table 6. 
Table 5*: Table 5 shows small information set or large information set augmented with 3 yield factors. In the unrestricted large N case, we show the result of 3NS with 4 
mf; in the restricted large N case, we show 3 NS with 2 mf, because as the number of mf increases to 3 or 4, so does the parameter uncertainty, hence the results deteriorate 
very much. 

 



Tabel 2.  Factor loadings 
 

Factors are extracted from a panel with 171 macro variables (1974:2-2002:12). We report 
in the following the first four factors with the eight variables with which they are most 
highly correlated. The 2R  indicates the total explanatory power of the single factor on the 
corresponding variable. The first four factors together explain 68.53% of the total variation 
in the macro panel. The number of series is their original order in the panel used in 
Giannone, Reichlin and Sala (2004).  

 
   
Factor 1 Total variance explained: 32.56% 2R  
11 Index of IP: Mfg 0.910 
17 Index of IP: Non-energy, total 0.906 
33 No. Of unemployed in the civ. labor force (CLF) 0.889 
1 Index of IP: Total 0.887 
12 Index of IP: Mfg, durables 0.884 
20 Index of IP: Non-energy excl CCS 0.883 
9 Index of IP: Materials, nonenergy, durables 0.878 
8 Index of IP: Materials 0.869 
   
Factor 2 Total variance explained: 21.17%  
168 Philadelphia Fed Business Outlook: Prices received 0.752 
167 Philadelphia Fed Business Outlook: Prices paid 0.745 
93 Mfg new orders: nondurable (in mil of current $) 0.691 
95 Mfg unfilled orders: all mfg industries (in mil of current $) 0.645 
139 CPI: commodities 0.639 
144 CPI: all items less medical care 0.636 
150 PCE prices: nondurable 0.635 
133 CPI: all items (urban) 0.624 
   
Factor 3 Total variance explained: 9.83%  
122 Loans and Securities @ all comm banks: Securities, U.S. govt (in mil of current $) 0.593 
27 Capacity Utilization: Utilities 0.448 
83 Inventories: Mfg and Trade: Mfg, durables (mil of chained 96$) 0.446 
121 Loans and Securities @ all comm banks: Securities, total (in mil of current $) 0.439 
114 M1 (in bil of current $) 0.397 
82 Inventories: Mfg and Trade: Mfg (mil of chained 96$) 0.395 
36 Mean duration of unemployment 0.352 
81 Inventories: Mfg and Trade: Total (mil of chained 96$) 0.341 
   
Factor 4 Total variance explained: 4.97%  
99 Nominal effective exchange rate 0.607 
100 Spot Euro/US  0.561 
101 Spot SZ/US 0.506 
59 Employment on nonag payrolls: Government 0.399 
102 Spot Japan/US 0.327 
117 Monetary base, adjusted for reserve requirement (rr) change (bil of $) 0.309 
103 Spot UK/US 0.272 
118 Depository institutions reserve: Total (adj for rr changes) 0.266 
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Table 3. Models in which factors are not mixed 
RMSFE ratio with respect to Random Walk h months ahead 

 
 Three Yield Factor models  Four Macro Factor models 

 Diebold-Li, VAR(1) states: {NS1 NS2 NS3}  VAR(1) states: {mf1 mf2 mf3 mf4} 

U
nr

es
tr

ic
te

d 

h 1 3 6 9 12 18 24 
m01 0.86 0.85 0.89 0.92 0.99 1.19 1.23
m02 0.91 0.85 0.89 0.92 0.97 1.16 1.21
m03 0.98 0.88 0.89 0.92 0.95 1.11 1.18
m06 1.02 0.94 0.94 0.94 0.94 1.06 1.19
m09 1.03 0.96 0.96 0.97 0.95 1.06 1.21
y01 0.79 0.91 0.94 0.94 0.92 1.03 1.18
y02 1.15 1.03 1.01 1.00 0.95 1.01 1.25
y03 0.79 0.93 0.96 0.96 0.92 1.02 1.32
y05 1.01 0.99 1.02 1.06 1.03 1.15 1.55
y07 1.00 0.98 1.01 1.06 1.05 1.19 1.60
y10 0.99 0.99 1.07 1.15 1.16 1.32 1.73 

 
h 1 3 6 9 12 18 24 

m01 1.83 1.06 0.82 0.74 0.79 0.97 1.06
m02 2.16 1.09 0.80 0.73 0.77 0.95 1.07
m03 2.42 1.10 0.81 0.74 0.77 0.94 1.07
m06 2.21 1.03 0.79 0.74 0.76 0.89 1.08
m09 1.93 0.94 0.77 0.74 0.75 0.87 1.07
y01 1.82 0.87 0.75 0.73 0.75 0.88 1.06
y02 1.69 0.93 0.78 0.74 0.73 0.79 1.01
y03 1.89 0.97 0.80 0.74 0.72 0.78 1.01
y05 2.42 1.33 1.00 0.87 0.79 0.82 1.07
y07 2.85 1.59 1.19 1.01 0.92 0.93 1.18
y10 3.55 1.98 1.51 1.27 1.12 1.10 1.33    

A0(3), ne =(m03, y02, y10) 
VAR(1) states: {CS1 CS2 CS3}  VAR(1) states: {mf1 mf2 mf3 mf4} 

Constant risk price: 0,0 10 =≠ λλ   Constant risk price: 0,0 10 =≠ λλ  

h 1 3 6 9 12 18 24 
m01 0.77 0.71 0.72 0.76 0.93 1.25 1.28
m02 0.80 0.72 0.74 0.77 0.93 1.24 1.28
m03 0.84 0.75 0.77 0.80 0.93 1.21 1.26
m06 0.93 0.82 0.82 0.83 0.92 1.13 1.20
m09 0.99 0.84 0.85 0.86 0.92 1.10 1.15
y01 0.65 0.80 0.87 0.86 0.92 1.09 1.13
y02 0.98 0.97 0.97 0.95 0.95 1.01 1.02
y03 0.83 0.93 0.97 0.93 0.92 0.99 1.01
y05 1.10 1.03 1.02 0.99 0.96 0.97 0.98
y07 1.18 1.06 1.02 0.99 0.97 0.97 0.97
y10 1.00 1.00 0.99 0.98 0.97 0.99 1.03 

 
h 1 3 6 9 12 18 24 

m01 2.50 1.40 1.01 0.88 0.91 1.10 1.16
m02 2.97 1.45 1.01 0.88 0.89 1.07 1.15
m03 3.34 1.48 1.01 0.88 0.87 1.03 1.13
m06 2.73 1.22 0.88 0.79 0.78 0.89 1.06
m09 2.05 0.98 0.77 0.71 0.71 0.83 1.03
y01 1.55 0.77 0.68 0.65 0.67 0.79 1.01
y02 1.47 0.84 0.69 0.66 0.67 0.81 1.12
y03 2.26 1.16 0.84 0.74 0.71 0.85 1.18
y05 4.32 2.21 1.54 1.31 1.18 1.28 1.73
y07 5.21 2.78 2.01 1.75 1.60 1.70 2.25
y10 7.03 3.82 2.86 2.47 2.18 2.21 2.75 

Time-varying risk price: 10 ,0 λλ ≠  diagonal  Time-varying risk price: 10 ,0 λλ ≠  diagonal 

h 1 3 6 9 12 18 24 
m01 0.79 0.73 0.72 0.71 0.83 1.11 1.18
m02 0.82 0.74 0.73 0.72 0.84 1.10 1.18
m03 0.85 0.76 0.75 0.75 0.84 1.08 1.17
m06 0.95 0.84 0.82 0.80 0.85 1.06 1.20
m09 1.02 0.88 0.87 0.84 0.87 1.06 1.21
y01 0.67 0.82 0.87 0.82 0.86 1.05 1.18
y02 0.97 0.97 0.96 0.91 0.91 1.02 1.19
y03 0.74 0.89 0.92 0.87 0.86 1.00 1.20
y05 1.00 0.97 0.96 0.94 0.94 1.06 1.32
y07 1.07 0.99 0.96 0.94 0.97 1.10 1.38
y10 0.99 1.00 1.03 1.05 1.09 1.25 1.55 

 
h 1 3 6 9 12 18 24 

m01 2.12 1.23 0.95 0.84 0.88 1.05 1.12
m02 2.38 1.19 0.87 0.78 0.81 0.97 1.08
m03 2.64 1.20 0.88 0.79 0.80 0.95 1.08
m06 2.16 0.99 0.77 0.72 0.73 0.86 1.07
m09 1.78 0.88 0.74 0.70 0.71 0.83 1.06
y01 1.54 0.79 0.71 0.68 0.70 0.82 1.04
y02 1.68 0.95 0.82 0.77 0.75 0.81 1.05
y03 1.75 0.96 0.83 0.77 0.73 0.80 1.03
y05 2.41 1.34 1.06 0.93 0.86 0.90 1.16
y07 2.93 1.62 1.24 1.07 0.99 1.01 1.29
y10 4.38 2.40 1.81 1.52 1.36 1.31 1.62 
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Notes:  
1) “ne” stands for the set of yields assumed priced withou errors.  t  
2) Illustration on the display of RMSFE ratio:  < 0.80 0.80 – 0.90 0.90 – 1.00 > 1.00 
3) Best RMSFE ratio across all models: e.g. 0.69 
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Table 4. Models with mixed factors: 1 macro and 3 yield factors 
RMSFE ratio with respect to Random Walk h months ahead 

 
 

 Small N  Large N 

 VAR(1) states: {unempl  NS1 NS2 NS3}  VAR(1) states: {mf1 NS1 NS2 NS3} 

U
nr

es
tr

ic
te

d 

h 1 3 6 9 12 18 24 
m01 0.84 0.84 0.90 0.91 0.97 1.25 1.36
m02 0.94 0.91 0.95 0.95 1.00 1.28 1.41
m03 1.00 0.95 0.97 0.97 1.01 1.25 1.41
m06 1.05 1.01 1.01 0.98 0.98 1.18 1.40
m09 1.08 1.03 1.03 1.00 0.98 1.17 1.39
y01 0.76 0.96 1.02 0.99 0.98 1.17 1.40
y02 1.20 1.08 1.03 1.00 0.94 1.02 1.28
y03 0.81 0.96 0.99 0.97 0.92 1.02 1.32
y05 1.04 0.99 0.98 0.99 0.94 1.01 1.35
y07 1.00 0.98 0.99 1.01 0.98 1.08 1.43
y10 1.03 1.00 1.05 1.09 1.08 1.19 1.55 

 
h 1 3 6 9 12 18 24 

m01 0.82 0.75 0.79 0.84 0.95 1.22 1.29
m02 0.91 0.80 0.83 0.89 0.97 1.23 1.33
m03 0.94 0.81 0.84 0.90 0.98 1.21 1.33
m06 0.91 0.83 0.86 0.92 0.96 1.16 1.34
m09 0.91 0.84 0.88 0.94 0.96 1.14 1.35
y01 0.70 0.81 0.88 0.94 0.97 1.15 1.37
y02 1.13 0.96 0.94 0.98 0.96 1.06 1.33
y03 0.81 0.90 0.94 0.98 0.96 1.09 1.42
y05 1.03 0.98 0.99 1.05 1.04 1.17 1.57
y07 1.00 0.99 1.02 1.09 1.10 1.25 1.68
y10 1.04 1.03 1.12 1.21 1.23 1.40 1.84    

VAR(1) states: {unempl  CS1 CS2 CS3} 
ne =(m03, y02, y10)  

VAR(1) states: {mf1 CS1 CS2 CS3} 
ne =(m03, y02, y10) 

Constant risk price: 0,0 10 =≠ λλ   Constant risk price: 0,0 10 =≠ λλ  

h 1 3 6 9 12 18 24 
m01 0.90 0.82 0.87 0.90 1.07 1.49 1.66
m02 0.82 0.78 0.83 0.87 1.03 1.42 1.58
m03 0.87 0.82 0.86 0.90 1.03 1.38 1.53
m06 0.95 0.87 0.89 0.91 1.00 1.28 1.44
m09 0.96 0.87 0.90 0.92 0.99 1.23 1.37
y01 0.66 0.85 0.93 0.93 1.00 1.23 1.36
y02 0.99 0.99 1.01 1.00 1.01 1.11 1.22
y03 0.78 0.95 1.00 0.99 0.98 1.09 1.21
y05 1.01 1.02 1.04 1.04 1.02 1.08 1.18
y07 1.10 1.07 1.06 1.06 1.04 1.08 1.17
y10 1.01 1.02 1.03 1.05 1.04 1.08 1.16 

 
h 1 3 6 9 12 18 24 

m01 0.77 0.69 0.72 0.76 0.93 1.26 1.32
m02 0.79 0.71 0.73 0.77 0.93 1.25 1.30
m03 0.83 0.75 0.77 0.80 0.93 1.22 1.27
m06 0.98 0.82 0.82 0.83 0.92 1.14 1.21
m09 1.07 0.86 0.86 0.86 0.93 1.10 1.15
y01 0.69 0.81 0.87 0.85 0.92 1.09 1.12
y02 0.98 0.98 0.97 0.95 0.95 1.00 1.02
y03 0.88 0.95 0.97 0.93 0.91 0.98 1.01
y05 1.05 1.01 1.00 0.98 0.95 0.97 0.99
y07 1.07 1.03 1.00 0.98 0.96 0.98 1.01
y10 1.00 1.00 0.99 0.98 0.98 1.00 1.03 

Time-varying risk price: 10 ,0 λλ ≠  diagonal  Time-varying risk price: 10 ,0 λλ ≠  diagonal 

h 1 3 6 9 12 18 24 
m01 0.82 0.76 0.77 0.76 0.87 1.23 1.37
m02 0.83 0.76 0.76 0.76 0.86 1.20 1.34
m03 0.88 0.80 0.80 0.78 0.86 1.17 1.32
m06 0.95 0.85 0.83 0.80 0.85 1.12 1.30
m09 0.97 0.86 0.85 0.82 0.86 1.10 1.27
y01 0.67 0.83 0.87 0.83 0.86 1.09 1.25
y02 0.98 0.96 0.94 0.90 0.90 1.04 1.19
y03 0.82 0.92 0.93 0.88 0.87 1.03 1.19
y05 1.02 0.98 0.96 0.95 0.95 1.06 1.23
y07 1.10 1.01 0.97 0.97 0.99 1.10 1.26
y10 0.99 0.99 1.00 1.03 1.07 1.19 1.39 

 
h 1 3 6 9 12 18 24 

m01 0.78 0.67 0.64 0.71 0.93 1.32 1.38
m02 0.78 0.67 0.66 0.75 0.95 1.33 1.42
m03 0.81 0.68 0.69 0.79 0.96 1.33 1.41
m06 0.96 0.77 0.77 0.86 0.99 1.30 1.45
m09 1.03 0.81 0.82 0.90 1.01 1.30 1.44
y01 0.66 0.74 0.82 0.89 1.00 1.28 1.41
y02 0.95 0.92 0.95 0.99 1.04 1.21 1.35
y03 0.68 0.84 0.93 0.97 1.01 1.20 1.37
y05 0.97 0.98 1.03 1.08 1.12 1.28 1.51
y07 1.02 1.00 1.04 1.09 1.14 1.30 1.54
y10 1.00 1.03 1.11 1.18 1.23 1.39 1.64 
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Notes:  
1) “ne” stands for the set of yields assumed priced withou errors.  t  
2) Illustration on the display of RMSFE ratio:  < 0.80 0.80 – 0.90 0.90 – 1.00 > 1.00 
3) Best RMSFE ratio across all models: e.g. 0.69 
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Table 5. Models with mixed factors: n(>1) macro and 3 yield factors 
RMSFE ratio with respect to Random Walk h months ahead 

 
 

 Small N  Large N 

 VAR(1) states: {unempl infl NS1 NS2 NS3}  VAR(1) states: {mf1 mf2 mf3 mf4 NS1 NS2 NS3} 

U
nr

es
tr

ic
te

d 

h 1 3 6 9 12 18 24 
m01 0.84 0.82 0.83 0.79 0.83 1.04 1.21
m02 0.92 0.88 0.86 0.82 0.85 1.07 1.26
m03 0.98 0.93 0.89 0.84 0.85 1.05 1.26
m06 1.06 1.00 0.94 0.86 0.84 1.00 1.26
m09 1.08 1.02 0.96 0.88 0.85 0.99 1.25
y01 0.77 0.97 0.96 0.87 0.84 0.98 1.24
y02 1.19 1.07 0.99 0.89 0.83 0.89 1.15
y03 0.81 0.97 0.95 0.87 0.80 0.88 1.17
y05 1.03 0.98 0.94 0.88 0.82 0.89 1.20
y07 1.00 0.97 0.94 0.89 0.85 0.94 1.28
y10 1.00 0.95 0.96 0.94 0.91 1.03 1.40 

 
h 1 3 6 9 12 18 24 

m01 0.83 0.73 0.70 0.72 0.78 0.82 0.85
m02 0.90 0.75 0.71 0.73 0.79 0.82 0.88
m03 0.92 0.77 0.73 0.74 0.79 0.81 0.89
m06 0.89 0.79 0.77 0.77 0.78 0.78 0.93
m09 0.92 0.82 0.80 0.79 0.78 0.78 0.94
y01 0.75 0.80 0.82 0.80 0.79 0.78 0.93
y02 1.14 0.96 0.89 0.84 0.78 0.74 0.96
y03 0.83 0.89 0.88 0.82 0.77 0.75 0.98
y05 1.00 0.94 0.88 0.83 0.76 0.77 1.05
y07 0.99 0.96 0.92 0.88 0.82 0.83 1.12
y10 1.02 0.99 1.00 0.97 0.91 0.95 1.24    

VAR(1) states: {unempl infl CS1 CS2 CS3} 
ne =(m03, y02, y10)  

VAR(1) states: {mf1 mf2 CS1 CS2 CS3} 
ne =(m03, y02, y10) 

Constant risk price: 0,0 10 =≠ λλ   Constant risk price: 0,0 10 =≠ λλ  

h 1 3 6 9 12 18 24 
m01 0.83 0.79 0.88 0.93 1.10 1.54 1.70
m02 0.83 0.79 0.86 0.92 1.07 1.48 1.64
m03 0.87 0.83 0.89 0.94 1.06 1.43 1.58
m06 0.97 0.86 0.90 0.93 1.01 1.29 1.44
m09 1.02 0.87 0.91 0.94 1.00 1.23 1.34
y01 0.66 0.84 0.94 0.95 1.01 1.23 1.32
y02 1.00 1.01 1.03 1.02 1.02 1.09 1.15
y03 0.88 0.99 1.04 1.01 0.99 1.08 1.13
y05 1.04 1.05 1.06 1.06 1.03 1.04 1.08
y07 1.12 1.08 1.08 1.08 1.04 1.05 1.08
y10 1.01 1.03 1.05 1.06 1.04 1.04 1.08 

 
h 1 3 6 9 12 18 24 

m01 0.78 0.71 0.73 0.77 0.92 1.25 1.31
m02 0.80 0.73 0.74 0.78 0.92 1.22 1.29
m03 0.85 0.76 0.77 0.80 0.92 1.19 1.26
m06 1.04 0.85 0.82 0.82 0.90 1.12 1.19
m09 1.13 0.88 0.86 0.85 0.91 1.09 1.14
y01 0.71 0.81 0.86 0.84 0.90 1.07 1.12
y02 0.98 0.96 0.95 0.93 0.93 0.99 1.03
y03 0.75 0.90 0.93 0.90 0.89 0.97 1.01
y05 1.01 0.98 0.98 0.97 0.95 0.98 1.01
y07 1.17 1.05 1.00 0.98 0.96 0.97 0.99
y10 1.00 0.99 0.99 0.98 0.97 1.00 1.03 

Time-varying risk price: 10 ,0 λλ ≠  diagonal  Time-varying risk price: 10 ,0 λλ ≠  diagonal 

h 1 3 6 9 12 18 24 
m01 0.79 0.72 0.72 0.70 0.80 0.97 1.02
m02 0.83 0.74 0.73 0.71 0.79 0.96 1.01
m03 0.88 0.77 0.76 0.74 0.80 0.94 1.00
m06 0.95 0.81 0.80 0.76 0.78 0.88 0.94
m09 0.99 0.83 0.82 0.78 0.78 0.84 0.89
y01 0.69 0.79 0.84 0.79 0.79 0.85 0.90
y02 0.98 0.97 0.94 0.87 0.82 0.80 0.85
y03 0.81 0.96 0.97 0.89 0.82 0.84 0.89
y05 1.10 1.07 1.03 0.95 0.87 0.85 0.93
y07 1.15 1.11 1.05 0.97 0.90 0.89 0.99
y10 1.01 1.02 1.00 0.95 0.89 0.88 0.98 

 
h 1 3 6 9 12 18 24 

m01 0.77 0.66 0.67 0.68 0.83 1.14 1.22
m02 0.78 0.68 0.70 0.71 0.85 1.16 1.26
m03 0.83 0.71 0.74 0.74 0.86 1.15 1.27
m06 1.06 0.82 0.83 0.81 0.88 1.14 1.34
m09 1.13 0.85 0.87 0.84 0.90 1.14 1.37
y01 0.76 0.76 0.85 0.81 0.88 1.12 1.33
y02 0.96 0.94 0.96 0.90 0.92 1.07 1.36
y03 0.68 0.87 0.94 0.89 0.91 1.09 1.44
y05 1.00 1.03 1.05 1.03 1.05 1.23 1.68
y07 1.06 1.02 1.02 1.01 1.05 1.24 1.69
y10 1.02 1.07 1.12 1.15 1.20 1.41 1.86 
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Notes:  
1) “ne” stands for the set of yields assumed priced withou errors.  t  
2) Illustration on the display of RMSFE ratio:  < 0.80 0.80 – 0.90 0.90 – 1.00 > 1.00 
3) Best RMSFE ratio across all models: e.g. 0.69 

 

 30



Table 6. Generalised Taylor Rule: FFR and macro variables/factors 
RMSFE ratio with respect to Random Walk h months ahead 

 
 

 Small N  Large N 

 VAR(1) states: {FFR unempl infl}  VAR(1) states: {FFR mf1 mf2} 

U
nr

es
tr

ic
te

d 

h 1 3 6 9 12 18 24 
m01 1.18 1.01 1.03 1.02 1.02 1.21 1.48
m02 1.47 1.16 1.11 1.08 1.06 1.26 1.55
m03 1.77 1.27 1.17 1.12 1.06 1.25 1.55
m06 2.13 1.43 1.24 1.15 1.06 1.19 1.56
m09 2.31 1.48 1.29 1.21 1.08 1.19 1.58
y01 2.27 1.52 1.32 1.22 1.11 1.21 1.61
y02 2.65 1.60 1.35 1.25 1.10 1.11 1.53
y03 2.68 1.64 1.36 1.26 1.11 1.15 1.61
y05 2.82 1.68 1.38 1.29 1.15 1.18 1.65
y07 2.95 1.76 1.46 1.37 1.25 1.29 1.77
y10 3.20 1.94 1.64 1.53 1.40 1.45 1.92 

 
h 1 3 6 9 12 18 24 

m01 1.02 0.78 0.86 0.97 1.13 1.53 1.80
m02 1.23 0.89 0.93 1.03 1.16 1.57 1.86
m03 1.42 0.98 0.99 1.08 1.19 1.58 1.89
m06 1.77 1.16 1.12 1.17 1.23 1.56 1.97
m09 2.07 1.29 1.22 1.27 1.29 1.59 2.03
y01 2.29 1.42 1.30 1.33 1.36 1.67 2.12
y02 3.25 1.86 1.59 1.56 1.50 1.63 2.14
y03 3.91 2.21 1.81 1.72 1.62 1.77 2.35
y05 5.00 2.84 2.25 2.10 1.93 1.98 2.60
y07 5.51 3.16 2.52 2.32 2.15 2.18 2.79
y10 6.45 3.71 2.98 2.70 2.46 2.43 2.98    

Constant risk price: 0,0 10 =≠ λλ  Constant risk price: 0,0 10 =≠ λλ  

h 1 3 6 9 12 18 24 
m01 2.16 1.30 1.08 0.99 0.96 0.99 1.04
m02 2.58 1.39 1.10 1.01 0.95 0.98 1.05
m03 2.95 1.47 1.13 1.03 0.95 0.97 1.06
m06 2.55 1.42 1.16 1.05 0.95 0.98 1.20
m09 2.33 1.40 1.20 1.11 0.99 1.05 1.35
y01 2.28 1.46 1.24 1.14 1.03 1.11 1.45
y02 3.61 2.07 1.68 1.54 1.36 1.43 2.00
y03 4.87 2.70 2.09 1.86 1.64 1.75 2.45
y05 7.15 4.00 3.06 2.72 2.38 2.42 3.28
y07 8.52 4.79 3.66 3.21 2.82 2.79 3.60
y10 10.73 6.01 4.61 3.95 3.39 3.20 3.85 

h 1 3 6 9 12 18 24 
m01 2.76 1.64 1.28 1.16 1.24 1.61 1.87
m02 3.20 1.66 1.22 1.12 1.17 1.51 1.77
m03 3.55 1.66 1.18 1.08 1.12 1.42 1.66
m06 3.09 1.47 1.10 1.03 1.06 1.28 1.57
m09 2.47 1.27 1.04 1.03 1.05 1.26 1.55
y01 2.02 1.11 1.00 1.01 1.04 1.24 1.52
y02 2.25 1.47 1.33 1.33 1.29 1.39 1.80
y03 4.11 2.33 1.88 1.72 1.58 1.67 2.15
y05 6.66 3.71 2.79 2.44 2.12 2.05 2.59
y07 6.84 3.79 2.83 2.41 2.06 1.93 2.36
y10 7.22 4.02 3.04 2.55 2.15 1.95 2.28 

Time-varying risk price: 10 ,0 λλ ≠  diagonal Time-varying risk price: 10 ,0 λλ ≠  diagonal 

h 1 3 6 9 12 18 24 
m01 2.14 1.43 1.22 1.09 1.00 0.98 1.04
m02 2.69 1.58 1.27 1.11 0.97 0.85 0.92
m03 2.92 1.56 1.23 1.08 0.95 0.89 0.96
m06 2.92 1.59 1.25 1.08 0.92 0.84 1.01
m09 2.75 1.54 1.25 1.11 0.94 0.89 1.10
y01 2.79 1.59 1.25 1.10 0.93 0.86 1.09
y02 2.93 1.65 1.34 1.19 0.99 0.91 1.24
y03 3.10 1.77 1.39 1.24 1.03 0.96 1.34
y05 3.78 2.16 1.70 1.52 1.29 1.22 1.71
y07 4.24 2.42 1.90 1.69 1.47 1.41 1.95
y10 5.25 2.97 2.32 2.03 1.75 1.68 2.25 

h 1 3 6 9 12 18 24 
m01 1.00 0.75 0.85 0.97 1.13 1.54 1.80
m02 1.14 0.81 0.89 1.00 1.13 1.53 1.80
m03 1.32 0.90 0.94 1.04 1.14 1.50 1.78
m06 1.81 1.16 1.12 1.17 1.21 1.51 1.89
m09 2.33 1.38 1.27 1.30 1.31 1.59 2.01
y01 2.53 1.51 1.35 1.36 1.36 1.64 2.07
y02 3.62 2.03 1.72 1.67 1.58 1.72 2.27
y03 4.04 2.26 1.84 1.75 1.64 1.78 2.36
y05 4.89 2.79 2.24 2.10 1.93 1.99 2.60
y07 5.34 3.08 2.47 2.30 2.13 2.16 2.76
y10 6.75 3.89 3.13 2.84 2.57 2.54 3.11 
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Notes:  

1) Illustration on the display of RMSFE ratio:  
 

< 0.80 0.80 – 0.90 0.90 – 1.00 > 1.00 
2) Best RMSFE ratio across all models: e.g. 0.69 
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Table 6. Generalised Taylor Rule: FFR and macro variables/factors (continued) 
RMSFE ratio with respect to Random Walk h months ahead 

 
 

 Large N  Large N 

 VAR(1) states: {FFR mf1 mf2 mf3}  VAR(1) states: {FFR mf1 mf2 mf3 mf4} 

U
nr

es
tr

ic
te

d 

h 1 3 6 9 12 18 24 
m01 1.06 0.82 0.84 0.83 0.86 0.96 1.03
m02 1.18 0.85 0.83 0.82 0.84 0.94 1.02
m03 1.27 0.88 0.85 0.83 0.83 0.93 1.02
m06 1.36 0.91 0.85 0.81 0.80 0.86 1.00
m09 1.42 0.90 0.84 0.81 0.78 0.83 0.98
y01 1.47 0.89 0.84 0.80 0.79 0.83 0.96
y02 1.97 1.06 0.86 0.80 0.76 0.74 0.92
y03 2.26 1.16 0.89 0.79 0.74 0.75 0.96
y05 2.79 1.48 1.07 0.92 0.83 0.85 1.14
y07 3.14 1.70 1.24 1.05 0.96 0.98 1.29
y10 3.73 2.04 1.53 1.30 1.16 1.18 1.48 

 
h 1 3 6 9 12 18 24 

m01 1.04 0.81 0.83 0.82 0.86 0.96 1.04
m02 1.15 0.83 0.82 0.81 0.84 0.94 1.05
m03 1.23 0.85 0.83 0.82 0.83 0.93 1.05
m06 1.32 0.87 0.82 0.80 0.80 0.88 1.08
m09 1.39 0.86 0.81 0.80 0.79 0.86 1.07
y01 1.43 0.85 0.80 0.79 0.79 0.87 1.06
y02 1.87 1.01 0.82 0.77 0.75 0.78 1.02
y03 2.15 1.10 0.84 0.75 0.72 0.77 1.03
y05 2.57 1.39 1.01 0.85 0.77 0.81 1.09
y07 2.90 1.60 1.17 0.98 0.89 0.92 1.19
y10 3.50 1.95 1.47 1.23 1.09 1.09 1.34    

Constant risk price: 0,0 10 =≠ λλ  Constant risk price: 0,0 10 =≠ λλ  

h 1 3 6 9 12 18 24 
m01 1.46 1.02 0.95 0.93 0.96 1.09 1.10
m02 1.69 1.07 0.96 0.92 0.93 1.05 1.08
m03 1.87 1.11 0.97 0.92 0.91 1.01 1.05
m06 1.64 1.02 0.89 0.84 0.81 0.86 0.98
m09 1.46 0.91 0.83 0.78 0.75 0.80 0.95
y01 1.30 0.83 0.77 0.73 0.71 0.77 0.93
y02 1.68 0.92 0.74 0.70 0.69 0.75 1.02
y03 2.23 1.20 0.89 0.79 0.75 0.82 1.10
y05 4.33 2.31 1.62 1.36 1.19 1.18 1.53
y07 5.07 2.74 1.96 1.65 1.45 1.42 1.79
y10 6.76 3.69 2.72 2.27 1.94 1.84 2.19 

 
h 1 3 6 9 12 18 24 

m01 1.50 1.01 0.93 0.90 0.95 1.11 1.16
m02 1.68 1.03 0.91 0.88 0.91 1.05 1.13
m03 1.84 1.05 0.90 0.87 0.88 1.01 1.09
m06 1.63 0.96 0.84 0.80 0.80 0.87 1.04
m09 1.50 0.89 0.80 0.77 0.75 0.82 1.03
y01 1.44 0.85 0.78 0.73 0.72 0.79 1.01
y02 1.81 0.96 0.74 0.69 0.68 0.77 1.10
y03 2.54 1.31 0.94 0.81 0.76 0.89 1.26
y05 4.42 2.29 1.58 1.34 1.19 1.28 1.77
y07 5.03 2.68 1.91 1.65 1.49 1.59 2.13
y10 7.21 3.91 2.90 2.48 2.17 2.17 2.70 

Time-varying risk price: 10 ,0 λλ ≠  diagonal Time-varying risk price: 10 ,0 λλ ≠  diagonal 

h 1 3 6 9 12 18 24 
m01 1.14 0.87 0.87 0.85 0.87 0.97 1.03
m02 1.26 0.90 0.87 0.84 0.85 0.95 1.02
m03 1.38 0.93 0.88 0.85 0.84 0.93 1.01
m06 1.38 0.90 0.84 0.81 0.78 0.84 0.99
m09 1.47 0.88 0.82 0.79 0.76 0.81 0.97
y01 1.46 0.85 0.79 0.76 0.75 0.80 0.94
y02 1.98 1.04 0.84 0.80 0.76 0.75 0.95
y03 2.09 1.09 0.85 0.78 0.74 0.74 0.95
y05 3.03 1.60 1.14 0.98 0.88 0.86 1.13
y07 3.55 1.89 1.36 1.14 1.01 1.00 1.30
y10 4.64 2.52 1.86 1.54 1.34 1.31 1.62 

 
h 1 3 6 9 12 18 24 

m01 1.11 0.85 0.86 0.86 0.89 0.99 1.06
m02 1.22 0.86 0.83 0.83 0.86 0.97 1.07
m03 1.34 0.88 0.84 0.83 0.84 0.94 1.06
m06 1.41 0.88 0.80 0.78 0.78 0.87 1.07
m09 1.52 0.89 0.79 0.77 0.76 0.84 1.06
y01 1.54 0.88 0.78 0.75 0.75 0.84 1.04
y02 1.92 1.01 0.80 0.76 0.74 0.79 1.05
y03 1.99 1.02 0.80 0.73 0.70 0.77 1.03
y05 2.70 1.44 1.04 0.90 0.82 0.87 1.17
y07 3.12 1.70 1.23 1.05 0.96 0.99 1.29
y10 4.28 2.36 1.78 1.50 1.33 1.32 1.61 

R
es

tr
ic

te
d 

 

 
Notes:  

1) Illustration on the display of RMSFE ratio:  
 

< 0.80 0.80 – 0.90 0.90 – 1.00 > 1.00 
2) Best RMSFE ratio across all models: e.g. 0.69 
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