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Abstract

This paper considers the optimal mechanism design problem of an expected revenue
maximizing principal who wants to sell a single unit of a good to an agent who is ambiguity
averse in the sense of Gilboa and Schmeidler (1989). We show that the optimal static
mechanism is an ambiguous mechanism.
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After showing that (a version of) the Revelation Principle holds in our environment, we
give an exact characterization of the (smallest) optimal ambiguous mechanism. If the type
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contains N − 1 outcome functions.

We show that the share of the surplus that the designer can extract from the agent
increases as the type set becomes larger and the probability of each single type decreases.
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1 Introduction

Starting with the seminal work of Ellsberg (1961), experimental economists have argued that

the standard economic model for decision making under uncertainty, namely the Expected

Utility Model (henceforth EU model), performs rather poorly in describing individuals’ be-

havior in situations where subjects have very little information regarding the decision problem

they are facing. In particular, it has been shown that the overwhelming majority of individuals

tends to shy away from alternatives for which they lack the necessary information to form a

probabilistic belief about their consequences. It is well known that this aversion against uncer-

tainty/ambiguity is incompatible with the EU model.1

This inconsistency between observed decisions and the EU model has stimulated the devel-

opment of decision theoretic models that are able to accommodate ambiguity aversion.2 While

ambiguity aversion models have been successfully applied in many areas of economics and

finance,3 they have received only limited attention in mechanism design (see the discussion of

the literature below). This is surprising not only in light of the fact that the available exper-

imental evidence suggests that most individuals do exhibit at least some degree of ambiguity

aversion. But mechanism design is also a subject where issues related to ambiguity aversion

cannot simply be ruled out by assuming that the involved parties have sufficiently good in-

formation regarding the exogenous elements of the environment (e.g. distributions over type

sets). After all, in mechanism design the principal has direct control over the rules of the game

(auction format, tax code etc.) and thus also about the information that he wants to release

regarding these rules. Since it is up to him whether or not he wants to remain ambiguous vis à

vis the agent when he explains the rules of the game, the question whether agents are exposed

to uncertainty becomes an endogenous issue. This observation very naturally leads to the ques-

tion of whether the principal can benefit from specifying the rules in an ambiguous fashion,

and if so, how exactly those ambiguous rules should be designed. These are the questions that

we address in this paper.

1The sense in which ambiguity aversion is incompatible with the EU model is best explained with Ellsberg’s
famous two urn example. There are two urns, each of which contains one hundred balls. Half of the balls in Urn A
are red, the other half is blue. Also Urn B is composed of balls that are either red or blue, but the decision maker
has no information about the number of balls of each color. Now consider the following two bets. Bet RA pays one
dollar if in a random draw from Urn A a red ball is extracted; bet RB pays one dollar if a random draw from Urn B
yields a red ball. When faced with the choice between these two bets the overwhelming majority of subjects picks
bet RA. The same they do also when the pair of bets is formulated for the color blue. Within the EU framework it is
impossible to rationalize both these decisions: for each possible belief about the composition of Urn B the decision
maker should choose the bet on a blue ball from Urn B if and only if between the two bets on red he prefers the one
referring to Urn A.

2For two recent surveys of the literature on ambiguity aversion and its axiomatic foundations, see Gilboa (2009)
and Gilboa and Marinacci (2011).

3See for instance Epstein and Schneider (2008) and Castro and Yannelis (2012) for examples of applications of
ambiguity aversion in finance and general equilibrium.
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Specifically, we consider a simple screening model—a seller wants to sell a single object

to a single buyer—that is standard except for the agent’s preferences. The agent privately ob-

serves his willingness to pay for the good; the principal only knows the distribution from which

it has been drawn. Instead of modeling the agent as a classical expected utility maximizer, we

assume that his preferences are of the maxmin expected utility (MMEU) type, as in Gilboa and

Schmeidler (1989). We show that in this environment the optimal static mechanism uses an un-

certain outcome rule. We refer to mechanisms with this feature as ambiguous mechanisms. An

uncertain outcome rule is not given by a single (deterministic or stochastic) outcome function.

Rather, it consists of a set of outcome functions. When the principal employs an ambiguous

mechanism, he does not communicate to the agent the exact outcome function to which he has

committed. Instead, he only informs the agent that it belongs to a set of outcome functions

(those that belong to the ambiguous mechanism).

By proposing an ambiguous mechanism, the principal exposes the agent to uncertainty

regarding the consequences of any given message that he can send. Since the agent has MMEU

preferences, it follows that each one of his types associates with each possible message the

worst possible outcome that he can obtain under the different outcome functions. Of course,

different types evaluate outcomes differently, and hence they may associate different worst

case scenarios with a given message. It is exactly this fact that makes the use of ambiguous

mechanisms attractive for the principal. By appropriately choosing the ambiguous mechanism,

he can (to some extent) manipulate the payoffs that one type of the agent receives by sending

a given message, without necessarily changing the payoff that other types associate with that

same message. In particular, if the ambiguous mechanism is direct (i.e. if all of its elements are

direct) this means that the designer can lower the payoff that type θ′ associates with sending

the message θ′′ without necessarily lowering the truth-telling payoff of type θ′′.

The arguments in the preceding paragraph presume that the agent believes that the principal

might have committed to any of the elements of the ambiguous mechanism. Put differently, it

takes for granted that the agent’s (set-valued) belief over the set of outcome functions contains

at least all degenerate distributions over this set. The assumption that the agent holds such

a ‘comprehensive’ belief is reasonable if it is compatible with the principal being indifferent

between all the elements of the ambiguous mechanism if the agent acts optimally with respect

to such a belief. We therefore impose that the principal can only propose mechanisms that

satisfy this property. That is, we require that all elements of an ambiguous mechanism generate

the same expected revenue under the assumption that the agent chooses his strategy based

on a comprehensive belief. We refer to ambiguous mechanisms that satisfy this condition as

consistent.4 While from a technical point of view we treat consistency as a constraint that

limits the feasible actions available to the designer, it should be interpreted as an equilibrium

4A formal definition of the consistency condition is given in Section 2.
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condition in the interaction between the principal and the agent.

After introducing the concept of ambiguous mechanisms, we formulate and prove a version

of the Revelation Principle that is appropriate for our context and objectives. Doing so allows

us to restrict attention to direct ambiguous mechanisms. We characterize (one of) the smallest

optimal direct ambiguous mechanism(s) for the case where the set of possible types of the agent

is finite.5 We show that this mechanism is composed of at most N − 1 elements, where N is the

number of types. The n-th outcome function of this ambiguous mechanism assigns the good

with probability one to all types m , n,N at a price that coincides with the reported type. Thus,

every outcome function extracts the entire surplus from N − 2 types. Also the highest type

obtains the good with probability one. Since his transfers are used to guarantee consistency, he

typically does not have to pay under every outcome function a price equal to his willingness to

pay. The remaining components of the outcome functions (allocations and payments of type

n ≤ N − 1 under outcome function n) vary with the details of the type distribution. More

specifically, we show that these components depend on the types’ so called adjusted virtual

valuations. Independently of the details of the type distribution, these components satisfy a

monotonicity condition: the probability with which type n obtains the good under outcome

function n is smaller than or equal to the probability with which outcome function m > n

assigns the good to type m.

Using the above described characterization, we prove that the share of surplus that the

designer can extract from the agent increases as the type set becomes larger and the probability

of each type converges to zero. In the limiting case of a non-atomic type distribution over an

interval, the optimal ambiguous mechanism extracts the full surplus from the agent. In the

final section of the paper we discuss how this result on full surplus extraction under ambiguity

aversion relates to the findings of Matthews (1983), who shows that full surplus extraction is

possible if the agent is infinitely risk averse.6 There we also show that the fact that the number

of types is a crucial determinant for the share of the surplus that the principal can extract from

the agent, implies that the principal may want to elicit payoff-irrelevant private information

from the agent. Since such information is easy to generate, the principal has an incentive to

induce the agent to inflate his type set by adding payoff irrelevant elements.

We also consider two dimensions along which our basic model can be extended. First,

we argue that the central insight of the paper (the principal can exploit the ambiguity aversion

of the agent by offering an ambiguous mechanism) does not hinge on the particular model of

ambiguity aversion that we adopt in this paper (MMEU preferences) but remains valid also if

alternative models of uncertainty aversion are assumed.7 Specifically, we provide an example

5The term ‘smallest’ refers to the number of elements of the ambiguous mechanism.
6The implications of risk aversion for the design of an optimal mechanism are also studied by Maskin and Riley

(1984).
7Of course, the details of our characterization of an optimal ambiguous mechanism do depend on the specificities
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that shows this for the case of smooth ambiguity aversion. A second dimension in which the

core insight of the paper generalizes is the number of agents. While we do not provide a

detailed characterization of the optimal ambiguous mechanism for the case where the agents’

type sets are finite, we describe the mechanism that extracts the full surplus when the agents’

types are drawn from an atomless distribution defined on some interval.

Given the result that in the presence of ambiguity averse agents it is highly beneficial for the

designer to use ambiguous mechanisms, one should expect to observe real world mechanisms

that exhibit some form of ambiguity. Indeed, we believe that our findings help to rationalize

a number of institutions that we observe in real world settings. Probably the most obvious in-

stances of real world mechanisms that can be interpreted as ambiguous mechanisms are auction

formats with unknown reservation prices.8 Even though unknown reservation prices can also

be rationalized in the context of a Bayesian setting, it seems to us that the most natural way to

interpret the fact that the principal does not want to disclose any information with respect to

his reservation price, is that he wants to expose the bidders to uncertainty.9

Our results also provide a new way to rationalize laws that leave some discretionary deci-

sion power to the executive or judicial branch of government. Arguably, it is very difficult for

citizens to predict the behavior of government agencies or judicial courts. In particular, this

should be the case for citizens who have only limited experience in dealing with the public

administration. Thus, by leaving laws incomplete, and by delegating decisions to the executive

agencies or the court system, the parliament exposes its citizens to uncertainty.

Related literature: A number of recent papers consider mechanism design problems with

ambiguity averse players. Examples include Bose, Ozdenoren, and Pape (2006), Turocy (2008),

Bose and Daripa (2009), Bodoh-Creed (2010), Bose and Renou (2011) and Bergemann and

Schlag (2011).10 The central difference between these papers and ours is that they start from

the assumption that the agents (and/or the principal) are uncertain about the other agents’ type

distribution. That is, the uncertainty in these models refers to an exogenously given variable.

The endogenous objects (i.e. the mechanisms) are not allowed to be ambiguous.11 Instead,

of the Gilboa and Schmeidler (1989) preference model that we use.
8For a discussion of real world situations where auctions with unknown reservation prices are applied see, for

instance, Elyakime, Laffont, Loisel, and Vuong (1994).
9 Another prominent instance of ambiguous auction formats are Google’s auctions for ad space on its web pages.

Apparently auctions with ex ante uncertain auction rules are applied also in the used car market. In these auctions
first buyers submit their bids. Upon observing the bids the auctioneer either declares a winner or he calls for a
second round of bids and so on. The rule according to which the decision about whether or not to continue is
taken, is not known to buyers (and supposedly not easily inferable from previous observations unless the bidder is
extremely experienced). We are thankful to Larry Samuelson for pointing us to this example.

10Several models of beliefs and behavior in games that relax the assumption of Bayesian expected-utility maxi-
mizing players have been proposed. See e.g. Azrieli and Teper (2011) and the references therein.

11Bose and Renou (2011) are an exception to this observation; their work is discussed in more detail in the
following paragraph.
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these papers characterize the optimal standard (i.e. non-ambiguous) mechanism, where atten-

tion is restricted either to direct mechanisms or to simple forms of indirect mechanisms (e.g.

standard auction formats).12

To the best of our knowledge, this is the first paper showing that it can be in the designer’s

interest to introduce uncertainty over outcome functions when agents are ambiguity averse.

In a contemporaneous and independent paper, Bose and Renou (2011) also recognize that in

such contexts the principal may want to introduce some element of uncertainty into the mech-

anism that he uses. The two papers are complementary, as they study the impact of ambiguity

aversion through quite distinct channels. Unlike in this paper, in their work the uncertainty

is not introduced via the outcome functions. Instead, they explore which social choice rules

the designer can implement if he engages the agents in a dynamic communication game that

he mediates by transforming messages in an ambiguous way. By injecting uncertainty in the

exchange of messages between the agents, the principal can manipulate the agents’ beliefs

about each other’s type and hence their behavior. Bose and Renou (2011) remark that the pre-

cise extent to which the agents’ beliefs can be manipulated depends on the assumed form of

(full Bayesian) belief updating. By contrast, our restricting attention to strategic form mecha-

nisms makes the question of what is the most appropriate way to model updating by ambiguity

averse individuals—still controversially discussed in the literature—altogether irrelevant in our

context. Finally, the ambiguous communication devices in Bose and Renou (2011) serve to ma-

nipulate the agents’ beliefs over the other agents’ types and hence they are ineffective in single

agent environments. Instead, as we show in this paper, (outcome) ambiguous mechanisms have

leverage also in the case of a single agent.

The paper is also related to the literature on robust mechanism design that originated with

the seminal papers by Bergemann and Morris (2005) and Chung and Ely (2007). This litera-

ture departs from the standard Bayesian type space framework that has dominated the earlier

mechanism design literature and studies what kind of social choice functions are implementable

irrespective of the type space that is assumed. Requiring such a form of robustness with respect

to the specificities of the type space is similar in spirit to the idea of a designer that is uncertain

with respect to the ‘correct’ type space. Apart from the fact that the ‘uncertainty aversion’ in

the case of this literature is on the side of the designer, the crucial conceptual difference to our

work lies in the fact that the family of the relevant type spaces is not an endogenous object (like

the ambiguous mechanisms in our work) but is exogenously given.

12Similar comments apply both to the literature that considers moral hazard models with ambiguity aversion
and the literature that studies models with Knightian uncertainty. For the literature on moral hazard and ambiguity
aversion see for instance Kellner (2011) and Szydlowski (2012); on Knightian uncertainty in mechanism design see
Lopomo, Rigotti, and Shannon (2009) and Garrett (2011) and the references therein.
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2 Framework

Throughout the first part of the paper we consider the mechanism design problem of a principal

who wants to sell a single unit of a good to a single agent. The notation and terminology that we

introduce below generalizes in the obvious way to the multiple agent setting that we consider

in the final parts of the paper.

Allocations and preferences. An allocation is a pair (x, τ) ∈ X × R, where x ∈ X = [0, 1]

is the probability with which the good is transferred to the agent and τ represents a monetary

transfer (to be paid by the agent).13 With a slight abuse of terminology we will often use

the term ‘allocation’ to indicate the non-monetary component x of a pair (x, τ). The agent’s

preferences over X × R depend on his (payoff-) type θ ∈ Θ ⊂ R. More specifically, we assume

that they can be represented by a linear utility function,

u(x, τ) = xθ − τ.

The agent is ambiguity averse in the sense of Gilboa and Schmeidler (1989). That is, in a

situation where his beliefs are described by a family of distributions over allocation-transfer

pairs,M, his utility is given by

inf
µ∈M

Eµ[xθ − τ].

The agent’s valuation (or type), θ, is only observed by the agent himself. The principal knows

that it is distributed according to p = (p1, . . . , pN).

The principal is a risk neutral expected utility maximizer. We assume that his objective

is to maximize his expected revenue (i.e. the expected transfer payments extracted from the

agent). The main results of our paper go through also under the assumption of an ambiguity

averse principal. Allowing for that possibility, however, does not add anything of interest to

our analysis since the crucial insights that we obtain are driven by the ambiguity aversion of

the agent. In order not to obscure this fact it is convenient to assume standard expected utility

preferences for the principal.

The principal’s strategy set: simple vs. ambiguous mechanisms. A simple mechanism is

a triple (S , q, t), where S is a set of messages for the agent and q and t are functions that map

S into X and R, respectively. That is, for each s ∈ S , q and t specify an allocation-transfer

pair. We therefore refer to q and t, respectively, as allocation and transfer rules on S . A direct
simple mechanism is a simple mechanism such that S = Θ. Since all direct mechanisms share

13Instead of interpreting x as the probability with which the indivisible good is transferred one can equivalently
assume that the good is perfectly divisible and that x represents the share that is given to the agent.
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the same message space, we drop the latter from the notation and identify the direct mechanism

(Θ, q, t) with its outcome function (q, t).

Notice that our definition of a simple mechanism allows for random allocations but not for

random transfers: the range of t is R, not the set of probability measures over R. Given that

both the principal and the agent are risk neutral, restricting attention to deterministic transfer

schemes is without loss of generality. A mechanism with random transfers can be replaced by

one with deterministic transfers that specifies for each type report the expected values of the

random transfer scheme. Doing so does not alter the two players’ expected payoffs for any

decision that the agent may take. The same is true for random allocation rules if the good is

perfectly divisible.14

In mechanism design it is typically assumed that the principal commits to a specific out-

come function and that he announces this outcome function to the agent. In particular, if the

agent is an expected utility maximizer the principal cannot gain anything from concealing the

mechanism to which he committed himself.15 The central insight of this paper is that this is no

longer the case in the presence of an ambiguity averse agent. In fact, we show that it is typi-

cally in the principal’s best interest not to inform the agent about the exact outcome function to

which he commits. Instead, he can benefit from communicating the rules of the mechanisms in

an ambiguous way.

Formally, we capture the idea of ambiguous rules with the notion of an ambiguous mecha-

nism.

Definition 1. An ambiguous mechanism is a pair (S ,Ω), where S is a set of messages, and Ω

is a set of simple outcome functions defined on S , i.e. Ω ⊂ XS × RS .16 A generic element of Ω

is denoted by (q, t), where q ∈ XS and t ∈ RS .

An ambiguous mechanism (S ,Ω) is said to be direct if S = Θ.

Since in the case of direct ambiguous mechanisms it is clear what the message space is, we

identify the direct mechanism (Θ,Ω) with its set of outcome functions Ω. That is, with a slight

abuse of terminology we will often refer to Ω alone as an ambiguous mechanism.

Before we continue with our analysis a few remarks on the interpretation and purpose of the

concept of an ambiguous mechanism are in order. After choosing a set of possible messages,

S , the principal commits to an outcome function (q̂, t̂) ∈ XS × RS . This commitment may be

achieved, say, by depositing (q̂, t̂) with an uninterested third party. The agent is not necessarily

14If the good is not divisible, then allowing for random allocations expands the set of possible allocations.
15Strictly speaking, even in a Bayesian one does not need to assume explicitly that the principal announces the

mechanism to the agent. But under every standard equilibrium concept agents would know in equilibrium which
mechanism has been chosen by the principal.

16As already mentioned in the discussion of simple mechanisms, the restriction to ambiguous mechanisms with
sets of deterministic outcome functions is without loss of generality in an environment with risk neutral players.
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informed about the exact outcome function that has been chosen. Instead the principal may

limit himself to tell the agent that it belongs to a set Ω (i.e. (q̂, t̂) ∈ Ω). Of course, by announcing

an ambiguous outcome rule Ω he exposes the agent to uncertainty about the consequences of

his messages. We discuss the principal’s motives for doing so in the next section.

The requirement (q̂, t̂) ∈ Ω rules out the possibility that the principal completely deceives

the agent with regard to (q̂, t̂). Thus, an agent who decides to participate in the ambiguous

mechanism and announces the message s ∈ S can be forced to accept the outcome (q̂(s), t̂(s))

only if two conditions are satisfied. First, the outcome function (q̂, t̂) is the one to which the

principal has committed17 and ii) (q̂, t̂) is an element of the announced set of outcome functions,

Ω. We stress once more the fact that the principal commits to (q̂, t̂) before the agent sends his

message; therefore the choice of (q̂, t̂) cannot be conditioned on the latter.

Agent’s beliefs and strategies. Once the designer has specified an ambiguous mechanism,

(S ,Ω), the agent chooses a message from S . A strategy for the agent is a function σ that maps

Θ into S , i.e. σ ∈ S Θ.

Observe that we do not allow the agent to use mixed strategies. It is well known that

an ambiguity averse individual who faces the choice between two alternatives with uncertain

consequences, may be strictly better off by mixing over the two options than he would be if he

chose either one of them with probability one. Through the use of randomizations the agent

may be able to hedge against the uncertainty involved in the two alternatives.18

This observation notwithstanding, our assumption that the agent may only use pure strate-

gies is without loss of generality. This is so because preventing the agent from using mixed

strategies not only benefits the designer, but it is also feasible for him to do so. We discuss the

reasons why the principal does not want to allow the agent to send randomized messages in

some more detail in Example 1 below. Essentially, by permitting the agent to randomize the

principal reduces his own capacity to control the agent’s deviation payoffs.

In order to see that the principal can prevent the agent from hedging, observe that the

benefits from hedging are gains that the agent perceives before the outcome of his random

strategy is observed. Thus, in our mechanism design context the agent can realize such gains

only if he has the possibility to commit to the use of an external randomization device that picks

the message that he is supposed to report to the principal in his stead.19 But then the principal

just needs to preclude the use of such external randomization devices by imposing that reports

have to be communicated directly by the agent himself.

17Here we implicitly assume that the principal can credibly disclose this outcome function ex post.
18That uncertainty averse agents have an incentive to hedge against uncertainty has already been observed by

Raiffa (1961).
19No hedging gains can be obtained by ‘rolling a die’ in his head. Once such a die has been rolled the agent still

has the possibility to decide whether or not to communicate the message chosen by the die.
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The set of optimal strategies for the agent depends on his beliefs regarding the outcome

function (q̂, t̂) to which the principal has committed himself. Since the agent’s only piece of

hard information regarding the chosen outcome function is that (q̂, t̂) belongs to Ω, we assume

that his (set valued) belief contains all probability measures on Ω, provided that such a belief

is not incompatible with the fact that (q̂, t̂) is an optimal choice of the principal.

Denote the set of all probability measures over Ω by ∆(Ω). We say that the set of beliefs

∆(Ω) is consistent with (q̂, t̂) being an optimal choice of the principal, if the following condition

holds.

Definition 2. Let Σ∗(S ,Ω) ⊂ S Θ denote the agent’s set of optimal strategies for the ambiguous

mechanism (S ,Ω) when his beliefs are described by the set ∆(Ω). The ambiguous mechanism

(S ,Ω) is consistent with respect to σ ∈ Σ∗(S ,∆(Ω)) if for all (q′, t′), (q′′, t′′) ∈ Ω

Ep[t′(σ(θ))] = Ep[t′′(σ(θ))].

(S ,Ω) is consistent if it is consistent with respect to some σ ∈ Σ∗(S ,Ω).

Consistency requires that each element of the ambiguous mechanism Ω delivers the same

expected revenue to the principal if the agent bases his choice on the belief set ∆(Ω). In order

to understand why we impose this condition, consider a situation were it is not satisfied. I.e.

assume that the principal proposes an ambiguous mechanism (S ,Ω) such that for every σ ∈

Σ∗(S ,Ω) there are outcome functions (q, t), (q̄, t̄) ∈ Ω satisfying

Ep[t(σ(θ))] < Ep[t̄(σ(θ))].

In this case the agent’s assumption that the principal might have chosen any of the elements

in Ω leads to the conclusion that the principal strictly prefers some elements of Ω over other

elements of Ω, if he correctly predicts the agent’s belief and strategy. Consistency serves to

rule out such contradictory beliefs.

Essentially, consistency is an equilibrium condition for the two stage game played by the

designer and the agent. In equilibrium the agent should not believe in the possibility that a

certain outcome function is chosen, if his optimal response to such a belief implies that the

outcome function does not maximize the designer’s payoff.

3 Optimal ambiguous mechanisms

The designer’s objective is to maximize his expected revenue. When designing the (ambiguous)

mechanism that he wants to adopt he has to respect two types of constraints: i) consistency

9



and ii) individual rationality. The consistency conditions has been discussed in the preceding

section. Individual rationality refers to the agents willingness to participate in the mechanism.

We assume that participation is voluntary. Thus, in order to guarantee that no type of the agent

refuses to participate, the mechanism must yield to each type a payoff that is no smaller than

the value of the type’s outside option. We assume that the latter is equal to zero for all types.20

Formally, we can state the principal’s problem as follows.

max
R∈R,S⊂R,Ω⊂XS×RS

R (P)

subject to there exists σ∗ ∈ Σ∗(S ,Ω) such that

i) R = Ep[t(σ∗(θ))] for all (q, t) ∈ Ω, and

ii) inf
(q,t)∈Ω

{q(σ∗(θ))θ − t(σ∗(θ))} ≥ 0 for all θ ∈ Θ.

Constraint i) is the consistency condition while ii) represents the individual rationality con-

straint. Since simple mechanisms can be seen as degenerate ambiguous mechanisms, the con-

straint set of this problem is clearly non-empty.

Before we derive the solution to this problem we show with the help of a simple example

why the use of an ambiguous mechanisms allows the principal to extract a larger share of the

surplus than a simple mechanism.

Example 1 (Simple vs. Ambiguous mechanisms). Consider an environment where the agent’s

type is drawn from the set Θ = {1, 2, 4} according to the probability distribution p = (1/4, 1/4, 1/2).

The optimal simple mechanism for this setting, excludes the two lowest types and assigns the

good only to an agent who reports the highest type at the price of 4. The details of the opti-

mal (direct) outcome function are reported in the following table, where θ̂ denotes the reported

type.

θ̂ 1 2 4
(q∗, t∗) (0, 0) (0, 0) (1, 4)

The expected revenue generated by this mechanism when the agent reports his type truth-

fully, is R∗ = Ep[t∗(θ)] = 2.

Now suppose that the planner adopts the (direct) ambiguous mechanism Ω = {(q1, t1), (q2, t2)},

described in the table below.
20In what follows individual rationality is defined for general (i.e. direct and non-direct) ambiguous mechanisms.

We stress this because it is standard in the literature to define it with respect to truthtelling in direct mechanisms.
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θ̂ 1 2 4
(q1, t1) (0, 0) (1, 1) (1, 4)
(q2, t2) (1, 1) (0, 0) (1, 4)

Upon observing Ω the agent knows that the planner has committed himself either to (q1, t1)

or to (q2, t2). Since he does not know which one of the outcome functions the principal has

picked he evaluates all possible reports according to the outcome function that yields the worse

outcome for that report. Thus, by announcing either 1 or 2 each type of the agent obtains a

payoff of 0:

min{q1(1)θ−t1(1), q2(1)θ−t2(1)} = min{q1(2)θ−t1(2), q2(2)θ−t2(2)} = min{0×θ−0, 1×θ−1} = 0.

Only the highest type gets a zero payoff from announcing 4 (q1(4)4 − t1(4) = q2(4)4 − t2(4) =

4 − 4 = 0); for both of the other types reporting 4 leads to a negative payoff. Combining

these observations allows us to conclude that under Ω each type of the agent, by reporting

truthfully, obtains a payoff of at least 0, i.e. Ω is individually rational. Moreover, for each type

θ it is optimal to report θ. Under truthful reporting both outcome functions yield the expected

revenue R = Ep[t1(θ)] = Ep[t2(θ)] = 9/4 > 2 = R∗. Therefore, with respect to truth-telling,

Ω is not only individually rational but also consistent. We conclude that Ω is an admissible

ambiguous mechanism that yields a higher expected revenue than the best simple mechanism.

The above example reveals that the ambiguous mechanism Ω performs better than the opti-

mal simple mechanism (q∗, t∗) because neither element of Ω excludes both lower types: while

(q1, t1) only excludes type 1, under (q2, t2) trade is ruled out only if type 2 is reported. The

fact that for each of the two lower types there is one outcome function that specifies that no

trade will take place if this type is reported, suffices to deter the highest type from deviating to

a non-truthful message. When contemplating the message θ̂ = 1 he is afraid of the possibility

that the principal has chosen (q1, t1); in the case of θ̂ = 2, instead, the agent is afraid of (q2, t2).

Thus, through the use of an ambiguous mechanism it is possible to extract the full surplus from

the highest type without having to renounce completely on the possibility to extract some rent

also from the lower types.

The preceding arguments are based on the assumption that the agent cannot randomize

between different messages. We next show that if given the possibility, the agent would want to

hedge against the uncertainty to which the ambiguous mechanism exposes him, by committing

to a randomization device for the choice of his report. Thus, truth telling is no longer an optimal

strategy for him.

In order to see this consider type 4 and observe that his truth-telling payoff is 0 as is the

payoff from either one of the other two available messages. The reason for the low payoff
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from a pure deviation strategy is of course the ambiguity in the consequences that the deviation

will have. If the agent is given the possibility to commit to a randomization device that mixes

(with equal chances) between the messages 1 and 2, then by doing so he can eliminate this

uncertainty and obtain a strictly positive payoff. Thus, in this case truth-telling would no longer

be an optimal strategy.

In particular, suppose the agent mixes half-half between messages 1 and 2. Then both

under the outcome function (q1, t1) and under the outcome function (q2, t2) he gets the good

with probability 1/2 and pays (in expectation) a transfer of 1/2.21 His payoff from such a

mixed deviation is therefore equal to (1/2) × 4 − 1/2 = 3/2 > 0. �

In what follows we prove a sequence of results that show that Problem P can be substan-

tially simplified. We start our analysis by showing that it is without loss for the principal to

restrict his attention to direct ambiguous mechanisms. That is, we prove that in our environ-

ment a version of the Revelation Principle holds. Before we do so we introduce the notion of

incentive compatibility of direct ambiguous mechanisms.

Definition 3 (Incentive Compatibility). The direct ambiguous mechanism Ω satisfies the in-

centive compatibility constraint of type θn ∈ Θ with respect to type θm ∈ Θ if22

inf
(q,t)∈Ω

{q(θn)θn − t(θn)} ≥ inf
(q,t)∈Ω

{q(θm)θn − t(θm)}. (IC(n,m))

The ambiguous mechanism Ω is downward incentive compatible if IC(n,m) holds for all

n,m ∈ N such that n > m; it is upward incentive compatible if IC(n,m) is satisfied for all

n,m ∈ N such that n < m. Finally, Ω is incentive compatible if it is both downward and

upward incentive compatible.

Incentive compatibility of Ω guarantees that it is optimal for the agent to reveal his type

truthfully.

Proposition 1 (Revelation Principle). Let (S ,Ω) be an ambiguous mechanism that is consistent

with respect to σ ∈ Σ∗(S ,Ω). There is a direct ambiguous mechanism (Θ,Ω′), and an optimal

strategy for the agent, σ′ ∈ Σ∗(Θ,Ω′) such that the following three conditions hold:

i) (Θ,Ω′) is consistent with respect to σ′;

ii) (Θ,Ω′) is incentive compatible; in particular, σ′(θ) = θ for every θ ∈ Θ;

21Since the agent is risk neutral he evaluates stochastic outcomes according to their expected value.
22Since the agent is risk neutral, calculating the infimum of the expected payoffs of the agent with respect to

∆(Ω) delivers the same value as the one that is obtained when attention is restricted to Ω.
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iii) (q, t) ∈ Ω if and only if (q′, t′) ∈ Ω′ where (q′, t′) is defined by

q′(θ) = q(σ(θ)),

t′(θ) = t(σ(θ)).

Proof. Optimality of σ implies

inf
(q,t)∈Ω

q(σ(θ))θ − t(σ(θ)) ≥ inf
(q,t)∈Ω

q(s)θ − t(s) ∀s ∈ S .

Let Ω′ be defined by iii). By the construction of Ω′ we have

inf
(q′,t′)∈Ω′

q′(θ)θ − t′(θ) = inf
(q,t)∈Ω

q(σ(θ))θ − t(σ(θ)).

Similarly,

inf
(q′,t′)∈Ω′

q′(θ′)θ − t′(θ′) = inf
(q,t)∈Ω

q(s′)θ − t(s′)

for s′ = σ(θ′). Combining these three observations yields

inf
(q′,t′)∈Ω′

q′(θ)θ − t′(θ) ≥ inf
(q′,t′)∈Ω

q′(θ′)θ − t′(θ′) ∀θ′ ∈ Θ,

as required by condition ii).

Condition i) follows from the construction of t′.

�

We have formulated the Revelation Principle so that it directly includes the consistency

condition. The proposition tells us that for any non-direct ambiguous mechanism (S ,Ω) we can

find an incentive compatible direct one, Ω′, such that, element by element, the two ambiguous

mechanisms generate the same allocations and transfers. Therefore, both the principal and the

agent obtain the same payoff under the two mechanisms. As a consequence it is without loss for

the principal to restrict himself to direct ambiguous mechanisms that are incentive compatible.

Given the restriction to direct ambiguous mechanisms, from now on we write qn and tn for

respectively q(θn) and t(θn). Next, we formally define the notion of individual rationality for

direct ambiguous mechanisms.

Definition 4 (Individual Rationality). A direct ambiguous mechanism Ω is individually rational

for type θn ∈ Θ if

inf
(q,t)∈Ω

{qnθn − tn} ≥ 0. (IR(n))

Ω is individually rational if condition IR(n) holds for all n ∈ N.
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The next lemma shows that if downward incentive compatibility holds, then imposing in-

dividual rationality for the lowest type implies individual rationality for the other types.

Lemma 1. If Ω satisfies IC(n,n-1) for all n = 2, . . . ,N and IR(1), then Ω also satisfies IR(n).

Proof. Suppose that Ω satisfies IR(1) and IC(n,n-1) for n = 2, . . . ,N. Then, for all n ≥ 2,

inf
(q,t)∈Ω

{qnθn − tn}
IC(n,n−1)
≥ inf

(q,t)∈Ω
{qn−1θn − tn−1} ≥ inf

(q,t)∈Ω
{qn−1θn−1 − tn−1}.

But if the truth-telling payoff is weakly increasing in the agent’s type and the lowest type’s

individual rationality constraint is satisfied, then individual rationality must also hold for type

θm, m = 2, . . . n. �

By the Revelation Principle and Lemma 1 we can restrict our attention to direct ambiguous

mechanism that satisfy incentive compatibility, consistency and IR(1). In what follows it will

be convenient to consider a relaxed version of this problem, where incentive compatibility is

substituted by downward incentive compatibility:

max
R∈R,Ω⊂XΘ×RΘ

R (P’)

s.t. R = Ep[t(θ)] for all (q, t) ∈ Ω,

IC(n,m) for all n,m ∈ N, n > m,

IR(1).

Our next objective is to show that the set of admissible ambiguous mechanisms of this problem

can be substantially further restricted without reducing the problem’s value. Then we will prove

that all the elements of the resulting reduced feasible set satisfy upward incentive compatibility.

Thus, the solutions to the simplified problem that we obtain, also solve the original problem P.

The first step of our argument is to show that P’ admits solutions that exhibit a property

to which we refer as uniformity. Uniformity requires that for every type, each element of the

ambiguous mechanism yields the same truth telling payoff. Moreover, one of the downward

incentive constraints must be binding. In order to allow for a compact statement of the result

we denote set of P’-feasible ambiguous mechanisms by C.23 Moreover, for every Ω ∈ C we

write R(Ω) for the expected revenue generated by (every element of) Ω.

Lemma 2 (Uniformity). For every Ω ∈ C there exists Ω̃ ∈ C such that |Ω| = |Ω̃|, R(Ω) = R(Ω̃),

23That is, C is the set of all ambiguous mechanisms, Ω, for which there is an R such that the pair (R,Ω) satisfies
the constraints of Problem P’.
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and

q1θ1 − t1 = 0 for all (q, t) ∈ Ω̃ (3)

qnθn − tn = max
m<n

{
inf

(q,t)∈Ω
qmθn − tm

}
for all (q, t) ∈ Ω̃ and N > n > 1. (4)

Proof. We first show that Ω can always be manipulated - in a revenue and feasibility neutral

way, - so that condition (3) holds. IR(1) requires that

q1θ1 − t1 ≥ 0 for all (q, t) ∈ Ω.

Suppose that for some (q′, t′) ∈ Ω this inequality is strict, i.e. q′1θ1 − t′1 > 0. Then (q′, t′) can

be replaced by the outcome function (q′′, t′′) that coincides with (q′, t′) everywhere except for

the transfers of the lowest and the highest type. Those are set as follows:

t′′1 = q′1θ1,

t′′N = t′N −
p1

pN
[t′′1 − t′1].

That is, the payment of the lowest type is increased until his truth-telling payoff is equal to

zero. The transfer of the highest type is lowered so that the expected value of t′′ coincides with

the expected value of t′. This change does not lead to a violation of IR(1). By construction the

new ambiguous mechanism that we obtain after the replacement of (q′, t′) satisfies consistency

and generates the same expected revenue as Ω. Furthermore, the change in the transfers can at

most relax the downward incentive constraints.

The same type of argument can be applied in order to show that we can obtain (4) without

violating either downward incentive compatibility or IR(1) and without changing any of the

expected revenues. If Ω contains an element, (q, t), such that the truth telling payoff of type θn

under this outcome function is strictly larger than the payoff that he can realize from the most

attractive downward deviation option, then we can increase tn until (4) holds. In order to keep

the expected revenue constant we lower the transfer of the highest type accordingly. Neither of

these two changes affects the downward incentive constraints for types θm < θn or IR(1). The

downward incentive constraints for types θm > θn are at most relaxed. �

In the statement of Problem P’, Ω is allowed to be of any size/cardinality. The next result

shows that it is without loss of generality to restrict attention to ambiguous mechanisms that

contain at most N − 1 simple outcome functions.

Lemma 3. For every Ω ∈ C, there exists Ω̃ ∈ C that satisfies the following three conditions

i) R(Ω) = R(Ω̃),
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ii) |Ω| ≤ N − 1 and

iii) if (q, t) ∈ Ω̃, then there exists an 1 ≤ m ≤ N − 1 such that for all n = m + 1, . . . ,N, (q, t)

is the unique element of arg min(q,t)∈Ω̄{qmθn − tm}.

Proof. Let Ω ∈ C. For each pair n,m ∈ N, n > m, define

Mn,m := arg min
(q,t)∈Ω̄

{qmθn − tm},

where Ω̄ is the closure (in the usual Euclidean sense) of Ω. Mn,m is the set of outcome functions

in Ω that minimize type θn’s payoff from reporting type θm. This set is non-empty since Ω̄ is

not only closed but also bounded. Boundedness is obvious in the dimension of the allocations

which belong to [0, 1]N . Transfers are bounded above by the individual rationality condition.

Since the principal can simply give away the good for free and realize zero expect revenue,

it cannot possibly make sense for him to offer any transfer scheme that implies a negative

expected revenue. Combining this non-negativity constraint on the expected transfers with the

upper bound on the transfers of each type, we can also obtain a lower bound on transfers.

Next we show that Mn,m = Mn′,m for all n, n′ > m; that is, the set of minimizers Mn,m does

not vary with n. In order to see this, let (q∗, t∗) ∈ Mn,m. By the definition of Mn,m we have

q∗mθn − t∗m ≤ qmθn − tm for all (q, t) ∈ Ω̄.

By Lemma 2 we may assume that

q∗mθm − t∗m = qmθm − tm for all (q, t) ∈ Ω̄.

Combining these two inequalities we obtain

(q∗m − qm)(θn − θm) ≤ 0 for all (q, t) ∈ Ω̄.

That is, (q∗, t∗) is an outcome function in Ω̄ that minimizes the probability with which the

good is transferred when the reported type is θm. Since this condition must hold for every type

θn > θm we can conclude that Mn,m = Mn′,m for all n, n′ > m. This entitles us to drop the

index n from Mn,m and simply write Mm for the set of outcome functions that yield the smallest

payoff.

We are now ready to construct Ω̃. In order to do so, pick for each m = 1, . . . ,N − 1, an

arbitrary element from the set Mm. The thus obtained collection of outcome functions might not

be a set for it might contain multiple replica of the same outcome function.24 If this is the case,

24Notice that a given outcome function might belong both to Mm and Mm′ , 1 ≤ m,m′ < N.

16



eliminate all but one of those replica and label the resulting set by Ω. Next, verify if there is any

(q, t) ∈ Ω such that whenever (q, t) ∈ arg min(q′,t′)∈Ω̂ q′mθn − t′m for some 1 ≤ m < n ≤ N, then

the set arg min(q′,t′)∈Ω̂ q′mθn − t′m contains at least one other element (i.e. (q, t) is never a unique

minimizer). If Ω̂ contains such outcome functions pick one of them arbitrarily and eliminate it

from Ω̂. Repeat this last step as long as the reduced ambiguous mechanism continues to contain

elements that never uniquely determine any downward deviation payoff. Since Ω̂ contains at

most N − 1 elements, this procedure must end after at most N − 2 steps. Denote the resulting

set of outcome functions by Ω̃.

By construction the payoffs associated with downward deviations are the same in Ω̃ and Ω̄.

Moreover, the fact that Ω̃ is a subset of Ω̄ allows us to conclude that the truth-telling payoffs can

be no smaller in Ω̃ than in Ω̄. Combining these two observations it follows that Ω̃ is downward

incentive compatible and IR(1) if Ω̄ is so. But this is certainly the case since Ω̄ inherits both

properties from Ω. Ω̃ ⊂ Ω̄ also implies that Ω̃ is consistent and that R(Ω̃) = R(Ω̄) (= R(Ω)).

Since Ω̃ ⊂ Ω̂ and |Ω̂| ≤ N − 1 it follows that |Ω̃| ≤ N − 1. Finally, that Ω̃ satisfies condition iii)

of the lemma follows directly from its construction. �

In the above lemma we have seen that the ‘relevant’ elements of an ambiguous mechanism

Ω are those that define the downward deviation payoffs. Since under uniformity every type θn,

n > m, worries about the same element of Ω when contemplating to report θm, there can be at

most N − 1 simple mechanisms in Ω that matter.

Lemma 3 has immediate implications for the case of a binary type set.

Corollary 1. If the type set Θ contains only two elements, then the use of ambiguous mecha-

nisms does not allow the principal to achieve a higher expected revenue than the one that he

can obtain with an optimal simple mechanims.

Henceforth, we refer to ambiguous mechanisms that are non-redundant in the sense that

they satisfy condition iii) of the Lemma 3, as minimal ambiguous mechanism. In the case of

minimal ambiguous mechanisms Ω we use the following notational convention: we indicate

the element of Ω that defines the payoff for downward deviations to type θm by the superscript

m, i.e.

{(qm, tm)} = arg min
(q,t)∈Ω

qmθn − θm for n > m.

If a minimal ambiguous mechanisms contains strictly less than N − 1 elments, then there must

be at least one outcome function, (q̃, t̃) say, that determines the downward deviation payoffs

for at least two types, m and m′ (i.e. (q̃, t̃) = arg min(q,t)∈Ω qmθn − θm for n > m and (q̃, t̃) =

arg min(q,t)∈Ω qm′θn − θm′ for n > m′). Notationally we treat this case by keeping two copies

of (q̃, t̃), one indexed by m ((qm, tm)) and one indexed by m′ ((qm′ , tm′)). Thus, from now on
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minimal ambiguous mechanisms are taken to be sets composed of exactly N − 1 outcome

functions, some of which may differ only in their labels.

Next we show that within the set of P’-feasible ambiguous mechanisms that are minimal

and uniform, we can concentrate on mechanisms that involve only allocation functions which

are equal to 1 in all but perhaps one coordinate. Moreover, the coordinates of the outcome

functions that are allowed to differ from the value 1 satisfy a monotonicity condition defined

across outcome functions.

Lemma 4 (Monotonicity and maximal slackness). For every Ω ∈ C there exists a minimal

Ω̃ = {(q̃1, t̃1), . . . , (q̃N−1, t̃N−1)} ∈ C such that R(Ω̃) = R(Ω), and

i) Monotonicity: for all 1 < m < N, q̃m
m ≥ q̃m−1

m−1;

ii) Maximal slackness: for all n,m ∈ N, n , m, q̃n
m = 1.

Proof. Let Ω ∈ C. By Lemmata 2 and 3 we may assume that Ω is minimal and satisfies

uniformity.

If Ω does not satisfy maximal slackness we can simply replace it by an ambiguous mecha-

nism that coincides with Ω except where maximal slackness is violated; those elements are set

equal to 1 in the new ambiguous mechanism. In order to see that such a change does not affect

downward incentive compatibility, remember that (qm, tm) defines the payoffs from downward

deviations to θm, i.e.

qm
mθl − tm

m ≤ qn
mθl − tn

m,

for all N > l > m and 1 < n < N − 1, n , m. If for some 1 < n < N − 1, n , m, qn
m

is increased to 1, the right hand side of this inequality increases while the left hand side does

not change. In other words, the downward deviation payoffs remain the same. On the other

hand, the truth-telling payoffs can at most increase. Thus, downward incentive compatibility

must continue to hold. The resulting ambiguous mechanism must also be consistent since the

transfers of the new mechanism are the same as in Ω.

Next we turn to monotonicity. Suppose that Ω does not satisfy condition i) in the statement

of the lemma. Let m∗ be the smallest index for which this condition is violated. That is, m∗

satisfies

qm∗
m∗ < qm∗−1

m∗−1 and qm
m ≥ qm−1

m−1 for all 1 < m < m∗.

We will argue that if 1 ≤ m < m∗, then for type θn > θm the most attractive alternative for

a downward deviation in the set {θ1, . . . , θm} is θm. Notice that this means that for types θn,

n ≤ m∗, the binding downward incentive constraint is the one with respect to the downward

adjacent type, θn−1.
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In order order to see this, notice that for 1 < m < m∗ and n > m we have

[qm
mθn − tm

m] − [qm−1
m−1θn − tm−1

m−1] =

[qm
m(θn − θm) + qm

mθm − tm
m] − [qm−1

m−1(θn − θm) + qm−1
m−1θm − tm−1

m−1] =

[qm
m − qm−1

m−1][θn − θm] +
{
[qm

mθm − tm
m] − [qm−1

m−1θm − tm−1
m−1]

}
≥ 0.

That the inequality sign in the last line must hold can be seen as follows. By assumption

we have qm
m − qm−1

m−1 ≥ 0. Since also θn − θm > 0, the product of these two terms must be

non-negative. The expression in the curly brackets is non-negative by downward incentive

compatibility. Therefore type θn’s payoff from deviating downward to θm is increasing in m.

Next consider the downward deviation incentives of type θn, n > m∗, with respect to θm∗

and θm∗−1. Since for type θm∗ the binding downward incentive constraint is IC(m∗,m∗ − 1) we

have

[qm∗
m∗θn − tm∗

m∗ ] − [qm∗−1
m∗−1θn − tm∗−1

m∗−1] =

[qm∗
m∗ − qm∗−1

m∗−1][θn − θm∗] + {[qm∗
m∗θm∗ − tm∗

m∗ ] − [qm∗−1
m∗−1θm∗ − tm∗−1

m∗−1]} =

[qm∗
m∗ − qm∗−1

m∗−1][θn − θm∗] < 0,

where the inequality in the last line is due to the starting assumption qm∗
m∗ < qm∗−1

m∗−1. Thus, for

every type θn > θm∗ reporting θm∗−1 yields a higher payoff than reporting θm∗ .

Consider now the ambiguous mechanism, Ω′, that coincides with Ω, except for the value

of qm∗
m∗ , which is increased to qm∗−1

m∗−1. As we have seen above, doing so does not interfere with

downward incentive compatibility. Moreover, since m∗ > 1 this change cannot affect the truth-

telling payoff of the lowest type and so IR(1) must continue to hold. Finally, observe that since

Ω′ exhibits the same transfers as Ω, it must be consistent and the revenue that it generates is

the same as the one delivered by Ω.

By iterating on this argument we obtain an ambiguous mechanism Ω̃ with the desired prop-

erties. �

In passing from Problem P to Problem P’ we have dropped the upward incentive constraint.

The next result justifies this relaxation.

Lemma 5. Suppose that Ω ∈ C is minimal and satisfies the conditions of uniformity, maximal

slackness and monotonicity. Moreover, assume that under Ω the downward incentive compati-

bility constraint of the highest type is binding. Then Ω is upward incentive compatible.
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Proof. Let N > n > m ≥ 1. Then

min
(q,t)∈Ω

{qnθm − tn} ≤ qn
nθm − tn

n

= qn
n(θm − θn) + qn

nθn − tn
n = qn

n(θm − θn) + qn−1
n−1θn − tn−1

n−1

= qn
n(θm − θn) + qn−1

n−1(θn − θn−1) + qn−1
n−1θn−1 − tn−1

n−1
...

...

= qn
n(θm − θn) + qn−1

n−1(θn − θn−1) + . . . + qm
m(θm+1 − θm) + qm

mθm − tm
m

= qm
mθm − tm

m −

n−m−1∑
k=0

(qn−k
n−k − qn−k−1

n−k−1)(θn−k − θm)

≤ qm
mθm − tm

m

= min
(q,t)∈Ω

{qmθm − tm}.

The first inequality is definitional, the second inequality follows from the fact that qn
n is non-

decreasing in n and the last equation is implied by uniformity, which requires that all elements

of Ω deliver the same truth-telling payoffs to all types, except possibly type θN . For the steps

between the two inequalities we exploit the fact that the binding downward incentive constraint

is the one with respect to the downward adjacent type.

In the preceding argument we do not allow for n = N. The reason for this is purely

notational. A perfectly analogous argument can be applied in the case n = N by using in the

first row instead of (qn, tn) the mechanism that minimizes the truth telling payoff of the highest

type. �

Lemma 5 allows us to conclude that Problem P’ admits solutions that are upward incentive

compatible. Clearly, at every solution of Problem P’ the downward incentive compatibility

constraint of the highest type must be binding.25 As a consequence, every candidate for a

solution of P’ that also satisfies the conditions of minimality, uniformity, monotonicity and

maximal slackness is upward incentive compatible. This means that if we want to find a solu-

tion to the original Problem P, we can restrict attention to the subset of P’-feasible ambiguous

mechanisms that satisfies the before mentioned additional properties.

3.1 The optimal ambiguous mechanism

In this subsection we derive an optimal minimal ambiguous mechanism. Exploiting uniformity

and maximal slackness we obtain the following result.

25If at a P’-feasible ambiguous mechanism Ω the downward incentive constraint of the highest types does not
hold with equality, then the highest type’s transfers can be increased in every outcome function by some ε > 0
without violating downward incentive compatibility.
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Lemma 6. Problem P admits as solution a direct ambiguous mechanism that is minimal and

satisfies the condition

tm
1 = qm

1 θ1 for all 1 ≤ m < N, (5)

tm
n+1 = (qm

n+1 − qn
n)θn+1 + tn

n for all 1 ≤ n ≤ N − 2, and 1 ≤ m < N

tm
N ≤ (1 − qN−1

N−1)θN−1 + tN−1
N−1, for all 1 ≤ m < N.

Proof. Our previous results imply that the solution set of Problem P contains minimal direct

ambiguous mechanisms that satisfy the conditions of uniformity and maximal slackness. Uni-

formity immediately implies the first two lines of condition 5. The third line of the condition

is obtained by rewriting the downward incentive constraint IC(N,N-1) and using qm
N = 1 (by

maximal slackness). �

Condition 5 can be rewritten as

tm
n = qm

n θn −

n−1∑
k=1

qk
k(θk+1 − θk) for all 1 ≤ n ≤ N − 1 and 1 ≤ m ≤ N − 1 (6)

tm
N ≤ θN −

N−1∑
k=1

qk
k(θk+1 − θk) for all 1 ≤ m ≤ N − 1

Condition 6 shows that by choosing a vector (q1
1, . . . , q

N−1
N−1) one can pin down all transfers,

except those of the highest type. For the transfers of the highest type we only have an upper

bound.

Calculating the expected value of the right hand side expressions in (6) we obtain the fol-

lowing upper bound on the expected revenue of (qm, tm) ∈ Ω,

R̄m(q1
1, . . . , q

N−1
N−1) = Ep[θ] − pm(1 − qm

m)θm −

N−1∑
n=1

qn
n(1 − Pn)(θn+1 − θn),

where Pn =
∑n

k=1 pk. The objective of the designer is to maximize minm R̄m(q1
1, . . . , q

N−1
N−1) over

the set of admissible vectors (q1
1, . . . , q

N−1
N−1). The transfers of the highest type are then chosen

so that consistency holds, i.e. such that Rn = minm R̄m(q1
1, . . . , q

N−1
N−1) for all 1 ≤ n ≤ N − 1.

In what follows we denote the vector (q1
1, . . . , q

N−1
N−1) by Q. We say that an ambiguous

mechanism Ω̃ is generated or induced by Q if Ω̃ is composed of N − 1 elements that satisfy

consistency and maximal slackness and whose allocation components ‘along the diagonal’,

(q̃1
1, . . . , q̃

N−1
N−1), coincide with Q. For later reference we point out that Rm(Q) is decreasing in

qn
n, n , m. Given the preceding observations we can restate the principal’s problem in the
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following simple form:

max
R∈R,Q∈[0,1]N−1

R (P”)

subject to R ≤ R̄n(Q) for all 1 ≤ n ≤ N − 1,

qn
n ≥ qn−1

n−1 for all 1 < n ≤ N − 1.

For the presentation of the next results it is convenient to introduce some further notation

and terminology. First, we inductively construct the setM = {m1, . . . ,mM,mM+1}, which is a

subset of the index set N. The first element, m1, is set equal to 1. If for m j−1 the set {n : N > n >

m j−1, pnθn > pm j−1θm j−1} is non-empty, we set m j = min{n : N > n > m j−1, pnθn > pm j−1θm j−1}.

Let mM be the largest index defined in this way and set mM+1 = N. Observe that if pnθn is

increasing in n, then M coincides with the set N. Also notice that pm jθm j is monotonic in

j = 1, . . . ,M by construction.

Next we define for all 1 ≤ j ≤ M the so called adjusted virtual valuation, ν̄m j :

ν̄m j = pm jθm j −

M∑
s= j

pm jθm j

pmsθms

ms+1−1∑
i=ms

(1 − Pi)(θi+1 − θi).

We refer to ν̄m j as adjusted virtual valuation because both its definition and its role are remi-

niscent of the role of virtual valuations.26 In particular, in Proposition 2 below we show that

the optimal value of Q depends on the signs of the adjusted virtual valuations. In the statement

of this result we will exploit the fact that the adjusted virtual valuation can cross the zero only

from below. This is shown in the following lemma.

Lemma 7. If ν̄m j ≤ 0 for 1 < j ≤ M, then ν̄mk ≤ 0 for all 1 ≤ k < j.

Proof. In order to see this, we rewrite the virtual valuation ν̄m j in the form

ν̄m j = pm jθm j

1 − M∑
s= j

1
pmsθms

ms+1−1∑
i=ms

(1 − Pi)(θi+1 − θi)

 .
The sign of ν̄m j is determined by the expression in the square brackets. It is easy to verify that

this term is increasing in j. Thus, if it is negative for a given 1 < j ≤ M then it must be so also

for all 1 ≤ k < j. �

We are now ready to state the main result of this section in which we characterize one of

the solutions of Problem P”.
26Strictly speaking the adjusted virtual valuation ν̄m j resembles more the product of the virtual valuation of type

θm j and its probability pm j than the virtual valuation itself.
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Proposition 2.

i) If ν̄1 > 0, then (q̂1
1, . . . , q̂

N−1
N−1) = (1, . . . , 1) solves Problem P”.

ii) If ν̄1 ≤ 0, let j∗ = max{ j : ν̄m j ≤ 0} and let Q̂ = (q̂1
1, . . . , q̂

N−1
N−1) be defined by

q̂n
n =


0 if n < m j∗+1

1 −
pm j∗ θm j∗

pm jθm j
if j∗ + 1 ≤ j ≤ M and m j ≤ n < m j+1.

Q̂ constitutes a solution of P”.

Proof. We proceed in several steps. In the first step we show that the problem of choosing

(q1
1, . . . , q

N−1
N−1) can be reduced to a problem where only (qm1

m1 , . . . , q
mM
mM ) are chosen.

Step 1. If m j < n < m j+1, 1 ≤ j ≤ M, then at the optimum q̂n
n = q̂m j

m j .

In order to see this observe that since for every Q with non-decreasing components, we

have qn
n ≥ qm j

m j it follows that

R̄n(Q) − R̄m j(Q) = −pnθn(1 − qn
n) + pm jθm j(1 − qm j

m j) ≥ (1 − qm j
m j)(pm jθm j − pnθn) ≥ 0.

That is, there is no admissible Q for which R̄n(Q) is the (strictly) smallest upper bound on the

revenues. But R̄n(Q) is the only bound that could be increasing in qn
n. Thus, it is without loss

to choose qn
n as small as possible, i.e. we can set q̂n

n = q̂n−1
n−1. Since this argument applies to all

m j < n < m j+1 we can conclude that choosing q̂n
n = q̂m j

m j for all m j < n < m j+1 is optimal.

Step 2. At the optimum

q̂m j+1
m j+1 ≤ 1 −

pm jθm j

pm j+1θm j+1

(1 − q̂m j
m j)

for all 1 ≤ j ≤ M − 1.

In order to see this, notice that for every Q such that

qm j+1
m j+1 > 1 −

pm jθm j

pm j+1θm j+1

(1 − qm j
m j)

we have

R̄m j+1(Q) − R̄m j(Q) > 0.

Moreover, rewriting the inequality yields

qm j+1
m j+1 − qm j

m j >

(
1 −

pm jθm j

pm j+1θm j+1

)
(1 − qm j

m j) ≥ 0.

In such a case we can lower qm j+1
m j+1 without violating the constraint qm j+1

m j+1 ≥ qm j
m j , and thus increase
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all R̄n, n , m j+1. Since R̄m j+1 is not the smallest bound this means that the minimum of the

bounds would increase. But then Q cannot be optimal.

Step 3. If ν̄1 ≤ 0 then at the optimum

q̂m j
m j = 1 −

pm j−1θm j−1

pm jθm j

(1 − q̂m j−1
m j−1) for all j∗ < j ≤ M;

if ν̄1 > 0 then this condition holds for all 1 < j ≤ M.

By Step 2 we know that at the optimum

q̂m j
m j ≤ 1 −

pm j−1θm j−1

pm jθm j

(1 − q̂m j−1
m j−1),

for all 1 < j ≤ M or equivalently

R̄m j(Q̂) ≤ R̄m j−1(Q̂).

Now suppose that Q̂ is such that this condition holds with strict inequality for j = M, implying

qM
M < 1. Then, R̄mM (Q̂) is strictly smaller than any other bound. If Q̂ is optimal then it should

not be possible to increase R̄mM . An increase of R̄mM can be achieved only if qmM
mM is increased.

On the other hand, since for all mM < n < N we have q̂n
n = q̂mM

mM , qmM
mM can be increased without

violating monotonicity only if at the same time we also increase qn
n. The impact of a uniform

increase of (qmM
mM , . . . , q

N−1
N−1) on R̄mM is

pmMθmM −

N−1∑
i=mM

(1 − Pi)(θi+1 − θi) = ν̄mM .

Thus Q̂ cannot be optimal if ν̄mM > 0. This proves the claim for j = M > j∗.

For the case that j lies strictly between j∗ and M (i.e. j∗ < j < M) assume that we have

shown the claim for s = j + 1, . . . ,M. If Q̂ is such that

q̂m j
m j < 1 −

pm j−1θm j−1

pm jθm j

(1 − q̂m j−1
m j−1)

then

R̄mM (Q̂) = . . . = R̄m j+1(Q̂) = R̄m j(Q̂) < R̄m j−1(Q̂) ≤ . . . ≤ R̄m1(Q̂).
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The assumption that the claim holds for s = j + 1, . . . ,M implies that

qms
ms = 1 −

pms−1θms−1

pmsθms

(1 − qms−1
ms−1) = 1 −

pms−1θms−1

pmsθms

[
1 −

(
1 −

pms−2θms−2

pms−1θms−1

(1 − qms−2
ms−2)

)]
=

pms−2θms−2

pmsθms

(1 − qms−2
ms−2) = . . .

= 1 −
pm jθm j

pmsθms

(1 − qm j
m j).

Moreover, by Step 1 we know that for ms−1 < n < ms, s = j + 1, . . . ,M,

qn
n = qms

ms .

Thus, if starting from Q̂ we want to increase qm j
m j , then monotonicity combined with the fact

that the claim holds for all s = j + 1, . . . ,M implies that we must increase qn
n, ms−1 ≤ n < ms,

s = j + 1, . . . ,M, at the rate

pm jθm j

pms−1θms−1

.

If (qm j
m j , . . . , q

N−1
N−1) is increased in this way then R̄m j changes at the rate

pm jθm j −

M∑
s= j

pm jθm j

pmsθms

ms+1−1∑
i=ms

(1 − Pi)(θi+1 − θi) = ν̄m j .

Thus, if ν̄m j > 0, then Q̂ cannot be optimal.

Step 4. If ν̄1 ≤ 0 then at the optimum q̂m j
m j = 0 for all j ≤ j∗.

Consider first the case j = j∗. From Step 3 we know that for all s = j∗ + 1, . . . ,M the

condition

q̂ms
ms = 1 −

pm j∗ θm j∗

pmsθms

(1 − q̂
m j∗

m j∗
) (7)

holds. Thus, varying q
m j∗

m j∗
implies that we have to change accordingly also all qn

n, m j∗ < n < N.

In the previous step we have seen that the overall effect that such a change has on R̄m j∗ is

measured by ν̄m j∗ . Thus, if ν̄m j∗ ≤ 0, then R̄m j∗ is maximized by choosing q
m j∗

m j∗
as small as

possible. But that means that we have to set q
m j∗

m j∗
= q

m j∗−1
m j∗−1

.

Next, consider the choice of q
m j∗−1
m j∗−1

. If q
m j∗

m j∗
= q

m j∗−1
m j∗−1

, then

R̄m j∗ (Q) − R̄m j∗−1(Q) = (1 − q
m j∗−1
m j∗−1

)(pm j∗−1θm j∗−1 − pm∗jθm∗j ). (8)
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If q
m j∗−1
m j∗−1

< 1 this expression is strictly negative, meaning that R̄m j∗−1 is not the smallest one of

the bounds. Since all other bounds are strictly decreasing in q
m j∗−1
m j∗−1

, so must be min j R̄m j . If

q
m j∗

m j∗
= q

m j∗−1
m j∗−1

= 1, then R̄m j∗−1 can be increased by a decrease of q
m j∗−1
m j∗−1

that is accompanied with

a reduction of all qn
n, m j∗−1 < n < N, in accordance with (7). In order to see this notice that by

(8) we know that in the initial situation we have R̄m j∗ = R̄m j∗−1 . After the proposed reduction of

all qn
n, m j∗−1 ≤ n < N instead we have R̄m j∗ < R̄m j∗−1 . By our previous arguments we know that

a reduction of (q
m j∗

m j∗
, . . . , qN−1

N−1) in accordance with (7) leads to an increase of R̄m j∗ and min j R̄m j .

If in addition also (q
m j∗−1
m j∗−1

, . . . , q
m j∗−1
m j∗−1) is reduced then certainly R̄m j , j , j∗−1, increase further.

Moreover, since after the change R̄m j∗ < R̄m j∗−1 it must be the case that also R̄m j∗−1 increases.

Combining these arguments we conclude that q
m j∗−1
m j∗−1

must be chosen as small as possible, i.e.

q
m j∗−1
m j∗−1

= q
m j∗−2
m j∗−2

.

Iterating on the same argument we can show that for all m j ≤ m j∗ , qm j
m j must be chosen as

small as possible. Since for m1 this means qm1
m1 = 0 we thus get qm j

m j = 0 for all m j ≤ m j∗ .

Step 5. If ν̄1 > 0, then at the optimum qm j
m j = 1 for all 1 ≤ j ≤ M.

In Step 3 we have seen that if ν̄m j > 0 for all j∗ < j ≤ M then each qm j
m j has to be chosen as

large as the constraint

q̂m j
m j ≤ 1 −

pm j−1θm j−1

pm jθm j

(1 − q̂m j−1
m j−1) (9)

allows. Since there is no such constraint for j = 1 it follows that qm1
m1 must be optimally set

equal to 1. Monotonicity then requires that also qn
n, 1 < n < N − 1, must be equal to 1.

�

Proposition 2 gives us a solution for Problem P”. Given Q̂ it is straightforward to calculate

the problem’s optimal value R̂. In particular, for all 1 ≤ n,m < N the optimal transfer t̂m
n

can be obtained from (6). The highest type’s transfers are then chosen so that the expected

revenue of each of the N − 1 outcome functions is equal to the optimal value of Problem P”,

R̂ = min j R̄m j(Q̂). We summarize these observations in the following corollary.

Corollary 2. Suppose Q̂ = (q̂1
1, . . . , q̂

N−1
N−1) solves Problem P” and that R̂ is the problem’s value.

Then the corresponding transfers of the outcome function (q̂m, t̂m), 1 ≤ m < N, are given by

t̂m
n =

q̂m
n θn −

∑n−1
k=1 q̂k

k(θk+1 − θk) if 1 ≤ n < N

R̂ −
∑N−1

n=1 pn t̂m
n if n = N.

If ν̄1 > 0, then the optimal value of the designer’s problem is R̂ = θ1. Otherwise, the optimal
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expected revenue is

R̂ = R̄m j∗ = Ep[θ] − pm j∗ θm j∗ −

N−1∑
n=m j∗+1

q̂n
n(1 − Pn)(θn+1 − θn).

Finally, it is interesting to compare the expected revenue of an optimal ambiguous mech-

anism with the one of the best simple mechanism. Of course, every simple mechanism con-

stitutes a (trivial) ambiguous mechanism. Thus, simple mechanisms cannot possibly deliver a

strictly higher revenue than the optimal ambiguous mechanism. But when is it the case that the

designer can do strictly better by using a ‘truly ambiguous’ mechanism?

Consider an arbitrary simple IC and IR mechanism (q̃, t̃) and define the ambiguous mecha-

nism Ω = {(q1, t1), . . . , (qN−1, tN−1)} as follows

qm
n =

q̃n if n = m

1 else,
tm
n =


t̃n if n = m

t̃n + (1 − q̃n)θn if n , m,N

t̃N − [pkθmM (1 − q̃mM ) − pmθm(1 − q̃m)]/pN if n = N,

where mM is defined as before, i.e. mM ∈ arg maxn<N pnθn.

Incentive compatibility of the simple mechanism (q̃, t̃) implies q̃n ≤ q̃n+1, 1 ≤ n < N. Ob-

serve also that for all types θn, n < N, the truth-telling payoffs are constant across the outcome

functions in Ω; moreover they coincide with the truth-telling payoffs under (q̃, t̃). By construc-

tion of Ω the deviation payoffs cannot be larger than the deviation payoffs in (q̃, t̃). Hence, Ω is

both incentive compatible and individually rational. Finally, it can easily be verified that Ω is

consistent. The expected revenue generated by (qm, tm) ∈ Ω is

Rm =
∑
n≤N

pn t̃n +
∑

n,mM ,N

(1 − q̃n)θn.

Thus Ω delivers a strictly larger expected revenue than (q̃, t̃) if q̃n < 1 for some n < N.

This means that if the optimal ambiguous mechanism and the optimal simple mechanism

yield the same expected revenue, then it must be the case that the optimal simple mechanism

assigns the object to every type with probability one. Such a simple mechanism yields the same

revenue (R = θ1) as the ambiguous mechanism induced by Q = (1, . . . , 1); thus the latter must

be optimal.

Conversely, assuming that the ambiguous mechanism induced by Q = (1, . . . , 1) is optimal

implies that the principal cannot do better by using ambiguous mechanisms than he can by

using a simple mechanism.

The following proposition summarizes these observations.
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Proposition 3. An optimal ambiguous mechanism yields a strictly larger revenue than the best

simple mechanism if and only if ν̄1 < 0.

We conclude this section with a three-type example that illustrates the above developed

results.

Example 2 (Optimal ambiguous mechanisms in the three type case).
Suppose that Θ = {θ1, θ2, θ3}. The formula for the optimal Q given in Proposition 2 conditions

on the signs of the adjusted virtual valuations. The adjusted virtual valuations in turn depend

on the composition of the set M. Remember that M = {m1, . . . ,mM+1} is a subset of type

indices such that pm jθm j is increasing in j. With three types there are only two possibilities:

either i) p1θ1 > p2θ2 or ii) p1θ1 ≤ p2θ2.

i) p1θ1 > p2θ2: In this case we haveM = {1, 3}; i.e. M does not include 2. Consequently, q2
2

is always chosen equal to q1
1 and so we either have q1

1 = q2
2 = 1 or q1

1 = q2
2 = 0, depending on

whether ν̄1 > 0 or ν̄1 ≤ 0. Notice that ν̄1 takes the value

ν̄1 = p1θ1 − (1 − p1)(θ2 − θ1) − (1 − P2)(θ3 − θ2) = θ1 − p2θ2 − p3θ3.

Hence, q1
1 = q2

2 = 1 is optimal if θ1 is larger than the two larger types’ contribution to Ep[θ].

From (6) it follows that all transfers for the two lower types are equal to θ1. Since by Corollary

2, R̂ = θ1, it follows that also the highest type’s transfers are equal to θ1. Q̂ = (1, 1) means that

every outcome function of the ambiguous mechanism specifies to give the good with probabil-

ity one to the agent, irrespective of his message. Incentive compatibility then requires that the

transfers do not change either with the reported type. The maximal transfer that is compatible

with the lowest type’s individual rationality constraint is to have him pay his valuation.

Notice also that Q̂ = (1, 1) means that the two outcome functions (q1, t1) and (q2, t2) coin-

cide. Thus, in this case the designer can achieve the maximal expected revenue by offering a

simple mechanism.

If ν̄1 ≤ 0, then it is optimal to set q1
1 = q2

2 = 0. That is, each of the two outcome functions

excludes one of the two lower types, but neither of them excludes both. According to Corollary

2 the expected revenue in this case is R̂ = p2θ2 + p3θ3. Using (6) once more we obtain t1
1 = 0,

t1
2 = θ2, t2

1 = θ1 and t2
2 = 0. Finally, consistency implies t1

3 = θ3 and t2
3 = θ3 − [p1θ1 − p2θ2]/p3.

Clearly there is no simple mechanism that achieves an expected revenue of R̂ = p2θ2+ p3θ3.

An optimal simple mechanism takes one of the following three forms: i) the good is given to

every type with probability one at the price θ1, ii) the good is given to types two and three at the

price θ2 or iii) it specifies that only the highest type gets the good at the price of his valuation.

Option i) generates an expected revenue of θ1 which is by assumption (ν̄1 ≤ 0) smaller than R̂.

The revenues under options ii), p2(θ2 + θ3), and iii), p3θ3, are clearly smaller than p2θ2 + p3θ3.
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This confirms the result in Proposition 3.

ii) p1θ1 ≤ p2θ2: In this case M = {1, 2, 3}, implying that the choices of both q1
1 and q2

2 are

non-trivial and depend on the sign of both ν̄1 and ν̄2. These two variables now take the values

ν̄1 = p1θ1 − (1 − p1)(θ2 − θ1) −
p1θ1

p2θ2
p3(θ3 − θ2) = θ1 − (1 − p1)θ2 −

p1θ1

p2θ2
p3(θ3 − θ2)

ν̄2 = p2θ2 − (1 − P2)(θ3 − θ2) = (p2 + p3)θ2 − p3θ3.

ν̄1 is slightly larger than in case i) (the difference between the two expressions is the smaller

the closer p1θ1 is to p2θ2). ν̄2 instead is given by the product of the (regular) virtual valuation

of type 2 and his probability.

As in case i) it is optimal to set q1
1 = q2

2 = 1 if ν̄1 > 0. If ν̄1 ≤ 0 then the optimal value of

q1
1 is 0. But unlike before, ν̄1 ≤ 0 no longer implies q2

2 = 0. Instead, the optimal value of q2
2

depends on the sign of ν̄2. More specifically, in order for q1
1 = q2

2 = 0 to be optimal, it must be

the case that both ν1 ≤ 0 and ν2 ≤ 0. In the remaining case (ν1 ≤ 0 and ν2 > 0) we obtain the

solution q1
1 = 0 and q2

2 = 1 − p1θ1/p2θ2.

As for the transfers, we obtain t1
1 = 0, t1

2 = θ2, t1
3 = θ2 + p1θ1(θ3 − θ2)/p2θ2 and t2

1 =

θ1, t2
2 = (1 − p1θ1/p2θ2)θ2, t2

3 = θ2 + p1θ1(θ3 − θ2)/p2θ2. The expected value of these transfers

is R̂ = (p2 + p3)θ2 + p1 p3θ1(θ3 − θ2)/p2θ2. This revenue exceeds the revenue achieved by the

revenue maximizing simple mechanism, (p2 + p3)θ2. �

4 Discussion and extensions

4.1 Increasing the number of types: Full surplus extraction in the limit

In the preceding section we have seen that if Q̂ solves Problem P” then the ambiguous mecha-

nism that it generates must yield a (weakly) higher expected revenue than the one produced by

the ambiguous mechanism that corresponds to Q = (0, . . . , 0).27 This latter mechanism takes a

particularly simple form: the transfer rule corresponding to the m-th outcome function, tm, is

given by

tm
n =


0 if n = m

θn if n , n,N

θN − (pmMθmM − pmθm)/pN if n = N.

27We say that Ω = {(q1, t1), . . . , (qN−1, tN−1)} is generated by Q, if Ω satisfies maximal slackness, consistency,
(q1

1, q
2
2, . . . , q

N−1
N−1) = Q and condition (5).
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The expectation of this transfer is R = Ep[θ] − pmMθmM . So the ambiguous mechanism gen-

erated by Q = (0, . . . , 0) extracts all of the agent’s (expected) surplus except for type θmM ’s

contribution, pmMθmM . The part of the surplus that is left to the agent, pmMθmM , is small if the

probability of each single type (and thus also type θmM ) is small, as it can be the case in settings

with ‘large’ type sets. These observations suggest, that in environments with large type sets, the

designer can essentially extract the full rent from the agent. The following proposition gives a

more precise formulation of this insight.

Proposition 4 (Full surplus extraction in the limit). Let {ΘN , pN}N be a sequence of finite

environments, such that |ΘN | = N. Assume the limit limN→∞EpN [θN] exists. Moreover, let

m̄N be such that pN
m̄N
θN

m̄N
≥ pN

l θ
N
l for all 1 ≤ l ≤ N − 1 and write R̂N for the revenue that the

designer can generate with the an optimal ambiguous mechanism in the N-th environment. If

pN
m̄N
θN

m̄N

N→∞
−→ 0 then

R̂N

EpN [θN]
N→∞
−→ 1.

That is, in the limit the designer is able to extract all of the agent’s surplus.

Proof. By our preceding observations for all N we have

EpN [θN] ≥ R̂N ≥ EpN [θN] − pN
m̄N
θN

m̄N
.

Dividing both sides by EpN [θN] and taking the limit yields the result. �

In order to get a better intuition for this result, consider again the type of ambiguous mecha-

nism described above. In such a mechanism, for each n < N, outcome function (qn, tn) assigns

the good with probability one to every type except type θn, who is excluded from trade (i.e.

he receives the good with probability zero). Moreover, under (qn, tn) all types, except θn and

θN , are charged their valuations. The fact that under (qn, tn) type θn does not get the good not

only implies that type θn himself cannot get a strictly positive payoff from revealing his type,

but it also means that no other type can achieve a strictly positive payoff from reporting θn

either. Thus, the outcome function (qn, tn) guarantees that (downward) deviations toward θn are

unattractive. In the same way each other outcome function (qm, tm), m , n makes sure that the

agent does not have an incentive to report θm unless that is his true type. Since each single out-

come function in the ambiguous mechanism has to take care of the deviation incentives toward

just one type, they can be chosen freely (i.e. unconstrained by incentive considerations) for all

other possible reports. In particular, it is feasible to specify that for each other message (except

θN) the agent gets the good for sure in exchange of a payment that corresponds to his report.

The highest type does not necessarily have to pay his valuation since his transfers are used to
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guarantee consistency across outcome functions.28

The downside of a types’s exclusion from trade is that no rent can be extracted from him.

Since all outcome functions must yield the same expected revenue, all of them can extract

only as much as the one that excludes the type with the largest contribution to the expected

surplus. If the set of types increases and the likelihood of each single type decreases, the cost

of excluding each single type decreases as well.

In a context with a continuum of types and an atomless type distribution, the weight of

each single type is exactly zero. For such environments, we obtain the following corollary to

Proposition 4.

Corollary 3 (Full surplus extraction). Suppose that Θ is a compact interval in R and that the

type distribution P is atomless. Then the ambiguous mechanism, Ω = {(qθ, tθ), θ ∈ Θ}, where

(qθ, tθ) is defined by

qθθ′ =

0 if θ′ = θ

1 else
tθθ′ =

0 if θ′ = θ

θ′ else,

is individually rational, incentive compatible and consistent. Moreover, Ω extracts the full

surplus from the agent, that is R(Ω) = Ep[θ].

Corollary 3 is important not only because it tells us that the designer can achieve full

surplus extraction by using an appropriately constructed ambiguous mechanism. An even more

important insight that we can derive from this result is that in situations where type sets are large

(i.e. continua) and the type distributions are not too concentrated on single points (i.e. atom

less), it is possible to design an ambiguous mechanism that achieves full surplus extraction

without knowing the details of the type distribution.

4.2 Payoff irrelevant information and the ‘splitting’ of types

In the preceding (sub-)section we have seen that the share of the surplus that the designer

can extract from the agent is the larger ‘the more types there are’. In particular, if types are

distributed atomless on an interval then full surplus extraction is possible. In this section we

use this insight to argue that the principal should not only elicit the agent’s payoff types, but

that he can benefit also from conditioning outcomes on non-payoff relevant information that

the agent may hold.

28In the case of simple mechanisms all deviation incentives have to be taken care of by a single outcome function.
In order to do so this single outcome function needs to be distorted much more severely than each single element
of an ambiguous mechanism.
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In order to see this, consider again our basic set up with N payoff relevant types, Θ =

{θ1, . . . , θN}. Now assume that θ is only one component of the agent’s type. The second com-

ponent, v, is payoff irrelevant and takes values in the (finite) set V = {v1, . . . , vK}; for conve-

nience, let V ⊂ R. Denote the distribution of the (bi-dimensional) type by π and assume that

the principal knows this distribution.

Even though the type set of this environment is bi-dimensional the results from the pre-

ceding section carry over also to this context if we endow Θ × V with the lexicographic order

(where payoff relevant types constitute the first criterion). In particular, we can construct an

optimal ambiguous mechanism as described in Proposition 2 and Corollary 2.

Using the payoff irrelevant part of a type serves the purpose of ‘splitting’ payoff types into

subtypes. Doing so generates a larger number of types who all have a smaller probability. We

have seen in the previous subsection why it is desirable from the designer’s perspective to have

many types who are all not very likely to occur. The insights from that section do not rest on

the assumption that types are different in terms of payoff relevance. Instead they also apply

when two types differ only in non-payoff relevant dimensions. We demonstrate this in the next

example.

Example 3 (The benefits of eliciting payoff irrelevant information). Consider the following

simple environment. The type set is given by Θ×V , where Θ = {1, 3} and V = {L,H}. The type

distribution is uniform and the type set is endowed with the obvious lexicographic ordering.

If the principal ignores the payoff irrelevant part of the agent’s type it is as if facing an

agent with only two (equally likely) types, 1 and 3. Remember that by Corollary 1 the best

mechanism that the designer can offer is a simple mechanism. It is straightforward to see that

the optimal simple mechanism, (q̃, t̃), is defined by (q̃(1), t̃(1)) = (0, 0), (q̃(3), t̃(3)) = (1, 3).

The expected revenue generate by this mechanism is R̃ = 3/2.

Now assume that the designer takes into account also the payoff irrelevant component of

the agent’s type. Then according to Proposition 2 he should offer the ambiguous mechanism Ω

composed by the outcome functions described in the following table.29

(θ, v) (1, L) (1,H) (3, L) (3,H)
(q(1,L), t(1,L)) (0, 0) (1, 1) (1, 3) (1, 3)
(q(1,H), t(1,H)) (1, 1) (0, 0) (1, 3) (1, 3)
(q(3,L), t(3,L)) (1, 1) (1, 1) (2/3, 2) (1, 3)

It is easily verified that Ω generates an expected revenue of 7/4 > 3/2. �

29In this case we haveM = {(1, L), (3, L), (3,H)}, ν̄(1,L) = −3/4 and ν̄(3,L) = 3/4.
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‘Active type splitting’ or the artificial ‘creation’ of types. In the preceding discussion we

have seen that the principal can benefit from adopting an ambiguous mechanism that elicits not

only payoff relevant information but also payoff irrelevant aspects of the agent’s type. But if the

principal can take advantage of an agent’s payoff irrelevant information, then even if the agent

does not have such information to start with, he should induce him to acquire it. A simple way

to achieve this is to instruct the agent to take a draw from some distribution. If this distribution

is atom free doing so allows the principal to extract the agent’s full surplus.

Notice that this ‘type creation process’ must take place before the revelation game is played.

Thus, ambiguous mechanisms that are based on type creation do not belong to the class of

static ambiguous mechanisms that we have considered so far. Consequently, the discussion in

the preceding paragraph is not in contradiction with our findings in the earlier sections where

we have derived the optimal ambiguous mechanism for a given finite set of types. Moreover,

the possibility of creating types does not reduce the relevance of those findings. On the one

hand the analysis for a given type set is by itself of theoretical interest. On the other hand,

that analysis constitutes the basis upon which our discussion of the benefits of type splitting

rests. Finally, also from a more applied perspective the preceding results retain their impor-

tance. Practicality considerations (complexity costs) might well impose limits on increasing

the number of outcome functions in the ambiguous mechanism. Whenever that is the case the

designer needs to understand the trade off between the costs and benefits of any additional type.

Our results allow us to determine with precision the benefits of larger type sets.

4.3 Preferences

The agent’s preferences: Throughout our analysis we have assumed that the agent’s valu-

ation is (bi-)linear and that his ambiguity aversion can be captured by the Gilboa-Schmeidler

model. In this section we comment on the role of these assumptions.

The linearity of the agent’s valuation function is crucial in the final steps of the character-

ization of the optimal ambiguous mechanism (i.e. Proposition 2 relies on this assumption). In

all results up to Lemma 5 we have only exploited the increasing difference property that the

linear valuation function exhibits. That is, all those results go through for any other valuation

function that exhibits increasing differences. The result that under an atomless type distribu-

tion the principal can extract the full surplus goes through in even more general settings. If the

agent’s preferences over allocation-transfer pairs (x, τ)30 are described by the function u(x, τ, θ),

then an ambiguous mechanism like the one used in Corollary 3 can be constructed whenever

30Here the variable x is to be interpreted as share of the good.
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the problem

max
(q(θ),t(θ))∈XΘ×RΘ

Ep[t(θ)]

s.t. u(q(θ), t(θ), θ) ≥ u(0, 0, θ) ∀θ ∈ Θ,

admits a solution.31 If (q∗, t∗) solves this problem, then the ambiguous mechanism Ω =

{(qθ, tθ), θ ∈ Θ} whose elements are defined by

qθθ′ =

0 if θ′ = θ

q∗(θ′) else
tθθ′ =

0 if θ′ = θ

t∗(θ′) else,

extracts the full surplus.

A concern regarding our assumptions on preferences might be the question to what ex-

tent our results are driven by the way in which we model ambiguity aversion. The Gilboa-

Schmeidler preferences that we use certainly constitute a rather stark model of ambiguity aver-

sion. Our analysis heavily exploits the tractability of MMEU preferences in the derivation of

the optimal ambiguous mechanism with finite types. While we do not know how an optimal

mechanism would look like for an alternative model of ambiguity aversion, we can say that

the basic idea on which the analysis in this paper builds, does generalize. The most fundamen-

tal insight of this paper is that a principal who faces an ambiguity averse agent should try to

exploit his ambiguity aversion by offering an ambiguous mechanism. In the following exam-

ple we show that this insight applies also in environments where the agent’s attitude toward

uncertainty can be captured by a smooth ambiguity model.

Example 4 (Smooth ambiguity aversion). The setup is as in Example 1, except for the agent’

attitude towards ambiguity. That is, we have Θ = {1, 2, 4}, p = (1/4, 1/4, 1/2), u(x, τ, θ) =

xθ − τ.

We now consider three possible assumptions regarding the agent’s attitude toward uncer-

tainty. First, suppose the agent is an (ambiguity neutral) expected utility maximizer. In that

case the optimal (non-ambiguous) mechanism for this environment prescribes to exclude the

two lowest types from trade. An agent who reports the highest type obtains the good with

probability one and pays his valuation, 4. The revenue generated by this mechanism is R = 2

Next, assume that the agent has MMEU preferences. In Example 1 we have seen that in

that case the principal can achieve a revenue of at least R = 9/4 by offering an ambiguous

mechanism.

Finally, consider the case where the agent’s attitude towards uncertainty can be described

31We continue to assume that by opting out from the mechanism each type of the agent obtains the allocation-
transfer pair (0, 0).
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by a model of smooth ambiguity aversion a la Klibanoff, Marinacci, and Mukerji (2005). In

particular, assume that given a (direct) ambiguous mechanism Ω, type θ of the agent evaluates

messages according to the following procedure. First, he calculates for each message θ̂ ∈ Θ

and each possible probability π ∈ ∆(Ω) his expected utility, i.e.

Eπ

[
u(q(θ̂), t(θ̂), θ)

]
= Eπ

[
q(θ̂)θ − t(θ̂)

]
.

In a second step, he evaluates the thus obtained expected utility values with the increasing and

concave function φ : R→ R. Finally, the transformed utility indices are integrated with respect

to some probability measure µ over ∆(Ω). The payoff that type θ of the agent associates with

reporting type θ̂ is

U(θ̂, θ) = Eµ

{
φ
(
Eπ

[
q(θ̂)θ − t(θ̂))

])}
.

The function φ and the distribution µ describe the agent’s attitude towards uncertainty. µ de-

scribes the relative weight that the agent assigns to the possible beliefs that he can hold after

learning the ambiguous mechanism. The shape of the function φ captures the agent’s degree of

ambiguity aversion. A linear φ means that the agent is ambiguity neutral, i.e. exposing him to

uncertainty does not generate any cost to him. A strictly concave φ instead corresponds to an

agent who is strictly ambiguity averse.

In what follows we assume that φ(x) = 1 − exp(−2x), i.e. φ has the shape of a CARA

function. As for µ, we assume that it is uniform over Ω (or the set of degenerate distribu-

tions over Ω). This is a natural assumption given that we only allow for consistent ambiguous

mechanisms. Consistency means that the designer is indifferent between the different outcome

functions of the ambiguous mechanism. Thus there is no reason for the agent to assign asym-

metric weights to the different outcome functions.32

Returning to our example, consider the ambiguous mechanism Ω = {(q1, t1), (q2, t2)}, de-

scribed in the following table.

θ 1 2 4
(q1, t1) (0, 0) (1, 1) (1, 7/2)
(q2, t2) (1, 1) (0, 0) (1, 7/2).

Under truth-telling the expected revenue of each of to the two outcome functions is 2.

Therefore, under truth-telling this ambiguous mechanism yields exactly the same revenue as

the optimal simple mechanism.

32While the assumption of a uniform µ over Ω is convenient in that it simplifies the presentation of our example,
we should point out that it is not an assumption that is necessary for our argument.
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The following table shows the expected utility that an agent of type θ obtains if he reports

type θ̂; π here denotes the probability of the outcome function (q1, t1).

θ \ θ̂ 1 2 4
1 φ(0) φ(0) φ(−5/2)
2 Eµ

[
φ(1 − π)

]
Eµ

[
φ(π)

]
φ(−3/2)

4 Eµ
[
φ(3(1 − π))

]
Eµ

[
φ(3π)

]
φ(1/2)

Observe that a truthful report guarantees each type a payoff that is no smaller than the

value of the outside option, φ(0). Thus, the ambiguous mechanism Ω is individually ratio-

nal. It is also easily seen that the lowest type’s incentive compatibility constraint is satis-

fied (φ(0) > φ(−5/2)). For the middle type it is never optimal to report the highest type

(φ(−3/2) < φ(π)). Moreover, since µ is uniform (and thus symmetric around 1/2) we have

Eµ
[
φ(3π)

]
= Eµ

[
φ(3(1 − π))

]
, meaning that type 2 has no incentive to report type 1 either.

Finally, we have to consider the highest type. Since

φ(1/2) −Eµ
[
φ(3π)

]
= [1 − exp(−1)] − [1 − exp(−6)]/2 ≈ 0.13,

it follows that also this type’s incentive compatibility constraints are satisfied. We conclude that

Ω is both incentive compatible and individually rational. Notice that all incentive constraints

regarding deviations from or deviations toward the highest type hold with strict inequality.

Since the same is true also for the individual rationality constraint of the highest type we can

increase t1(4) and t2(4) by some ε > 0 without violating any of these constraints. The result-

ing ambiguous mechanism then yields an expected revenue that strictly exceeds the revenue

produced by the optimal simple mechanism. �

The principal’s preferences: Throughout the paper we assumed that the principal is ambiguity-

neutral. However, our results do not depend on this assumption. This is most obvious in the

case of Proposition 1 and Lemmata 1–5 as those results do not refer to the designer’s pref-

erences. It is also easily seen that the ambiguous mechanism characterized in Proposition 2

remains the optimal ambiguous mechanism in the class of direct ambiguous mechanisms that

are consistent. Thus, allowing for an ambiguity averse principal does not lead to different pre-

dictions once attention is restricted to consistent ambiguous mechanisms as we have defined

them in Section 2. The question therefore is whether or not allowing for ambiguity aversion on

the side of the principal affects the interpretation of the concept of an ambiguous mechanism

and the appropriateness of the consistency condition that we impose.

Assuming an ambiguity averse principal introduces an aspect that is not present in the case

of an ambiguity neutral designer: in such a framework it is conceivable that the principal has
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the ability to expose himself to the uncertainty to which he subjects the agent. That is, instead

of committing ex ante to a specific element in the ambiguous mechanism that he announces

to the agent, he could delegate the task of picking an element from the ambiguous mecha-

nism to an uninterested third party or some mechanical selection device whose functioning

neither he nor the agent understands. If for the principal it is not feasible to commit to such

uncertain/ambiguous selection devices, then the assumption regarding the principal’s attitude

towards uncertainty does not affect the analysis in any way; all the findings that we have de-

rived apply not only to the case of an expected utility maximizing principal but also to the case

of an ambiguity averse designer.

What are the consequences of allowing for the possibility that the designer can delegate

the choice of the outcome function in the above described sense? In situations where it is

not the principal who picks the outcome function there is no reason to impose consistency.

Remember that the motivation for requiring that condition was that we wanted to rule out the

possibility that the agent believes in outcome functions that the principal would not want to

choose if the agent does consider them as possible choices of the principal. This motivation

disappears if the principal does not have to make the choice. In principle this means that one

would have to consider a larger set of possible ambiguous mechanisms (also those that do not

satisfy consistency) than the ones that we have considered in this paper. Fortunately, it is not

difficult to see that non-consistent mechanisms can be disregarded without loss of generality

also when the designer is ambiguity averse.

Remember that Proposition 1 and Lemmata 1–4 state that a given ambiguous mechanism

can be replaced by another/simpler ambiguous mechanism without affecting (downward) in-

centive compatibility, individual rationality and consistency. All these results continue to hold

on the larger set of ambiguous mechanisms if the requirement that consistency continues to

hold is replaced with the requirement that the expected revenues of all outcome functions that

survive the manipulations are not changed in the course of the manipulation. Moreover, ev-

erything that can be achieved by an arbitrary downward incentive compatible and individually

rational ambiguous mechanisms can be done also with an downward incentive compatible and

individually rational ambiguous mechanisms that is composed of at most N − 1 elements and

that satisfies the properties uniformity and monotonicity/maximal slackness. Any such am-

biguous mechanism can be transformed into a consistent mechanism without changing the

payoff of a principal with MMEU preferences and without affecting its downward incentive

and individual rationality.

In order to see this, suppose Ω is an ambiguous mechanism that satisfies the above proper-

ties. Assume also that (qm, tm) minimizes the expected revenue among the outcome functions

in Ω. If (qn, tn) is such that Ep[tn] > Ep[tm], then we can simply replace it by the outcome

function (q̃n, t̃n), which coincides with (qn, tn) everywhere except for the payment of the highest
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type which is defined by

t̃n
N = tm

N − [pm(1 − qm
m)θm − pn(1 − qn

n)θn]/pN .

Since uniformity and maximal slackness imply that

Ep[tm] −Ep[tn] = pN[tm
N − tn

N] − pm(1 − qm
m)θm + pn(1 − qn

n)θn < 0,

it thus follows that

Ep[tm] −Ep[t̃n] = 0

and

tn
N > t̃n

N .

The preceding equation tells us, that applying this manipulation to all outcome functions we

will end up with a consistent ambiguous mechanism. The last inequality implies that the down-

ward incentive compatibility constraint of the highest type cannot be violated by the manipu-

lation, which completes our argument.

4.4 Surplus extraction: ambiguity aversion vs. risk aversion

In Section 4.1 we have shown that with the use of ambiguous mechanisms the principal can

extract the entire surplus from the agent provided that the agent has MMEU preferences and

his type set is large enough. This result is related to the findings of Matthews (1983) and

Maskin and Riley (1984) who have studied mechanism design problems with risk averse

agents. Matthews (1983) shows that if the type set is a continuum and the agent has a val-

uation function that exhibits constant absolute risk aversion, then the share of the surplus that

the principal can extract from the agent increases as the agent’s coefficient of absolute risk

aversion increases; in particular, when the agent becomes infinitely risk averse, the principal

can appropriate the entire surplus.

Formally, the case of an ambiguity neutral and risk averse agent with a CARA utility func-

tion resembles the case of an agent who is risk neutral and smoothly ambiguity averse with

a CARA transformation function φ.33 Moreover, the MMEU preferences à la Gilboa and

Schmeidler (1989) that we assume can be seen as the limit of ambiguity averse preferences

that are CARA-smooth, when the CARA coefficient goes to ∞. In the light of these observa-

33By the term ‘transformation function’ we mean the function which is applied to transform the expected utility
values. It is standard to denote this function by φ as we do in Example 4.
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tions our full rent extraction result for the case where the type set is a continuum, may seem to

be a rather immediate consequence of the results of Matthews (1983).

But the analogy between the analysis of the case of a risk averse agent in Matthews (1983)

and our treatment of environments with a smoothly ambiguity averse agent is not quite as close

as it appears. In the case of risk aversion the designer is allowed to choose random allocations.

From a technical point of view this means that the designer controls the exact distribution

over outcomes with respect to which the agent calculates his expected utility. The principal

does not have an analogous instrument in the case of smooth ambiguity aversion. While the

designer can exploit the agent’s uncertainty aversion by offering an ambiguous mechanism, he

will typically not be able to control in detail how the agent perceives the uncertainty embedded

in the mechanism. In particular, the designer cannot choose the distribution which the agent

uses in the aggregation of the expected utility values that he associates with the different beliefs

that he holds (i.e. the distribution that in Example 4 has been denoted by µ.) Translated into the

risk aversion model this would mean that the principal is not allowed to specify all aspects of

the distribution of a random allocation but only its support, while the weighting of the different

elements of this support is exogenously given to him as part of the agents preferences/beliefs.

4.5 Environments with multiple agents

In the previous sections we have restricted our attention to optimal mechanism design prob-

lems in single agent environments. In this section we show how the full surplus extraction

result of Corollary 3 can be extended to a setting with multiple agents.34 More specifically, in

what follows we consider a setting with two agents whose types are drawn from an atomless

distribution. The assumption of two agents is made for notational convenience only. All the

arguments easily be extend to the case with I > 2 agents.

Assume that the two agents have preferences as in the previous sections. We denote the

type set of agent i, i = 1, 2, by Θi. For a generic element of this set we write θi; generic type

profiles in Θ = ×iΘ
i, are indicated by θ. We assume that the agents’ type are (independently)

drawn from the atomless distribution p with support [0, 1]. We do not need to assume that the

designer knows the exact type distribution. For the following result we only need to impose

that he knows the support of the distribution. Regarding the two agents’ beliefs about each

others type distribution we make no assumptions at all.

Proposition 5 (Full surplus extraction with multiple agents). Consider a two agent setting as

described in the preceding paragraph. Moreover, let the ambiguous mechanism Ω = {(qθ, tθ) :

34The following full-rent-extraction result for multiple agents implies that ambiguous mechanisms outperform
simple mechanisms also in situations with multiple agents. For a characterization of expected revenue maximizing
simple mechanisms in general quasi-linear environments see Kos and Messner (2012).
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θ ∈ Θ}, be defined by

qθ(θ̂) =


(0, 0) if θ = θ̂

(1, 0) if
[
θ̂1 , θ1 and θ̂2 = θ2

]
or

[
θ̂1 , θ1, θ̂2 , θ2, and θ̂1 ≥ θ̂2

]
(0, 1) else

tθ(θ̂) = (qθ1(θ̂)θ̂1, qθ2(θ̂)θ̂2).

Under Ω truth-telling is an optimal strategy for the two agents irrespective of their beliefs

regarding the other agent’s type or play. Moreover, Ω is individually rational and consistent

(with respect to truth telling). The expected revenue generated by each element of Ω is T =

E[max{θ1, θ2}]. That is, Ω achieves full surplus extraction.

Proof. Consistency follows from the fact that any two simple mechanisms in Ω differ only on

a set of types with zero probability. Notice also that every simple mechanism almost always

awards the object to the agent with the higher announced type at a price that is equal to the

announced type. Thus, under truth telling each simple mechanism in Ω generates a revenue of

T = E[max{θ1, θ2}].

As for individual rationality observe that the ambiguous mechanism never specifies a pay-

ment for an agent unless he receives the object. When an agent receives the object, then he

has to make a payment that corresponds to his announced valuation. Thus, truth telling always

guarantees a non-negative payoff.

Finally, we have to argue that under Ω truth telling is an optimal strategy for the two agents,

irrespective of what they believe about the other agent’s type or play. In order to see this, notice

that for every profile of announced types, θ̂, agent i knows that there are simple mechanisms in

Ω (all those indexed by a type profile, θ, such that θ̂i = θi) that specify that he will not receive

the object and that he will not have to pay anything. This means that for every θ̂ his payoff is

at most zero. On the other hand, by revealing his type truthfully, agent i can never get a strictly

negative payoff since every outcome function specifies for every pair of reported types one of

two possible outcomes for agent i: either he gets the object with probability one and pays the

reported valuation or he does not get the object and pays zero; in either case the resulting payoff

is zero. �

5 Conclusion

In this paper we have studied mechanism design problems where the agent is ambiguity averse

in the sense of Gilboa and Schmeidler (1989). The central insight of our analysis is the ob-

servation that the principal can exploit the agent’s ambiguity aversion by offering ambiguous
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mechanisms. In fact, we find that if the type set is ‘large enough’ the designer can extract the

entire rent from the agent.

While most of our analysis concentrates on the case of a single agent environment, we show

that when the type distribution is atomless our result readily generalize to settings with multiple

agents. Finally, the core insight of our paper - in order to optimally exploit the uncertainty

aversion of the agent the designer should offer ambiguous mechanisms - do not depend on the

assumption of MMEU preferences à la Gilboa and Schmeidler (1989). In comparison to other

models of ambiguity aversion, MMEU preferences provide important advantages in terms of

tractability. In Example 4 we have seen that it is optimal for the principal to use ambiguous

mechanisms also if we adopt the less extreme smooth model of ambiguity aversion.
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