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Abstract

We extend the Fundamental Theorem of Finance and the Pricing Rule Representation Theorem of

Cox and Ross (see Ross [35] and [37] and Cox and Ross [9]) to the case in which market frictions are

taken into account but the Put�Call Parity is still assumed to hold. In turn, we obtain a representation

of the pricing rule as a discounted expectation with respect to a nonadditive risk neutral probability.

As a further contribution, in so doing we endogenize the state space structure and the contingent claim

representation usually assumed to represent assets and markets.
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1 Introduction

We extend the Fundamental Theorem of Finance and the Pricing Rule Representation Theorem (see Ross

[35] and [37] and Cox and Ross [9]) to the case in which market frictions are taken into account.1 We still

assume the Put�Call Parity and the absence of arbitrage opportunities. In turn, we obtain a representa-

tion of the pricing rule as a discounted expectation with respect to a nonadditive risk neutral probability.

In other words, the market prices contingent claims as an ambiguity averse decision maker. As a further

contribution, we remove the state space structure and the contingent claim representation that are usually

assumed exogenously to model assets and markets. In particular, this allows us to provide a unique math-

ematical framework where we can both discuss the Fundamental Theorem of Finance and the Pricing Rule

Representation Theorem.

Most of the fundamental theory of asset pricing relies on two main hypotheses: frictionless markets and

absence of arbitrage (see, e.g., Ross [35] and [37], Cox and Ross [9], and, in a dynamic setting, Harrison and

Kreps [23], Harrison and Pliska [24], and Delbaen and Schachermayer [11]).2 On the other hand, frictions and

transaction costs are present in �nancial markets and play an important role. Important evidence of these

facts is the existence of bid�ask spreads (see, e.g., Amihud and Mendelson [4] and [5]). As a consequence,

the Finance literature developed models that incorporate transaction costs and taxes (see, e.g., Garman and

Ohlson [17], Prisman [34], Ross [38], Jouini and Kallal [26], and Luttmer [31]). In particular, [34], [26], and

[31] observe how taxes/transaction costs generate pricing rules that are not linear but still can be compatible

with the no arbitrage assumption. In particular, [34] shows that convex transaction costs or taxes generate

convex pricing rules. Furthermore, if transaction costs are di¤erent among securities but proportional to the

volumes dealt then the respective pricing rules are sublinear, as in [26] and [31].

In a standard framework, the no friction assumption paired with the Law of One Price delivers the

fundamental Put�Call Parity, �rst discovered by Stoll [43] (see also Kruizenga [29]). Moreover, the no

friction assumption also implies that when a risk free position is added to an existing portfolio the price

of the resulting portfolio is equal to the price of the original portfolio plus the price of the position on the

risk free. This last implication is basically equivalent to say that the price on the risk free market is linear

and in particular the bid�ask spread is zero on this market. From an applied point of view, the absence of

frictions on the risk free market and the Put�Call Parity are two particularly important assumptions since

they can be empirically tested (see, e.g., Stoll [43] and [44], Gould and Galai [20], Klemkosky and Resnick

[28], Amihud and Mendelson [5], and Kamara and Miller [27]).

In this paper, we study price functionals and pricing rules that satisfy the Put�Call Parity and exhibit

no frictions in the risk free market. These two no frictions assumptions are, at the same time, conceptually

much weaker than the standard ones and much easier to test empirically. As in the standard case, we further

retain the no arbitrage postulate. We show that these pricing rules can be characterized as discounted

expectations with respect to a nonadditive probability (Choquet expectations). When such a probability is

concave, the associated pricing rule is sublinear. In this way, we provide testable conditions under which

transaction costs can generate a sublinear pricing rule (as in Jouini and Kallal [26] and Luttmer [31]) which

is further a nonadditive expectation (see also Chateauneuf, Kast, and Lapied [7]).

Choquet expected value and Choquet Expected Utility (henceforth, CEU) were introduced in Economics

and Decision Theory to account for deviations from the standard model of Subjective Expected Utility

1The combination of these two results is also known in the literature as the Fundamental Theorem of Asset Pricing (see,
e.g., [12] and [16]).

2For an introduction to the topic see Dybvig and Ross [14], Ross [39], [16], and [12].
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(henceforth, SEU) as formulated by Savage [40] and Anscombe and Aumann [1]. Starting from the seminal

paper of Ellsberg [15], the SEU paradigm began to falter. In fact, the Ellsberg paradox is a thought

experiment where the choices that seem natural cannot be rationalized by the existence of a probability over

the state space that further summarizes the decision maker preferences through a SEU criterion. Schmeidler

[42] (see also Gilboa [18]) showed instead how the CEU model could accommodate such pattern of choices.

At the same time, the CEU model could also account for Knightian Uncertainty and Ambiguity Aversion,

that is, the decision maker ignorance about the true probability distribution over the state space and the

possible aversion to such uncertainty. The key di¤erence between the CEU and the SEU model is that

the decision maker, in the �rst case, considers a nonadditive probability, rather than an additive one, as a

measure of likelihood. Moreover, expectations are computed through a Choquet integral (see Choquet [8]

and Schmeidler [41]) which naturally generalizes the usual notion of integral.3

The rest of the paper is organized as follows. We �rst discuss, in Section 2, our contribution in a �nite

dimensional setting: Theorem 1. There, we also brie�y review the famous Fundamental Theorem of Finance

and the Pricing Rule Representation Theorem. This allows us to introduce and discuss the extension we are

after. Section 3 contains our main result, Theorem 2, in a very general setting where we dispense with the

assumptions of �nite dimensionality, as well as, the assumption of existence of an underlying state space.

Appendix A provides the mathematical tools and the representation theorem behind our results. The proofs

are relegated to Appendix B.

2 The Finite Dimensional Case

2.1 Mathematical Preliminaries

In this section, we provide the mathematical preliminaries that are necessary for Section 2 and all the

examples in the paper which refer to this section. We refer the reader to Appendix A for all the other

relevant mathematical notions. Consider a �nite state space 
 = f!1; :::; !mg. We endow 
 with the �-

algebra coinciding with the power set. A nonadditive probability is a set function � such that � (;) = 0,

� (
) = 1, and � (A) � � (B) whenever A � B � 
. We say that � is a concave nonadditive probability if
and only if for each A and B

� (A \B) + � (A [B) � � (A) + � (B) :

A probability � is instead an additive set function such that � (;) = 0 and � (
) = 1. Clearly, an additive
probability can be identi�ed with a vector in Rm. Finally, a nonadditive probability � is balanced if and
only if there exists a probability � such that � � �. We denote by core (�) the set of all probabilities � such
that � � �.
Given x;y 2 Rm, (x)+ = max fx; 0g, (x)� = max f�x; 0g, and min fx;yg denote, respectively, the

positive part of a vector in Rm, the negative part of a vector in Rm, and the minimum between vectors in

Rm. With a small abuse of notation, we sometimes denote by k both the real number k and the constant
vector that takes value k. With such a notation, x ^ k and x _ k denote the minimum and the maximum

between vector x and the constant vector k. We say that a function ~� : Rm ! R is

- positive if and only if x � 0 implies ~� (x) � 0;4

- monotone if and only if x � y implies ~� (x) � ~� (y);
3For a comprehensive recent survey on the literature of choice under Ambiguity see Gilboa and Marinacci [19].
4Notice that equivalently, with ~� linear, we could say ~� is positive if and only if 0 � x implies 0 � ~� (x). See also Section

3.3.
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- translation invariant if and only if for each x 2 Rm and k 2 R

~� (x+ k) = ~� (x) + k~� (1) ;

- constant modular if and only if for each x 2 Rm and k 2 R

~� (x _ k) + ~� (x ^ k) = ~� (x) + k~� (1) ;

- subadditive if and only if for each x; y 2 Rm

~� (x+ y) � ~� (x) + ~� (y) :

Finally, a nonadditive probability � induces a function on Rm via the Choquet integral
R


xd�. If x is such

that x1 > ::: > xm, then we have that Z



xd� =

mX
i=1

xi�
� (!i)

where �� is the probability de�ned by

�� (!1) = � (!1) and �� (!i) = �

0@ i[
j=1

f!jg

1A� �
0@i�1[
j=1

f!jg

1A 8i 2 f2; :::;mg :5

2.2 The Classical Framework

In illustrating the results of this section, we follow Dybvig and Ross [14] and Ross [39]. We consider a two

periods market where all tradings happen at time 0. Let n be the number of primary assets. We denote

by 
 = f!1; :::; !mg the state space that we eventually use to represent the uncertainty behind any asset
evaluation at time 1. In this case, an asset or a portfolio of assets can also be represented as a vector x 2 Rm.
We denote byG the Arrow-Debreu tableau of securities�payo¤s which is a matrix withm rows and n columns.

Each row i denotes the payo¤/evaluation of each primary asset in !i while each column j is the primary

asset j in its contingent claim form. In other words, the entry gij of G represents the payo¤/evaluation of

primary asset j in state !i.6 Thus, the market of all tradable portfolios can be represented by the vector

space P = Rn, where a vector � represents the portfolio consisting of �i units of each primary asset i.7 Each
portfolio � 2 P has also a representation as a contingent claim which is G� 2 Rm and the space of portfolios
has a contingent claim representation as C = fG� : � 2 Rng. In this subsection, we assume that
Assumption C \ Rm++ 6= ;:
The two spaces are connected via a linear function T : Rn ! C � Rm that associates to each portfolio �

the contingent claim T (�) = G�. A further datum in this problem are the prices of the n primary assets:

p1; :::; pn. If there are no frictions in the market (NF), these prices induce a price functional p : P ! R such
that

p (�) =
nX
i=1

pi�i 8� 2 Rn: (NF)

5 In general, in a �nite setting, the probability ��� used to compute ~� (x) depends on the permutation � that orders the payo¤s
of x decreasingly. In de�ning �� , we implicitly considered the trivial permutation given by the identity. See also Appendix A.

6We assume that the rows of G are di¤erent from each other, that is, there are not redundant states of the world in 
.
7The analysis of our paper is done by assuming that there are not short-sale constraints. We can dispense with such an

assumption as outlined in Section 2.4.2.
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The value p (�) captures the market value of �. Another assumption that is fundamental in Asset Pricing

is the no arbitrage assumption (NA):8

p (�) < 0 ) G� 6� 0: (NA)

It amounts to impose that there do not exist portfolios that have negative price and deliver a nonnegative

payment in each contingency. It is immediate to see that under NF the no arbitrage assumption delivers the

Law of One Price, that is, if two portfolios �1 and �2 induce the same contingent claim, then p (�1) = p (�2).

Thus, given the map T , each price functional p induces a well de�ned pricing rule ~� : C ! R over contingent
claims. In fact, the price of a contingent claim x 2 C is

~� (x) = p (�)

where � 2 Rn is such that x = G�. We thus have:

Fundamental Theorem of Finance Let p : P ! R be a price functional such that p 6= 0. The following
statements are equivalent:

(i) there are no frictions in the market (NF) and no arbitrage opportunities (NA);

(ii) ~� is a positive linear pricing rule.

On the other hand, we can also characterize positive linear pricing rules:

Representation Theorem Let ~� : C ! R be a pricing rule such that ~� 6= 0. The following statements are
equivalent:

(i) ~� is a positive linear pricing rule;

(ii) there exist a risk neutral probability � and a riskless rate r > �1 such that

~� (x) =
1

1 + r
E�x =

1

1 + r

mX
i=1

xi�i 8x 2 C: (1)

From a mathematical point of view, the NF assumption translates into an assumption of linearity of

both: the price functional p and the pricing rule ~�. The NA assumption is an assumption of positivity of the

pricing rule ~�. At �rst sight, the NA condition does not seem to have a clear mathematical counterpart for p

since it is based on the contingent claim representation of portfolios. On the other hand, the NA assumption

is a positivity condition of the price functional p whenever the space of portfolios P is endowed with the

preorder induced by G, that is,

�1 �G �2 () G�1 � G�2:

In other words, a portfolio �1 is declared at least as good as a portfolio �2 if and only if each possible

evaluation at time 1 of �1 is greater than the one of portfolio �2.
9 In light of this observation, p satis�es the

NA condition if and only if

� �G 0 ) p (�) � 0

which is a condition of positivity for p.

In both cases, given the linearity of p and ~�, the positivity assumption contained in the NA condition is

equivalent to a monotonicity assumption on both p and ~�.
8A stronger version of the NA assumption (see also [30] and [39]) is p (�) � 0 implies G� 6> 0. This is a condition of strict

monotonicity, while NA is a condition of monotonicity.
9Notice that this order is typically very di¤erent from the pointwise order with which Rn is naturally endowed.

5



2.3 Our Main Result

In the Representation Theorem, the probability measure � takes the name of risk neutral probability. It is

unique when C is complete, that is, when all contingent claims are available and C = Rm. In the rest of the
section, we assume that

Assumption C = Rm and the columns of G are linearly independent.

The goal of our paper is to characterize price functionals and pricing rules which satisfy, among the

others, the Put�Call Parity. Thus, it is natural to consider all possible calls and puts with nonnegative strike

price. It is well known that completeness of markets can be achieved in di¤erent ways. One way that plays

a fundamental role in our result is the closure with the respect to option contracts (see Ross [36] and Green

and Jarrow [22]). For example, in a �nite dimensional setting, by Ross [36], it follows that if C contains the

risk free asset, an e¢ cient fund, and all call options contracts written on it with nonnegative strike price,

then C = Rm.10 For simplicity, we further assumed that the columns of G are linearly independent. This

amounts to impose that in the market of primary assets there are not redundant securities (see also LeRoy

and Werner [30], Follmer and Schied [16], and Section 3.1). Mathematically, this translates into T being

injective.

One important consequence of the market being complete is that the risk free asset xrf is available, that

is, the constant unit vector belongs to C. Given a contingent claim x in C, if we denote by cx;k the call

option (resp., px;k the put option) on x with strike price k � 0, then we have the following well known

equality

cx;k � px;k = x� kxrf :

If ~� were linear, this equality would deliver a version of the famous Put�Call Parity (henceforth, PCP) for

European options, that is,

~� (cx;k) + ~�
�
�px;k

�
= ~� (x)� k~� (xrf ) : (PCP)

At time 0, PCP alone requires that the di¤erence between the ask price for the call option cx;k and the bid

price for the put option px;k coincides with the di¤erence between the ask price of the underlying asset x

and the price of k units of the risk free asset. In other words, the two (payo¤ equivalent) strategies must

have the same cost.11

In this paper, in terms of pricing rule ~�, we assume that:

Assumption (nf) The PCP holds for all x and all k � 0 and there are no frictions on the risk free market,
that is,

~� (x+ kxrf ) = ~� (x) + k~� (xrf ) for all x 2 C and all k 2 R.

Assumption (na) There are no arbitrage opportunities, that is, ~� (x) � ~� (y) whenever x � y.

Notice that both conditions can be stated in terms of the primitive price functional p : P ! R through
the order �G and then stated in terms of pricing rule ~� through the formula p = ~� � T .12 In particular, it
is immediate to observe that na for p amounts to assume that

p (�2) < p (�1) ) G�2 6�G G�1:
10Recall that an e¢ cient fund is de�ned to be a contingent claim x such that if i 6= j, then xi 6= xj .
11Notice that if there are frictions, a violation of the PCP might not lead to an immediately available arbitrage opportunity.

Nevertheless, if one of the two strategies was costing more than the other, in an economy with rational agents, we could think
that no agent would buy the most expensive portfolio, thus yielding an equivalent equilibrium price where the PCP is satis�ed.
12Or, equivalently, ~� = p � T�1 since we assumed T injective.
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Indeed, both assumptions require the price functional p to preserve certain lattice equalities and inequal-

ities.13 The key insight is that those conditions for p can so be stated in terms of the preorder �G (see

Examples 1 and 3). In light of these observations, clearly nf is weaker than NF. In terms of ~�, it is a

requirement of linearity of the pricing rule for two speci�c decompositions of x�kxrf .14 On the other hand,
assumption na is stronger than NA, but under NF they coincide, as already argued.15

Thus, we have all the ingredients to state our nonlinear versions of the Fundamental Theorem of Finance

and the Representation Theorem in the �nite dimensional case:

Theorem 1 Let C = Rm, let p : P ! R be a price functional such that p 6= 0, and let ~� : C ! R be the
associated pricing rule. The following statements are equivalent:

(i) p satis�es nf and na;

(ii) ~� is monotone, translation invariant, constant modular, and such that ~� 6= 0;

(iii) there exist a nonadditive risk neutral probability � and a riskless rate r > �1 such that

~� (x) =
1

1 + r

Z



xd� for all x 2 C (2)

where the integral in (2) is a Choquet integral.

Moreover,

1. r and � are unique.

2. If � is balanced, then ~� (x) � �~� (�x) for all x 2 C, that is, there exists a positive bid-ask spread.

3. � is a (additive) risk neutral probability if and only if p satis�es NF.

Notice that the equivalence between (i) and (ii) is the generalized version of the Fundamental Theorem

of Finance, while the equivalence of (ii) and (iii) is the generalized version of the Representation Theorem.16

Completeness of the market delivers uniqueness of the representation in point 1. At the same time, point 2

provides, in terms of the representation, a su¢ cient condition for the presence of a positive bid-ask spread.

Finally, the standard Fundamental Theorem of Asset Pricing is derived as a particular case in point 3.

2.4 Some Extension

2.4.1 The Subadditive Case

One contribution of our main result is to characterize among sublinear pricing rules the ones that are Choquet

pricing rules.

One way in which nonlinear price functionals and pricing rules can arise, even in complete markets and

without short-sale constraints, is through the existence of di¤erent prices for selling and buying primary

assets (see also [30]). In other words, if there exist positive bid-ask spreads in the market of primary assets,

then the NF fails to hold. In fact, if for each primary asset i 2 f1; :::; ng there exists a (ask) price, pai , for
13See also the proof of Theorem 1 for a more formal statement of these facts.
14 In particular, it implies linearity on the subspace generated by the risk free asset.
15Notice that if there are frictions, a violation of assumption na might not lead to an immediately available arbitrage

opportunity. Nevertheless, if x � y and ~� (x) < ~� (y), in an economy with rational agents, we could think that no agent would
buy y, thus yielding an equivalent equilibrium price where the na is satis�ed.
16 It should be observed that the equivalence between (ii) and (iii) stands also if ~� is a pricing rule that satis�es the assumptions

in (ii) but it is not necessarily associated to a price functional p.
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buying asset i which is greater than the (bid) price, pbi , for selling asset i, it follows that p : P ! R is such
that

p (�) =
nX
i=1

�+i p
a
i �

nX
i=1

��i p
b
i 8� 2 Rm:

It is then immediate to see that p is a genuine sublinear price functional, that is, p (��) = �p (�) for all

� 2 P and all � � 0 and p (�1+�2) � p (�1) + p (�2) for all �1;�2 2 P . At the same time, under the
Law of One Price, the associated pricing rule satis�es the same properties, that is, ~� (�x) = �~� (x) and

~� (x+ y) � ~� (x) + ~� (y) for all x;y 2 C and for all � � 0. Starting from the paper of Jouini and Kallal

[26], transaction costs and frictions have been considered and modelled by imposing sublinearity of the

pricing rule. The �rst property is called positive homogeneity and it is satis�ed by Choquet integrals while

the second property is called subadditivity. Under the na assumption, a sublinear pricing rule takes the

following characterization

~� (x) =
1

1 + r
max
�2R

E�x 8x 2 C

where R is a closed and convex set of risk neutral probabilities. An important example of sublinear pricing

rules are Choquet pricing rules with concave �. In that case, we have that R coincides with the core of �.

Our paper shows that these latter rules are characterized among the pricing rules considered by Jouini and

Kallal [26] and Luttmer [31] as the ones that further satisfy the PCP. In the case of sublinear pricing we can

also weaken the na assumption. In fact, the NA assumption we �rst considered stated that

p (�) < 0 ) G� 6� 0:

In a context with no frictions, this is equivalent to assume that

Assumption (NA�) If G� � 0, then p (�) � 0.
It is immediate to see that it is weaker than the na assumption.

Corollary 1 Let C = Rm, let p : P ! R be a price functional such that p 6= 0, and let ~� : C ! R be the
associated pricing rule. The following statements are equivalent:

(i) p satis�es nf, NA�, and it is such that p (�1+�2) � p (�1) + p (�2) for all �1;�2 2 P ;

(ii) ~� is monotone, translation invariant, constant modular, subadditive, and such that ~� 6= 0;

(iii) there exist a concave nonadditive risk neutral probability � and a riskless rate r > �1 such that

~� (x) =
1

1 + r

Z



xd� =
1

1 + r
max

�2core(�)
E�x for all x 2 C

where the �rst integral in (2) is a Choquet integral.

Moreover, r and � are unique.

Subadditive Choquet pricing rules have also been characterized by Chateauneuf, Kast, and Lapied [7].

This latter work o¤ers a generalized version of the Representation Theorem in terms of Choquet pricing. The

assumptions characterizing ~� in [7] are monotonicity (our na assumption), subadditivity, and comonotonic

additivity. Although this is a legitimate mathematical representation result, comonotonic additivity is a

di¢ cult property to test since it requires a contingent claim representation for the assets considered. In fact,

two assets are comonotonic if and only if the associated contingent claims x and y satisfy

(xi � xj) (yi � yj) � 0 8i; j 2 f1; :::;mg
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and comonotonic additivity requires additivity of the price functional over pairs of comonotonic assets which

is a di¢ cult property to test.17 On the other hand, our characterization of Choquet pricing relies on the

PCP for European options which is easier to test. In fact, in the literature there are several studies testing

the validity of the PCP (see Stoll [43] and [44], Gould and Galai [20], Klemkosky and Resnick [28], and

Kamara and Miller [27]).

2.4.2 Discount Certi�cates and Call Options

An important class of derivatives are discount certi�cates (see [16]). A discount certi�cate on a claim x

with cap k � 0 is a contingent claim that in state !i pays xi if xi � k and k if xi > k. We will denote this
derivative security by dx;k. It is immediate to see that for each x 2 C and k � 0

cx;k + dx;k = x: (3)

When ~� is linear, this latest equality delivers the following relation

~� (cx;k) + ~� (dx;k) = ~� (x) : (4)

We say that ~� satis�es nf�if and only if

Assumption (nf�) ~� satis�es (4) for all x and all k � 0 and there are no frictions on the risk free market,
that is,

~� (x+ kxrf ) = ~� (x) + k~� (xrf ) for all x 2 C and all k 2 R.

As seen before for the PCP, also this condition can be stated in terms of the primitive price functional

p : P ! R through the order �G and then stated in terms of pricing rule ~� through the formula p = ~� � T .
Even in this case, the assumption in (4) is a condition on the price functional p to preserve a lattice equality

(see Examples 1 and 3).

Proposition 1 Let C = Rm and let p : P ! R be a price functional. The following statements are

equivalent:

(i) p satis�es nf and na;

(ii) p satis�es nf�and na.

In light of Theorem 1, in order to characterize the associated pricing rule ~� in terms of Choquet pricing,

we can drop the PCP relation and replace it with the relation contained in (4). Notice that also in this case

we provide conditions for Choquet pricing that can be empirically tested (see Jarrow and O�Hara [25]). We

conclude with two remarks:

Remark 1 Chateauneuf, Kast, and Lapied [7] argue that Choquet pricing can account for violations of both
the PCP as well as the relation contained in (4) when dividends are taken into account. In terms of PCP,

the key di¤erence is that the PCP version they consider is the following one:

~�
�
px;k

�
= ~� (cx;k) + ~� (�x) + k~� (xrf ) :

This condition is di¤erent from ours since, under transaction costs, we have that, typically, �~� (cx;k) 6=
~� (�cx;k). On the other hand, if ~� can be represented as a discounted Choquet integral and dividends are not
taken into account, it is immediate to see that (4) must hold.18

17That is, � (x+ y) = � (x) + � (y) for all pairs of comonotonic x and y in C.
18 In fact, cx;k and dx;k are comonotonic for all x 2 C and k � 0 (see, for a proof, [32, Lemma 4.6]). Since Choquet pricing

rules are comonotonic additive, it follows that

� (x) = �
�
cx;k + dx;k

�
= �

�
cx;k

�
+ �

�
dx;k

�
:

9



Remark 2 In the literature, in order to consider transaction costs, often the space of marketed portfolios
has been considered to be just a cone (see, e.g., Luttmer [31]). For example, this is the case if short-sale

constraints are assumed. In such a case, we would have that P = Rn+ and, given the Arrow and Debreu

tableau G, the space of marketed contingent claims would be the cone C+ =
�
G� : � 2 Rn+

	
. In this case, we

could still provide the equivalence between points (i) and (iii) of Theorem 1 given three caveats: (a) xrf 2 C+,
(b) for each x 2 C+ and k � 0 we must have that cx;k;dx;k 2 C+, and (c) the nf condition is replaced with
the nf�condition.

3 The General Case

3.1 A Generalized Market Model

We consider a market and we model it as a vector spaceM . Each element x inM is interpreted as a �nancial

asset or a portfolio. Given a set of weights f�igli=1 � R and a set fxig
l
i=1 �M , we interpret

lX
i=1

�ixi

as the portfolio constructed by buying/selling xi using the quantities j�ij, with an interpretation of buying if
�i is positive and of selling if �i is negative. The goal of this section is to study a price functional � de�ned

over the market M when all tradings take place at time 0 and then the value of each asset is revealed at

time 1. We remove the hypothesis that there exists an agreed state space 
 or, in other words, we do not

necessarily represent the market as a space of random variables/contingent claims. Instead, we consider a

set of evaluations maps V. That is, the value of each asset x at time 1 is determined by an evaluation map
v 2 V. We make three assumptions on V:

1. Each v 2 V is a linear mapping from M to R.

2. For each x 2M the interval [infv2V v (x) ; supv2V v (x)] is bounded.

3. If x; y 2M , then v (x) = v (y) for all v 2 V implies that x = y.

Given an element x 2 M and an element v 2 V, v (x) is the value that asset x will take at period 1
under the evaluation map v. From a practical point of view, assumption 1. is justi�ed in the following way:

given a portfolio x =
lX
i=1

�ixi and a brokerage account, at the end of a trading day the value of x, v (x),

is typically computed/approximated to be
lX
i=1

�iv (xi). In other words, the portfolio is marked to market.

This does not mean that if the portfolio x had to be sold the realized proceedings would be
lX
i=1

�iv (xi) but

it provides an estimate for a future and uncertain evaluation. From a theoretical point of view, the linearity

assumption contained in 1. is in line with Debreu [10] and the fact that the market is modelled to have

just two periods. Condition 2. implies that, at time 1, the value of each asset will be in a bounded range.

Condition 3. imposes that there are no redundancies. In fact, there do not exist two securities which are

not equal but, in terms of their value at time 1, are indistinguishable.19

19We could dispense with Condition 3. by declaring two elements x and y in M equivalent, x � y, if and only if v (x) = v (y)
for all v 2 V. Given this equivalence relation, we could then take the quotient M= �. This mathematical step would be
reasonable from a �nancial point of view since evaluating an asset x should be based just on the future evaluations of x itself
and nothing else.
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Given the set of evaluations V, we endow this set with the �-algebra generated by the class of the following
subsets:

(fv 2 V : v (x) > tg)x2M;t2R :

We denote this �-algebra by B. This class of subsets is not unusual in Finance and the �-algebra generated
by it is natural in Mathematics. In fact, given x 2M and t 2 R, if there exists z 2M such that

v (z) = 1fw2V:w(x)>tg (v) 8v 2 V;

then, following Nachman [33], z is a simple call option on x with exercise price t. On the other hand, if V is
endowed with a natural topology that makes it compact, in some case, B turns out to be the Baire �-algebra.

De�nition 1 Given a vector space M , a price functional � : M ! R, and a set of linear functions V on
M , we will say that (M;V; �) is a market if and only if V satis�es Conditions 1.�3.

Example 1 In Section 2, we represented the market of tradable assets as the vector space of all portfolios
P . Each vector � 2 P represented the portfolio where each primary asset i is held in quantity �i. In such

a case, the price functional we considered was called p. At the same time, given the Arrow-Debreu tableau,

the set of evaluations V can be seen as the set of m linear functionals induced by the rows of G, that is, for

each i = 1; :::;m

vi (�) =

nX
j=1

gij�j 8� 2 P:

Conditions 1. and 2. are then satis�ed by construction and the �nite dimensionality of P . On the other

hand, Condition 3. is satis�ed whenever it is imposed that the columns of G are linearly independent, that

is, there are not redundant securities.

Example 2 In Section 2, another way we represented the market was through the space of contingent claims
C. In such a case, the price functional (pricing rule) we considered was called ~�. At the same time, given

the state space 
, the set of evaluations V can be seen as the set of Dirac measures f�!ig
m
i=1 and the linear

functionals induced by each of these measures, that is, for each i = 1; :::;m

vi (x) = xi 8x 2 C:

Conditions 1., 2., and 3. are then satis�ed by construction.

3.2 Put�Call Parity and Nonlinear Pricing

Given a market (M;V; �) and an asset/portfolio x 2M , notice that x de�nes a function over V, that is,

v 7! v (x) v 2 V:

One way in which the market could form a price for x, � (x), could be by discounting and averaging the

possible evaluations of x at time 1 under a measure of likelihood � : B ! [0; 1] and a risk free rate r 2 (�1;1).
This is what happens in a market with no frictions and no arbitrages. In such a case, � is additive. This

reasoning could be extended to the nonadditive case where the integrals are going to be de�ned using the

concept of Choquet integration (see Appendix A.1). In particular, we could have that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M: (5)

Our purpose is to characterize a price functional � : M ! R like the one in (5) when minimal assumptions
of no arbitrage are made and market frictions are also taken into account.
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When modelling a market, the existence of a risk free asset is often assumed. Such an asset has the

fundamental feature of having a constant value at time 1. In particular, this value is independent of what

might happen between time 0 and time 1. Therefore, in our context, we will de�ne the risk free asset in the

following way:

De�nition 2 An asset xrf in M is risk free if and only if

v (xrf ) = 1 8v 2 V:

Another important type of �nancial assets are European options: call and put. Those are derivative

contracts since their value at time 1 is strictly related to the value of the underlying asset x. Those are

securities that give the right to trade an asset x at time 1 at a �xed strike price k. The call option gives

the right to buy while the put option the right to sell. The value at time 1 of a call option cx;k on x with

strike price k depends on the value of x at time 1. For each valuation v 2 V, it is v (x)� k if v (x) � k and
0 otherwise. The value at time 1 of a put option px;k on x with strike price k depends on the value of x at

time 1. For each valuation v 2 V, it is k � v (x) if v (x) � k and 0 otherwise. Formally, we have that:

De�nition 3 Let x be an asset in M . Then,

(i) cx;k is a call option on x with strike price k if and only if

v (cx;k) = (v (x)� k)+ 8v 2 V:

(ii) px;k is a put option on x with strike price k if and only if

v (px;k) = (k � v (x))+ 8v 2 V:

Given an asset x and a strike price k, if M allows tradings on xrf , cx;k, and px;k, then an important

relationship connects x, xrf , cx;k, and px;k:

Proposition 2 Let (M;V; �) be a market that contains the risk free asset and let x 2M and k 2 R. If cx;k
and px;k belong to M , then

cx;k � px;k = x� kxrf . (6)

In other words, the portfolio obtained by buying a call option on asset x with exercise price k and selling

a put option on the same asset x with exercise price k is equal to the portfolio obtained by buying a unit of

asset x and selling k units of the risk free asset.

Proposition 3 Let (M;V; �) be a market that contains the risk free asset. M contains all call options with

nonnegative strike price if and only if M contains all put options with nonnegative strike price.

Remark 3 It is important to notice that, given a market (M;V; �), we do not assume that M is a vector

lattice. On the contrary, by de�ning the primitive notions of call and put options, we prove in Appendix

B that a market (M;V; �) which contains the risk free asset and all call options is a vector lattice with the
respect to a natural order, �V , that we later de�ne.

In the next few de�nitions, we introduce some properties of the price functional �:

De�nition 4 Let (M;V; �) be a market that contains the risk free asset. The price functional � is said to
be cash additive if and only if

� (x+ �xrf ) = � (x) + �� (xrf ) 8x 2M;8� 2 R: (7)
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The above assumption is equivalent to state that there are no frictions in the market when it comes

to trading the risk free asset. In particular, we have that the risk free asset market is frictionless and

� (�xrf ) = �� (xrf ) for all � in R.

De�nition 5 Let (M;V; �) be a market that contains the risk free asset and all possible call options with
k � 0. The price functional � is said to satisfy the Put�Call Parity if and only if

� (cx;k) + � (�px;k) = � (x)� k� (xrf ) 8x 2M;8k 2 R+:

In other words, the two equivalent trading strategies contained in (6) must have the same price. It is

immediate to see that the set of evaluations V induces a preorder on M . In fact, it is reasonable to declare x
at least as good as y if and only if the value of x at time 1 is greater than the value of y at time 1, irrespective

of the evaluation function v chosen in V.

De�nition 6 Let (M;V; �) be a market. We say that x is at least as good as y if and only if

v (x) � v (y) 8v 2 V:

In this case, we write x �V y.

De�nition 7 Let (M;V; �) be a market. The price functional � is said to be monotone if and only if

x �V y ) � (x) � � (y) :

Notice that this latter condition on � is simply a generalization of a no arbitrage condition. In fact, if the

price functional is cash additive, then � (0) = 0 and the previous condition implies that � (x) � 0 whenever
x �V 0.

Example 3 In Section 2, we represented the market of tradable assets as the vector space of all portfolios P
and also as the vector space of all tradable contingent claims C. In the �rst case, Example 1, we have that V
is the set of linear evaluations induced by the rows of the Arrow-Debreu tableau G. It follows that a portfolio

�rf corresponds to the risk free asset if and only if G�rf is the constant vector with each component equal

to 1. Similarly, given a portfolio �, a call (resp., a put) option on � with strike price k is the portfolio c�;k
(resp., p�;k) such that

Gc�;k =
�
G �� kG�rf

�+
= max

�
G �� kG�rf ;0

	
(resp., Gp�;k =

�
kG�rf �G�

�+
= max

�
kG�rf �G�;0

	
).

Finally, a discount certi�cate on a portfolio � with cap k � 0 is the portfolio d�;k such that

Gd�;k = min
�
G�; kG�rf

	
:

Moreover, we have that �V is equal to �G. Along the same lines, we have that c�;k (resp., p�;k) is the
positive part, with respect to �G, of the vector ��k�rf (resp., k�rf � �). On the other hand, d�;k is the
minimum, with respect to �G, between � and k�rf . The price functional p satis�es the PCP if and only if

p (c�;k) + p
�
�p�;k

�
= p (�)� kp

�
�rf

�
8� 2 P;8k � 0: (8)

Similarly, p is cash additive if and only if

p
�
� + k�rf

�
= p (�) + kp

�
�rf

�
8� 2 P;8k 2 R: (9)

Finally, p satis�es (4) if and only if

p (c�;k) + p (d�;k) = p (�) 8� 2 P;8k � 0: (10)
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Observe that p satis�es condition nf, as stated in Section 2, if and only if it satis�es (8) and (9) and it

satis�es nf� if and only if it satis�es (9) and (10). In the second case, Example 2, we have that V is the
set of linear functionals induced by the Dirac measures on 
. In this case, we have that a contingent claim

xrf corresponds to the risk free asset if and only if it is the constant vector with each component equal to

1. Similarly, given a contingent claim x, a call (resp., a put) on xwith strike price k is the portfolio cx;k
(resp., px;k) such that

cx;k = (x� kxrf )+ (resp., px;k = (kxrf � x)
+ ).

Moreover, we have that �V coincides with the usual pointwise order.

Before stating the main result, we need to introduce two new objects �?; �? : B ! [0; 1] de�ned by

�? (A) =
sup f� (x) : x̂ �V 1Ag

� (xrf )
and �? (A) =

inf f� (x) : x̂ �V 1Ag
� (xrf )

where x̂ : V ! R is such that x̂ (v) = v (x) for all v 2 V and � (xrf ) is assumed to be di¤erent from zero 0.

Theorem 2 Let (M;V; �) be a market, with � 6= 0, that contains the risk free asset and all call options with
k � 0. The following statements are equivalent:

(i) � is monotone, cash additive, and satis�es the Put�Call Parity;

(ii) there exist a nonadditive probability � : B ! [0; 1] and a risk free rate r > �1 such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M: (11)

Moreover,

1. r is unique.

2. Each nonadditive probability � : B ! [0; 1] that satis�es �? � � � �? represents � as in (11).

3. If B (V;B) = fx̂ : x 2Mg, then � is unique.

4. If � is balanced, then � (x) � �� (�x) for all x 2 C, that is, there exists a positive bid-ask spread.

Notice that Theorem 2 naturally delivers the equivalence of points (ii) and (iii) in Theorem 1. On the

other hand, the equivalence between (i) and (ii) in Theorem 1 basically follows from applying Theorem 2 to

the price functional p and noticing three facts:

(a) p has a representation as in (11) where V is the set of rows of the Arrow and Debreu tableau G;

(b) thus, p satis�es monotonicity, translation invariance, and constant modularity with the respect to �G;

(c) � = p � T shares the same properties since T maintains these vector lattice properties.

Finally, we have that points 1. and 3. (resp., 4.) of Theorem 2 deliver point 1. (resp., 2.) of Theorem 1.
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3.3 The Subadditive Case

One way in which the literature introduced transaction costs in pricing has been by considering subadditive

price functionals and pricing rules (see Jouini and Kallal [26] and Luttmer [31]).

De�nition 8 Let (M;V; �) be a market. The price functional � is said to be subadditive if and only if

� (x+ y) � � (x) + � (y) 8x; y 2M:

If � is cash additive, this assumption is particularly important since it implies the existence of a positive

bid�ask spread. In fact, we have that � (x)+� (�x) � � (0) = 0 for all x 2M . In this context, the assumption
of monotonicity contained in De�nition 7 can be weakened to be the following notion of positivity:

De�nition 9 Let (M;V; �) be a market. The price functional � is said to be positive if and only if

0 �V x ) 0 � � (x) :

Corollary 2 Let (M;V; �) be a market where � 6= 0 and that contains the risk free asset and all call options
with k � 0. The following statements are equivalent:

(i) � is positive, cash additive, subadditive, and satis�es the Put�Call Parity;

(ii) there exist a concave nonadditive probability � : B ! [0; 1] and a risk free rate r > �1 such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

Moreover, r is unique and � can be chosen to be �?.

Remark 4 The two above conditions are also equivalent to the following one:

(i�) � is positive, such that � (kxrf ) = k� (xrf ) for all k 2 R, sublinear, and satis�es the Put�Call Parity.

Notice that, in (i�), we weakened cash additivity to a genuine assumption of no frictions on the risk free asset

and we strengthened subadditivity to sublinearity.20

Our last result allows us to discuss uniqueness of the nonadditive probability � also when the market

does not span the entire space of all contingent claims, that is, fx̂ : x 2Mg 6= B (V;B). In order to do so,
we need to introduce a notion of continuity for the price functional �.21

De�nition 10 Let (M;V; �) be a market. The price functional � is said to be continuous if and only if for
each sequence fxngn2N �M we have that

lim
n
v (xn) = 0 8v 2 V ) lim

n
� (xn) = 0;

provided there exists l 2 R such that jv (xn)j � l for all v 2 V and for all n 2 N.

Corollary 3 Let (M;V; �) be a market where � 6= 0 and that contains the risk free asset and all call options
with k � 0. The following statements are equivalent:

(i) � is positive, cash additive, subadditive, continuous, and satis�es the Put�Call Parity;

(ii) there exist a continuous and concave nonadditive probability � : B ! [0; 1] and a risk free rate r > �1
such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

Moreover, r and � are unique.
20Recall that � is sublinear if and only if � (�x+ �y) � �� (x) + �� (y) for all �; � � 0 and for all x; y 2M .
21 In reading De�nition 10, notice that continuity is required with respect to the bounded weak convergence induced by V.
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A Nonlinear Integration

A.1 Choquet Integral

In this paper, Choquet integrals play a fundamental role. Given a measurable space (S;�) and a set function

� : �! R we will say that � is:

(i) a nonadditive probability if � (;) = 0, � (S) = 1, and � (A) � � (B) provided A � B;

(ii) concave if � (A [B) + � (A \B) � � (A) + � (B) for all A and B;

(iii) continuous if limn!1 � (An) = � (A) whenever either An # A or An " A;

(iv) a probability if it is a nonadditive probability such that � (A [B) = � (A) + � (B) for all A and B

which are pairwise disjoint;

(v) a probability measure if it is a probability such that limn � (An) = 0 whenever An # ;;

(vi) balanced if � is a nonadditive probability and there exists a probability � such that

� (B) � � (B) 8B 2 �:

We denote by �(S) the set of all probabilities on �. Given a nonadditive probability �, we de�ne

core (�) = f� 2 �(S) : � � �g :

It is well known that a concave nonadditive probability is such that

� (B) = max
�2core(�)

� (B) 8B 2 �

and a nonadditive probability � is balanced if and only if core (�) 6= ;. Given a bounded and �-measurable
function f : S ! R, the Choquet integral of f with respect to a nonadditive probability � is de�ned as the
quantity Z

S

fd� =

Z
S

f (s) d� (s) =

Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt

where the integrals on the right hand side are Riemann integrals and (f > t) = fs 2 S : f (s) > tg for all
t 2 R. Thus, the Choquet integral de�nes a functional on the space of bounded, real valued, and �-

measurable functions: B (S;�). It is well known that when � is concaveZ
S

f (s) d� (s) = max
�2core(�)

Z
S

f (s) d� (s) :

A.2 A Representation Result

Consider a nonempty set S. We de�ne by B (S) the set of all bounded and real valued functions on S. By

L we denote a Stone vector lattice contained in B (S), that is, L is a Riesz subspace of B (S) which further

contains all constant functions. L is endowed with the pointwise order. Object of our study is a functional

I : L! R. We say that:

(i) I is monotone if and only if I (f) � I (g) provided f � g.

(ii) I is translation invariant if and only if I (f + k1S) = I (f) + kI (1S) for all f 2 L and all k 2 R.

(iii) I is constant modular if and only if I (f _ k1S) + I (f ^ k1S) = I (f) + kI (1S) for all f 2 L and all
k 2 R.
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(iv) I is subadditive if and only if I (f + g) � I (f) + I (g) for all f; g 2 L.

(v) I is (bounded) pointwise continuous at 0 if and only if limn I (fn) = 0 whenever ffngn2N � L is

uniformly bounded and fn �! 0 pointwise.

(vi) I is comonotonic additive if and only if I (f + g) = I (f) + I (g) whenever f; g 2 L are such that

[f (s)� f (s0)] [g (s)� g (s0)] � 0 8s; s0 2 S:

We denote by � (L) the smallest �-algebra on S which makes measurable all the functions contained in

L. Given a monotone I : L! R such that I (1) = I (1S) > 0, we de�ne ��; �� : � (L)! [0; 1] by

�� (A) =
sup fI (f) : L 3 f � 1Ag

I (1)
and �� (A) =

inf fI (f) : L 3 f � 1Ag
I (1)

8A 2 � (L) :

Theorem 3 Let L be a Stone vector lattice and I : L ! R such that I 6= 0. The following statements are
equivalent:

(i) I is monotone, translation invariant, and constant modular;

(ii) there exists a nonadditive probability � : � (L)! [0; 1] and a number � 2 (0;1) such that

I (f) = �

�Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt

�
8f 2 L: (12)

Moreover,

1. � is unique.

2. Each nonadditive probability � : � (L)! [0; 1] that satis�es �� � � � �� represents I as in (12).

3. I is subadditive if and only if �� is concave.

4. I is subadditive and pointwise continuous at 0 if and only if there exists a concave and continuous

nonadditive probability � satisfying (12).

5. If � is continuous and concave, then � is unique among the nonadditive probabilities satisfying (12)

and with such properties.

Proof. (i) implies (ii). De�ne �I : L! R by �I (f) = I (f) =I (1) for all f 2 L. Since I (1) > 0, it is immediate
to see that �I is monotone, translation invariant, and constant modular. By Greco [21], it follows that there

exists a nonadditive probability � : � (L)! [0; 1] such that

�I (f) =

Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt 8f 2 L: (13)

Moreover, each nonadditive probability �̂ : � (L)! [0; 1] that satis�es

�� (A) = sup
�
�I (f) : L 3 f � 1A

	
� �̂ (A) � inf

�
�I (f) : L 3 f � 1A

	
= �� (A) 8A 2 � (L) ;

represents �I as in (13). If we de�ne � = I (1), then we have that I = � �I. Given (13), the statement follows.

(ii) implies (i). De�ne �I : L! R by

�I (f) =

Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt 8f 2 L:
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By [41] and [32, Proposition 4.8] and since I = � �I, it is immediate to see that I is monotone and comonotonic

additive. By [32, Proposition 4.11], it follows that I is translation invariant. Consider f 2 L and k 2 R.
By [32, Lemma 4.6], f ^ k1S and f _ k1S are comonotonic. Since I is comonotonic additive and translation
invariant, it follows that I is constant modular.

1. By (12), we have that I (1S) = � delivering the uniqueness of �.

2. The statement follows from Greco [21].

3. Assume that I is further subadditive. De�ne I� : B (� (L)) ! R by I� (f) = inf fI (g) : L 3 g � fg
for all f 2 L. De�ne J : B (� (L))! R by J (f) = �

R
S
fd�� for all f 2 B (� (L)). It is routine to prove that

I� and J are monotone, translation invariant, constant modular, and such that I� (f) = I (f) = J (f) for all

f 2 L. By the main statement, it follows that there exists � : � (L)! [0; 1] and �0 > 0 such that

I� (f) = �0
�Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt

�
8f 2 B (� (L)) :

By [32, Theorem 4.6] and since I is subadditive, I� is subadditive implying that � is concave. It is immediate

to see that � = �0. By construction, we have that I� � J . These latter two facts prove that � � ��. On

the other hand, by point 2., we have that � � ��. We can conclude that �� = �. The opposite implication
follows from [32, Theorem 4.6].

4. and 5. Both points follow from [6, Theorem 22]. �

B Proofs

Before proving the main statements of our paper, we �rst introduce some piece of notation. We will de�ne

h�; �i : V �M ! R by hv; xi = v (x) for all v 2 V and for all x 2 M . Given an element x 2 M , we denote
by x̂ the function from V to R such that x̂ (v) = hv; xi for all v 2 V. Since V satis�es Condition 2., we have
that

L =
�
f 2 RV : f = x̂ for some x 2M

	
� B (V)

where the latter is the set of all real valued bounded functions de�ned over V. Given a market (M;V; �),
we study the ordered space (M;�V). In such a context, given two elements x and y in M , we de�ne, if they
exist,

x ^ y = inf fx; yg and x _ y = sup fx; yg :

Proposition 4 Let (M;V; �) be a market. The following statements are true:

1. If M contains the risk free asset xrf , then xrf is an order unit for (M;�V).

2. If M contains the risk free asset xrf and all call options with k � 0, then (M;�V) is a Riesz space
with unit. In particular, this implies that

cx;k + kxrf = x _ kxrf and cx;k = (x� kxrf ) _ 0 8x 2M;8k 2 R
and

kxrf � px;k = x ^ kxrf and px;k = (kxrf � x) _ 0 8x 2M;8k 2 R:

3. If M contains the risk free asset xrf and all put options with k � 0, then (M;�V) is a Riesz space
with unit.

4. If M contains the risk free asset xrf and all call (resp., put) options with k � 0, then L is a Stone

vector lattice.
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5. If M contains the risk free asset xrf and all call (resp., put) options with k � 0, then the map

T :M ! L, de�ned by

x 7! x̂;

is a lattice isomorphism.

Proof. We proceed by Steps.

Step 1. �V is a partial order relation.
Proof of the Step.

First, notice that for each x 2M

hv; xi � hv; xi 8v 2 V;

that is, x �V x, thus �V is re�exive. Similarly, consider x; y; z 2M and assume that x �V y and y �V z. It
follows that

hv; xi � hv; yi � hv; zi 8v 2 V;

that is, x �V z, thus, �V satis�es transitivity. Finally, since V satis�es Condition 3., it follows that �V is
antisymmetric and so it is a partial order. �
Step 2. �V is such that for each x; y 2M

x �V y ) x+ z �V y + z 8z 2M
and

x �V y ) �x �V �y 8� � 0:

Proof of the Step.

Consider x; y; z 2M and assume that x �V y. It follows that for each v 2 V

hv; xi � hv; yi ) hv; xi+ hv; zi � hv; yi+ hv; zi ) hv; x+ zi � hv; y + zi ;

that is, x+ z �V y + z. Similarly, consider x; y 2M , � � 0, and assume that x �V y. It follows that

hv; xi � hv; yi 8v 2 V ) � hv; xi � � hv; yi 8v 2 V ) hv; �zi � hv; �yi 8v 2 V;

that is, �x �V �y, proving the statement. �
Step 3. If M contains the risk free asset xrf , then xrf is an order unit for (M;�V).
Proof of the Step.

Consider x 2M . Since V satis�es Condition 2., we have that there exists � 2 R such that supv2V jhv; xij �
� <1. If xrf is the risk free asset, then this implies that

hv; �xrf i � hv; xi � hv;��xrf i 8v 2 V;

that is, �xrf �V x �V ��xrf proving that xrf is an order unit. �
Step 4. If M contains the risk free asset xrf and all call options with k � 0, then (M;�V) is a Riesz space
with unit. In particular, this implies that

cx;k + kxrf = x _ kxrf and cx;k = (x� kxrf ) _ 0 8x 2M;8k 2 R
and

kxrf � px;k = x ^ kxrf and px;k = (kxrf � x) _ 0 8x 2M;8k 2 R:
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Proof of the Step.

Consider x; y 2M and cx�y;0. De�ne z = x� cx�y;0. We have that

ẑ (v) = hv; zi = hv; xi � hv; cx�y;0i = hv; xi � (hv; x� yi)+ = hv; xi � (hv; xi � hv; yi)+

= x̂ (v)� (x̂ (v)� ŷ (v))+ = (x̂ ^ ŷ) (v) � x̂ (v) ; ŷ (v) 8v 2 V:

The �rst equality follows by de�nition of z and the linearity of each v in V. The second equality follows by
the de�nition of cx�y;0. The third equality follows by the linearity of each v in V. The fourth equality follows
by de�nition of x̂ and ŷ. The �fth equality follows from a well known lattice equality (see [3, Theorem 1.7]).

We can conclude that x; y �V z. Next, assume that w 2 M is such that x; y �V w. By de�nition of �V
and the previous part, it follows that

x̂ (v) ; ŷ (v) � ŵ (v) 8v 2 V ) hv; zi = (x̂ ^ ŷ) (v) � ŵ (v) = hv; wi 8v 2 V:

This implies that z �V w, that is, z is the greatest lower bound for x and y and z = x ^ y. By Steps 1,
2, and 3, (M;�V) is an ordered vector space with unit. This fact matched with the previous one implies
that (M;�V) is a Riesz space with unit. Next, consider x 2 M and k 2 R. It is immediate to check that
cx;k = cx�kxrf ;0. It follows that

cx;k + kxrf = cx�kxrf ;0 + kxrf = (x� x ^ kxrf ) + kxrf
= x+ kxrf � x ^ kxrf = x _ kxrf :

where the �rst equality is trivial, the second one follows from the previous part of the proof, that is cx�y =

x� x^ y, the third follows from a simple rearrangement, and the fourth one is a well known lattice equality

(see [2, Theorem 8.6]). On the other hand, from above we have that cx;k = x_kxrf �kxrf = (x� kxrf )_0.
A similar argument delivers the equalities

kxrf � px;k = x ^ kxrf and px;k = (kxrf � x) _ 0 8x 2M;8k 2 R:

�
Step 5. If M contains the risk free asset xrf and all put options with k � 0, then (M;�V) is a Riesz space
with unit.

Proof of the Step.

Consider x; y 2M and py�x;0. De�ne z = x� py�x;0. We have that

ẑ (v) = hv; zi = hv; xi � hv; py�x;0i = hv; xi � (�hv; y � xi)+ = hv; xi � (hv; xi � hv; yi)+

= x̂ (v)� (x̂ (v)� ŷ (v))+ = (x̂ ^ ŷ) (v) � x̂ (v) ; ŷ (v) 8v 2 V:

By the same arguments contained in the proof of Step 4, it follows that (M;�V) is a Riesz space with unit.
�
Step 6. The map T :M ! L, de�ned by

x 7! x̂;

is a bijective linear operator. In particular, L is a vector space and if M contains the risk free asset xrf ,

then L contains the constant functions.

Proof of the Step.

By construction, the map T is surjective. On the other hand, if we have that T (x1) = T (x2), then it

follows that

hv; x1i = x̂1 (v) = x̂2 (v) = hv; x2i 8v 2 V: (14)
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Since V satis�es Condition 3., (14) implies that x1 = x2, proving that T is injective. Next, given x; y 2 M
and �; � 2 R, we have that

T (�x+ �y) (v) = hv; �x+ �yi = � hv; xi+ � hv; yi = �T (x) (v) + �T (y) (v) 8v 2 V;

that is, T (�x+ �y) = �T (x) + �T (y), proving that T is linear. Since M is a vector space and T is linear

and bijective, L is a vector space. At the same time, if xrf is the risk free asset and xrf 2 M , then

1V = T (xrf ) 2 L. Since L is a vector space, it follows that L contains all the constant functions. �
Step 7. If M contains the risk free asset xrf and all call (resp., put) options with k � 0, then L is a Stone
vector lattice.

Proof of the Step.

By Step 6, we have that L is a vector space which contains all the constant functions. We are left to prove

it is closed under �nite pointwise suprema or, equivalently, in�ma. Let us consider two elements f; g 2 L.
By de�nition, there exist x; y 2 M such that f = T (x) and g = T (y). By the proof of Step 4 (resp., Step

5), we have that z = x� cx�y;0 (resp., z = x� py�x;0) is such that

f ^ g = T (x) ^ T (y) = x̂ ^ ŷ = ẑ = T (z) 2 L;

proving the statement. �
Step 8. If M satis�es the hypotheses of 5., then the map T is a lattice isomorphism.

Proof of the Step.

By Step 6, we have that T is a bijective linear operator. We are left to show that T preserves the lattice

operations. Consider x; y 2M . By the proof of Step 4, we have that x ^ y = x� cx�y;0 2M and

T (x ^ y) = T (x) ^ T (y) ;

proving the statement. �
Step 3 proves Statement 1. Step 4 proves Statement 2. Step 5 proves Statement 3. Step 7 proves

Statement 4. Step 8 proves Statement 5. �

Proposition 5 Let (M;V; �) be a market that contains the risk free asset. The following statements are
equivalent:

(i) M contains all call options;

(ii) M contains all call options with k � 0;

(iii) M contains all put options with k � 0;

(iv) M contains all put options.

Proof. (i) implies (ii). It is trivial.

(ii) implies (iv). Consider x 2 M and k 2 R. Since M contains the risk free asset and all call options

with k � 0, it follows that ckxrf�x;0 2M . This implies that

v; ckxrf�x;0

�
= (hv; kxrf � xi � 0)+ = (k � hv; xi)+ 8v 2 V;

that is, px;k = ckxrf�x;0 2M .
(iv) implies (iii). It is trivial.
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(iii) implies (i). Consider x 2 M and k 2 R. Since M contains the risk free asset and all put options

with k � 0, it follows that pkxrf�x;0 2M . This implies that

v; pkxrf�x;0

�
= (0� hv; kxrf � xi)+ = (hv; xi � k)+ 8v 2 V;

that is, cx;k = pkxrf�x;0 2M . �

Proof of Proposition 2. Consider x 2 M and k 2 R. Assume that cx;k and px;k belong to M . Consider
z = cx;k � px;k 2M . Since xrf 2M , it follows that

v (z) = v (cx;k)� v (px;k) = (hv; xi � k)+ � (k � hv; xi)+

= (hv; x� kxrf i)+ � (hv; kxrf � xi)+

= max fhv; x� kxrf i ; 0g �max fhv; kxrf � xi ; 0g
= hv; x� kxrf i 8v 2 V:

Since V satis�es Condition 3., we have that cx;k � px;k = z = x� kxrf , proving the statement. �

Proof of Proposition 3. It is an immediate consequence of Proposition 5. �

Proposition 6 Let (M;V; �) be a market that contains the risk free asset and all call options with k � 0

and let � :M ! R be a cash additive price functional. The following conditions are equivalent:

(i) � (cx;k) + � (�px;k) = � (x)� k� (xrf ) for all x 2M and all k 2 R+;

(ii) � (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf ) for all x 2M and all k 2 R+;

(iii) � (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf ) for all x 2M and all k 2 R.

Proof. (i) implies (iii). Consider x 2M and k 2 R. By Proposition 4 point 2., we have that

cx;k + kxrf = x _ kxrf and kxrf � px;k = x ^ kxrf :

Since � is cash additive, cx;k = cx�kxrf ;0, and px;k = px�kxrf ;0, we have the following chain of implications

�
�
cx�kxrf ;0

�
+ �

�
�px�kxrf ;0

�
= � (x� kxrf )
=)

� (cx;k) + � (�px;k) = � (x)� k� (xrf )
=)

� (cx;k) + k� (xrf ) + � (�px;k) + k� (xrf ) = � (x) + k� (xrf )
=)

� (cx;k + kxrf ) + � (kxrf � px;k) = � (x) + k� (xrf )
=)

� (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf ) ;

proving the statement.

(iii) implies (ii). It is trivial.

(ii) implies (i). Consider x 2 M and k 2 R+. By Proposition 4 point 2., M is a Riesz space with unit.

This implies that

x _ kxrf � kxrf = (x� kxrf ) _ 0 = cx;k and x ^ kxrf � kxrf = (x� kxrf ) ^ 0 = �px;k:
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Since � is cash additive, we have the following chain of implications

� (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf )
=)

� (x _ kxrf )� k� (xrf ) + � (x ^ kxrf )� k� (xrf ) = � (x)� k� (xrf )
=)

� (x _ kxrf � kxrf ) + � (x ^ kxrf � kxrf ) = � (x)� k� (xrf )
=)

� (cx;k) + � (�px;k) = � (x)� k� (xrf ) ;

proving the statement. �

Proof of Theorem 2. Before starting, observe that � (L) = B.
(i) implies (ii). De�ne I : L! R by I = � �T�1. Since T is a lattice isomorphism such that T (xrf ) = 1V

and � 6= 0, it follows that I is well de�ned, monotone, translation invariant, and such that I 6= 0. Since �
satis�es the PCP and by Proposition 6, we have that

� (x ^ kxrf ) + � (x _ kxrf ) = � (x) + k� (xrf ) 8x 2M;8k 2 R: (15)

Since T is a lattice isomorphism and T (xrf ) = 1V , this implies that I is constant modular. Since L is a Stone

vector lattice and by Theorem 3, we have that there exist � > 0 and a nonadditive probability � : B ! [0; 1]

such that

I (f) = �

Z
V
f (v) d� (v) 8f 2 L:

De�ne r = 1=� � 1 > �1. Since � = I � T , we have that

� (x) = I (T (x)) =
1

1 + r

Z
V
hv; xi d� (v) = 1

1 + r

Z
V
v (x) d� (v) 8x 2M;

proving the statement.

(ii) implies (i). Consider r > �1 and a nonadditive probability � : B ! [0; 1] such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

De�ne I : L! R by
I (f) = �

Z
V
f (v) d� (v) 8f 2 L (16)

where � = 1= (1 + r). By Theorem 3, we have that I is monotone, translation invariant, and constant

modular. It is immediate to see that � = I �T . Since T is a lattice isomorphism and T (xrf ) = 1V , it follows

that � is monotone, cash additive, and it satis�es (15). By Proposition 6, it follows that � also satis�es the

PCP.

1. Consider r1; r2 > �1 and �1; �2 : B ! [0; 1] such that

� (x) =
1

1 + ri

Z
V
v (x) d�i (v) 8x 2M;8i 2 f1; 2g :

It follows that 1
1+r1

= � (xrf ) =
1

1+r2
, proving that r1 = r2 and so the statement.

2. Consider a nonadditive probability � : B ! [0; 1] such that �? � � � �?. De�ne I = � �T�1. It follows
that �? = �� and �? = ��. This implies that �� � � � ��. By Theorem 3, we have that I (f) = I (1V)

R
V fd�

for all f 2 L. Since � = I � T , the statement follows.
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3. Assume that B (V;B) = fx̂ : x 2Mg. It follows that for each A 2 B there exists xA 2 M such that

v (x) = 1A (v) for all v 2 V. Consider (r1; �1) and (r2; �2) representing � as in (11). By point 1., we have
that r1 = r2 and

1

1 + r1
�1 (A) = � (xA) =

1

1 + r2
�2 (A) 8A 2 B:

This implies that �1 = �2, proving the statement.

4. Consider (r; �) representing � as in (11). De�ne �� : B ! [0; 1] by

�� (A) = � (V)� � (Ac) 8A 2 B:

Assume that � is balanced. It follows that there exists � 2 �(V) such that � (A) � � (A) for all A 2 B.
This implies that �� (A) � � (A) for all A 2 B. By [32, Proposition 4.12], if we de�ne I as in (16), then

�I (�f) = 1

1 + r

Z
V
f (v) d�� (v) 8f 2 L:

By the de�nition of Choquet integral and since �� � � � �, it follows that �I (�f) � 1
1+r

R
V f (v) d� (v) �

I (f) for all f 2 L. Since � = I � T and T is linear, we have that

�� (�x) = �I (�T (x)) � I (T (x)) = � (x) 8x 2M;

proving the statement. �

Proof of Corollary 2. Before starting the proof, we introduce a third point:
(iii) � is monotone, cash additive, subadditive, and satis�es the Put�Call Parity.

(i) implies (iii). Consider x; y 2M such that x �V y. De�ne z = y�x. Notice that 0 �V z and x+z = y.
Since � is subadditive and � is positive, we have that

� (x) � � (x) + � (z) � � (x+ z) = � (y) ;

proving that � is also monotone and so the statement.

(iii) implies (ii). De�ne I : L ! R by I = � � T�1. By the same argument contained in the proof of
Theorem 2, we have that I is well de�ned, monotone, translation invariant, constant modular, and such that

I 6= 0. Since � is subadditive and T is a lattice isomorphism, we have that I is also subadditive. Since L is
a Stone vector lattice and by Theorem 3, we have that there exist � > 0 such that

I (f) = �

Z
V
f (v) d�� (v) 8f 2 L:

Since I is subadditive and by Theorem 3, we have that �� = �? is concave. De�ne r = 1=� � 1. Since
� = I � T , we have that

� (x) =
1

1 + r

Z
V
hv; xi d�� (v) = 1

1 + r

Z
V
v (x) d�? (v) 8x 2M;

proving the statement.

(ii) implies (i). Consider r > �1 and a concave nonadditive probability � : B ! [0; 1] such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

De�ne I : L ! R as in (16) where � = 1= (1 + r). By Theorem 3, we have that I is monotone, translation

invariant, and constant modular. Since � is concave and by [32, Theorem 4.6], I is also subadditive. It is

immediate to see that � = I � T . Since T is a lattice isomorphism and T (xrf ) = 1V , it follows that � is
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monotone, cash additive, subadditive, and it satis�es (15). By Proposition 6, it follows that � also satis�es

the PCP.

Uniqueness of r > �1 follows from Theorem 2 and the fact that � can be chosen to be �? follows from

the previous part of the proof. �

Proof of Corollary 3. Before starting the proof, we introduce a third point:
(iii) � is monotone, cash additive, subadditive, continuous, and satis�es the Put�Call Parity.

(i) implies (iii). The statement follows by the same argument used in the proof of Corollary 2.

(iii) implies (ii). De�ne I : L ! R by I = � � T�1. By the same argument contained in the proof of
Corollary 2, we have that I is well de�ned, monotone, translation invariant, constant modular, subadditive,

and such that I 6= 0. Since � is continuous and T is a lattice isomorphism, we have that I is also pointwise
continuous at 0. Since L is a Stone vector lattice and by Theorem 3, we have that there exist a continuous

and concave nonadditive probability � : B ! [0; 1] and � > 0 such that

I (f) = �

Z
V
f (v) d� (v) 8f 2 L:

De�ne r = 1=� � 1. Since � = I � T , we have that

� (x) =
1

1 + r

Z
V
hv; xi d� (v) = 1

1 + r

Z
V
v (x) d� (v) 8x 2M;

proving the statement.

(ii) implies (i). Consider r > �1 and a continuous and concave nonadditive probability � : B ! [0; 1]

such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

De�ne I : L ! R as in (16) where � = 1= (1 + r). By Theorem 3 and [32, Theorem 4.6], we have that

I is monotone, translation invariant, constant modular, subadditive, and pointwise continuous at 0. It is

immediate to see that � = I � T . Since T is a lattice isomorphism and T (xrf ) = 1V , it follows that � is

monotone, cash additive, subadditive, continuous, and it satis�es (15). By Proposition 6, it follows that �

also satis�es the PCP.

Uniqueness of r > �1 and � follow from Theorem 3. �

Proof of Theorem 1. We use the notation of Examples 1 and 3. Notice that (P;�G; p) is a market
according to De�nition 1. Since C = Rm, we also have that it contains the risk free asset and all call options
with nonnegative strike price. In turn, this delivers that (P;�G) is a Riesz space with unit �rf . Notice that
in this case L is isomorphic to C and so B can be considered to be the power set of 
.
(i) implies (ii). p : P ! R is assumed to satisfy nf and na. The �rst assumption amounts to impose that

p
�
� + k�rf

�
= p (�) + kp

�
�rf

�
8� 2 P;8k 2 R

and

p (c�;k) + p
�
�p�;k

�
= p (�)� kp

�
�rf

�
8� 2 P;8k 2 R+:

The second assumption means that �1 �G �2 implies p (�1) � p (�2). Thus, p is monotone, cash additive,
and it satis�es the PCP as in De�nition 5. By Proposition 6, we have that p is monotone, cash additive,

and constant modular. Next, recall that ~� : C ! R is de�ned by ~� = p � T�1 where T (�) = G�. Since

p 6= 0, we have that ~� 6= 0. Since it is immediate to see that T is the operator of Proposition 4, we have that
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T is a lattice isomorphism. This implies that ~� is monotone, cash additive/translation invariant, constant

modular, and such that ~� 6= 0.
(ii) implies (iii). Since C = Rm, ~� is monotone, translation invariant, constant modular, and such that

~� 6= 0 and by Theorem 3, we have that there exists a nonadditive probability on 
 and � > 0 such that

~� (x) = �

Z



xd� =
1

1 + r

Z



xd� 8x 2 C (17)

where r = 1
� � 1.

(iii) implies (i). Assume ~� is represented as in (17). In light of Theorem 3, we have that ~� is monotone,

cash additive/translation invariant and constant modular. Recall that p is such that p = ~� � T . Since T is a
lattice isomorphism, we have that p satis�es the same properties. By Proposition 6, it follows that p satis�es

nf and na.

1. Uniqueness of r and � follow from points 1. and 3. of Theorem 2.

2. It follows from point 4. of Theorem 2. �

Proof of Corollary 1. In light of the proof of Theorem 1 and Corollary 2, the proof is immediate.

Proof of Proposition 1. As already observed, (P;�G; p) is a market according to De�nition 1. Since
C = Rm, we also have that it contains the risk free asset and all call options with nonnegative strike price.
In turn, this delivers that (P;�G) is a Riesz space with unit �rf . Moreover, in light of these facts, it is
immediate to check that c�;k =

�
� � k�rf

�
_ 0, p�;k =

�
k�rf � �

�
_ 0, and d�;k = � ^ k�rf for all � 2 P

and k � 0 where suprema and in�ma are with respect to �G.
(i) implies (ii). We just need to show that nf and na imply condition (4). Consider � 2 P and k � 0.

Since p satis�es nf, we have that

p (c�;k) + p
�
�p�;k

�
= p (�)� kp

�
�rf

�
=)

p (c�;k) + p
�
d�;k � k�rf

�
= p (�)� kp

�
�rf

�
=)

p (c�;k) + p (d�;k)� kp
�
�rf

�
= p (�)� kp

�
�rf

�
=)

p (c�;k) + p (d�;k) = p (�) ;

proving the implication.

(ii) implies (i). We just need to show that nf�and na imply the PCP. Consider � 2 P and k � 0. Since
p satis�es nf�, we have that

p (c�;k) + p (d�;k) = p (�)

=)
p (c�;k) + p (d�;k)� kp

�
�rf

�
= p (�)� kp

�
�rf

�
=)

p (c�;k) + p
�
d�;k � k�rf

�
= p (�)� kp

�
�rf

�
=)

p (c�;k) + p
�
�p�;k

�
= p (�)� kp

�
�rf

�
;
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proving the implication. �
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