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Abstract

We present an experiment to address the question of whether a piece of information
is more influential if it comes from experience, rather than from another source. We
employ a novel experimental design which controls for the value of information and
other potentially important confounding factors present in related studies. Overall,
our results show that an event that is personally experienced has a stronger influence
on subsequent behavior than an observed event with equally valuable information con-
tent. Importantly, in early rounds when information is more valuable from a rational
viewpoint, this overweighting of personal experience is not statistically significant.
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“There is nothing like first hand evidence. As a matter of fact, my mind is entirely made

up upon the case, but still we may as well learn all that is to be learned.” (Sherlock Holmes)

1 Introduction

A basic principle of rational learning is for people to fully use available information. This

requires that, all else equal, the value placed on information should not depend on its source.

While this is compelling as a normative benchmark, in many settings people appear to under-

value information that is not derived from personal experience. People routinely ignore

expert advice, such as doctor recommendations, and fail to be sufficiently influenced by

information campaigns that are supported by solid statistical evidence, such as efforts to

increase seat belt use (Sjőberg 2003; Robertson et al. 1974). An important question in these

situations is whether people are truly under-valuing information and doing so because it is

not coming from personal experience, or if there are more mundane explanations.

A failure to be influenced by valuable information may simply reflect a rational consid-

eration of the costs and benefits of using the information to alter one’s behavior.1 More

importantly, even when people are made worse off by not altering their behavior, the propo-

sition that this is driven by the absence of personal experience is unlikely to be shown using

observational data alone. Alternative explanations for under-valuing information, such as

limited attention, forgetting, or suspicion of a particular information source, typically cannot

be ruled out in natural settings. Moreover, without observing what an agent would have

done had information of equivalent value been the product of personal experience, one can-

not know if and to what degree a piece of information is under-valued because it is not a

product of personal experience.

We introduce an experimental environment that is tractable enough to identify whether

experimental subjects overweight personal experience relative to equally valuable information

1In many cases we may also be mistaken in assuming that information from an outside source is objectively
valuable for someone. Second and third hand information is often simplified and does not speak to particular
circumstances. For example, receiving information that a large percentage of car accidents are caused by cell
phone use may only reveal the consequences of the worst cell phone user practices and may not represent
the hazards faced by a more careful user. Note that people may also appeal to these reasons for the purpose
of rationalization, i.e. they may be driven by motivated reasoning (Kunda 1990).
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sources, and to control for the types of alternative explanations typically encountered in

natural settings and in previous literature. In the experimental design, an informative event

was operationalized as the draw of a colored ball with replacement from an urn whose

contents were unknown, but fixed. A personally experienced event involved having the

subjects’ payoffs depend on their guess of the drawn ball’s color. Events that were not

personally experienced, but whose information content was equally valuable, involved each

subject simultaneously observing the draws, but not the choices, of two other subjects whose

urns had identical compositions to their own. In each period of the experiment the subjects

were paid based on correctly guessing the color of the ball drawn from their own urn, before

simultaneously witnessing the draws from all urns. In addition, the subjects were required

to sort the balls according to color, a novel control designed to assure that subjects attended

to all the colors drawn.2

The experimental task was designed so that the data analysis would be amenable to an

empirical strategy that had been shown, via simulation, to identify the over-weighting of

personal experience and, additionally, was robust to various data generating processes. The

analysis involved estimating a parameter of personal experience in a discrete choice model

whose latent index depended only on the subject’s beliefs regarding the frequency of drawn

colors, in the spirit of stochastic fictitious play (Fudenberg and Levine 1995). This weight of

experience parameter measured if subjects behaved as if they counted a color drawn from

their own urn as more frequent than the same color drawn from another urn.

There was good reason to expect the impact of personal experience with payoffs to lead

subjects to place more weight on draws from their own urn in the experiment. In both

the psychology and neuroscience literature learning is viewed primarily as product of an

individual’s interaction with the environment, via their experience with punishments and

rewards (Schultz 2004). In the context of choice, the actual experience of choice influences

subsequent choices via the rewards and punishments associated with chosen actions, while

the counterfactual experience of a choice influences subsequent choices via the rewards and

punishments associated with actions not chosen (Berridge 2001; Byrne 2002). In the eco-

nomics literature, the actual and counterfactual components of personal experience have

2Additional design elements were incorporated to control for forgetting as well as the ability to count.
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been successfully modeled separately and jointly and have been shown to be factors that

influence learning in games (Cheung and Friedman 1997; Camerer and Ho 1999; Fudenberg

and Levine 1995; Feltovich 2000; Roth and Erev 1995). Therefore, if learning is primarily

driven by personally interacting with the environment, we should expect people to place

more weight on information derived from events that relate to personal experience—actual

or counterfactual—than on equally valuable information that arises from other sources.

In our experiment, overall, subjects did place more weight on information coming from

personal experience relative to equally valuable information obtained by observing the ex-

periences of others. More importantly, however, this effect was pronounced and significant

only at times when information was least valuable. In earlier periods, while estimates in-

dicate that subjects behaved as if personal experience had nearly twice the influence of

observation on subsequent behavior, this premium was not significantly different than one.

An explanation for this is that learning has two components: a rational component and an

experience-related component which leads to an underweighting of information from sources

not related to personal experience. The rational component disengages after beliefs regard-

ing the distributions have presumably stabilized, and the information content of a draw is

low. Thus, the experience-based component of learning dominates in later periods, which

explains what we see in our data.

The remainder of the paper is as follows. In Section 2 we review the experimental

literature and explain the limitations of previous studies. In Section 3 we introduce our

experimental design. In Section 4 we present our empirical strategy. In Section 5 we present

our results, and Section 6 concludes.

2 Related Literature

There are many experimental studies that have investigated how people treat sources of

information that do not involve direct personal experience.3 Only a few studies have quan-

titatively compared the relative importance of experience to other information sources such

3There are also field studies that consider the same question, but we feel that discussing them would bring
us outside the scope of this paper.
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as description and observation. More importantly, no prior study has completely and si-

multaneously controlled for important factors that we control for—such as attention and

memory—while holding constant the value of information. We review first the literature

involving individual decision making, which our study is an instance of, and then we review

the work in economic games.

In the context of individual decision making Merlo and Schotter (2003) compared the

performance of subjects who had repeatedly executed a given task to the performance of

others who had only observed another subject execute it. They found that observers outper-

formed doers for this task, indicating that information that arises from personal experience is

treated differently than information that arises from observation, suggesting that they may

not be weighted equally when both are available. In other individual decision making studies,

researchers have compared decision from description, where objective probabilities are pro-

vided by the experimenter, with decision from experience, where subjects have experienced

a sample from the same probability distribution. Barron and Erev (2003) and Hertwig et al.

(2004) find that in decisions from experience subjects weight rare events significantly less

than in decisions from description. In these experiments, however, the information content

is not kept constant: experience concerns only a small sample, whereas description informs

about the entire distribution.

Many related experimental studies have involved economic games. Duffy and Feltovich

(1999) found that the importance of observed information depends on the game. When each

player observed the play of another matched dyad, observation mattered for the ultimatum

game, but not for the best-shot game. The authors did not directly compare the importance

of experienced and observed information. Armantier (2004) performed an experiment of a

first-price common value sealed-bid auction. In that experiment observation affected learn-

ing significantly, and observational learning was of comparable magnitude with experiential

learning. In this study, however, information from experience was limited to whether one

has won the auction or not, while observation concerned others’ bids, signals and payoffs.

In an information cascade experiment, Goeree et al. (2007) found that private informa-

tion had two to four times more influence on behavior than public information had, although

information acquisition did not relate to an event that involved payoffs. Simonsohn et al.
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(2008) used a finitely repeated Prisoner’s Dilemma game without re-matching to investigate

whether or not subjects were influenced by observing other matched dyads play. While

controlling for attention, they found that information from other dyads did not significantly

influence behavior while a subject’s own past experience did. While the result suggests learn-

ing from observation may be irrelevant when personal experience is available, the game form

of the Prisoner’s Dilemma involves dominated strategies, which means that both observed

and experienced information on past play have no value unless ad hoc assumptions are made

with regard to the players’ preference profile.

In our view, an individual decision making experiment, not an economic game, is a more

suitable environment for addressing our research question, which was at most of ancillary

interest in many of the aforementioned studies involving games. For our purposes, the first

problem with games is that when a small number of subjects per session is used, or when

subjects’ play is observed by others, repeated-game effects are relevant. If subjects do not

simply learn from the past, but also “invest” in affecting the future, their behavior may

allow for multiple interpretations. Second, in repeated games, it is not clear if and how

people might find past behavior relevant for future play without knowing their beliefs or

the strategy they are implementing. Moreover, the lack of stationarity in the distribution

of other players’ actions may confound participants’ attempts to learn from past behavior.4

As we shall explain, our experimental design, which does not involve participants observing

or being affected by the decisions of others, is not exposed to any of these limitations.

3 The experiment

Six experimental sessions were conducted at the “LATEX” laboratory of the University of

Alicante on two consecutive days in October of 2010. In total 99 subjects participated, and

all of them were undergraduate students of the university.5 The experiments were conducted

4An additional problem is that if subjects are involved in a game, observing another subject’s experience often
also involves observing another subject’s choice. This makes it unclear what construct is being investigated,
the influence of information from observing the experience of others, or the social influence from observing
the choices of others.

5We immediately discarded the sessions conducted on the first day (with a total of 42 subjects). In these
sessions there was an error in the z-Tree code causing the colors displayed on the monitors in the lab to be
different than intended, and two colors to appear identical for a substantial number of subjects.
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using z-Tree experimental software (Fischbacher 2007). Subjects were recruited via email

and posted flyers on campus. Participants earned an average of 20.2 Euros in one hour,

including a guaranteed 5-Euro participation fee. The average monetary earnings was high

for Spain (four times the minimum wage), and subjects appeared motivated and carefully

engaged in the task.

3.1 Design and protocol

At the beginning of the experimental session each subject was assigned randomly and per-

manently to a fixed group with two other participants. Each of the three persons in the

group had an urn containing 30 balls with each ball being of one of 3 possible colors: brown,

purple or green. All three urns had identical contents and this did not change, i.e. they

had the same number of balls of each color in every period. The actual contents of the urns

were unknown to the subjects before the 50-period decision task began. Subjects began the

experiment with 8 euros and in each period they gained 1 euro if they correctly guessed the

color of the ball drawn from their urn and lost 0.50 euro if their guess did not match the

color.

In each period the choice task went as follows: first, each subject chose one of three

possible colors and after this each of the identical urns was shaken and a single ball was

drawn from each urn. Immediately after the draws, the payoff was displayed on the screen

(+1.00 euro for a match and −0.50 euro for a failed match) and then each subject was

prompted to sort the three drawn balls into bins of the appropriate color.6 Finally, subjects

observed the balls being automatically replaced to the urns they were drawn from, and then

they were shown their current cumulative earnings.7 Table 1 shows a brief description of

the characteristics of the six experimental sessions. The number of subjects, the distribution

and the dominant color differed across sessions.8

We chose three colors instead of two to prevent subjects from explicitly counting the

6Subjects had to sort with overall 90% accuracy or forfeit their winnings. The actual accuracy achieved by
subjects was 98%.

7If their monetary balance reached zero, subjects could continue to play without compensation. This happened
in only one case.

8Screenshots are available in Appendix B. A video of the experimental task can be viewed by entering or
clicking on the following shortened url link: http://goo.gl/khwe6.
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number of times that each color was drawn. This allowed us to assure that behavior could

not be attributed to the greater ease of counting draws from one’s own urn. In order to

control for the possibility that subjects may still preferentially remember the colors from

their own urn, we designed an experimental manipulation where half of the subjects in

each session were randomly assigned to a condition called “full recall”. In this condition,

instructions and everything else were the same, except for the fact that subjects in the “full

recall” treatment were presented with an additional screen before they began. This screen

informed them that in each round they would see the number of times that each of the three

colors has been drawn in past rounds. In particular, one of the frequencies they observed

corresponded to past draws from their own urn, and the other frequency pertained to past

draws from the two other urns together. The records with the number of past draws were

continually presented at the lower part of the experimental screen (see Figure 6 in Appendix

A).

Session S1 S0 Actual Contents Dominant color
1 11 10 13/30, 9/30, 8/30 Brown
2 11 10 13/30, 9/30, 8/30 Brown
3 10 11 13/30, 9/30, 8/30 Brown
4 6 6 14/30, 9/30, 7/30 Purple
5 6 6 14/30, 9/30, 7/30 Green
6 6 6 14/30, 9/30, 7/30 Green

Table 1: Characteristics of each experimental session.

Note: S0 and S1 denote the number of subjects who were assigned to the low-recall and full-recall
treatments, respectively.

The protocol of the experimental sessions was conducted so that subjects were introduced

to the task in an accessible and simple way, and that their understanding was assured. In

each experimental session, subjects were seated in front of a computer terminal and were

presented with the instructions on their screens. The instructions were read to them orally

by the same person in each session to ensure uniformity and common knowledge. Midway

through the instructions subjects were asked to look at an overhead projector and watch a

one-minute video of someone performing the task, in order to make them more familiar with
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the task and the interface.9 After introducing the rules of the experiment, we presented a

few slides, which provided examples of the three urns and their contents. Our objective was

to make it clear that the three distributions were the same, and also fixed across rounds.

After this, subjects watched once more the video with the presentation of the sample rounds.

This time, the experimenter explained in detail what subjects saw on the screen. After the

instruction phase, they answered a short quiz with 3 questions, which was aimed at ensuring

that they understood the basic structure of the decision task. Feedback with an explanation

of the correct answers to the questions was given when subjects answered the quiz incorrectly.

3.2 Discussion of design

Our experimental design achieves several objectives. We keep the value of information con-

stant across information sources, and at the same time we address the aforementioned prob-

lems of previous studies. Using our decision task, we resolve the problem of repeated-game

effects, namely the incentive to act in order to affect the future beliefs of other subjects.

Furthermore, we make the unknown distribution stationary, and make this known to sub-

jects. In such a setting, it is in the interest of agents to attend to the information and

learn, as past observations are relevant for predicting the future. In addition to addressing

these limitations, our experiment controls for two important factors: attention and memory.

It is possible that subjects simply pay little attention to information that does not have

direct consequences for them. The novel sorting task, which was described above, ensures

that subjects pay similar attention to the color of each of the three urns. Finally, the full

recall condition examines whether differences are driven by the possibility that people tend

to forget observed draws easier than experienced draws.10

9The task displayed different ball colors than the actual experiment.
10Additionally, learning about the hedonic implications of a given outcome is generally a non-trivial factor in
economic games, since players might not know how it feels to be treated in a certain way in a game. Note
that only experience can provide this type of learning. For our environment, the affective information of
experience should be less important, since Nature, rather than a human being, is the opponent. This makes
us more justified in claiming that the “same” piece of information is being observed and experienced. Of
course, even in our environment there may be some initial learning with regard to the hedonic value of the
payoffs, which can only occur with personal experience.
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4 Model, Simulations and Empirical Strategy

Our multinomial logit model-based empirical strategy was customized for the experiment

and tested via simulation before the design was finalized. This approach contributed to the

validity and credibility of our results in two ways: (1) the success of the statistical model

in identifying the true parameters of the underlying simulated data-generating process lent

validity to the model itself, and (2) a prior commitment to our empirical strategy imposed

discipline on how we analyzed our data, lending credibility to our conclusions.

Let N own
B , N own

P and N own
G be the total number of times that the colors brown, purple and

green respectively, have been drawn from a subject’s own urn (experienced information).

Let N other
B , N other

P and N other
G be the total number of times that the colors brown, purple and

green respectively, have been drawn from the other two urns (observed information).11 A

rational observer of the draws, who has a uniform Bayesian prior, would keep track of the

total number of balls drawn of each color and choose the color most frequently observed.

This is the rational benchmark.

This decision maker can be modeled as forming an index for each color IB, IP , and IG

where each index is the total number of draws of that color, e.g. for brown IB = N own
B +N other

B .

The rational decision-maker then chooses the color with the highest index and randomizes

for ties, e.g. choosing brown if IB > max{IP , IG}. An agent that overweights information

derived from personal experience may instead form an index IB = θN own
B + N other

B , where

the θ can be thought of as the weight of experienced information (so that there is a biased

counting procedure). If θ > 1, experienced information is overweighted, or, equivalently,

observed information is discounted. If θ = 1, this becomes the same index as the rational

benchmark. If θ < 1, the agent discounts information from experience. The index described

in the paragraph above is the one-color latent index.

The one-color latent index specification was for illustrative purposes. In our estimations,

we also allow for the possibility that the latent index for a particular color is influenced by

experience and observation of other colors, as well as the possibility that colors are weighted

11Note that, for ease of exposition, we suppress the index i for denoting a given individual.
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differently.12 In particular, the index for color c ∈ {B,P,G} is the following:

Ic = βc
B(θN

own
B +N other

B ) + βc
P (θN

own
P +N other

P ) + βc
G(θN

own
G +N other

G ) (1)

This is the all-colors latent index.

We model agents as having random utility for each color. This utility consists of their

potentially biased latent index plus a random component. The utility of color c ∈ {B,P,G}

is given by Uc := Ic+ϵ. If Uc is thought of as the true utility of color c at the time of decision,

ϵ can be thought of as the random variation in taste. If Ic is the true utility of color c, then ϵ

can be thought as an error term that captures unmodeled heterogeneity. Agents choose color

c when it has the highest utility. Due to the error term, the choice will be probabilistic, so

for example, P(Choosing brown ) = P(UB ≥ max{UP , UG}). We assume that the errors are

independently and identically distributed according to the type-I extreme value distribution,

therefore the choice probabilities will be multinomial logit with an index that is linear in the

cumulative color counts and θ.13 In particular, the choice probabilities are:

P(color c) =
eIc∑

k∈{B,G,P} e
Ik

for c ∈ {B,P,G} (2)

This discrete choice model is a belief-based learning model, a version of stochastic fictitious

play in our environment (Fudenberg and Levine 1995).14

Our primary goal is to estimate the hidden weighting parameter θ. To this end, prior to

finalizing the design of the experiment we simulated an experimental data set consisting of

12Both models performed equally well in identifying theta in the simulations.
13Independence of Irrelevant Alternatives is implicitly assumed here with the i.i.d. assumption in errors. This
is reasonable as all the colors are perfect substitutes.

14For measurement purposes the model assumes a (potentially) experience-biased counting process that influ-
ences choices, and thus appears to make separate assumptions of how players update their beliefs and how
they use their beliefs. Nevertheless, the one-color latent index model can be directly related to a special
form of fictitious play in games, called κ-exponential fictitious play, and described in Fudenberg and Levine
(1995). The relationship is as follows: (1) in our model fictitious play is extended from actual and counter-
factual choice to weighted hypothetical choice among the observed draws of others, (2) in our experimental
environment the discrete utility comparison of the κ-exponential fictitious play model—namely the difference
between the historical average utility of always choosing color a and the historical average utility of always
choosing color b—becomes equivalent to a simpler comparison. In particular, this comparison concerns the
difference between the (experience-biased) frequency count of the number of times color a was drawn and
the (experience-biased) frequency count of the number of times color b was drawn. (This equivalence holds
since payoffs for matching or failing to match the drawn color do not vary over colors and periods).
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Figure 1: Simulation and Estimation of θ (numbers indicate the frequency of simulations where
the MLE converged within 50 iterations).

agents who chose according to a biased counting procedure.15 The data-generating processes

consisted of random draws from the urns, and simulated subjects choosing deterministically

the most frequent color according to their biased counting procedure.16 In the simulations the

hidden θ had a range {0, 0.5, 1, 1.5, . . . , 20}∪{∞} and we allowed for heterogeneous θs in the

population, with up to four different uniformly distributed values. For each parameter value

(or population mean) we simulated data and estimated θ for 250 experimental runs, each

run consisting of 5 sessions of 60 periods with 20 subjects per session.17 Our discrete choice

model reliably estimated the true θ of the data-generating process. With 250 estimations,

both the mean estimate of θ and the error bars were to within 1% of the the true value of θ

15While the properties of the multinomial logit model are well known, the simulations were necessary as there
are identification issues related to the range of parameter values we expected to encounter as well as the
number of periods and variety of urn configurations present in our particular data set.

16We also ran simulations where in the data generating process subjects chose stochastically, either choosing in
proportion to the biased relative frequency of a color’s count, or according to multinomial logit transforma-
tions of the biased frequency of a color’s count. The results were the same except for improved identification
for higher θ.

17The urn contents (distribution) were [14, 10, 6]. As in the eventual experiment, in each session, the draws
were the same across all subjects who were assigned to the same urn (a given subject was assigned either to
the left, middle or right urn).
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when all subjects had the same θ < 8, as can be seen in Figure 1.18

5 Experimental Results

As can be seen in Figure 2, in aggregate, subjects do not generally select the most common

color, and by around round 15 (45 total observations from all urns) subjects are choosing

colors according to their relative frequency.19 After round 30, subjects appear to be moving

towards choosing the best color, and in the final 5 periods subjects converge to choosing that

color with 95% frequency.20 In the following section these final 5 periods will be removed

from analysis.

5.1 Estimation

Using the all-colors latent index discrete choice model discussed in Section 4 we estimated

the own-information weighting parameter θ and the coefficients on the total cumulative

counts of each color by maximum likelihood. With brown as our reference category there

are six coefficients to estimate, three representing the impact of each color on the log-odds

of the probability of choosing purple over brown, and three representing the impact of each

color on the log-odds of the probability of choosing green over brown. The overweighting

hypothesis predicts that we will find θ to be significantly larger than 1. We anticipated that

the treatment effect on θ would lower its value in the full-recall treatment, as a possible

memory bias on experienced draws should play a smaller role.

Table 2 presents the estimation results.21 The first column summarizes the estimation

with the interaction of the treatment dummy full-recall with θ. Surprisingly, as can be seen,

18For large finite values of θ (9 < θ < ∞), the MLE routine rarely converged. This should be expected. Since
the distribution of colors was set to be roughly 50%, 30%, 20%, this made the types of observations that
could identify and discriminate such large values of θ nearly impossible. Despite this fact, the simulations
converged reliably for a data generating process with θ = ∞: in a model with the latent index modified to
be Ic = Nown

c + α ∗ Nother
c , we estimated α ≈ 0 on average (implying θ = 1/α ≈ ∞) with similarly tight

standard errors, as found in Figure 1.
19This finding is consistent with the “probability matching” literature (see Vulkan (2000)).
20The behavior after period 45 appears consistent with the results of Gneezy and Potters (1997), who find
that as evaluation periods become longer, subjects become less risk-averse, which in this case may translate
to less diversification in choices when the end is near, i.e. subjects become less averse to choosing the same
color repeatedly.

21The results were identical for the one-color latent index model. See Appendix C, Table 4.
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providing information on all the previous draws had no significant effect on the weighting

parameter.22 Since we could not detect a difference between treatments, we pooled the data

from both treatments together. The second column is the estimation of the full model in this

case, and as can be seen, we estimate θ̂ = 3.483. This means that for subjects who behave

as if they choose (with error) the color with the highest relative frequency in the past, draws

from their own urn are weighted over three times as much as draws from other urns. The

estimate for θ is significantly greater than 1 with p = 0.019.

While the coefficients on the cumulative counts of each color were not of particular

interest in the estimation, their signs are sensible. For the latent index related to choosing

purple, the three coefficients represent the change in the log-odds of choosing purple over

brown (the base color), when the cumulative count of a given color increases. For the total

cumulative count of brown there is a significant negative coefficient (−0.046) while for purple

there is a significant positive coefficient (0.036), both of which are sensible. There is no a

priori reason to believe that the coefficient for green should have a particular sign, as that

22Although with limited memory capacity it would be irrational to ignore the table presenting the records of
previous draws, there was no experimental task to guarantee that subjects attended to the table.

14



Table 2: Biased-Counting Multinomial Logit Model

Pooled

All Periods All Periods First 15 Middle 15 Last 15
Counting Weight (θ)

constant (θ0) 3.350∗∗∗ 3.483∗∗∗ 1.921∗∗∗ 1.932∗∗∗ 5.102∗∗∗

(1.009) (0.989) (0.666) (0.664) (1.690)
Treatment (θ1) 0.377

(0.803)
Purple Index
Brown(βP

B) −0.046∗∗∗ −0.046∗∗∗ −0.106∗∗∗ −0.068∗∗∗ −0.032∗∗∗

(0.009) (0.009) (0.021) (0.012) (0.008)
Purple(βP

P ) 0.036∗∗∗ 0.036∗∗∗ 0.090∗∗∗ 0.047∗∗∗ 0.029∗∗∗

(0.009) (0.008) (0.031) (0.015) (0.007)
Green(βP

G) 0.009∗∗ 0.009∗∗ 0.012 0.016∗ 0.003
(0.004) (0.004) (0.019) (0.009) (0.003)

Green Index
Brown(βG

B ) −0.044∗∗∗ −0.044∗∗∗ −0.130∗∗∗ −0.062∗∗∗ −0.029∗∗∗

(0.008) (0.008) (0.022) (0.012) (0.007)
Purple(βG

P ) 0.004 0.003 0.003 −0.006 0.004∗

(0.004) (0.004) (0.022) (0.011) (0.002)
Green(βG

G) 0.039∗∗∗ 0.039∗∗∗ 0.109∗∗∗ 0.067∗∗∗ 0.024∗∗∗

(0.008) (0.008) (0.028) (0.013) (0.006)

Latent Indices: Ic = βc
B(θN

own
B +Nother

B ) + βc
P (θN

own
P +Nother

P ) + βc
G(θN

own
G +Nother

G ) for c ∈ {P,G}.
Base Outcome: Brown Choice. Standard errors in parentheses. 4812 observations, 99 subjects. Periods 2-45.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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should not influence a choice between purple over brown.23 The coefficients corresponding to

the cumulative counts influencing the log-odds of choosing green over brown have a similar

sensible pattern in terms of their sign.

We further hypothesized that parameter θ might change over time. To this end, we

divided the pooled data into 3 epochs of 15 periods, as a visual inspection of Figure 2 reveals

that the cumulative draws do not settle down until period 15 and there appears to be a

regime change in choices around period 30.24 As can be seen in Table 2, the values of θ get

progressively larger in each epoch. The final epoch is significantly different than the earlier

two, as can been seen in the regressions presented in Appendix C, Table 3, which include

the epochs as controls.25 Note, in particular, that θ̂ = 1.921 in the first 15 periods, which is

not significantly different from 1. It appears that the overweighting of personal experience

is driven primarily by behavior in later rounds.

This result does not depend on how the periods are divided into epochs. An additional

analysis was performed which involved dividing the 45 periods into 2 epochs and allowing the

cutoff defining the epochs to vary between 15 and 30. We used an epoch dummy control on

each coefficient, e.g. for the θ coefficient, θ = θ0+ θ1 ∗1[Period>T ]. This led to 16 estimations,

and Figure 3 presents the graph of the estimates for the θ coefficients only. In the graph, the

horizontal axis corresponds to the cutoff defining the epoch division while the vertical axis

corresponds to the values of the estimated θ0, θ1 and their 95% confidence intervals.26 As

can be seen, the weighting parameter in the earlier periods (θ0) is larger than 1 regardless

of the cutoff and it is not significantly larger than 1 for any cutoff. Only in the later periods

is the weighting parameter (θ0 + θ1) significantly greater than 1 overall. As can be seen

in Figure 7, the later periods have more of an influence on the value of θ1 as its estimate

increases with the cutoff.27

23The marginally significant positive value (0.009) likely reflects how frequently in the data an observation of
green occurred in periods where purple was more frequent than brown.

24We ignored the final 5 periods due to the previously discussed clear shift in behavior noted in Figure 2.
Continuing to pool the data was justified, as in each 15-period epoch there is no significant treatment effect
and the estimates for θ do not change markedly.

25These results also hold up for the one-color latent index model, as can been seen in Appendix C, Table 5.
26An analogous graph of the one-color discrete choice model is presented in Appendix C, Figure 7.
27The influence appears to be non-linear. When a linear control for each period is used for all coefficients,
there is no significant period effect.
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Figure 3: Estimates for θ with various 2-epoch partitions of periods 2 − 45. All-colors discrete
choice model: Ic = βc

B(θN
own
B +Nother

B )+βc
P (θN

own
P +Nother

P )+βc
G(θN

own
G +Nother

G ) for c ∈ {P,G}.
Each coefficient is of the form α = α0 + α1 ∗ 1[Period>T ] where T is the cutoff that defines the
partition.

A plausible explanation for these estimates is that subjects incorporated all the infor-

mation available in the early periods, a time when they were minimally informed. After

participating in a sufficient number of periods, the total number of observations, both from

one’s own urn and that of others, was large. At this point, since the dominant color was

represented 40% − 50% of the time in the true distribution, beliefs may have been nearly

stationary. This behavior is consistent with an unbiased balanced weighting of experienced

and observed information in the early rounds, i.e. a rational belief-based learning process. In

later rounds, the fact that θ is significantly greater than 1 may be driven by the influence of

realized own payoffs.28 This type of behavior is more consistent with a reinforcement-based

learning process. This may be reasonable as there is not much to learn in later rounds from

the perspective of an agent who has rational beliefs, understands the stationary nature of

the experimental environment, and has participated in every round.29

28It has been suggested that this influence leads to probability matching in environments when probabilities
are known, as in past experiments (see Vulkan (2000)).

29An agent may have rational beliefs but not best-respond to those beliefs, either due to a misunderstanding
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6 Conclusion

This paper presents the results of an experiment designed to test whether information is more

influential if it is derived from personal experience, rather than from another source. Overall,

we found that subjects behaved as if personally experienced events had over three times the

influence on subsequent behavior relative to events of equivalent value that were merely

observed. This means that events which are personally experienced influenced behavior in

ways not attributable to the objective value of the information they revealed, or its ease-

of-use. Nevertheless, experimental subjects clearly incorporated valuable information from

events that are not related to personal experience. More importantly, in early rounds of the

experiment, when information was more valuable, we cannot rule out the possibility that

subjects gave this information equal weight. This means that there may be no premium

placed on personal experience when information is sufficiently valuable and controlled for.

In this study, the experimental design and analysis have important features not present

in previous work. In the design, experienced and observed events were constructed to yield

information that is equally valuable, assuring that a rational agent that fully uses available

information should weight both sources of information equally. In addition, a novel control

in the form of a sorting task was employed to keep the level of attention between the two

sources of information constant. Finally, the possibility that differential demands on mem-

ory may be driving the result was ruled out with a randomized treatment design. In the

analysis, we employed an empirical strategy whose ability to identify the weight placed on

experienced information was investigated by numerically simulating experimental data sets

prior to the study. The commitment to use the strategy from the simulations on the subse-

quent experimental data disciplined our analysis while the performance of the estimators in

the simulations provided confidence in our measurements.

While the present paper does address the question of how much weight people place

on information derived from personal experience relative to other sources, other questions

remain. The experimental design operationalizes information that is not derived from per-

sonal experience as the first hand observation of the experiences of others. How would these

of chance processes or because of an aversion to always choosing the same color.
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results generalize to second-hand and third-hand sources of information? How can the value

of information be controlled for in those settings? Moreover, this study does not investigate

what mechanisms led to the bias towards personal experience when the value of information

was low in later rounds of the experiment. A plausible driver of this behavior is the uncon-

scious reinforcement learning and fictive (counterfactual) learning that relates to personal

experience (see, e.g. Camerer and Ho (1999)). An appropriately designed neuroeconomic

study may be able to shed light on this issue.

In our view, in terms of policy implications, the early-rounds results presented here con-

tain a positive message: when people are exposed to information that is sufficiently valuable

and representative of their own experience, they will weight it appropriately, regardless of

its source.
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A Appendix: Instructions

PRELIMINARIES

Welcome. Please turn off pagers and cell phones now. It is important that you do not

talk, or in any other way try to communicate during the study. This is a decision making

study.

Please follow the instructions carefully. You may earn a considerable amount of cash,

which will be paid to you as you leave.

What to Expect:

• 15 Minutes of Instructions

• 5 Minutes of Quiz

• 20 minutes of Decision Making (50 periods)

• Payment

How you are paid:

• 15 Minutes of Instructions

• In the decision task period, you start with 8 Euros and in each round you either earn

1,00 Euro or lose 0,50 Euro.

• In addition to your earnings from the decision task, you will get a fixed participation

fee of 5,00 Euro.

• The possible amount you earn during the whole study ranges from 5,00 Euros to 63,00

Euros.

INSTRUCTIONS
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In this initial instruction phase, we will now introduce you to the decision task. After

the reading of the instructions, if you have questions please raise your hand (do not yell out)

and an assistant will be there to help you individually. Following the instruction phase, the

50 periods ( 20 min) of decision tasks will begin. After the decision tasks start you will not

be able to ask any further questions, so please be sure you understand the rules now.

The Decision problem. Please watch the following 1 minute video on the screen. We

will show it once again after we complete the instructions.

[VIDEO SCRIPT-NOT IN WRITTEN INSTRUCTIONS]

This video presents what you will see in a typical round of the study. We shall

explain this video in much more detail later, just watch and notice that there

are balls and there are boxes. Now please listen to these instructions carefully

and read along.

You will participate in up to 50 periods of a decision task. You will start the first period

with 8,00 Euros. You may continue to participate as long as you have a positive amount of

money. We describe the basic features of the decision task below.

You will be given one box. Your box will contain 30 balls, and each ball has one of

3 possible colors. There are two other participants in this room today that have a 30-ball

box with identical contents as your box, i.e. they have the same number of balls of each color.

Each period will be as follows:

1. You choose one of the three colors.

2. After this, each box is shaken and one ball is randomly drawn from each box. You see

the color of each ball.

3. If the color you chose matches the color of the ball drawn from your box, you gain 1,00

Euro, if your color doesn’t match that ball you lose 0,50 Euro.

4. Next you use your mouse to drag each of the 3 balls to the square of the same color. If

you fail to do this with at least 90% accuracy, you will not receive your winnings from
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the task and instead will be paid only your 5,00-Euro show-up fee. (it is very easy to

do this accurately)

5. After you do this, each ball is replaced in the box that it came from, so that in each

box the number of balls of each color stays fixed.

6. You move to the next period, which will proceed in the same way.

Now please watch the video as we describe it to you. When it is over we will continue on

the next page.

[VIDEO SCRIPT-NOT IN WRITTEN INSTRUCTIONS ]

We will begin a video showing you 3 example periods of the task. FIRST PE-

RIOD: Your screen first presents three bars, which represent the three different

colors. In this example it is orange, grey and purple. When the text reading

“Get Ready” disappears you may choose a color. In order to choose a color, you

simply click at the appropriate bar. Make sure that you choose quickly, because

if you don’t choose before time runs out you will lose 0,50 Euros for sure. In

this example orange is chosen.

After you choose, you see that your chosen orange bar remains and the others

disappear. Next the boxes are shaken and then the balls are drawn. You observe

the color of the balls drawn from each box. In this example period the color of

the ball drawn from your box is orange and matches the color you chose. You

are notified that you win 1,00 Euro. Next, the three balls remain, and you need

to place each ball in the square of the same color. You move the balls by simply

dragging them with your mouse. You have a limited amount of time for doing

this, but it is very easy to do. Finally, you see the balls replaced to the boxes

they came from and you move to the next period.

SECOND PERIOD: In this example period you fail to respond in time and

lose 0,50 Euro. Please watch. (experimenter stays silent after and waits for the

the period to end)
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THIRD PERIOD: In this example period your chosen color purple does not

match the color of the ball drawn from your box, which is grey. In this case you

lose 0,50 Euro. Please watch. (experimenter stays silent after and waits for the

the period to end)

Any questions? Please raise your hand and someone will come around to

answer your question. Please make sure that everything is clear, because there

will be no further opportunities for questions

[ NOW THE EXPERIMENTER SHOWS OVERHEAD SLIDE WITH THE

BOXES]

So what is happening in the boxes? Please look at the overhead projector as we describe

it to you:

1. On the slide there are 3 boxes. In each period, before the balls are drawn from each

box, the boxes are shaken to make sure that for each box, all balls have an equal chance

of being chosen.

2. Notice there are 30 balls in each box colored either Orange, Pink, or Yellow (these are

just example colors)

• In this example there are 26 Orange balls, 2 Pink balls, and 2 Yellow balls in each

box (these are just example numbers). Boxes are always identical for you and the

two others both here and in the real decision task, therefore all boxes will have

the same number of balls of each color.

• Each ball has the same chance to be drawn. Therefore, in the above example the

chance Orange is drawn is 26 out of 30, the chance that Pink is drawn is 2 out of

30 and the chance that Yellow is drawn is 2 out of 30. This is true for each box.

Notice, the contents of the boxes are the same but different colors may be drawn

from each box in a given period.

3. At the end of the period drawn balls are replaced. Before the draw of the next period

the boxes are “SHAKEN” to make sure that each ball has an equal chance of being
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chosen.

4. On the slide representing the next period, you see that the chance Orange is drawn is

still 26 out of 30, the chance that Pink is drawn is still 2 out of 30 and the chance that

Yellow is drawn is still 2 out of 30.

Note: The number of balls of each color used in this example was just for illustration.

In addition, the 3 colors used in the 50 periods of the actual task today will not be the

colors from this example.

5. Please look at the final slide. We remind you here what is true of the actual decision

task:

• All three boxes will have the same contents, but you will not know the actual

contents. You will only see draws from your box and the two other boxes in your

group.

You may be curious how we make sure the box is well “shaken” so each ball has an

equal chance of being chosen? We have a paid subscription to the random number service

www.random.org which generates true random numbers. It is a service used in many coun-

tries for lotteries, draws and sweepstakes in order to obtain truly fair and unbiased random

numbers that can be publicly verified. For each draw from a box, www.random.org generates

a random number between 1 and 30 in order to pick one of the 30 balls at random from

a given box. Since these draws are made publicly with a timestamp on www.random.org’s

website you may personally verify the accuracy of your draws. If you would like to do this

please inquire with us when we are finished for details.

B Appendix: Video and ScreenShots

A video of the task can be viewed by entering or clicking on the following google-shortened url

link: http://goo.gl/khwe6. (A permanent link can be found here : http://youtu.be/QHEncPC-

xYk?hd=1)

Below are several screen shots

25



Figure 4: Experimental screen showing the full-recall treatment, just before subjects are allowed to
choose. (In the low-recall treatment the records below were omitted).
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Figure 5: The Attention Task: Experimental screen showing subjects sorting balls in the low-recall
treatment. (Subjects also sorted the balls in the full-recall treatment).
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Figure 6: Experimental screen showing full-recall treatment. Here are the three bars, one of which
subjects choose.
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Figure 7: Estimates for θ with various 2-epoch partitions of periods 2 − 45. One-color discrete
choice model: Ic = βc(θN

own
c +Nother

c ) c ∈ {B,P,G}. Each coefficient is of the form α = α0+α1 ∗
1[Period>T ] where T is the cutoff that defines the partition.

C Appendix: Additional Tables & Figures
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Table 3: Biased-Counting Multinomial Logit Model with Epoch Controls

All Periods Time Control Epoch Controls
Counting Weight (θ)
constant 3.483∗∗∗ 3.287∗∗∗ 1.921∗∗∗

Period −0.013
Last 15 Periods 3.181∗∗

Second 15 Periods 0.011

Purple Index
Brown(βP

B)
constant −0.046∗∗∗ −0.079∗∗∗ −0.106∗∗∗

Period 0.001∗∗

Last 15 Periods 0.074∗∗∗

Second 15 Periods 0.038∗∗

Purple(βP
P )

constant 0.036∗∗∗ 0.055∗∗ 0.090∗∗∗

Period −0.000
Last 15 Periods −0.061∗∗

Second 15 Periods −0.043∗

Green(βP
G)

constant 0.009∗∗ 0.018 0.012
Period −0.000
Last 15 Periods −0.009
Second 15 Periods 0.004

Green Index
Brown(βG

B)
constant −0.044∗∗∗ −0.089∗∗∗ −0.130∗∗∗

Period 0.001∗∗∗

Last 15 Periods 0.100∗∗∗

Second 15 Periods 0.067∗∗∗

Purple(βG
P )

constant 0.003 −0.001 0.003
Period 0.000
Last 15 Periods 0.001
Second 15 Periods −0.010

Green(βG
G)

constant 0.039∗∗∗ 0.086∗∗∗ 0.109∗∗∗

Period −0.001∗∗∗

Last 15 Periods −0.085∗∗∗

Second 15 Periods −0.042∗

All-Colors discrete choice model with latent index:
Ic = βc

B(θN
own
B +Nother

B ) + βc
P (θN

own
P +Nother

P ) + βc
G(θN

own
G +Nother

G ) for c ∈ {P,G}.
Base Outcome: Brown Choice. Standard errors suppressed due to space restrictions.
4812 observations, 99 subjects. Periods 2-45.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Biased-Counting Multinomial Logit Model with 1-color latent index

All Periods All Periods First 15 Middle 15 Last 15
Counting Weight (θ)

constant (θ0) 3.411∗∗∗ 3.453∗∗∗ 1.780∗∗∗ 1.750∗∗∗ 5.291∗∗∗

(1.070) (1.040) (0.520) (0.638) (1.816)
Treatment (θ1) 0.101

(0.806)
Color Weight
Brown (βB) 0.041∗∗∗ 0.041∗∗∗ 0.120∗∗∗ 0.063∗∗∗ 0.027∗∗∗

(0.008) (0.008) (0.021) (0.011) (0.007)

Purple (βP ) 0.038∗∗∗ 0.038∗∗∗ 0.112∗∗∗ 0.057∗∗∗ 0.026∗∗∗

(0.008) (0.008) (0.025) (0.011) (0.007)

Green (βG) 0.036∗∗∗ 0.036∗∗∗ 0.102∗∗∗ 0.060∗∗∗ 0.024∗∗∗

(0.008) (0.008) (0.021) (0.011) (0.006)

Latent Indices: IB = βB(θN
own
B +Nother

B ), IP = βP (θN
own
P +Nother

P ), IG = βG(θN
own
G +Nother

G ).

Base Outcome: Brown Choice. Standard errors in parentheses. 4812 observations, 99 subjects. Periods 2-45.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Biased-Counting Multinomial Logit Model with 1-color latent index with controls

All Periods Time Control Epoch Controls
Counting Weight (θ)

constant 3.453∗∗∗ 3.060∗∗∗ 1.780∗∗∗

(1.040) (1.039) (0.520)
Period −0.009

(0.016)
Last 15 Periods 3.512∗∗

(1.597)
Second 15 Periods −0.030

(0.599)
Color Weight
Brown (βB)
constant 0.041∗∗∗ 0.082∗∗∗ 0.120∗∗∗

(0.008) (0.018) (0.021)
Period −0.001∗∗∗

(0.000)
Last 15 Periods −0.093∗∗∗

(0.018)
Second 15 Periods −0.056∗∗∗

(0.017)

Purple (βP )
constant 0.038∗∗∗ 0.073∗∗∗ 0.112∗∗∗

(0.008) (0.021) (0.025)
Period −0.001∗∗

(0.000)
Last 15 Periods −0.086∗∗∗

(0.022)
Second 15 Periods −0.055∗∗∗

(0.020)

Green (βG)
constant 0.036∗∗∗ 0.078∗∗∗ 0.102∗∗∗

(0.008) (0.020) (0.021)
Period −0.001∗∗∗

(0.000)
Last 15 Periods −0.079∗∗∗

(0.018)
Second 15 Periods −0.042∗∗

(0.017)

One-color discrete choice model with latent indices:

IB = βB(θN
own
B +Nother

B ), IP = βP (θN
own
P +Nother

P ), IG = βG(θN
own
G +Nother

G ).

Base Outcome: Brown Choice. Standard errors in parentheses. 4812 observations, 99 subjects. Periods 2-45.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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