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Abstract 

We develop a general equilibrium asset pricing model under incomplete information 
and rational learning in order to understand the unexplained predictability of option 
prices. In our model, the fundamental dividend growth rate is unknown and subject to 
breaks. Immediately after a break, there is insufficient information to price option 
contracts accurately. However, as new information arrives, a representative Bayesian 
agent recursively learns about the parameters of the process followed by 
fundamentals. We show that learning makes beliefs time-varying and generates 
predictability patterns across option contracts with different strike prices and 
maturities; as a result, the implied movements in the implied volatility surface 
resemble those observed empirically. 
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1 Introduction 

Contrary to the constant volatility assumption of the Black and Scholes’ (1973) model 

(henceforth, BS), the volatilities implicit in option contracts change over time. Moreover, it 

is well known that at least from a statistical perspective, strong predictability patterns exist 

in implied volatilities and option prices (e.g., Harvey and Whaley, 1992; Heston and Nandi, 

2000; Gonçalves and Guidolin, 2006; Konstantinidi, Skiadopoulos, and Tzagkaraki, 2008; 

and Christoffersen, Heston, and Jacobs, 2009). Additionally, and also in sharp contrast with 

BS’ assumptions and pricing results, the volatilities implicit in option contracts written on 

the same underlying asset systematically differ across strike prices and expiration dates. 

These cross-sectional din implied volatilities are known as the implied volatility surface 

(IVS) (e.g., Rubinstein, 1994; Dumas, Fleming, and Whaley, 1998; Das and Sundaram, 1999). 

Historically, while BS' constant volatility assumption was initially believed to characterize 

market option prices reasonably well (e.g., Rubinstein, 1985), since the 1987 market crash, 

data have been found to be inconsistent with BS because of the presence of persistent 

implied volatility smiles/skews and term structures. Furthermore, and similar to the 

behavior of the implied volatility of a single option contract, there is evidence of predictable 

dynamics in the shape characteristics of the IVS (e.g., Gonçalves and Guidolin, 2006; 

Chalamandaris and Tsekrekos, 2010). 

Despite this widespread and compelling evidence of dynamics in the volatilities implicit in 

traded options, there are few equilibrium pricing models based on first principles (i.e., from 

simple and generally accepted assumptions concerning preferences and the stochastic 

process of fundamentals driving asset prices), such ubiquitous patterns of dynamic 

predictability in the IVS.1

We develop a discrete-time endowment, Lucas-type economy in which a representative 

agent trades in a risk-free one-period bond, in a stock, and in a set of option contracts with 

 The main goal of our research is to fill this gap by developing a 

rather standard and yet novel and powerful equilibrium model, in which the rational 

learning by the investors explains the predictable dynamics in option prices and in the 

corresponding IVS.  

                                                 
1 A handful of exceptions are, however, discussed below. Researchers have proposed econometric models for 
the IVS and tested whether these may support profitable, out-of-sample trading strategies (e.g., Dumas, 
Fleming, and Whaley, 1998; Gonçalves and Guidolin, 2006; Fengler, 2009; Kim and Lee, 2013). 
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different strike prices and expiration dates. The stock pays out an infinite stream of real 

dividends that evolve according to a geometric random walk; however, the mean dividend 

growth rate, 𝑔𝑡, is subject to infrequent (and always observable) breaks where time periods 

between breaks follow a memory-less stochastic process. In a scenario in which a break 

takes place, the new mean dividend growth rate is drawn from a continuous univariate 

density 𝑔𝑡+1~𝐺(∙) defined on the support [𝑔𝑑,𝑔𝑢]. Even though breaks are observable, 𝑔𝑡 is 

unknown to the agent, who recursively obtains incomplete information about the mean 

growth rate by observing independently distributed but noisy daily dividend realizations. 

The agent efficiently uses these signals following a rational Bayesian updating (learning) 

process.2 Immediately after a break, historical information is scarce and this makes signals 

potentially unreliable; as a result, drastic revisions of beliefs concerning the new post-break 

value of 𝑔𝑡 become likely. As long as no new stochastic breaks occur (and given their 

infrequent nature, this is likely), these initial large updates in beliefs gradually decline as 

the agent endogenously learns as new information arrives. Nevertheless, learning never 

disappears completely, even asymptotically, because its strength is destined to be revived 

after a new break hits the mean growth rate. Therefore, breaks in the mean growth rate 

induce two main effects on all assets. Firstly, breaks in 𝑔𝑡 impact the stochastic evolution of 

future dividends, affecting the pricing of all securities directly. Secondly, breaks modify the 

quantity and reliability of the information that the agent has access to regarding the mean 

dividend growth rate 𝑔𝑡, hence breaks change the speed and intensity with which the 

investor updates her beliefs. Moreover, given that the learning process produces dynamic 

effects in beliefs, this process of recursive belief adjustments is responsible for a 

corresponding, highly nonlinear dynamic in options prices and in the associated IVS.3

Financial markets and the economy are subject to continuous changes that force investors 

into an ever progressing process of learning regarding fundamentals. There are numerous 

 

                                                 
2 Because under rather general conditions that are satisfied under our simple set-up with observable breaks, it 
can be shown that the application of Bayes’ rule to the learning problem is equivalent to rational updating 
(Bray and Kreps, 1987; Guidolin and Timmermann, 2007). Below we discuss Bayesian and rational learning as 
if the two terms are interchangeable. 
3 As a first step, we assume that the volatility, 𝜎, in the geometric random walk followed by dividends is 
constant, in order to obtain the simplest setting that allows us to observe the effects on options of learning 
about 𝑔𝑡 , which is in line with Timmermann (1996, 2001). However, later we extend the model by allowing 
the dividend volatility to vary following a GARCH (1,1). 
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breaks in economic fundamentals reported in the literature, such as in the parameters of 

the dividend process and in real GDP growth (e.g., Bai, Lumsdaine, and Stock, 1998; 

Timmermann, 2001; Granger and Hyung, 2004). Breaks in fundamentals could be due to 

permanent technological innovations, or shifts in tax codes, monetary policy, or stock 

market participation, among other possibilities. However, when there are breaks in 

economic fundamental, agents optimally follow a rational belief updating mechanism as 

they need to understand the new market conditions. Therefore, we propose a simple and 

yet powerful model based on the interaction between rational learning and infrequent 

structural breaks to explain documented but not currently well understood features of the 

way options are priced. 

Through an extensive set of simulations of price options with strikes and maturities 

determined according to the same (listing and delisting) rules that are followed in 

established option markets, we show that Bayesian learning induces dynamic patterns in 

option prices and implied volatilities (henceforth, IVs) that are consistent with what is 

reported in the empirical literature. We find that learning produces different dynamics in 

the IVs across strike prices and time-to-maturities, and thus induces movements in the 

shape of the IVS. We also show that learning produces serial correlation and volatility 

clustering in IVs, as well as in (measures of) the slope and curvature of the IVS.4

                                                 
4 Predictability patterns in the level, slope, and curvature of the IVS have already been reported in studies 
using S&P 500 ndex options (e.g., Gonçalves and Guidolin, 2006), as well as individual equity options (e.g., 
Bernales and Guidolin, 2014). 

 For 

instance, we report strong predictability patterns on the slope and curvatures on the 

moneyness and maturity dimensions measured by ARCH LM tests (both with one and three 

lags). This means that when levels, slope or convexity of the IVS become variable over time, 

this instability tends to persist over time. Nevertheless, ARCH effects are weaker in the case 

of the slope and curvature indices measured with respect to moneyness, although 10% 

statistical significance is preserved for at least 25% of the simulations. We compare the 

results of our simulations, using a range of IVS predictability measures, with option market 

data concerning S&P 500 index options and a number of equity options traded in the U.S. 

markets to show that our incomplete information model to a large extent generates the 

same predictable features described by traded option prices. 
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The closest papers related to ours are David and Veronesi (2002), Guidolin and 

Timmermann (2003, henceforth GT), and Shaliastovich (2015). These researchers explore 

the effects of learning on option prices, measured at a certain point in time (i.e., they mostly 

perform static analyses), to explain the different IVs across strike prices and maturity dates 

that define the IVS. These studies show that learning induces asymmetric slopes and 

curvatures in the IVS, which of course are results we also demonstrate. However, our focus 

is predominantly on providing a rational, asset pricing-based, explanation for the 

movements over time and the predictability in the IVS, besides calibrating the shape of the 

IVS itself. For instance, and differently from these earlier papers, our focus is devoted to 

calibrating and explaining autocorrelations in IVs, the volatility clustering of IVs, and the 

predictability patterns in slopes and curvatures of the IVS. In particular, David and Veronesi 

(2002) introduce a continuous-time model in which the dividend drift follows a two-state 

regime-switching process. In their model, investors’ uncertainty about the current state of 

the economy induces cross-sectional IV skews and systematic shapes in the term structure 

of the IVS. In our paper, we work in discrete time and with rare, infrequent breaks, not 

regimes, while our focus is distinctively on the IVS and its dynamic features.5 Guidolin and 

Timmermann (2003) present a discrete-time equilibrium model in which the mean 

dividend growth rate evolves between two states in a binomial lattice with an unknown but 

recursively updated state probability. However, in Guidolin and Timmermann’s work, 

learning effects vanish asymptotically as time deterministically flows, because investors 

eventually achieve complete knowledge of the unknown state probability.6

                                                 
5 In this sense, the most closely related papers are Timmermann (2001) and Guidolin (2006), where 
infrequent breaks are modeled and empirically estimated, but the goal is simply to explain the features of the 
realized distribution of stock returns, such as the equity premium, volatility clustering, excess kurtosis, etc. 

 Moreover, our 

model is more general than a simple binomial lattice and, although less theoretical results 

can be precisely documented, its calibrated versions give more realistic predictions than in 

Guidolin and Timmermann. Shaliastovich (2015) introduces a discrete-time long-run risk 

type model in which the unobservable consumption growth rate has to be learned via a 

“recency”-biased updating procedure. In his paper, expected consumption growth and its 

uncertainty are time-varying, while uncertainty is subject to jumps. Compared to his paper, 

6 Although Guidolin and Timmermann (2003) perform a dynamic analysis, they only examine the weekly fit of 
their model over time. Therefore, they do not study specifically whether their model may generate predictable 
dynamics in option prices and the associated IVS. 
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we use a simpler model with no long run risks or jumps, but restrict the investor to 

rationally learning about the mean growth rate since the most recent structural break. 

There are a few studies that are somewhat related to our research, although they do not 

specifically investigate the effects of learning on predictable option IV dynamics. Our 

research has links to studies that examine structural breaks in economic fundamentals in 

relation to the effects of learning on stock prices and their return process (e.g., Pastor and 

Stambaugh, 2001; Timmermann, 2001). Lettau and Van Nieuwerburgh (2008) document 

that the stock return predictability puzzle can be explained by breaks in economic 

fundamentals. They show that in-sample financial ratios and future returns are significantly 

related; however, in real time this relation cannot be exploited due to the occurrence of 

infrequent breaks. They also report that return predictability is mainly affected by the 

uncertainty induced in the estimation of the new fundamental value after breaks, whereas 

the uncertainty generated by the detection of breaking dates is less critical. Ederington and 

Lee (1996) and Beber and Brandt (2006, 2009) show that macroeconomic events or news 

at both expected and unexpected times increase IVs, while they decline when uncertainty is 

resolved. Donders, Kouwenberg, and Vorst (2000), Dubinsky and Johannes (2006), and Ni, 

Pan, and Poteshman (2008) present similar results to Ederington et al.’s, although they 

mostly focus on the effects of earnings announcement dates on IVs. 

The rest of the paper is organized as follows. In Section 2, we present the model, and in 

Section 3 we describe the simulations and results. We document the nature of our 

qualitative results (i.e., the fact our model “can do the job” requested of it), and then 

perform a quantitative calibration to show that the framework may re-produce standard 

econometric evidence on the predictability of the IVS. In Section 4, we report a model 

extension by allowing the dividend volatility to vary. Concluding remarks appear in Section 

5. 

 

2 The model  

In Section 2.1 we price options when information is complete, there is no learning, but there 

are breaks in the process of the fundamentals. Section 2.2 extends the pricing framework 
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when there are breaks but information is incomplete so that rational learning occurs and 

therefore affects prices. 

2.1 Option pricing under breaks and complete information 

We consider a representative agent discrete-time endowment economy as in Lucas (1978). 

This economy contains three types of assets: a one-period zero-coupon default free bond, 

𝐵𝑡, in zero net supply; a stock with net supply normalized at one, 𝑆𝑡; and a set of redundant 

call option contracts, 𝐶𝑎𝑙𝑙𝑡(𝐾, 𝜏), which are European-style with underlying asset priced at 

𝑆𝑡, strike price 𝐾, and time-to-maturity 𝜏. The stock pays out an infinite stream of real 

dividends, 𝐷𝑡; however the mean (continuously compounded) dividend growth rate, 

𝑔𝑡 ≡ ln (𝐷𝑡/𝐷𝑡−1), is subject to unpredictable breaks. The time periods between breaks 

follow a memory-less geometric process parameterized by 𝜋; and thus the number of 

breaks in a given period follows a binomial distribution.7

 

 We assume that when a break 

occurs, the new mean dividend growth rate is obtained from a continuous univariate 

density, 𝑔𝑡+1~𝐺(∙), defined on the support [𝑔𝑑,𝑔𝑢]. In addition, net of the break dynamics, 

dividends evolve according to a geometric random walk with constant process with 

constant volatility process with constant volatility 𝜎 and drift 𝜇𝑡 + 1with constant volatility 

 and drift t+1, 

ln (𝐷𝑡+1
𝐷𝑡

) = 𝜇𝑡+1 +  𝜎𝜀𝑡+1, (1) 

in which the innovation term, 𝜀𝑡+1, is homoscedastic and serially uncorrelated; however, 

𝜇𝑡+1 changes over time since it is related to 𝑔𝑡+1 by 1 + 𝑔𝑡+1 = exp(𝜇𝑡+1 + σ2/2).8

We assume a perfect, frictionless, and complete capital market: there are no taxes, no 

transaction costs, unlimited short sales possibilities, perfect liquidity, and no borrowing or 

 

                                                 
7 Shaliastovich (2008) uses a continuous-time Poisson process in his discrete-time learning model to describe 
jumps in the uncertainty over time, and thus time periods between jumps follow a memory-less exponential 
process that is also in continuous-time. This kind of set-up is common in the literature. However, we prefer to 
be consistent with our discrete-time model; thus, we use a discretized version of the Poisson and exponential 
processes. which are the binomial and the memory-less geometric processes, respectively.  
8 We assume that 𝜎 is constant to obtain the simplest setting to analyze the impact of learning on the dynamics 
of option prices. This is consistent with earlier work by Timmermann (1996, 2001) who, with reference to 
equilibrium equity prices, shows that the investors’ learning regarding only the mean dividend growth rate is 
sufficient to induce excess volatility and volatility clustering in stock returns, even though the volatility of the 
dividend random walk process is constant. However, we extend our model setup in Section 4 by allowing the 
dividend volatility to vary. 
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lending constraints. As discussed in Brennan and Cao (1996), it is market completeness that 

makes options redundant assets. The representative agent has preferences described by a 

standard power utility function, 

 𝑢(𝐶𝑡) = �
𝐶𝑡1−𝛼 − 1

1 − 𝛼
        𝛼 ≥ 0

ln𝐶𝑡                   𝛼 = 1
�       (2) 

where 𝐶𝑡 is real consumption and 𝛼 corresponds to the constant coefficient of relative risk 

aversion (CRRA). We assume that dividends represent the unique source of income of this 

representative agent. As is typical in a Lucas-type model, dividends are perishable and 

consumed when they are received at any time 𝑡 + 𝑘 (i.e., 𝐶𝑡+𝑘 = 𝐷𝑡+𝑘). Therefore the agent 

maximizes the discounted value of her expected stream of future utility choosing assets’ 

holdings and subject to a standard budget constraint, 

 
max

{𝐷𝑡+𝑘,𝑤𝑡+𝑘
𝑆 ,𝑤𝑡+𝑘

𝐵 }
𝐸𝑡 [�𝛽𝑘𝑢(𝐷𝑡+𝑘)

∞

𝑘=0
]

s. t.    𝐶𝑡+𝑘 + 𝑤𝑡+𝑘
𝑆 𝑆𝑡+𝑘 + 𝑤𝑡+𝑘

𝐵 𝐵𝑡+𝑘 ≤ 𝑤𝑡+𝑘−1
𝑆 (𝑆𝑡+𝑘−1 + 𝐷𝑡+𝑘−1) + 𝑤𝑡+𝑘−1

𝐵
 ,      (3) 

where 𝛽 ≡ 1/(1 + 𝜌), 𝜌 is the subjective impatience rate, and 𝑤𝑡+𝑘
𝑆  (𝑤𝑡+𝑘

𝐵 ) are the shares of 

stocks (bonds) in her portfolio. Since call option contracts are redundant assets in zero 

endogenous net supply, option holdings do not affect the agent’s optimization because they 

fail to appear in her budget constraint. Therefore, option holdings do not affect stock and 

bond prices. Consequently, Euler equations are obtained for the stock and the bond by 

standard dynamic programming methods (see Pliska, 1997): 

 𝑆𝑡 = E𝑡 [𝛽 (
𝐷𝑡+1

𝐷𝑡
)−𝛼 (𝑆𝑡+1 + 𝐷𝑡+1)] (4) 

 𝐵𝑡 = E𝑡 [𝛽 (
𝐷𝑡+1

𝐷𝑡
)−𝛼]     (5) 

where 𝑄𝑡+1 = 𝛽(𝐷𝑡+1/𝐷𝑡)−𝛼 is the pricing kernel defined as the intertemporal marginal rate 

of substitution multiplied by the subjective discount factor.  

In this section, we assume complete knowledge of the parameters appearing in the process 

for real dividends. This means that both 𝜇𝑡 and 𝜎 are known. Of course, 𝜇𝑡 remains time-

varying so that knowledge of 𝜇𝑡 does not imply it is identical to 𝜇𝑡+1. However, the 
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occurrence of breaks is also assumed to be observable. Moreover, under complete 

information (CI), we assume that the distribution from which log-growth rates are drawn, 

𝑔𝑡+1~𝐺(∙) with support [𝑔𝑑,𝑔𝑢], is also known to the representative investor. Under these 

simplifying restrictions, although the Euler conditions in (4) and (5) appear to be standard 

in the literature, solving them as difference equations in the presence of infrequent breaks 

but complete information yields non-trivial expressions for equilibrium stock and bonds 

prices, presented in Proposition 1. 

PROPOSITION 1 (Complete Information): Assuming that the mean growth rate 𝑔𝑡 is subject 

to breaks, and that when a break occurs (with probability 𝜋), the new mean dividend growth 

rate is drawn from a given univariate density 𝑔𝑡+1~𝐺(∙) with support [𝑔𝑑,𝑔𝑢], where 

1 + 𝜌 > (1 + 𝑔𝑢)1−𝛼, then the stock and bond prices under complete information, 𝑆𝑡𝐶𝐼and 𝐵𝑡𝐶𝐼, 

are: 

  𝑆𝑡𝐶𝐼 = 𝐷𝑡
1+𝜌−(1−𝜋)(1+𝑔𝑡)1−𝛼  {(1 − 𝜋)(1 + 𝑔𝑡)

1−𝛼 + 𝜋 (𝐼1+(1−𝜋)𝐼2 
1−𝜋𝐼3

)}   = 𝐷𝑡Ψ(𝑔𝑡), (6) 

where: 

  𝐼1 = ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1) 
𝑔𝑢
𝑔𝑑

  

  𝐼2 = ∫
(1+𝑔𝑡+1)2−2𝛼

1+𝜌−(1−𝜋)(1+𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢
𝑔𝑑

  

  𝐼3 = ∫
(1+𝑔𝑡+1)1−𝛼

1+𝜌−(1−𝜋)(1+𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢
𝑔𝑑

;                                                   

 moreover:  

 𝐵𝑡𝐶𝐼 =
1

(1 + 𝜌)
{(1 − 𝜋)(1 + 𝑔𝑡)

−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+1)−𝛼𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑

}, (7) 

in which the one period risk-free interest rate is defined as 𝑟𝑡𝐶𝐼 ≡ 1/𝐵𝑡𝐶𝐼 − 1. 

Proof: See Appendix A. 

Proposition 1 has a number of implications. The ex-dividend (real) stock prices are first 

order homogeneous in dividends and are affected by breaks in 𝑔𝑡. Consequently, the price-
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dividend ratio is time-varying and also conditional on 𝑔𝑡. This means that in the absence of 

breaks (as in GT, 2003), the CI stock price is simply, 

𝑆𝑡
𝐶𝐼,π=0 =

(1+𝑔𝑡)
1−𝛼

1+𝜌−(1−𝜋)(1+𝑔𝑡)1−𝛼 𝐷𝑡 = ΨCI 𝐷𝑡, 

where 𝛹𝐶𝐼 is the price-dividend ratio. Note that in the logarithmic utility case (see Veronesi, 

1999), it is well known that, when  = 1, then:  

 𝑆𝑡
𝐶𝐼,α=1 = 1+𝜋𝜌

1+𝜌−(1−𝜋)  𝐷𝑡  , (8) 

so that the price-dividend ratio is a constant that also depends on π. 

Similarly, the one period zero-coupon bond changes over time due to shifts in 𝑔𝑡. The one 

period zero-coupon bond price is given by the expected pricing kernel in the absence of 

breaks (when π = 0), (1 + 𝑔𝑡)
−𝛼/(1 + 𝜌), multiplied by the probability of no breaks (1 – 𝜋) 

plus the expected pricing kernel in the case of breaks, ∫ (1 + 𝑔𝑡)
−𝛼𝑑𝐺(𝑔𝑡)

𝑔𝑢
𝑔𝑑

/(1 + 𝜌), 

multiplied by the probability of breaks, 𝜋. Additionally, the current expected forward price 

of a one period zero-coupon bond in the very long term is equal to the expected value of the 

pricing kernel in the scenario of a break, since the probability of having no shifts in the 

mean in the distant future is practically zero (i.e., lim𝑠→∞ 𝐸𝑡[𝐵𝑠𝐶𝐼] = ∫ (1 + 𝑔𝑡)
−𝛼𝑑𝐺(𝑔𝑡)

𝑔𝑢
𝑔𝑑

/(1 +

𝜌)).  

Furthermore, pricing European call option contracts is straightforward under complete 

information. We assume that there are no arbitrage opportunities, and that the agent makes 

portfolio choices considering asset menus that include stocks and bonds only. This derives 

from our earlier assumption that markets are complete, so that European options are 

redundant by construction. In the case of an economy without breaks (i.e., 𝜋 = 0), no-

arbitrage option prices can be computed as BS prices deriving from equilibrium models in 

which the dividend fundamental process is stationary [see GT (2003), and references and 

proofs therein].9

                                                 
9 Technically, this result obtains only in the continuous time limit. However, here we refer to a discretized BS, 
fundamental-based formula that in fact goes back to the seminal paper by Rubinstein (1976). 

 However, the BS formula fails to hold when breaks in 𝑔𝑡 are possible. 

Breaks make dividend yields and interest rates time-varying, thereby introducing non-
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stationarities in the dynamics process followed by the primitive assets that underlie the no-

arbitrage of European options. Therefore, the correct discount factors to be applied—even 

under the risk-neutral measure that characterizes BS pricing—are path-dependent. 

Nevertheless, option contracts can be priced by a change of measure to the state-price 

density. Proposition 2 presents an expression for European call option prices based on this 

change of measure; Section 3 shows how the resulting expression may be solved using 

numerical methods. 

PROPOSITION 2 (Complete Information): Under complete information, the no-arbitrage 

price of a European call contract written on the stock, with strike price 𝐾 and time-to-

maturity 𝜏, can be obtained by assuming that the number of breaks, z, between 𝑡 and 𝑡 + 𝜏 is a 

random variable drawn from a binomial distribution 𝜑(𝑧|𝜏,𝜋) with parameters 𝜏 and 𝜋, 

{ℎ𝑖}𝑖=0
𝑧  are the time intervals between breaks drawn from geometric distributions 𝜂(ℎ𝑖|𝜋) in 

which 𝜏 = ∑ ℎ𝑖𝑧
𝑖=0 , and the new post-break growth rates {𝑔𝑡+ℎ𝑖}𝑖=1

𝑧  are drawn from a univariate 

density 𝑔𝑡+ℎ𝑖−1
~𝐺(∙) with pdf 𝜚(∙) defined on the support [𝑔𝑑,𝑔𝑢], where 𝑔𝑡+ℎ0

= 𝑔𝑡 and 𝑔𝑡+𝜏 =

𝑔𝑡+ℎ𝑧 . Thus, the price European call contract is: 

 𝐶𝑎𝑙𝑙𝑡
𝐶𝐼(𝐾, 𝜏) = ∫ max{𝑆𝑡+𝜏𝐶𝐼 − 𝐾, 0}𝑝� 𝑡(𝑆𝑡+𝜏

𝐶𝐼 )𝑑𝑆𝑡+𝜏𝐶𝐼
∞

0
 (9) 

in which 𝑆𝑡+𝜏𝐶𝐼 = 𝐷𝑡+𝜏Ψ(𝑔𝑡+𝜏) , 𝐷𝑡+𝜏 = 𝐷𝑡 exp(√𝜏𝜎𝜀𝑡+𝜏 − 𝜏𝜎2/2) ∏ (1 + 𝑔𝑡+ℎ𝑖)
ℎ𝑖𝑧

𝑖=0 , and 𝜀𝑡+𝜏 is the 

innovation term of the dividend geometric random walk process in (1) distributed as a normal 

density 𝜙(𝜀𝑡+𝜏|0,𝜎) with mean zero and variance 𝜎. Finally, the state price density is 

characterized as: 

𝑝�𝑡(𝑆𝑡+𝜏
𝐶𝐼 ) = 𝛽𝜏 (

𝐷𝑡+𝜏
𝐷𝑡

)−𝛼 𝜙(𝜀𝑡+𝜏|0,𝜎)𝜑(𝑧|𝜏,𝜋)𝜂(ℎ0|𝜋) (𝜂(ℎ1|𝜋)𝜚 (𝑔𝑡+ℎ1
) ∙ … ∙ 𝜂(ℎ𝑧|𝜋)𝜚 (𝑔𝑡+ℎ𝑧)) .   

Proof: See Appendix A 

Proposition 2 shows that an option contract should now be priced by taking into account 

that there exists a probability π > 0 that 𝑔𝑡 may be affected by a structural, and possibly 

permanent change in any period before the option's expiration date. Therefore, given that 

after a break the new value of 𝑔𝑡 randomly changes (i.e., after a break 𝑔𝑡 can take any value 

from the density 𝐺(∙)), this induces additional instability in the model and modifies the risk-
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neutral probability distribution. Thus, breaks (even without learning) make wider the risk-

neutral probability distribution than in the BS case with constant 𝑔𝑡 values. This affects 

option variables including option prices, IVs, and deltas. For instance, we show in Section 3 

(see Table 1) that, when there are breaks and complete information, option prices and IVs 

increase in magnitude, they are more volatile, and have more skewness and kurtosis. 

 

2.2 Option pricing under breaks and incomplete information with Bayesian learning 

In Section 2.1, the equations for pricing the bond, the stock (tree), and any cross-section of 

option contracts introduced in Propositions 1 and 2 were derived assuming that the agent 

knows the true mean dividend growth rate at each point in time. However, these 

expressions are not valid when there is incomplete information in the economy and an 

investor needs to learn the unknown parameters driving the process of fundamentals. 

Suppose that 𝑔𝑡 is unknown and the representative agent efficiently uses all available 

information to price the assets following a Bayesian updating procedure. Within each 

regime, as defined by the last occurrence of a break, the agent receives new, independent 

signals about the mean dividend growth on a daily basis, {𝐷𝑖/𝐷𝑖−1}𝑖=𝑡−𝑛+1
𝑡 , which are random 

and follow a lognormal distribution where 𝑛 is the number of periods since the last break 

(see equation (1)). However, breaks are still assumed to consist of rarely occurring and 

rather visible events so that they are observable. The investor’s learning therefore concerns 

only the actual value of 𝑔𝑡 following the most recent break. Although it would be possible to 

extend our set up to model the effects induced by any learning/estimation of breakpoint 

dates, the cost of this extension in terms of analytical complexity is remarkable, with a 

consequent loss of intuition for the results derived below. Moreover, assuming knowledge 

of the breakpoint dates does not appear to be completely unrealistic, as a number of recent 

econometric advances have shown that it is possible to perform real time tests that monitor 

for breaks in the mean function, attaining a considerable degree of accuracy (Chu, 

Stinchcombe, and White, 1996; Leisch, Hornik, and Kuan, 2000).10

                                                 
10 Additionally, Lettau and Van Nieuwerburgh (2008) show that the uncertainty generated by the detection of 
breakpoint dates in the process of economic fundamentals is not critical to explaining stock return anomalies. 
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The agent uses her prior beliefs while she recursively learns, incorporating all the new 

information received. Therefore, as in Timmermann (2001), the expected value of any asset, 

𝜆𝑡(𝑔𝑡|𝜋,𝜌,𝛼,𝜎), given an agent’s prior beliefs 𝜚(𝑔𝑡), can be obtained from the following 

updating Bayesian rule: 

 E𝑡,𝑛𝐵𝐿[𝜆𝑡(𝑔𝑡)�𝐪𝑡] =
∫ 𝜆𝑡(𝑔𝑡)𝐿(𝑔𝑡�𝐪𝑡)𝑛𝜚(𝑔𝑡)𝑑𝑔𝑡
𝑔𝑢
𝑔𝑑

∫ 𝐿(𝑔𝑡�𝐪𝑡)𝑛𝜚(𝑔𝑡)𝑑𝑔𝑡
𝑔𝑢
𝑔𝑑

   ,          (9) 

where 𝐿(𝑔𝑡�𝐪𝑡)𝑛 is the sample likelihood function, and the vector of signals is represented 

by 𝐪𝑡 = [(𝐷𝑡/𝐷𝑡−1) … (𝐷𝑡−𝑛+1/𝐷𝑡−𝑛)]. The intuition behind equation (9) is simple. The agent 

does not know the new value of 𝑔𝑡 after a break but she knows the distribution followed by 

𝑔𝑡 (𝜚(𝑔𝑡)) and the distribution followed by the signal vector 𝐪𝑡. Given this knowledge, the 

agent recursively updates her expectations about 𝑔𝑡 and on the value of all assets that 

depend on 𝑔𝑡, 𝜆𝑡(𝑔𝑡), as new signals are observed using Bayes’ rule. After a break affecting 

the true but unknown value of 𝑔𝑡, the new value will only be gradually learned because of 

the contemporaneous presence of the random innovation in the random walk process 

followed by dividends, for a given growth time-varying parameter 𝑔𝑡.  

Therefore, in addition to the non-stationarities induced by the presence of breaks in the 

process followed by the price of all assets, incomplete information and learning generate 

incremental randomness in the value of stocks, bonds, and option prices. Immediately after 

a break, historical information is scarce concerning reliable values for the asset prices. 

Thus, there is an initial period of intense learning that generates important changes in the 

agent's beliefs, which induces an additional uncertainty in the valuation process of all 

assets. The incremental randomness will affect option prices and their implicit volatilities 

as options are non-linear securities (see Figure 1 in Section 3). Therefore, since there is 

incomplete information, breaks modify the quantity and reliability of the information the 

agent can access about the mean dividend growth rate 𝑔𝑡; hence, breaks impact the speed 

and intensity by which the investor updates her knowledge of the economic conditions. 

                                                                                                                                                              
They also show that the main source of uncertainty is caused by the estimation of the magnitude of the new 
parameters in the aftermath of the break dates, similarly to our modeling approach.  
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Nevertheless, these large adjustments in beliefs are reduced recursively over time, as more 

information is learned. 

In equation (9), instead of dealing with a complex sample likelihood function concerning 

log-normally distributed data, it is convenient to re-write Bayes’ rule taking 𝜇𝑡 as the 

unknown parameter without loss of generality, because 1 + 𝑔𝑡 = exp(𝜇𝑡 + σ2/2). The main 

advantage of parameterizing (9) as a function of 𝜇𝑡 is that the observable signals, 

{ln (𝐷𝑖/𝐷𝑖−1)}𝑖=𝑡−𝑛+1
𝑡 , will now follow a normal density, so that equation (9) can be written 

as: 

 E𝑡,𝑛𝐵𝐿[𝜆𝑡(𝜇𝑡)�𝛏𝑡] =
∫ 𝜆𝑡(𝜇𝑡)𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

∫ 𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

       (10) 

with 

        𝐿(𝜇𝑡�𝛏𝑡)𝑛 =
1

�2𝜋𝜎2/𝑛
exp [

−(𝜉�𝑡 − 𝜇𝑡)
2

2𝜎2/𝑛
] (11) 

in which 𝛏𝑡 = [ln(𝐷𝑡/𝐷𝑡−1) … ln(𝐷𝑡−𝑛+1/𝐷𝑡−𝑛)], and 𝜉�𝑡 = (1/𝑛) ∑ 𝜉𝑖
𝑡
𝑖=𝑡−𝑛+1  is the sample mean. 

At this point, building on equations (10) and (11), it is possible to derive results for the 

price of assets in the presence of infrequent breaks and under incomplete information with 

learning, collected in the Propositions 3 and 4 that follow. Interestingly, these use the 

closed-form expressions under complete information already derived in Propositions 1 and 

2. 

PROPOSITION 3 (Bayesian Learning): Assuming incomplete information and learning, the 

stock and bond prices are given by: 

 𝑆𝑡𝐵𝐿 =
∫ 𝑆𝑡𝐶𝐼𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

∫ 𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

     (12) 

and 

 𝐵𝑡𝐵𝐿 =
∫ 𝐵𝑡𝐶𝐼𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

∫ 𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

     (13) 
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where 𝑆𝑡𝐶𝐼 and 𝐵𝑡𝐶𝐼 are the stock and bond price expressions under breaks and complete 

information defined in Proposition 1. 

PROPOSITION 4 (Bayesian Learning): Under incomplete information and learning, the prices 

of European call options written on the stock, with strike price 𝐾, and time-to-maturity 

𝜏 = 𝑇 − 𝑡 are: 

 𝐶𝑎𝑙𝑙𝑡𝐵𝐿(𝐾, 𝜏) =
� �∫ max�𝑆𝑡+𝜏

𝐶𝐼 −𝐾,0�𝑝�𝑡�𝑆𝑡+𝜏
𝐶𝐼 �𝑑𝑆𝑡+𝜏

𝐶𝐼∞
0 �𝐿(𝜇𝑡+𝜏|𝛏𝑡+𝜏)𝑛𝑡+𝜏𝑓(𝜇𝑡+𝜏)𝑑𝜇𝑡+𝜏

𝜇𝑢
𝜇𝑑

� 𝐿(𝜇𝑡+𝜏|𝛏𝑡+𝜏)𝑛𝑡+𝜏𝑓(𝜇𝑡+𝜏)𝑑𝜇𝑡+𝜏
𝜇𝑢
𝜇𝑑

, (14) 

where 𝑆𝑡+𝜏𝐶𝐼 = 𝐷𝑡+𝜏Ψ(𝑔𝑡+𝜏), 𝑔𝑡+𝜏 = exp(𝜇𝑡+𝜏 + σ2/2) − 1, dividends on expiration date follow 

𝐷𝑡+𝜏 = 𝐷𝑡 exp(√𝜏𝜎𝜀𝑡+𝜏 − 𝜏𝜎2/2) ∏ (1 + 𝑔𝑡+ℎ𝑖)
ℎ𝑖𝑧

𝑖=0 , 𝜀𝑡+𝜏, z ≤ τ, {ℎ𝑖}𝑖=0
𝑧 , {𝑔𝑡+ℎ𝑖}𝑖=1

𝑧 , and 𝑝�𝑡(𝑆𝑡+𝜏
𝐶𝐼 ) are 

as in Proposition 1. In addition, 𝑛𝑡+𝜏 is the number of dividend signals since the last break.11

The simplicity of the Bayesian updating procedure underlying Propositions 3 and 4 is useful 

to our understanding of the effects of learning on asset prices. Using this perspective, we 

start by analyzing two special cases that are illustrative of the mechanics of the effects of 

rational learning. Firstly, suppose that the probability of a break is very large, 𝜋 → 1. This 

implies that the agent faces very frequent breaks, at the same frequency as calendar time 

(say, daily). In this case, learning has no effect because 𝑔𝑡 changes in all periods, so that 

“there is no time for the investor to learn.” In this case, the expressions (12)-(14) simplify to 

(6)-(9) under the restriction that π = 1. Secondly, when π = 0 learning vanishes as t → ∞, as 

in GT (2003). In this case the agent should have sufficient information after a long period to 

calculate accurate estimates for 𝑔𝑡 and asset prices; and thus the effects of learning will 

disappear asymptotically. In this case, the expressions (12)-(14) converge to (6)-(9) under 

the restriction that π = 0. 

 

Propositions 3 and 4 show that after a break, substantial revisions in the agent’s 

expectations may occur, which strongly affect asset prices. Immediately after breaks, as 

mentioned previously, the agent does not have enough historical information to obtain 

reliable estimates, which induce large adjustments in beliefs. Beliefs' revisions generate 

important variations in the prices of all assets. The effect of incomplete information and 
                                                 
11 Note that 𝑛𝑡+𝜏 ≠ 𝑛 + 𝜏 since there are chances of breaks occurring between 𝑡 and 𝑡 + 𝜏; therefore 𝑛𝑡+𝜏  is 
also a random variable, where 𝑛𝑡+𝜏 ≤ 𝑛 + 𝜏. 
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learning will modify asset prices depending on the level of risk aversion of the agents, as 

shown in Section 3. However, initial revisions of large beliefs (after breaks) progressively 

abate over time as more information is received and learned. This updating process of 

agents’ beliefs, caused by recursive information acquisition, will induce rich patterns of 

predictable dynamics in option prices and IVs. 

 

3 Simulation results: making sense of the econometric evidence 

Section 3.1 explains the structure of the simulation/calibration work that follows. Section 

3.2 calibrates our model. Section 3.3 shows the general, qualitative pattern of our key 

results. Section 3.4 takes our calibration and simulation seriously and tries to match the key 

stylized features of the data. 

3.1 Research design 

The main goal of our research is to provide an understanding of whether (and how) a 

Bayesian learning scheme applied to processes subject to infrequent breaks may be used to 

explain a number of stylized facts concerning the pricing of European index options. We 

perform such an investigation, also assessing the implications of alternative assumptions 

concerning learning dynamics (i.e., the features of the way investors update their 

expectations over time). Following the same arguments as Timmermann (1993, 1996, 

2001), Veronesi (1999, 2000), Guidolin (2006), and David and Veronesi (2013), who all 

evaluate how the learning process affects the properties of stock returns by performing 

extensive sets of simulations, we use a quantitative Monte Carlo approach. The 

aforementioned authors argue that learning influences the pricing function of all assets in a 

highly nonlinear way, which would be poorly approximated by any attempts at log-

linearization, so that simulations are necessary to understanding the wider scope of 

outcomes that learning may induce.12

                                                 
12 Kleidon (1986) shows that the use of standard tests to evaluate an equilibrium model using a single 
economy represented by market data may lead to inaccurate conclusions. He emphasizes that asset prices in 

 Moreover, the use of simulations allows us to modify 

parameter configurations and observe the impact of learning in multiple environments. 
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As a first step in our Monte Carlo experiments, we reproduce the Chicago Board Options 

Exchange (CBOE) rules in terms of strike price intervals, expiration dates, and listing and 

delisting policies. The main objective of the replication of the CBOE rules in the generation 

of our simulations is to provide realism to Monte Carlo experiments; and thus to make our 

outcomes “more” comparable to the results obtained from real market data. A detailed 

explanation about how the CBOE rules are implemented in our model simulations is 

provided in Appendix B. 

Throughout this paper, we calculate IVs by numerically inverting the BS model, which is 

consistent with both previous academic studies and investor practice, where IVs are 

estimated using this model even though it is well-understood that its assumptions are 

violated by market data. Obviously, as stated in Section 2, our model departs from the BS 

model because of the richer dynamics of the process of fundamentals, as well as because the 

index options written on the market are priced off fundamentals in complete markets, as in 

GT (2003).13

 

 Moreover, the well-known predictability patterns in both IVs as well as in the 

shapes of the IVS, which we explain through our learning model, have been always reported 

and discussed with reference to implicit volatilities calculated under the BS model (e.g., 

Harvey and Whaley, 1992; Gonçalves and Guidolin, 2006; Konstantinidi, Skiadopoulos, and 

Tzagkaraki, 2008; Chalamandaris and Tsekrekos, 2010). In this respect, one may see the 

(probably misspecified) use of BS to compute implicit IVs as a “wash out”: in the same way 

in which market data that are not generated from BS assumptions are transformed into BS 

IVs, simulated prices computed under alternative assumptions on the mechanism of 

expectation formation are transformed into IVs using the same, commonly used device, 

Black-Scholes, to make any comparisons possible.  

                                                                                                                                                              
equilibrium are calculated based on agents’ expectations about future events across multiple and different 
economies. Instead, Kleidon proposes the use of multiple realizations by simulation techniques. 
13 Note that this claim is already true under complete information provided that π > 0. Of course, this is all the 
more correct under incomplete information, because of the effects of Bayesian learning and independently of 
whether π > 0 or not. However, when π = 0, note that the no-arbitrage option prices asymptotically converge 
to BS/Rubinstein prices as t → ∞. 
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3.2 Calibration 

We assume the following parameter values to be held constant in the simulations. In a few 

cases, especially where preferences are concerned, we produce, tabulate, and discuss 

results across a range of parameters to emphasize that these are hardly relevant—unless 

otherwise noted—to the general tone of our qualitative findings. The subjective rate of 

impatience, 𝜌, is set to equal either 0.713% or 0.767% (on a monthly basis). Using methods 

similar to GT (2003) and Guidolin (2006), we verify that on average, over our 1996-2007 

sample path and using the parameters that follow, under incomplete information and 

Bayesian learning these parametric choices imply annualized equilibrium short-term rates 

that appear to be realistic with reference to the long-run properties of the U.S. financial 

market. We also assume that when 𝜌 = 0.713% (𝜌 = 0.767%) the new mean dividend 

growth rate after breaks is extracted from a uniform distribution with upper and lower 

boundaries of 𝑔𝑢 = 8.8% (𝑔𝑢 = 9.5%) and 𝑔𝑑 = −1.5% (𝑔𝑑 = −5.0%), expressed in 

annualized terms. As a result, one can verify that 1 + 𝜌 > (1 + 𝑔𝑢)1−𝛼 for all the values of 

CRRA employed in this paper (see below).14 Proposition 1 shows that such a condition 

guarantees the existence of an equilibrium pricing function; Proposition 3 relies on the 

same assumptions made in Proposition 1 under the case of complete information, so this 

inequality is also sufficient for existence when learning occurs. The dividend process 

volatility, 𝜎, is also set at two alternative values, 5% and 30% (on an annual basis), to span a 

range of possibilities. Of course, 5% is consistent with the typical parameterizations for the 

process followed by real dividends in the U.S. (e.g., Timmermann, 2001; GT, 2003); 30% 

represents instead a high-volatility case in which investors may be learning directly from 

past stock market returns, more than from the process of fundamentals itself.15

                                                 
14 Therefore, and given that the new mean dividend growth rate after breaks is extracted from a uniform 
distribution with probability density function 𝑓(𝑔𝑡) = 1/(𝑔𝑢 − 𝑔𝑑), in corollary 1 and corollary 2 the dividend 
drift has as probability density function: 𝑓(𝜇𝑡) = exp(𝜇𝑡 + 𝜎2/2) /(𝑔𝑢 − 𝑔𝑑), where 𝜇𝑑 = ln(1 + 𝑔𝑑) − 𝜎2/2 
and 𝜇𝑢 = ln(1 + 𝑔𝑢) − 𝜎2/2. 

 Finally, for 

the CRRA coefficient , we use  = 0.2,  = 0.5, and  = 5. Levels of  below 1 are both 

consistent with the evidence in the data of a relatively high (certainly in excess of 2) 

intertemporal elasticity of substitution in consumption; under power utility, such an 

15 In this paper, we also examine the case of σ = 30% per year as in this case learning may only occur very 
slowly between structural breaks, as any signals concerning the drift of fundamentals is confounded by the 
high variability of diffusive shocks that hit them. 
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intertemporal elasticity of substitution is simply the inverse of , as  < 1 appears sensible. 

Moreover, evidence in Timmermann (2001) and Guidolin (2006) has shown that under 

rational learning, provided an equilibrium exists, for  < 1 the equity premium appears to 

be increasing in  as  declines towards zero (see also David, 2008), while the riskless 

short-term rate declines (as is customary in Lucas tree models). However, given that this 

level of the CRRA is also commonly perceived as “acceptable” (even though it is inconsistent 

with commonly estimated intertemporal elasticity of substitution coefficients), we also 

entertain the case of  = 5. 

We use the recursive, real time monitoring breakpoint test introduced by Chu, Stinchcombe, 

and White (1996) to estimate a probability of breaks, 𝜋, affecting the mean real dividend 

growth rate. In Appendix C, we describe the model introduced by Chu, Stinchcombe, and 

White (1996) and the breaks detected by the application of their method to a series of S&P 

500 stock dividends over a sample of daily data from the 1996 to 2007 period, which are 

also de-seasonalized and adjusted by the Consumer Price Index to obtain real dividends. We 

find eight breaks in the 3,012 days of the 12-year sample we analyze. Therefore we set 𝜋 at 

0.0030 per day (0.667 on an annual basis). In essence, real dividend data confirm that 

breaks are indeed possible on a daily basis, but only with a negligible probability of less 

than 1% per day; equivalently, the absence of breaks is expected to last on average for 333 

days in a row. 

As mentioned above, we simulate multiple case scenarios depending on three assumptions 

about the representative agent’s expectations: (A) an economy without breaks and 

complete information;16

                                                 
16 In this case, it is irrelevant to specify whether information is complete or must be learned. Under Bayesian 
learning, if we were to simulate such an economy for a period of 12 years, we would find that by the end of the 
exercise, such an economy would behave in the same way as a complete information one. Therefore, we 
simply assume that information is complete. 

 (B) an economy with breaks and complete information; and (C) an 

economy with breaks and incomplete information, under Bayesian learning. For case (A) 

(when g is constant), we calculate stock and bond prices assuming that 𝜋 = 0 using 

equations (6) and (7), respectively. In this case, European option prices are obtained from 

the BS model in which the dividend yield is 𝛿𝐵𝑆 = (1 + 𝜌 − (1 + 𝑔𝑡)
1−𝛼)/(1 + 𝑔𝑡)

1−𝛼, see GT 

(2003) for a proof. In case (B) of an economy with breaks and complete information, stock 
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and bond prices are calculated from (6) and (7) assuming 𝜋 = 0.0030. In addition, European 

call prices are calculated using equation (8) where the main integral is solved by Monte 

Carlo methods, on the basis of 20,000 independent paths from the stochastic process 

described in Proposition 2. In case (C), the case of breaks and incomplete information with 

learning, stock and bond prices are obtained from (12) and (13) with 𝜋 = 0.0030, while 

option prices are taken from equation (14), again using Monte Carlo methods.17

Under each of the three alternative case scenarios and for each possible combination of 

parameters—12 in total, obtained by combining two values for , two for σ, and three for 

the CRRA coefficient —we generate 2,000 simulations. On each simulated path, we 

produce 12 years of daily real dividends (3,018 days), which represent the observable 

signals received by the investor and used to learn about 𝑔𝑡. The simulations are generated 

by the two-step subordinated stochastic processes described in equation (1). This means 

that in the absence of breaks (for a constant g), we simulate time series of 12 years of daily 

dividends using a geometric random walk process. Additionally, we induce stochastic 

breaks in 𝑔𝑡 on each time step of each simulated path (hence, we generate breaks in 𝜇𝑡) 

according to the assumed geometric process parameterized by 𝜋. For instance, in the case 

in which a break occurs at time 𝑡 = 𝑚, we obtain a new value for 𝑔𝑚 drawn from a uniform 

distribution 𝑔𝑚~𝑈(∙) defined on the support [𝑔𝑑,𝑔𝑢] and keep this value constant until the 

next break is generated.  

  

Even though we price the stock index and the bond on a daily basis, we calculate option 

prices across strikes and maturities on a weekly basis, with the objective of saving 

computational time. The use of weekly data has been common in the empirical option 

pricing literature (e.g., Dumas, Fleming, and Whaley, 1998). In particular, we calculate 

option prices on the Wednesday of each week (which corresponds to steps of five simulated 

days), without any loss in our qualitative insights.18

                                                 
17 In addition, using Monte Carlo methods we simultaneously estimate the expected dividend yield and 
expected zero curves over the residual “life” of each option contract with the objective of obtaining the 
necessary inputs for IV computation. 

 

18 In all simulations, we use the same trading dates that effectively happened over the 12-year sample of 1996 
- 2007, thus accounting for holidays and unexpected events in which the market was closed (see Appendix B 
for additional explanations of our simulations). The idea of using “real” trading dates is to increase the 
realism, as well as the reliability of our results. Note that most of the literature has completely ignored the 
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3.3 Qualitative results 

The existence of breaks in the mean dividend growth rate and the need of investors to learn 

about such an unstable, time-varying parameter causes non-stationarities in stock, bond, 

and option prices. These are at the core of the ability of a model with incomplete 

information and rational learning to explain key stylized facts concerning IVs. To get some 

intuition for the nature of the instabilities captured by our framework, Figure 1 displays 

one complete simulation path in terms of simulated mean dividend growth rates (g), 

equilibrium stock prices (S), and at-the-money (𝐾/𝑆 = 1) short-term (30 calendar days to 

maturity) IVs (IVATM, Short-T) under our three cases (A)-(C) listed above. Equilibrium 

stock and option prices are computed for the case of α=0.2.19,20

                                                                                                                                                              
effects of such rare occurrences on econometric tests. In the case of weekly option valuations, we select 
Wednesdays since this minimizes the incidence of the number of holidays because, as mentioned above, we 
simulate according to the actual authentic CBOE trading calendar between 1996 and 2007. 

 In the upper panel, we plot 

three time series: one is trivially the constant level of g in the absence of breaks; the second, 

step-like function, corresponds to the time series of gt when the mean dividend growth rate 

is affected by infrequent breaks (seven breaks over the simulation periods, which is 

realistic in the light of the evidence in Appendix C); the third is the recursive inference on 

mean dividend growth rate obtained by a rational investor using Bayes’ rule based on the 

empirical likelihood of the data. Looking at this third series, one can notice that learning 

may occasionally take a long time. Estimates of 𝑔𝑡 progressively adjust towards the true 

values after each break. However, there are also cases in which the investor’s estimate of gt 

since the most recent break actually drifts away from the fixed but unknown value (see the 

upper panel around the simulated observation 500). On the one hand, the observable 

dividend signals received by the investor are noisy because of the presence of an innovation 

term in the geometric random walk process. Consequently, the agent needs time to learn 

19 As simulations replicate option prices in a realistic way that tracks CBOE rules, so that 30-day at-the-money 
option contracts are not always offered and traded, we calculate IVATM, Short-T IVs by simple linear 
interpolation using the four contracts around a 30-day time-to-maturity mark and with closest strike price to 
S. 
20 The lower panel of Figure 1 depicts IVs instead of option prices because the former are easier to interpret 
and analyze than the underlying option prices, where IVs are extracted from prices using the BS model. The 
direct use of option prices is not advisable in comparative analyses due to the fact that option prices differ in 
their ‘level’ depending on option contract features. 
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and thus to obtain accurate values for the unknown 𝑔𝑡. On the other hand, in this figure a 

new break often appears when learning has improved the accuracy of the agent’s 

estimations and hence her cognitive process strengthens once again. Importantly, the 

simulated real dividends underlying both the complete versus the incomplete information 

scenarios in Figure 1 are identical, and the differences are purely due to the need by the 

investor to learn in the second case. 

[Insert Figure 1 here] 

The middle panel of Figure 1 shows a particular path for stock prices. Visibly, at least in this 

particular realized path, the simulated time series of prices in the presence of breaks—both 

for the complete and incomplete information case scenarios—are substantially lower than 

in the case of no breaks. This result is simply due to the lower 𝑔𝑡 values in the case 

scenarios with breaks than in the stationary scenario through the whole simulated period 

(see Figure 1, upper panel). However, this effect is not structural, in the sense that 

alternative simulations might have generated different effects (i.e., break-induced stock 

prices that are higher than no-break equilibrium ones). Finally, the third panel of the figure 

shows that the occasionally intense revisions of agents’ expectations about the (new, post-

break) value of 𝑔𝑡 induce an increase in IVs, especially in the immediate aftermath of 

breaks, when the learning speed accelerates and revisions are stronger. The difference 

recorded between the times series for the case of breaks but complete information and the 

time series under breaks and learning shows that it is mostly learning and not breaks that 

are responsible for the elevated IVs and the spikes visible in the third panel. This lower 

panel also points to the possibility of serial correlation and volatility clustering in option 

IVs, which is one of the features we focus on in the following section. All in all, Figure 1 

helps emphasize that the interaction between learning and breaks may strongly affect both 

the level and the dynamics of IVs, an indication that option pricing is potentially affected by 

the induced dynamic premia. 

On average, the compounding of the infrequent, limited non-stationarities in fundamentals 

generated by rational learning affect the deep properties of the security market economy. 

This is emphasized for two alternative configurations of the calibration parameters, but 

always with reference to the case of  = 0.2 in Table 1. In Table 1, we report summary 
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statistics across simulations for real dividends, for the mean dividend growth rate 

(observable and constant in one case, and subject to breaks, observable or not observable in 

the rest of the table), the short-term interest rate, the stock price, the short-term at-the-

money call price, and its IV (subject to the same approximations that we have described 

above). The top panel of Table 1 concerns the case of low volatility of fundamentals, the 

lower panel concerns the high volatility case.21

 [Insert Table 1 here] 

 

Table 1 shows that dividends are exactly the same for all scenarios, as it should be. Breaks 

only affect the nature of the subordinate process of fundamentals, not its average or median 

levels. However, breaks inflate the standard deviation and the tail thickness of the dividend 

distribution. Additionally, it is particularly interesting to observe that the standard 

deviation of the 𝑔𝑡 is higher in the scenario with breaks and complete information than in 

the case of breaks and learning (for estimated mean growth), which is easily understood 

observing the upper panel in Figure 1: under complete information, when mean growth is 

observable, the plot shows large changes in 𝑔𝑡 on breaking dates, where by definition shifts 

in 𝑔𝑡 are immediately recognized by the agent. Conversely, in the initial periods after a 

break, in an economy with Bayesian learning, the agent recursively incorporates new 

information giving some weight to her prior beliefs, and thus producing only gradual 

movements and smoother adjustments. As already observed, there are no structural 

differences in the means (of approximately 813-814 index points) and medians 

(approximately 761-770 index points) of stock prices across alternative scenarios. 

However, as one would expect—both because dividends are more volatile and because the 

price-dividend ratio also becomes time-varying—stock prices become more volatile, and 

slightly more skewed to the right. Correspondingly, as one would expect [see also the proof 

in GT (2003) for the case of no breaks), average option prices are higher in the presence of 

breaks and Bayesian learning. For instance, the average at-the-money, one-month call price 

is 4.4 points in the absence of breaks, 5.4 points when observable breaks are introduced, 

and 12.8 points when breaks support a sustained learning process. 

                                                 
21 We report additional summary statistics for fundamentals and asset prices in an Online Appendix, in which 
we report an experiment where 𝛼 is set at 0.5 and 5.0 using the same combinations of parameters and 
scenarios as in Table I.  
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A comparison of cases (A) and (B) in Table 1 shows that breaks by themselves induce an 

increase in IVs (e.g.,, in the top panel from an average of 5% that exactly matches the 

assumed level of σ to 5.75%). However, this effect is smaller than the impact of the 

information incompleteness and learning. For instance, the top (lower) panel shows that 

IVs increase from 5.75% (31.63%) in under breaks and full information (case (B)) to 

19.24% (43.28%) in the case under breaks and incomplete information with learning (case 

(C)). In addition, learning also induces skewness and kurtosis in option prices and IVs that 

are otherwise absent. 

However, the power of learning to induce these realistic features in option prices and IVs is 

strongly affected by the assumed curvature of the representative investor’s utility function. 

Figure 2 shows the results of a sensitivity analysis using a range of relative risk-aversion 

levels  applied to the IVS shape features, in an economy under breaks and incomplete 

information with learning. Figure 2 reports the average behavior of the IVs of multiple 

option contracts one month after a break in 𝑔𝑡. In Figure 2, the average values of IVs are 

presented across both the moneyness dimension using short-term option contracts (the 

first row of plots) and the maturity dimension by the use of at-the-money option contracts 

(lower windows). Panels to the right refer to the case of  < 1, while panels to the left the 

case of  > 1.22

[Insert Figure 2 here] 

 

The two upper plots in Figure 2 show that rational learning produces the typical skews of 

IV/asymmetric “smiles” that have often been reported in the literature: IVs are higher for 

deep in-the-money calls and deep out-of-the-money puts. The intuition behind the results is 

that because option prices depend on expectations of future fundamentals in a highly 

nonlinear way, the effects of Bayesian learning across alternative moneyness levels is 

asymmetric and—even when option prices have been filtered through the BS’ formula—

they create highly asymmetric IVS shapes. Additionally, the two upper panels of Figure 2 

imply a negative relation between 𝛼 and IV levels when 𝛼 < 1, while the relation turns 

positive when 𝛼 > 1. The intuition behind these results is simple: Learning has the lowest 
                                                 
22 In the case of  = 1, the analysis that follows Proposition 1 shows that despite incomplete information and 
learning, the price-dividend ratio becomes a constant and learning has no effect [see Veronesi (1999) and 
David (2008) for similar remarks]. Therefore our analysis abstracts from such a limited case. 
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(zero) impact on stock and option prices when 𝛼 = 1 since the components of the valuation 

formulas that are affected by any unknown, time-varying parameter 𝑔𝑡 disappear (see 

equations (6) and (14)). In fact, in this situation, the BS case of a completely flat IVS obtains 

[unreported in the figure, see GT (2003)]. Learning has its strongest effects as  → 0+, 

where it has to be taken into account that the existence of the equilibrium requires that the 

condition 1 + 𝜌 > (1 + 𝑔𝑢)1−α always has to be satisfied, which prevents  from being set to 

zero if 𝑔𝑢 > 𝜌, as the absence of arbitrage requires. As  > 1 grows, the effects of learning 

progressively weaken, but the risk premium associated with market variance grows, which 

explains why in the rightmost upper panel, average IV resumes an increasing pattern as  > 

1 gets larger. 

Moreover, the two upper panels of Figure 2 show that when 𝛼 < 1, slopes and curvatures of 

the IV skews increase with 𝛼, which means that IV skews become steeper, while when 𝛼 >

1, slopes and curvatures of IV decrease as 𝛼 grows (i.e., the IVS flattens in the moneyness 

dimension). These results are due to the fact that learning has its strongest effects over in- 

(out-)of-money call (put) contracts, as mentioned above. Moreover, as  → 1, the impact of 

learning on option prices tends to disappear faster for at-the-money and out- (in-)of-money 

call (put) contracts, at least in relative terms. This causes the IV shapes to display steeper 

slopes and higher curvatures when 𝛼 → 1 than in other cases.  

The two lower panels of Figure 2 show that learning also induces downward sloping shapes 

in the IVS as a function of time-to-maturity, as IVs strongly decrease as time-to-maturity 

increases. Immediately after (Figure 2 takes a picture of BS IVs one month after) a break, 

there are intense revisions of agents’ expectations concerning the new, unknown value of 

𝑔𝑡. However, a Bayesian agent expects that she will learn progressively because she will 

receive further information to make her perception of the mean growth rate of 

fundamentals increasingly precise. These expectations of future learning reduce the price 

and hence the IVs of long-term option contracts in relation to short-term option contracts. 

Furthermore, the lower panels in Figure 2 show that the IV levels are the lowest when 

CRRA is close to 1. This is explained by the same arguments used above: learning effects on 

stock and option prices are nil when 𝛼 = 1. In conclusion, the evidence in Figure 2 shows 

that our Bayesian learning model results are consistent with the large literature on IV 
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variations across moneyness and time-to-maturity (e.g., Rubinstein, 1985; Dumas, Fleming, 

and Whaley, 1998; Das and Sundaram, 1999). 

Figure 3 reports sensitivity analysis results concerning the effects of the CRRA parameter 𝛼 

similar to Figure 2; however, Figure 3 concerns the average behavior of IVs as a function of 

moneyness and time-to-maturity one year after a break in 𝑔𝑡. The choice of one year 

corresponds to the fact that, as shown in Section 3.1, our estimates indicate that the average 

duration of a given regime as defined by the current value of 𝑔𝑡 should be of approximately 

one year. The comparative analysis results in Figures 2 and 3 allows us to make comments 

on the varying learning effects on the IVS over time. They show that the average level of IVs 

decreases as more information is received since the last observed break. The speed of 

learning, and consequently its effects, weaken when an investor receives a growing amount 

of dividend signals that ought to allow her to form relatively precise inferences concerning 

𝑔𝑡. In contrast to earlier papers, such as GT (2003), the effects of learning never disappear 

altogether, even one year after the most recent break.  

Moreover, the upper rightmost panel of Figure 3 shows that, when plotted as a function of 

moneyness, IVs describe convex functions for 𝛼 values close to 1 when 𝛼 > 1; however, as 𝛼 

increases, the IV shapes describe concave curves. As mentioned, additional uncertainty 

(induced by the information incompleteness in the context of Bayesian learning) induces an 

asymmetric effect on option contracts, since different option contracts have diverse levels 

of nonlinearities across alternative moneyness values; which generates asymmetric IVS 

shapes. In particular, the reason for concave shapes is that when 𝛼 > 1, agent endowment-

based asset pricing models in general display a counterintuitive feature by which stock 

prices are lower when 𝑔𝑡 increases (Abel, 1988; Cecchetti, Lam, and Mark, 1990). This 

counterintuitive feature, that in any event takes place only when learning is weak, induces 

these concave forms in the moneyness dimension.23

[Insert Figure 3 here] 

  

                                                 
23 Despite this counterintuitive feature of dynamic equilibrium models when 𝛼 > 1, we include them in our 
analyses to be consistent with the larger literature in which 𝛼 > 1 has been estimated or used to explain 
properties of asset prices that do not directly concern our paper. 
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3.4 Quantitative analysis 

Besides using the qualitative methods and intuition in Figures 2 and 3 and Table 1, we also 

employ statistical methods to quantify the effects of breaks and learning under incomplete 

information on the dynamics of the IVS. In Table 2 (Panels A and B) we find evidence on the 

dynamic features for IVs as well as the IVS shape movements from simulations concerning 

an economy characterized by infrequent breaks and incomplete information. Such features 

are represented by means of simulation-specific moments (e.g., means, standard deviations, 

serial correlations, and ARCH coefficients). In the case of serial correlation and ARCH(q) 

tests, besides the average of the corresponding test statistics across simulations, the 

percentages in parentheses in Panels A and B are the fraction of the total number of 

simulation trials that imply Ljung-Box and ARCH Lagrange multiplier tests with p-values of 

1%or lower. The results in Panels A and B are obtained from simulations using two 

different parameter setups, as in Table 1. The Online Appendix provides simulation results 

for additional parameter combinations as a robustness check. We define 𝑆𝑙𝑜𝑝𝑒𝑀𝑜𝑛 

(𝑆𝑙𝑜𝑝𝑒𝑀𝑎𝑡) as the average across simulation trials of numerical first derivatives with respect 

to moneyness (time-to-maturity) computed from all the pairs of priced options with 

neighboring moneyness levels and 30 days to maturity (neighboring maturity levels and 

closest at-the-money). In addition, 𝐶𝑢𝑟𝑣𝑀𝑜𝑛 (𝐶𝑢𝑟𝑣𝑒𝑀𝑎𝑡) is the average across simulation 

trials of numerical second derivatives with respect to moneyness (time-to-maturity) 

computed from all triplets of priced options with neighboring moneyness levels and 30 

days to maturity (neighboring maturity levels and closest at-the-money).24,25

[Insert Table 2 here] 

 

                                                 
24 A numerical first derivative is simply defined as 𝑓′(𝑥1) ≡ (𝑓(𝑥1) − 𝑓(𝑥0))/(𝑥1 − 𝑥0); a numerical second 
derivative is instead 𝑓′′(𝑥1) ≡ (𝑓(𝑥2) − 2𝑓(𝑥1) + 𝑓(𝑥0))/(0.5(𝑥2 − 𝑥0))2. 
25 An alternative way to characterize the IVS shape and its dynamics is through deterministic IVS models, 
which describe the implied volatilities as a function of an option strike price and time-to-maturity (Dumas, 
Fleming, and Whaley, 1998). Moreover, these polynomial functional forms have been successfully used to 
capture the presence of predictability in the shape of the IVS itself (e.g., Gonçalves and Guidolin, 2006). 
However, deterministic IVS models impose cross-sectional relations among different factors that could add 
noise to the analysis of our theoretical equilibrium model. Instead, we prefer the simplicity of numerical 
derivatives, which are calculated independently in each of the two IVS dimensions (i.e., moneyness and 
maturity). However, as a robustness check, in Appendix E we also assess whether a rational learning model 
may produce deterministic IVS estimates comparable to those commonly found in the literature. 
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Panels A and B of Table 2 show that, on average, learning induces negative slopes and 

convex IV shapes in both the moneyness and maturity dimensions. Moreover, rational 

learning generates kurtosis, serial correlation, and volatility clustering in both the IVs 

themselves and in the slope and curvature indices computed from the simulated IVS. The 

levels of IV along with all of the shape features that describe the IVS imply a large and 

significant serial correlation coefficient in more than 50% of the simulations using a first-

order Box-Pierce test statistic. This means that if we observe today: i) a higher IV level; ii) a 

steeper negative IVS slope; or/and iii) a more convex IVS shape, they forecast: 1) high IV 

levels; 2) negative slopes; and/or 3) and convex IVS shapes in the future, respectively. 

Furthermore, the IV level, the slopes and curvatures of the IVS under learning imply on 

average widespread volatility clustering as measured by the percentage of significant ARCH 

LM tests (both with one and three lags). This means that when IV levels, slope or convexity 

of the IVS become variable over time, this instability tends to persist over time. However, 

ARCH effects are weaker in the case of the slope and curvature indices measured with 

respect to moneyness, 𝑆𝑙𝑜𝑝𝑒𝑀𝑜𝑛 and 𝐶𝑢𝑟𝑣𝑒𝑀𝑜𝑛, although 10% statistical significance is 

preserved for at least 25% of the simulations. 

The simulation results presented in Panels A and B of Table 2 are consistent with the 

evidence reported in the literature (e.g., Harvey and Whaley, 1992; Gonçalves and Guidolin, 

2006; Fengler, Härdle, and Mammen, 2007; Konstantinidi, Skiadopoulos, and Tzagkaraki, 

2008). To provide evidence on the model with breaks and Bayesian learning, Panels A* and 

B* in Table 2 have the same structure as Panels A and B in the same table, but are no longer 

based on simulated option prices. Instead, Panels A* and B* concern a large set of traded, 

non-zero volume stock options sampled between 1997 and 2007. Panel A* concerns IV 

levels and IVS shape and predictability patterns measured on S&P 500 index options; Panel 

B* covers a set of 150 individual equity options in which the underlying stocks pay 

dividends.26

                                                 
26 Although equity options are American-style, there is empirical evidence that they follow similar IVS 
dynamics as European contracts such as S&P 500 index options (Dennis and Mayhew, 2002; Goyal and 
Saretto, 2009; Bernales and Guidolin, 2014). In addition, possible small biases and heterogeneities across 
Panels A* and B* probably carry modest importance when compared to the enormous benefits we may obtain 
from observing the rich cross-sectional dynamic behaviors by the use of 150 different equity options. 

 The options data used to compute the statistics reported in Panel A* and B* are 

described in Appendix D. The predictability patterns in the IVS, shown in Tables 2 and 3, 
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show the strong similarities between the properties of the data and the features that 

emerge from the rational learning model with infrequent breaks introduced in Section 2. 

For instance, S&P 500 data deliver an average at-the-money, one month to maturity IV of 

16.7% versus 19.2% from our simulations, under the first set of (low volatility, σ = 5%) 

parameters; the slope (curvature) index in the moneyness dimension is -0.64 (13.8) in the 

data and -0.35 (30.9) in our simulations. Therefore the signs are always correct, although a 

model with learning yields IVS shapes versus moneyness that are considerably more 

convex than what can be detected in the S&P 500 data. Results are less accurate in the case 

of IVS shapes versus time-to-maturity, because the empirical slope (curvature) index in the 

time-to-maturity dimension is 0.03 (-0.12) in the data and -0.31 (3.28) in our simulations, 

and the last sign appears to be incorrect, while it is realistic that IVS be approximately flat 

when plotted against maturity.27

It is important to notice the ability of our simple dynamic equilibrium model, with breaks 

and Bayesian learning, to re-produce the shape of the IVS of individual equity options, as 

shown by a comparison between simulated and market data. For instance, in Panels B and 

B* in Table 2, at least qualitatively, all the key properties of the (average) IVS from U.S. 

options markets are matched by our simulations. The data show an average at-the-money, 

one month to maturity IV of 40.3% vs. 43.3% in our simulations; the empirical, numerically 

computed slope (curvature) index in the moneyness dimension is -0.21 (2.62) in the data 

and -0.19 (2.87) in our simulations; the empirical slope (curvature) index in the time to 

maturity dimension is -0.04 (0.08) in the data and -0.31 (3.53) in our simulations. 

 

The rightmost columns of all the panels in Table 2 are instead devoted to the predictability 

and instability of the IVS shape and level. Empirically, for both S&P 500 and individual 

equity options data, the average IV level tends to be highly (and positively) persistent; for 

instance, for 98% of the short-term ATM individual option series, the null of no serial 

correlation can be rejected. This is fully mimicked by our calibrated results, where for both 

sets of parameters in Table 2, 98.8% and 93.3% of the simulations reveal statistically 

significant autocorrelations in IV levels, an indication that a high positioning of the IVS 

                                                 
27 However, below we show that when there are high levels of uncertainty (when learning speed is high in the 
aftermath of a structural break) in S&P 500 index options, maturity slopes tend to be negatively sloped, which 
is consistent with our calibration results. 
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today forecasts the same for the following weeks. A similar finding holds with reference to 

both slope and convexity indicators in the case of S&P 500 options, which is fully captured 

by the properties of simulated IV series from our model. Interestingly, in the case of 

individual equity options, there is strong evidence of serial correlation in slope and 

curvature of the IVS in the time-to-maturity dimension, while there is little evidence in the 

data to show similar phenomena compared to moneyness. The second set of calibration 

parameters can then reproduce such a persistence in slope and curvature indices in the 

maturity dimension, although it also tends to create excessive persistence in the moneyness 

one. Similar results appear when looking at any volatility clustering (i.e., the persistence of 

instability in the very shape of the IVS when rapidly changing would tend to remain so for a 

few consecutive weeks): the calibration in Panel A of Table 2 provides a good match for 

most of the results concerning S&P 500 IVS dynamics (Panel A*); interestingly, the 

calibration results in Panel B of Table 2 show that ARCH effects would weaken in terms of 

slope and convexity indices in the maturity dimension. 

An agent’s learning process also affects how the level of IV and the IVS shape characteristics 

are related to each other in a cross-sectional sense. For example, whether slope and 

convexity in the moneyness dimension tends to lower (i.e., the IVS is flatter) when the 

entire level of the IVS shifts upwards, which is empirically the case. For instance, Mixon 

(2007) found that the slope of at-the-money IV over different maturities has predictive 

ability for the level of future short-dated IV (although not to the extent predicted by a 

simple expectations hypothesis). To examine these interesting and delicate effects, Table 3 

shows the matrices of cross-indicator simultaneous correlations in our calibrations (Panels 

A and B) and in market data (Panels A* and B*). Also in this case, two different sets of 

parameters appear in Panels A and B, while Panels A* and B* report estimated correlation 

coefficients for the S&P 500 and the average across 150 distinct individual stock options, 

respectively. Nevertheless in the Online Appendix, we report further correlation analyses 

using alternative parameterizations, as a robustness check. 

[Insert Table 3 here] 

Once more, our model with infrequent breaks and incomplete information provides an 

impressive fit to the properties of the IVS. Table 3 reveals a number of non-zero and 
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statistically significant cross-correlations. For instance, the IVS becomes flatter (the slope 

less negative and the smile weaker) in the moneyness dimension as well as more negatively 

sloped by becoming more convex in the maturity dimension, when the general level of the 

IVS shifts up. When the IVS becomes steeper compared to moneyness, it also becomes 

steeper (flatter) in the maturity dimension. A steeper negative slope as a function of 

maturity tends to be accompanied by less convexity (i.e., the term structure of the IVS tends 

to approximate a negative sloped line, that however approaches smoothly and 

asymptotically the zero axis for very high maturities). An inspection of the estimated 

correlations among these properties of the IVS in Table 3 reveals that most of these features 

are well captured by our model, especially in the high-volatility calibration reported in 

Panel B. 

 

4 Model extension by allowing the dividend volatility to vary 

In this section, we extend the model presented in Section 2 by allowing the dividend 

volatility to vary. We assume that dividend returns follow a GARCH(1,1) given that this type 

of process could reflect additional learning mechanisms followed by agents. In fact, Engle 

(2001, p. 160) states in relation to GARCH type models that: “Such an updating rule is a 

simple description of adaptive or learning behavior and can be thought of as Bayesian 

updating.” Thus, the dividends evolve according to the following stochastic process:  

 

ln (
𝐷𝑡+1

𝐷𝑡
) = 𝜇𝑡+1 + 𝜍𝑡+1 

𝜍𝑡+1 = 𝜎𝑡+1𝑧𝑡+1 

𝜎𝑡+1
2 = 𝜅 + 𝑎𝜍𝑡

2 + 𝑏𝜎𝑡2 

(15) 

where 𝑧𝑡+1 are i.i.d. innovations with zero mean and unit variance. However, and similar to 

the model in Section 2, the fundamental mean dividend growth rate 𝑔𝑡+1  (and hence 𝜇𝑡+1 

given that 𝑔𝑡+1 = exp(𝜇𝑡+1 + σ2/2) − 1) presents breaks and consequently changes over time, 

although the value of 𝑔𝑡+1 is constant between break events. Time periods between breaks 
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follow a geometric process with parameter 𝜋; therefore, the number of breaks in a given 

time window is characterized by a binomial distribution. 

Under full information, stock and bond prices have the same expressions when dividends 

follow equation (15) as in the case when the dividend volatility is constant, since the 

dividend volatility does not affect stock and bond prices in our model. Therefore, stock and 

bond prices can be calculated using equations (6) and (7), respectively. In the case of 

European call option contracts, when there is full information, option prices are calculated 

using equation (9) by Monte Carlo methods on the basis of 20,000 independent paths. 

Nevertheless, Monte Carlo methods are based on a modified stochastic process like the one 

described in Proposition 2, in which we include the dividend volatility process 

characterized in equation (15).  

We also relax the full information assumption to observe the effect of learning on option 

pricing. Consequently, we assume that 𝑔𝑡 is unknown; however, the agent observes 

dividends received from the underlying asset on a daily basis, which can be used to obtain 

an estimated value of 𝑔𝑡. Thus, the agent receives signals about the mean dividend growth 

rate, {𝐷𝑖/𝐷𝑖−1}𝑖=𝑡−𝑛+1
𝑡 , which are random and follow equation (15), where 𝑛 is the number of 

periods since the last break. We assume that the representative agent uses the information 

available efficiently to price all assets by following a Bayesian updating procedure. Hence, 

the expected value under Bayesian learning at time 𝑡, E𝑡,𝑛𝐵𝐿[∙], of any asset or variable that 

depends on 𝜇𝑡, 𝜆𝑡(𝜇𝑡), is:  

 E𝑡,𝑛𝐵𝐿[𝜆𝑡(𝜇𝑡)�𝛏𝑡] =
∫ 𝜆𝑡(𝜇𝑡)𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

∫ 𝐿(𝜇𝑡�𝛏𝑡)𝑛𝑓(𝜇𝑡)𝑑𝜇𝑡
𝜇𝑢
𝜇𝑑

 (16) 

where 𝑓(∙) is the pdf of 𝜇𝑡. However, in this case the sample likelihood function, 𝐿(∙)𝑛, is: 

 𝐿(𝜇𝑡�𝛏𝑡)𝑛 = �
1

�2𝜋𝜎𝑡2
exp [

−(𝜉𝑡 − 𝜇𝑡)
2

2𝜎𝑡2
]

𝑛

𝑡=1
 (17) 

in which 𝛏𝑡 = [ln(𝐷𝑡/𝐷𝑡−1) … ln(𝐷𝑡−𝑛+1/𝐷𝑡−𝑛)]. Therefore, stock and bond prices are 

calculated using equation (16) through Monte Carlo estimations and by making 𝜆𝑡(𝜇𝑡) = 𝑆𝑡𝐶𝐼 
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as in equation (6) and 𝜆𝑡(𝜇𝑡) = 𝐵𝑡𝐶𝐼 as in equation (7), respectively. In the case of European 

call option contracts, option prices are obtained using Monte Carlo estimations through 

equation (16) and by assuming that 𝜆𝑡(𝜇𝑡) = 𝐶𝑎𝑙𝑙𝑡
𝐶𝐼(𝐾, 𝜏) as in equation (9). However, as 

explained above, Monte Carlo methods are based on the stochastic process in which the 

dividend volatility follows: 𝜎𝑡+1
2 = 𝜅 + 𝑎𝜍𝑡

2 + 𝑏𝜎𝑡2. 

In this model extension, we also perform an extensive set of simulations to analyze learning 

effects on option prices and IVs. Thus, in each combination of parameters in the model, we 

generate 2,000 simulations. For each of these simulations, we produce 12 years (3,024 

trading days) of daily dividends, which are the signals observed by agents and thus to learn 

about 𝑔𝑡 (which represents 6,048,000 simulated trading days). 

We assume one of the same plausible sets of parameters described in Section 3. The 

assumed parameters are: 𝜋=0.0030, 𝜌=8.9%, 𝑔𝑢=8.8%, and 𝑔𝑢=-1.5%, and we use different 

levels for the coefficient of relative risk aversion. Nevertheless, as explained above, we 

assume that the dividend volatility is not constant and follows a GARCH(1,1) process. We 

estimate the parameters of the GARCH(1,1) using daily dividend time series from the S&P 

500 Index for the 1996 and 2007 period [which are deseasonalized and adjusted by the 

consumer price index to obtain real dividends as in Shiller (2000)]. Thus, we set 𝜅 = 6 ∙

10−6, 𝑎 = 0.31 and 𝑏 = 0.09. This gives an unconditional volatility of the GARCH(1,1) equal 

to 5%, which is consistent with the case of the constant volatility parameter described in 

subsection 3.2, where we also set the dividend volatility at 5%.  

Table 4 presents the results of simulations from an economy with breaks and incomplete 

information under Bayesian learning; however, different from the results in Table 2 Panel 

A, in this case the dividend volatility follows a GARCH(1,1) process. The table reports time 

series statistics concerning the level, slope, and curvature of the IVS in both moneyness and 

maturity dimensions. Table 2 presents the results with a coefficient of relative risk 

aversion, 𝛼, at 0.2; however the analysis using other 𝛼 values are available from the authors 

upon request. Table 4 shows that learning, when the dividend volatility varies, induces an 

increase in the IV (20.71%) of at-the-money short-term option contracts in relation to the 

case of learning and constant volatility (19.24%) reported in Table 2 Panel A, which is also 
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higher than the unconditional volatility of the GARCH(1,1) that is equal to 5%. The changes 

in the dividend volatility with learning produce a steeper negative slope (-0.39) and more 

curvature (35.31) on the moneyness dimension of the IVS than in the scenario of learning 

and constant volatility (see Table 2 Panel A). The effect of changes in the dividend volatility 

also generate higher skewness and kurtosis in the IV 𝑆𝑙𝑜𝑝𝑒𝑀𝑜𝑛 and 𝐶𝑢𝑟𝑣𝑀𝑜𝑛 than in the case 

of learning and invariable dividend volatility.  

Given the fact that the main purpose of our study is to understand the predictable dynamics 

in the IV surface, the most important result of this model extension is that it induces 

stronger predictability patterns in IVS shape characteristics. Table 4 shows that serial 

correlation coefficients and ARCH effects are stronger for the GARCH specification than the 

model with constant dividend volatility described in Table 2 (Panels A and B). The 

improvement in the predictability patterns are observable for all IVS features (i.e., the IVS 

level, slopes, and curvatures). For instance, 100% and 94.50% (91.30% and 91.10%) of the 

simulations in Table 4 (Table 2 Panel A) have significant ARCH(1) and ARCH(3) effects. In 

addition, the GARCH specification helps with the fitting of market data. For example, Table 2 

Panel A* shows that while S&P 500 options imply significant results for ARCH(1) and 

ARCH(3) tests, also 74.00% and 69.33% of the 150 equity options are characterized by 

ARCH(1) and ARCH(3) effects. 

 [Insert Table 4 here] 

Interestingly, the results in Table 4 show that learning, combined with the GARCH(1,1) 

process on the dividend volatility generates lower slopes in magnitude and an inferior 

curvature in the maturity dimension of the IVS than in the case of learning and constant 

volatility presented in Table 2 Panel A. The intuition behind this result is simple. On the one 

hand, in the case of learning and constant volatility, we show in Figures 2 and 3 that in 

general the IVs strongly decrease as time-to-maturity increases. Immediately after a break 

there are intense revisions concerning the new value of 𝑔𝑡; hence there is in an increase in 

the IVs of short-term option contracts. However, the Bayesian agent expects that she will 

learn progressively in the future, because she will receive further information in the 

following periods; hence IVs are reduced as the maturity increases. On the other hand, 
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when the dividend volatility follows GARCH(1,1), from time to time the dividend volatility 

can evolve according to increasing or decreasing paths due to the cyclical behavior of the 

GARCH(1,1). This cyclical pattern is also anticipated by the agent and changes the shape of 

the IV term structure, which is reflected in the values presented in Table 4. To understand 

graphically the effect of the GARCH(1,1) on the IV term structure, Figure 4 shows the 

average behavior of IVs as a function of time-to-maturity when there is learning, and the 

dividend volatility is increasing (upper windows) and decreasing (lower windows) in the 

GARCH(1,1) process. This figure also presents the average IV term-structure one month 

(left-hand windows) and one year (right-hand windows) after a break in 𝑔𝑡.  

[Insert Figure 4 here] 

Figure 4 also shows that the dividend GARCH(1,1) modifies the IV term structure in relation 

to the results obtained by assuming the volatility of dividends to be constant. The bottom 

row of graphs in Figure 4 show that learning induces a more negative slope and stronger 

curvature on the IV term structure, when the dividend volatility follows a decreasing 

pattern in the GARCH(1,1) process than in the case of constant dividend volatility (see 

Figures 2 and 3). Nevertheless, an increasing tendency of the dividend volatility generates a 

particular outcome. For instance, the upper left-hand window in Figure 4 shows that after a 

month since a break, the IV term structure has a smile shape. Immediately after a break 

there is an increase in the IVs of short-term contracts; however IVs are reduced as the time-

to-maturity increases to reach a minimum in the middle-term (90 days) because the agent 

“expects” to learn when she will receive more information in the future. Afterwards, the 

increasing pattern of the GARCH(1,1) process followed by the dividend volatility generates 

a growing path on IVs obtained from long-term option contracts.  

The impact of the increasing pattern of the dividend volatility on the IV term structure is 

more evident when learning effects are reduced. For example, the upper right-hand window 

in Figure 4 shows a positive slope on the IV term structure, when learning has reached a 

high accuracy regarding the unknown value of 𝑔𝑡 (because a year has elapsed since the last 

break). This is an important improvement in terms of flexibility in relation to the model 

with constant dividend volatility, in which we normally find IVs that are decreasing 
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functions of time-to-maturity. For instance, we show in Table 2 Panel A* (Panel B*) that the 

IV term structure has on average a positive (negative) slope for index options (equity 

options).  

Furthermore, the agent’s learning process also affects the cross-sectional relations between 

the level of IV and the IVS shape characteristics when the dividend volatility follows a 

GARCH(1,1). Table 5 presents the results of a correlation analysis for the level, slope, and 

curvature of the IVS in both the moneyness and maturity dimensions, when there is 

learning and the dividend volatility evolves according to equation (15). Similar to Table 3, 

Table 5 shows that learning induces strong relations between the level of the IV, the slope, 

and the curvature on the moneyness dimension. However, the number of simulations in 

Table 5 with significant correlations is lower than in the case of constant dividend volatility 

(see Panels A and B in Table 3) for the slope and curvature on the maturity dimension. The 

intuition behind the reduction in the number of simulations — with significant correlations 

in Table 5 between the IV term structure features and other IVS variables — is related to 

our explanations for Figure 4. Figure 4 shows that after a break and when the dividend 

volatility increases in the GARCH(1,1) process, learning induces an augmentation in the IV 

of short-term contracts, which is reduced as the maturity increases, since the agent expects 

to receive more information and thus to have more accuracy regarding the fundamental 

dividend growth rate. These opposite effects, when there is learning and the dividend 

volatility is rising, indicate that the relations between the IV term structure and other 

implied variables are slightly reduced.  

[Insert Table 5 here] 

We conclude that although far from perfect, even a simple equilibrium asset pricing model 

such as ours (with and without constant dividend volatility) has explanatory power for the 

predictable dynamics in the IV surface, which is our main contribution. Our focus is 

providing a rational explanation for the predictability patterns in the IVS, rather than 

calibrating the shape of the IVS itself. However, our model is still able to characterize key 

properties of option prices and IVs [as shown to some extent already in static analysis by 

GT (2003) and David and Veronesi (2002)].  
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5 Conclusions 

The fact that option prices and especially (BS) IVs are predictable has been identified by 

academics and exploited by practitioners in a number of valuable applications, from 

hedging to trading. Nevertheless, there is a gap in the literature regarding possible 

explanations for such puzzling predictability patterns. In fact, under the simplest option 

pricing benchmark, the ineffable Black-Scholes pricing models and their simple extensions, 

the IVS would be flat and not moving over time. Also more complex pricing frameworks that 

go well beyond the simplistic assumptions underlying BS are usually silent about the 

specific features of the dynamics in the IVS. In this paper, we contribute to this body of 

literature by providing evidence to support the hypothesis that the investors' learning 

impacts the dynamic predictability patterns characterizing the IVS.  

We present an equilibrium model in which the fundamental mean dividend growth rate 

(the drift of the corresponding stochastic process) is subject to infrequent but observable 

breaks, which therefore only occur with a small probability. Under incomplete information, 

which represents the realistic description of the world in which deep parameters and mean 

growth rates may at best be estimated, an agent receives independent but noisy daily 

signals about the unknown fundamental value that are used to update her beliefs using a 

Bayesian updating algorithm.  

We show that an investor’s learning process may cause the typical  predictability patterns 

for option prices and the IVS reported in the literature. Rational learning makes agents’ 

beliefs time-varying and in equilibrium this leads to sizable dynamic risk premia that affect 

both option prices and the movements of the (BS) volatilities implicit in such prices (Mixon, 

2007). Moreover, our modeling approach shows that learning generates heterogeneous 

dynamic properties for option contracts depending of their moneyness and residual 

maturity; these heterogeneous effects, due to the complex shape of the perceived, time-

varying pricing kernel under rational learning, are responsible for the (non-flat) and 

predictable shape of the IVS.  
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One issue we want to stress is the role played by our study. It would, of course, be naive to 

think that a simple model may describe all salient aspects of the option market. However, 

our concern is not to capture every single feature of option markets as closely as possible. 

Instead, our interest is to understand whether our learning model can "explain the 

predictable dynamics in the implied volatility surface," Of course, we want to characterize 

all option market features in a reasonable way, but our model seems to be a satisfactory 

starting point in understanding the predictable dynamics of the IVS. 

One aspect of our model may also teach a more general lesson to scholars in the field. 

Option markets have been widely used to capture forward-looking information since they 

reflect agents’ expectations about future scenarios, in which forecasting horizons match the 

expiration dates of options contracts (Fleming, 1998). The information captured from 

option prices has been used by investors in a range of markets and with applications to a 

broad spectrum of financial issues including risk management, asset allocation, and capital 

budgeting.28

Finally, our model is simple and intuitive. Yet, it may be extended in a variety of directions 

while at the same time preserving its key intuition that any dynamics in the IVS may be 

consistent with no arbitrage pricing restrictions, and derive from time-varying risk premia. 

These premia compensate investors for the additional risk deriving from belief revisions at 

 However, through our model we also show that option markets may display 

not only the classical, forward-looking features, but they may at the same time be affected 

by backward-looking characteristics since option traders also need to learn recursively as 

new information arrives. Participants in option markets face a sequential process of 

information acquisition in which signals are received and processed with reference to 

historical information and prior beliefs. Therefore, the forward-looking information 

obtained from option markets is generated by a backward-looking learning process. Such 

tight intertwining between backward- and forward-looking information processing 

imposes useful restrictions that ought to be carefully considered and tested when models of 

option pricing are quantitatively assessed. 

                                                 
28 For instance, option prices have been used to forecast underlying returns (Xing, Zhang, and Zhao, 2010; 
Cremers and Weinbaum, 2010; Bakshi, Panayotov, and Skoulakis, 2011), realized volatilities (e.g., Christensen 
and Prabhala,1998; Busch et al., 2011), betas (e.g., Siegel, 1995; Chang et al., 2009), correlations (e.g., 
Driessen, Maenhout, and Vilkov, 2009), and to estimate the moments required in standard asset allocation 
problems (e.g., Kostakis, Panigirtzoglou, and Skiadopoulos, 2011; DeMiguel, Plyakha, Uppal, and Vilkov, 2012). 
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a varying speed due to the infrequent occurrence of breaks. For instance, the model could 

be used to isolate the portion of variation in the IVS that is due to rational pricing factors 

from those that are simply irrational (e.g., Kim and Lee, 2013). Moreover, researchers have 

investigated the properties of option returns (Broadie, Cherenkov, and Johannes, 2009) and 

detected a number of difficulties in solving anomalies with reference to standard asset 

pricing frameworks. It would be interesting to further investigate how rational learning 

would affect such pricing frameworks and whether this may teach us something about the 

nature of option returns. 
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Appendix A: Proofs 

Proof of Proposition 1: Assuming that the expression that describes 𝑆𝑡𝐶𝐼 can be written as 

𝑆𝑡𝐶𝐼 = 𝐷𝑡Ψ(𝑔𝑡) for some function Ψ𝑡
𝐶𝐼(∙), we define a “break indicator,” 𝑠𝑡, that signals the 

occurrence of breakpoints in the mean dividend growth rate. In the case in which there is 

no break in 𝑔𝑡+1 𝑠𝑡+1 = 𝑠𝑡; if instead 𝑠𝑡+1 = 𝑠𝑡 + 1, then a break has taken place at 𝑡 + 1. 

Additionally, Pr(𝑠𝑡+1 = 𝑠𝑡) = (1 − 𝜋) is the probability of no break, and the probability of a 

break out of the state prevailing at time 𝑡 is Pr(𝑠𝑡+1 = 𝑠𝑡 + 1) = 𝜋. Therefore, from equation 

(4): 

 (1 + 𝜌)Ψ(𝑔𝑡)𝐷𝑡 = � 𝐸𝑡 [(Ψ𝑡
𝐶𝐼(𝑔𝑡)𝐷𝑡+1 + 𝐷𝑡+1) (

𝐷𝑡+1

𝐷𝑡
)−𝛼 |𝑠𝑡+1 = 𝑠𝑡 + i] Pr(𝑠𝑡+1 = 𝑠𝑡 + 𝑖)

1

i=0
  

 

= (1 − 𝜋)𝐷𝑡 ∫ (1 + Ψ𝑡
𝐶𝐼(𝑔𝑡))

∞

−∞
(1 + 𝑔𝑡)

1−𝛼exp ((1 − 𝛼) (𝜎𝜀𝑡+1 −
𝜎2

2 ))

∙𝜙(𝜀𝑡+1|𝜎2)𝑑𝜀𝑡+1 + (1 − 𝑒−𝜋)𝐷𝑡 ∫ ∫ (1 + Ψ𝑡
𝐶𝐼(𝑔𝑡+1))

∞

−∞
(1 + 𝑔𝑡+1)1−𝛼

𝑔𝑢

𝑔𝑑

∙ exp ((1 − 𝛼) (𝜎𝜀𝑡+1 −
𝜎2

2 ))𝜙(𝜀𝑡+1|𝜎2) 𝑑𝜀𝑡+1𝑑𝐺(𝑔𝑡+1), 

(A1) 

where 𝐺(∙) is the c.d.f. of 𝑔𝑡+1 defined on [𝑔𝑑,𝑔𝑢], 𝜀𝑡+1 is the innovation term of the 

geometric random walk process for dividends, and 𝜙(∙ |𝜎) is a normal density function with 

mean zero and variance 𝜎. Therefore, given that 𝜀𝑡+1 and 𝑔𝑡+1 are independent, we can 

rewrite equation (A1) as: 

 

(1 + 𝜌)Ψ(𝑔𝑡)𝐷𝑡 = (1 − 𝜋)𝐷𝑡(1 + 𝑔𝑡)
1−𝛼(1 + Ψ𝑡

𝐶𝐼(𝑔𝑡))

+ 𝜋𝐷𝑡 ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1)  +
𝑔𝑢

𝑔𝑑
𝜋𝐷𝑡 ∫ Ψ𝑡

𝐶𝐼(𝑔𝑡+1)(1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
 

(A2) 

-or equivalently, 
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𝐷𝑡Ψ(𝑔𝑡) = (1 − 𝜋)
𝐷𝑡

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡)
1−𝛼 (1 + 𝑔𝑡)

1−𝛼

+ 𝜋
𝐷𝑡

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡)
1−𝛼 ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1) 

𝑔𝑢

𝑔𝑑

+ 𝜋
𝐷𝑡

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡)
1−𝛼 ∫ Ψ𝑡

𝐶𝐼(𝑔𝑡)(1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
. 

(A3) 

Because 𝐺(∙) does not vary over time in equation (A3), we multiply both sides by 

(1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1)/𝐷𝑡 and integrate over [𝑔𝑑,𝑔𝑢], to obtain: 

 

∫ Ψ(𝑔𝑡)(1 + 𝑔𝑡)
1−𝛼𝑑𝐺(𝑔𝑡)

𝑔𝑢

𝑔𝑑
= ∫ (1 − 𝜋)

(1 + 𝑔𝑡)
2−2𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡)
1−𝛼 𝑑𝐺(𝑔𝑡)

𝑔𝑢

𝑔𝑑
 

+ ∫ 𝜋
(1 + 𝑔𝑡+1)1−𝛼 ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1) 𝑔𝑢

𝑔𝑑
1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)

𝑔𝑢

𝑔𝑑

+ ∫ 𝜋
(1 + 𝑔𝑡+1)1−𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑

∙ ∫ Ψ(𝑔𝑡+1)(1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
.       

(A4) 

The term on the left-hand side is equal to the second part of last term on the right-hand 

side, and consequently: 

 

∫ Ψ(𝑔𝑡+1)(1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑

= ( ∫ (1 − 𝜋)
(1 + 𝑔𝑡+1)2−2𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
 

+ ∫ 𝜋
(1 + 𝑔𝑡+1)1−𝛼 ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1) 𝑔𝑢

𝑔𝑑
1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)

𝑔𝑢

𝑔𝑑

)

/ (1 − ∫ 𝜋
(1 + 𝑔𝑡+1)1−𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
).       

(A5) 

Finally, inserting equation (A5) into equation (A3), we have: 
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𝑆𝑡𝐶𝐼 =
𝐷𝑡

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡)
1−𝛼  {(1 − 𝜋)(1 + 𝑔𝑡)

1−𝛼

+ 𝜋 ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1) 
𝑔𝑢

𝑔𝑑
+ 𝜋 ( ∫ (1 − 𝜋)

(1 + 𝑔𝑡+1)2−2𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
 

+ ∫ 𝜋
(1 + 𝑔𝑡+1)1−𝛼 ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1) 𝑔𝑢

𝑔𝑑
1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)

𝑔𝑢

𝑔𝑑

)

/ (1 − ∫ 𝜋
(1 + 𝑔𝑡+1)1−𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
)}.       

(A6) 

The integrals in equation (A6) are constant over time and can be labeled as: 

 𝐼1 = ∫ (1 + 𝑔𝑡+1)1−𝛼𝑑𝐺(𝑔𝑡+1) 
𝑔𝑢

𝑔𝑑
 (A7) 

 𝐼2 = ∫
(1 + 𝑔𝑡+1)2−2𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
 (A8) 

 𝐼3 = ∫
(1 + 𝑔𝑡+1)1−𝛼

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡+1)1−𝛼 𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
 (A9) 

and as a result one can see that: 

 

𝑆𝑡𝐶𝐼 =
𝐷𝑡

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡)
1−𝛼  {(1 − 𝜋)(1 + 𝑔𝑡)

1−𝛼 + 𝜋𝐼1

+ 𝜋 (
(1 − 𝜋)𝐼2  + 𝜋𝐼1𝐼3

1 − 𝜋𝐼3
)}  

=
𝐷𝑡

1 + 𝜌 − (1 − 𝜋)(1 + 𝑔𝑡)
1−𝛼  {(1 − 𝜋)(1 + 𝑔𝑡)

1−𝛼 + 𝜋 (
𝐼1 + (1 − 𝜋)𝐼2 

1 − 𝜋𝐼3
)}.   

(A10) 

Therefore, equation (A10) shows that 𝑆𝑡𝐶𝐼 = 𝐷𝑡Ψ𝑡
𝐶𝐼(𝑔𝑡), as we state in equation (A1). 

In the case of the bond, we use the second Euler equation (5) to obtain: 

 
𝐵𝑡𝐶𝐼 =

1
(1 + 𝜌) � E𝑡 [(

𝐷𝑡+1

𝐷𝑡
)−𝛼 |𝑠𝑡+1 = 𝑠𝑡 + i] Pr(𝑠𝑡+1 = 𝑠𝑡 + 𝑖)

1

𝑖=0

=
1

(1 + 𝜌) {(1 − 𝜋) ∫ (1 + 𝑔𝑡)
−𝛼exp (−𝛼 (𝜎𝜀𝑡+1 −

𝜎2

2
))𝜙(𝜀𝑡+1|𝜎2)𝑑𝜀𝑡+1 + 𝜋

∞

−∞
� 
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�∙ ∫ ∫ (1 + 𝑔𝑡+1)−𝛼exp (−𝛼 (𝜎𝜀𝑡+1 −
𝜎2

2
))𝜙(𝜀𝑡+1|𝜎2) 𝑑𝜀𝑡+1𝑑𝐺(𝑔𝑡+1)

∞

−∞

𝑔𝑢

𝑔𝑑
}

=
1

(1 + 𝜌)
{(1 − 𝜋)(1 + 𝑔𝑡)

−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+1)−𝛼𝑑𝐺(𝑔𝑡+1)
𝑔𝑢

𝑔𝑑
}.       

(A11) 

The last equality derives from the fact that 𝐺(∙) does not vary over time and by the 

independence of 𝜀𝑡+1 and 𝑔𝑡+1.  

Proof of Proposition 2: The result can be obtained from no-arbitrage arguments applied to a 

European contingent claim with terminal value given by max{𝑆𝑡+𝜏𝐶𝐼 − 𝐾}, when the mean 

dividend growth rate underlying the pricing of 𝑆𝑡+𝜏𝐶𝐼  is subject to breaks. Therefore, it is 

necessary to proceed to the risk neutralization of the probabilities that enter the state price 

density. Following Huang and Litzenberger (1988, p. 229), we take the Euler equation (4) 

and divide it by the price of a one-period zero-coupon bond: 

 

(1 + 𝜌)𝑆𝑡+𝑘𝐶𝐼

(1 − 𝜋)(1 + 𝑔𝑡+𝑘)−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+𝑘)−𝛼𝑑𝐺(𝑔𝑡+𝑘)𝑔𝑢
𝑔𝑑

= E𝑡+𝑘 [𝛽 (
𝐷𝑡+k+1

𝐷𝑡+𝑘
)−𝛼

∙ (𝑆𝑡+𝑘+1
𝐶𝐼 + 𝐷𝑡+𝑘+1)

(1 + 𝜌)
(1 − 𝜋)(1 + 𝑔𝑡+𝑘)−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+𝑘)−𝛼𝑑𝐺(𝑔𝑡+𝑘)𝑔𝑢

𝑔𝑑

].       
(A12) 

It turns out that the forward price and the forward cumulative dividend process are: 

 𝑆𝑡+𝑘𝐶𝐼∗ =
(1 + 𝜌)𝑆𝑡+𝑘𝐶𝐼

(1 − 𝜋)(1 + 𝑔𝑡+𝑘)−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+𝑘)−𝛼𝑑𝐺(𝑔𝑡+𝑘)𝑔𝑢
𝑔𝑑

    (A13) 

and 

 𝐷𝑡+𝑘∗ = �𝐷𝑡+𝑠
k

s=0

(1 + 𝜌)
(1 − 𝜋)(1 + 𝑔𝑡+𝑠)

−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+𝑠)
−𝛼𝑑𝐺(𝑔𝑡+𝑠)

𝑔𝑢
𝑔𝑑

. (A14) 

In addition, we know from the Euler condition that the pricing kernel must be such that: 

 E𝑡 [𝛽 (
𝐷𝑡+1

𝐷𝑡
)−𝛼 (1 + 𝜌)

(1 − 𝜋)(1 + 𝑔𝑡+𝑘)−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+𝑘)−𝛼𝑑𝐺(𝑔𝑡+𝑘)𝑔𝑢
𝑔𝑑

] = 1. (A15) 

Using equation (A15) and adding 𝐷𝑡+𝑘𝐶𝐼∗
 to both sides of equation (A12), we obtain: 



46 

 

𝑆𝑡+𝑘𝐶𝐼∗ + 𝐷𝑡+𝑘∗

= E𝑡+𝑘 [𝛽 (
𝐷𝑡+k+1

𝐷𝑡+𝑘
)−𝛼 (1 + 𝜌)

(1 − 𝜋)(1 + 𝑔𝑡+𝑘)−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+𝑘)−𝛼𝑑𝐺(𝑔𝑡+𝑘)𝑔𝑢
𝑔𝑑

(𝑆𝑡+𝑘+1
𝐶𝐼∗

+ 𝐷𝑡+𝑘+1
∗ )].       

(A16) 

This shows that (𝑆𝑡+𝑘𝐶𝐼∗
+ 𝐷𝑡+𝑘∗ ) follows a martingale under this conditional probability 

measure so that the risk-neutral density is: 

 𝑝�𝑡(𝑆𝑡+𝑘
𝐶𝐼 ) = 𝛽 (

𝐷𝑡+1

𝐷𝑡
)−𝛼 (1 + 𝜌)

(1 − 𝜋)(1 + 𝑔𝑡+𝑘)−𝛼 + 𝜋 ∫ (1 + 𝑔𝑡+𝑘)−𝛼𝑑𝐺(𝑔𝑡+𝑘)𝑔𝑢
𝑔𝑑

𝑝𝑡(𝐷𝑡+𝑘).       (A17) 

Consequently, the one-period state-price density can be written as: 

 
𝑝�𝑡(𝑆𝑡+𝑘

𝐶𝐼 ) = 𝛽 (𝐷𝑡+k
𝐷𝑡

)−𝛼 1
1+𝑟𝑡+𝑘

𝐶𝐼 ∙ (1+𝜌)

(1−𝜋)(1+𝑔𝑡+𝑘)−𝛼+𝜋 ∫ (1+𝑔𝑡+𝑘)−𝛼𝑑𝐺(𝑔𝑡+𝑘)
𝑔𝑢
𝑔𝑑

𝑝𝑡(𝐷𝑡+𝑘) =

𝛽 (𝐷𝑡+1
𝐷𝑡

)−𝛼 𝑝𝑡(𝐷𝑡+𝑘)         , 
(A18) 

where 𝑟𝑡+𝑘𝐶𝐼  is the one-period risk-free interest rate. Additionally, Pliska (1997) shows that if 

the risk-neutral measure on a single period model is unique and exists, this is a sufficient 

condition to have a unique risk-neutral measure on an infinite period model obtained as a 

repetition of many static, single-period models. In our case, the infinite period model risk-

neutral measure can be obtained using the independence of breaks on the mean dividend 

growth rates and by taking all paths that could guide to a particular state in 𝑡 + 𝜏 periods. In 

this context, 𝑝𝑡
𝐶𝐼(𝑆𝑡+𝜏𝐶𝐼 ) is the state price density of all paths that lead to the state in which the 

dividend is 𝐷𝑡+𝜏, while the expected value of 𝐷𝑡+𝜏 is: 

 Et[𝐷𝑡+𝜏] = 𝐷𝑡E𝑡 [
𝐷𝑡+1

𝐷𝑡
E𝑡+1 [(

𝐷𝑡+2

𝐷𝑡+1
) … E𝑡+𝜏−1 [(

𝐷𝑡+𝜏
𝐷𝑡+𝜏−1

)]]].  (A19) 

Furthermore, using the independence of {𝜀𝑡+𝑖}𝑖=1
𝜏  and {𝑔𝑡+𝑖−1}𝑖=1

𝜏  we have: 

 Et[𝐷𝑡+𝜏] = 𝐷𝑡Et [exp(√𝜏𝜎𝜀𝑡+𝜏 − 𝜏𝜎2/2) �(1 + 𝑔𝑡+𝑖−1)
𝜏

𝑖=1
].  (A20) 

At this point, let 𝑧 be the number of breaks between 𝑡 and 𝑡 + 𝜏; this is a random variable 

drawn from a binomial distribution, 𝜑(𝑧|𝜏,𝜋), with parameters 𝜏 and 𝜋; {ℎ𝑖}𝑖=0
𝑧  are the time 
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periods between breaks, which are also random variables that follow geometric 

distributions with parameter 𝜋, 𝜂(ℎ𝑖|𝜋), where 𝜏 = ∑ ℎ𝑖𝑧
𝑖=0 . Then, on each path: 

 𝐷𝑡+𝜏𝐶𝐼 = 𝐷𝑡exp(√𝜏𝜎𝜀𝑡+𝜏 − 𝜏𝜎2/2) ∙ ∏ (1 + 𝑔𝑡+𝑣𝑖−1
)ℎ𝑖𝑧+1

𝑖=1 , (A21) 

where {𝑔𝑡+ℎ𝑖}𝑖=1
𝑧  are drawn from a univariate density 𝑔𝑡+ℎ𝑖−1

~𝐺(∙) and pdf 𝜚(𝑔𝑡+ℎ𝑖) defined 

on the support [𝑔𝑑,𝑔𝑢], while 𝑔𝑡+ℎ0
= 𝑔𝑡 and 𝑔𝑡+𝜏 = 𝑔𝑡+ℎ𝑧 . Consequently, 

 𝑝𝑡(𝐷𝑡+𝑘) = 𝜙(𝜀𝑡+𝜏|0,𝜎)𝜑(𝑧|𝜏,𝜋)𝜂(ℎ0|𝜋) (𝜂(ℎ1|𝜋)𝜚 (𝑔𝑡+ℎ1
) ∙ … ∙ 𝜂(ℎ𝑧|𝜋)𝜚 (𝑔𝑡+ℎ𝑧))  (A22) 

and thus from equation (A18), we have: 

𝑝�𝑡(𝑆𝑡+𝑘
𝐶𝐼 ) = 𝛽𝜏 (

𝐷𝑡+𝜏
𝐷𝑡

)−𝛼 𝜙(𝜀𝑡+𝜏|0,𝜎)𝜑(𝑧|𝜏,𝜋)𝜂(ℎ0|𝜋) (𝜂(ℎ1|𝜋)𝜚 (𝑔𝑡+ℎ1
)

∙ 𝜂(ℎ𝑧|𝜋)𝜚 (𝑔𝑡+ℎ𝑧)).          

             (A23)    

Appendix B: Replication of CBOE rules for data generated by model simulations 

In previous studies (e.g., Duan and Simonato, 2001; Yan, 2011), options data have been 

simulated assuming constant moneyness and time-to-maturity for a specific option contract 

(e.g., exactly 30-day to expiry contracts with a moneyness exactly equal to one).29

                                                 
29 We define moneyness as 𝑀𝑜𝑛 ≡ 𝐾/𝑆, where 𝐾 and 𝑆 are the strike and the underlying stock prices, 
respectively. 

 Clearly, 

on the one hand, the moneyness ratio changes constantly because strike prices are fixed by 

option exchanges while stock prices vary over time. On the other hand, the time-to-maturity 

decreases gradually since expiration dates are also fixed. Therefore, the assumption of 

regular and invariable features of the traded option contracts in a simulation exercise is not 

consistent with actual options data. Our goal is to investigate whether rational learning may 

reproduce a range of small-sample results generated from standard econometric tests 

applied to actual data. Therefore to generate a cross-section (across strikes and maturities) 

of time series of option prices in a realistic way plays a crucial role, in case the null 

hypothesis of learning not being fundamentally responsible for the reported stylized facts 
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were not to be rejected.30

In particular, firstly, we use the same trading dates that were effectively listed over the 

1996 – 2007 sample, thus accounting for holidays and unexpected events in which the 

market was closed.

 Instead, to increase the realism as well as the reliability of our 

results, we follow the detailed rules of the CBOE. 

31

Appendix C: Chu, Stinchcombe, and White’s real time breakpoint test 

 Secondly, we fix expiration dates for option contracts in the same way 

as the CBOE was doing between 1996 and 2007. Therefore, for contracts to be offered in a 

given month, the expiration dates are set to coincide with the three subsequent months 

followed by three additional long-term maturities aligned on the March quarterly cycle (i.e., 

March, June, September, and December). In addition, expiration dates fall in line with the 

Saturday after the third Friday of each expiration month. Thirdly, strike price intervals are 

set around the underlying asset price; contracts with expiration dates in the three near-

term months are spaced at five-point intervals around the underlying index price as of the 

day in which contracts are offered, while contracts with long-term expirations are spaced at 

25-point intervals. 

We use the test introduced by Chu, Stinchcombe, and White (1996) to estimate the 

probability of breaks in the mean dividend growth rate. The authors present a dynamic test 

for structural breaks through which market participants can identify a real time shift in the 

(conditional) mean function. Consider the dividend random walk process in equation (1). 

Let 𝑣 be the minimum number of periods over which the drift is assumed to be constant, 

given that 𝑛 is the number of periods from the most recent break (i.e., 𝜇𝑡−𝑛+1 = 𝜇𝑡−𝑛+2 =. . . =

𝜇𝑡−𝑛+𝑣). Assuming that the representative agent starts detecting the presence of breaks after 

a period 𝑣, the authors propose the use of the following fluctuation detector in the case of a 

univariate location (mean function) model: 

 𝑍�𝑡 = 𝑛𝑠�0
−1(𝜇�𝑡 − 𝜇�𝑣), (B1) 

                                                 
30 This means that we want to minimize the chances of Bayesian learning explaining option pricing stylized 
features and puzzles, but this hypothesis is rejected because prices are simulated following over-simplistic 
rules that make simulated results not perfectly comparable to the ones obtained from the data, which are 
instead generated following CBOE rules. 
31 However, for simplicity such infrequent and unexpected events (e.g., September 11, 2001) are not simulated 
and are held fixed throughout all simulation trials.  
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where 𝜇�𝑡 and 𝜇�𝑣 are the parameter estimates at time 𝑡 and 𝜐. We defined 𝛏𝑡 as the vector of 

signals about 𝜇𝑡 in equation (10); therefore 𝜇�𝑡 = 𝜉�𝑡 = (1/𝑛) ∑ 𝜉𝑖
𝑡
𝑖=𝑡−𝑛+1  and 𝜇�𝑣 = 𝜉�𝑣 =

(1/𝑣) ∑ 𝜉𝑖
𝑡−𝑛+𝑣
𝑖=𝑡−𝑛+1 , while 𝑠�0 = (𝑣−1 ∑ (𝜉𝑖 − 𝜇�𝑣)2𝑡−𝑛+𝑣

𝑖=𝑡−𝑛+1 )0.5. Under the null hypothesis of no breaks, 

Chu, Stinchcombe, and White report asymptotic bounds for the statistic �𝑍�𝑡�: 

 lim
𝑣→∞

𝑃 {�𝑍�𝑡� ≥ √𝑣 (
𝑛 − 𝑣
𝑣

) [(
𝑛

𝑛 − 𝑣
) [𝑎2 + ln (

𝑛
𝑛 − 𝑣

)]]
1
2} ≅ 2(1 − Φ(𝑎) + 𝑎𝜙(𝑎)). (B2) 

Here Φ(∙) and 𝜙(∙) are the cdf and pdf of a standard normal random variable, respectively, 

while a is a constant related to the chosen significance level of the test. The intuition behind 

this test is that given a significance level, an agent could start the calculation of 𝑍�𝑡 

recursively and in real-time after 𝑣 signals received from the previous break to detect a new 

one. The testing process starts again after the detection of the new break. In this paper we 

assume that dividends are paid out daily, which is true for many market indexes. For that 

reason and with the objective of detecting breaks, we use daily dividend time series for the 

S&P 500 index between 1996 and 2007 that are de-seasonalized and adjusted by the 

Consumer Price Index. We set 𝑣=125, which represents six months of trading, and we use a 

5% level of significance. We detect eight breaks in the period between 1996 and 2007. 

Figure B1 shows the breaks detected in the sample period. 

[Insert Figure B1 here] 

Appendix D: Options data  

We use data from the U.S. option market for the 1996 - 2007 period to estimate a few 

typical indicators concerning the shape and dynamics of the IVS to be compared to the 

results obtained from the simulations of calibrated versions of our incomplete information, 

Bayesian learning framework. We include individual call equity options and call S&P 500 

index options that are American and European style, respectively. We obtain the data from 

the OptionMetrics database, which reports daily closing bid and ask quotes, BS IVs, 

maturities, strike prices, synchronous (after appropriate adjustments that employ the put-

call parity) closing underlying stock (index) prices, and the risk-free term-structure of 

interest rates. Option prices correspond to closing bid-ask midpoints. In relation to single-

name stock options, we select only options in which the underlying stocks pay dividends, to 
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ensure the realism of our model. We choose the 150 names with the highest volume that 

have been continuously traded over our sample period.32

Appendix E: Calibrating the Fit of Deterministic IVS Models 

 We sample option market data 

only on Wednesdays, as with our simulations. We apply four exclusionary criteria to filter 

out observations that represent noisy data, possibly recording errors, and that can hardly 

be thought to be expressions of well-functioning markets. Firstly, we eliminate all 

observations that violate basic no-arbitrage bounds, such as European put-call parity, 

American put-call boundaries, the lower bound etc. [see Bernales and Guidolin (2014) for a 

complete list of restrictions that are applied as filters). Secondly, we delete all contracts 

with less than six trading days and more than one year to expiration as their prices are 

usually noisy. Thirdly and similar to Gonçalves and Guidolin (2006), we exclude contracts 

with prices lower than $0.30 for equity options and $3/8 for S&P 500 index options to 

avoid the effects of price discreteness on IVs (note that in the case of equity options, the 

minimum tick is $0.05 for trading prices lower than $3, while for index options the smallest 

tick is $1/16). Finally, following Dumas, Fleming, and Whaley (1998), we exclude options 

contracts for which the moneyness is either less than 0.90 or in excess of 1.10, because 

deep in- and out-of-the money option contracts could cause additional noise in the analyses, 

and option series beyond these thresholds are normally illiquid and infrequently traded. 

In this appendix, we report the estimated fit of a simple and yet popular deterministic IVS 

model proposed in Dumas, Fleming, and Whaley (1998), using IVs simulated from a 

calibrated economy under breaks and incomplete information with learning. The implied 

volatility polynomial function that has been estimated is: 

 𝐼𝑉(𝑀𝑜𝑛, 𝜏) = 𝑏0 + 𝑏1𝑀𝑜𝑛 + 𝑏2𝑀𝑜𝑛2 + 𝑏3 �
𝜏

365
� + 𝑏4 �

𝜏
365
�

2
+ 𝑏5𝑀𝑜𝑛 �

𝜏
365
� + 𝜖      , (D1) 

where 𝐼𝑉(𝑀𝑜𝑛, 𝜏) is the IV of a call option contract with moneyness 𝑀𝑜𝑛 and time-to-

maturity 𝜏. Table E1 presents the coefficient estimates obtained by OLS and overall 

measures of fit for two alternative calibrations (high and low σ) and three alternative 

values for . The coefficients are to be compared to the empirical ones estimated from data 
                                                 
32 The full list of 150 option series is available from the authors upon request.  
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on S&P 500 index calls or the average across 150 deterministic IVS regressions estimated 

for each of the stock options detailed in Appendix D. Table E1 shows that the IVS generated 

by the Bayesian learning model can be characterized by an IV polynomial function as in 

Dumas, Fleming, and Whaley (1998) in a similar way to the IVs reported in the option 

trading data. 

[Insert Table E1 here] 
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Figure 1. Evolutions of mean dividend growth rates, stock prices, and at-the-money short-term IVs 
under three scenarios. The figure shows the outcome for one simulated path concerning the dynamics over 
a 12-year sample for the mean dividend growth rate (𝑔), stock prices (𝑆), and at-the-money short-term IVs 
(IVATM,Short-T) under three case scenarios: no breaks; breaks and complete information; and breaks and 
incomplete information with rational learning. IVATM,Short-T is the implied volatility corresponding to a call 
option contract with 30-days to the expiration date (calendar days) and at-the-money. Given that the 
simulations replicate option prices according to CBOE rules, we calculate CallATM,Short-T by linear interpolation 
using the four contracts around the 30-day time-to-maturity and with closest strike price to 𝑆. The assumed 
parameters are: 𝛼=0.2, 𝜋=0.00301, 𝜌=8.9%, 𝜎=5.0%, 𝑔𝑢=8.8%, and 𝑔𝑢=-1.5%. 
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Figure 2. Sensitivity analysis on the average behavior of the implied volatility surface one month after 
a break in an economy with learning. The figure presents the average behavior, one month after a break in 
𝑔𝑡, of implied volatilities in an economy under breaks and incomplete information with learning. This figure 
shows implied volatilities as a function of moneyness using short-term option contracts (upper windows) and 
implied volatilities as a function of time-to- maturity using at-the money option contracts (lower windows). 
IVShort-T (IVATM) represents the implied volatilities corresponding to call option contracts with 30 days to the 
expiration date (strike prices equal to 𝑆). Given that the simulations replicate option prices according to CBOE 
rules, we calculate CallATM,Short-T by simple linear interpolation using the four contracts around the 30-day time-
to-maturity and with closest strike price to 𝑆. The assumed parameters are: 𝜋=0.00301, 𝜌=8.9%, 𝜎=5.0%, 
𝑔𝑢=8.8%, and 𝑔𝑢=-1.5%.  
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Figure 3. Sensitivity analysis on the average behavior of the implied volatility surface one year after a 
break in an economy with learning. The figure presents the average behavior, one year after a break in 𝑔𝑡, 
of implied volatilities in an economy under breaks and incomplete information with learning. This figure 
shows implied volatilities as a function of moneyness using short-term option contracts (upper windows) and 
implied volatilities as a function of time-to- maturity using at-the money option contracts (lower windows). 
The assumed parameters are: 𝜋=0.00301, 𝜌=8.9%, 𝜎=5.0%, 𝑔𝑢=8.8%, and 𝑔𝑢=-1.5%.  
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Figure 4. Average behavior of the implied volatility term-structure in an economy with learning as a 
function of dividend volatility. The figure presents the average behavior of implied volatility term-structure 
in an economy under breaks and incomplete information with learning when the dividend volatility is 
increasing (upper windows) and decreasing (lower windows) in the GARCH (1,1) process. The figure reports 
the average behavior of implied volatilities as a function of time-to-maturity using at-the-money option 
contracts one month (left-hand windows) and one year (right-hand windows) after a break in 𝑔𝑡. The 
assumed parameters are: 𝜋=0.00301, 𝜌=8.9%, 𝑔𝑢=8.8%, and 𝑔𝑢=-1.5%.  
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Figure B1. Structural breaks affecting the drift of the random walk process in equation (1). The solid 
line represents the recursive mean dividend growth rate (the drift) estimated with a rolling window of 125 
trading days using continuously compounded dividends on the S&P 500 index, de-seasonalized and adjusted 
by the Consumer Price Index to obtain real dividends, between 1996 and 2007. The dotted line shows 
structural breaks estimated for the conditional mean function of dividends. Breaks were detected in 
December 1996, August 1999, September 2000, April 2001, October 2001, August 2002, November 2003, and 
October 2004. 
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Table 1 
Simulation summary under three alternative case scenarios for investor’s expectations 

The variables 𝑔, S, and IVATM,Short-T are defined in the note to Figure 1. Div is the daily dividend simulated while 
rf,1 day is the one-day risk-free interest rate. CallATM,Short-T is the price of a call option contract with 30 days to the 
expiration date (calendar days) and at-the-money. Given that the simulations replicate option prices 
according to CBOE rules, we calculate CallATM,Short-T by simple linear interpolation using the four contracts 
around the 30-day time-to-maturity and with closest strike price to 𝑆. 

Scenario Variable Mean Median Std. Dev. Skewness Excess 
Kurtosis Min. Max. 

α=0.2 

  π=0.00301, ρ=8.9%, σ=5.0%, gu=8.8%, and gd=-1.5% 

  Div 0,17 0,17 0,03 1,12 1,74 0,10 0,37 
  g 3,65% 3,65% 0,00% NA NA 3,65% 3,65% 

No Breaks - 
Comp. Inf. 

rf,1 day 9,68% 9,68% 0,00% NA NA 9,68% 9,68% 
S 813,22 761,05 153,29 1,12 1,74 109,43 1301,20 

  CallATM,Short-T 4,39 4,30 1,57 0,38 -0,07 1,01 11,95 
  IVATM,Short-T 5,00% 5,00% 0,00% NA NA 5,00% 5,00% 
  Div 0,18 0,17 0,04 1,28 1,92 0,11 0,38 
  g 3,66% 3,65% 2,96% 0,00 -1,21 -1,49% 8,78% 

Breaks - rf,1 day 9,67% 9,75% 0,53% -0,05 -0,90 9,29% 10,01% 
 Comp. Inf. S 814,27 768,34 174,55 1,23 1,69 446,67 1678,97 

  CallATM,Short-T 5,42 5,21 2,08 0,66 0,97 1,02 16,81 
  IVATM,Short-T 5,75% 5,82% 0,31% 0,76 0,01 5,10% 7,44% 
  Div 0,18 0,17 0,04 1,28 1,92 0,11 0,38 
  g 3,64% 3,60% 1,62% 0,08 -0,16 -0,52% 8,33% 

Breaks -  rf,1 day 9,67% 9,56% 0,29% 0,04 -0,15 9,31% 10,03% 
Inc. Inf. S 814,10 769,82 173,25 1,25 1,84 449,06 1730,23 

(Learning) CallATM,Short-T 12,75 12,34 3,12 1,24 9,53 2,93 91,95 
  IVATM,Short-T 19,24% 19,62% 3,60% 0,93 3,23 7,13% 74,11% 
  π=0.00301, ρ=9.6%, σ=30.0%, gu=9.5%, and gd=-5.0% 
  Div 0,18 0,13 0,16 2,46 8,97 0,00 1,64 
  g 2,25% 2,25% 0,00% NA NA 2,25% 2,25% 

No Breaks -  rf,1 day 10,09% 10,09% 0,00% NA NA 10,09% 10,09% 
Comp. Inf. S 698,66 501,26 626,41 2,46 9,07 18,47 6023,90 

  CallATM,Short-T 18,32 13,93 12,83 0,80 -0,17 0,13 210,41 
  IVATM,Short-T 30,00% 30,00% 0,00% NA NA 30,00% 30,00% 
  Div 0,18 0,13 0,17 2,56 9,07 0,00 1,66 
  g 2,27% 2,25% 4,17% 0,01 -1,19 -4,94% 9,48% 

Breaks -  rf,1 day 10,08% 10,11% 0,79% -0,09 -0,95 9,52% 10,52% 
Comp. Inf. S 700,93 504,80 676,20 2,62 9,67 18,91 6797,87 

  CallATM,Short-T 26,13 23,30 18,44 1,28 2,35 1,60 241,42 
  IVATM,Short-T 31,63% 31,28% 0,83% 0,83 0,77 30,06% 33,20% 
  Div 0,18 0,13 0,17 2,56 9,07 0,00 1,66 
  g 2,24% 2,22% 2,68% 0,25 -0,35 -1,73% 9,23% 

Breaks - rf,1 day 10,04% 10,04% 0,13% 0,21 -0,31 9,79% 10,55% 
 Inc. Inf.  S 699,91 503,95 673,46 2,60 9,34 19,96 6990,88 

(Learning) CallATM,Short-T 35,13 34,71 22,62 3,36 15,78 1,74 424,78 
  IVATM,Short-T 43,28% 42,19% 5,40% 4,23 9,15 30,79% 221,23% 
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Table 2 
Simulated properties of the implied volatility surface under rational learning 

The table contains time series statistics concerning the level, slope, and curvature of the IVS in both the moneyness and maturity dimensions. The table 
presents the results of analyses for: i) an economy under breaks and incomplete information with learning on the left-hand side (Panels A and B); and ii) 
option market data in the U.S. over the period 1997 - 2007 (Panel A* and Panel B*). Panels A and B show average simulation outcomes using two 
parameter set ups; while Panels A* and B* report statistics for IVS shape features using S&P 500 index options and 150 individual equity options on 
dividend-paying stocks, respectively. The option market dataset is described in Appendix C. IVATM,Short-T is defined in the note to Figure 1. 𝑆𝑙𝑜𝑝𝑒𝑀𝑜𝑛 
(𝑆𝑙𝑜𝑝𝑒𝑀𝑎𝑡) is the average across simulation trials of numerical first derivatives with respect to moneyness (time-to-maturity) computed from all the pairs 
of priced options with neighboring moneyness levels and 30 days to maturity (neighboring maturity levels and closest at-the-money). In addition, 𝐶𝑢𝑟𝑣𝑀𝑜𝑛 
(𝐶𝑢𝑟𝑣𝑒𝑀𝑎𝑡) is the average across simulation trials of numerical second derivatives with respect to moneyness (time to maturity) computed from all triplets 
of priced options with neighboring moneyness levels and 30 days to maturity (neighboring maturity levels and closest at-the-money). Serial Correlation 
refers to a Box-Pierce test applied to the first-order Ljung-Box statistic. The ARCH(1) and ARCH(3) statistics are the values of the LM test for ARCH effects. 
The percentage of simulations with significant statistics at a 10% level for the associated test statistics are reported in parentheses. Because in Panel A 
only the S&P 500 index option series is used in the tests, in this case the percentage in parentheses is simply 0 or 100. 

Variable Mean Std. 
Dev. Skew Excess 

Kurt. 
Serial 
Corr. ARCH(1) ARCH(3)   Variable Mean Std. 

Dev. Skew Excess 
Kurt. 

Serial 
Corr. ARCH(1) ARCH(3) 

 
Simulated data (α=0.2)   

 
Market Data 

  Panel A: π=0.00301, ρ=8.9%, σ=5.0%, gu=8.8%, and gd=-1.5% 
 

  Panel A*: S&P 500 Options 
IVATM,Short-

T 19,24% 3,60% 0,93 3,23 55,83 41,05 42,57   IVATM,Short-

T 16,65% 5,90% 0,71 0,42 422,82 266,05 267,56 

          (98.80) (91.30) (91.10)             (100.00) (100.00) (100.00) 
SlopeMon -0,35 0,14 -0,31 2,35 18,04 5,66 10,10   SlopeMon -0,64 0,21 -0,48 0,69 82,70 15,21 18,21 

          (78.50) (39.30) (42.70)             (100.00) (100.00) (100.00) 
CurvMon 30,90 20,99 0,13 11,62 12,80 4,04 7,60   CurvMon 13,84 14,40 0,08 7,38 14,02 0,35 15,42 

          (62.20) (28.20) (29.40)             (100.00) (0.00) (100.00) 
SlopeMat -0,31 0,08 -0,02 1,81 53,16 37,03 38,76   SlopeMat 0,03 0,07 -0,60 2,48 205,68 126,97 141,14 

          (98.80) (87.50) (86.00)             (100.00) (100.00) (100.00) 
CurvMat 3,28 1,12 0,21 4,47 47,56 29,66 31,61   CurvMat -0,12 0,60 0,24 5,06 23,02 0,18 36,69 

          (98.80) (84.80) (81.90)             (100.00) (0.00) (100.00) 

 
Panel B: π=0.00301, ρ=9.6%, σ=30.0%, gu=9.5%, and gd=-5.0% 

  
Panel B*: Equity Options 

IVATM,Short-

T 43,28% 5,40% 4,23 9,15 50,46 39,74 38,31   IVATM,Short-

T 40,34% 5,63% 0,67 0,86 59,33 29,06 31,39 

          (93.30) (88.70) (90.30)             (98.00) (74.00) (69.33) 
SlopeMon -0,19 0,15 -0,57 7,54 16,07 4,41 8,89   SlopeMon -0,21 0,70 1,03 26,31 4,72 2,18 7,02 

          (75.80) (31.90) (35.30)             (32.67) (13.33) (17.33) 
CurvMon 2,87 2,40 0,44 17,60 9,37 2,86 7,23   CurvMon 2,62 10,61 -0,35 11,50 1,85 2,64 4,98 

          (53.40) (27.80) (26.20)             (18.67) (15.33) (18.67) 
SlopeMat -0,31 0,09 -0,03 3,14 49,85 33,87 36,65   SlopeMat -0,04 0,09 -0,90 2,82 36,23 12,44 14,94 

          (92.20) (78.90) (79.20)             (96.00) (60.00) (57.33) 
CurvMat 3,53 1,72 0,62 6,38 44,38 27,61 26,48   CurvMat 0,08 0,55 0,59 3,92 17,39 7,38 10,40 

          (92.20) (77.90) (78.30)             (90.00) (48.67) (44.67) 
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Table 3 
Cross-sectional relations of IVS features under rational learning 

The table contains correlations for the level, slope, and curvature of the IVS in both the moneyness and maturity. The table presents the results of analyses 
for: i) an economy under breaks and incomplete information with learning on the left hand side (Panels A and B); and ii) option market data in the U.S. over 
the period 1997 - 2007 (Panels A* and B*). Panels A and B show average simulation outcomes using two parameter set ups; while Panels A* and B* report 
statistics for IVS shape features using S&P 500 index options and 150 individual equity options on dividend-paying stocks, respectively. IVATM,Short-T is defined 
in the notes to Figure 1, while 𝑆𝑙𝑜𝑝𝑒𝑀𝑜𝑛, 𝐶𝑢𝑟𝑣𝑀𝑜𝑛, 𝑆𝑙𝑜𝑝𝑒𝑀𝑎𝑡, and 𝐶𝑢𝑟𝑣𝑀𝑜𝑛 are defined in the notes in Table 2. The percentage of simulations with significant 
statistics at a 10% level for the associated test statistics are reported in parentheses. Because in Panel A only the S&P 500 index option series is used in the 
tests, in this case the percentage in parentheses is simply 0 or 100. 

Variable IVATM,Short-T SlopeMon CurvMon SlopeMat CurvMat   Variable IVATM,Short-

T 
SlopeMon CurvMon SlopeMat CurvMat 

  Simulated data (α=0.2)     Market Data 

 

Panel A: π=0.00301, ρ=8.9%, σ=5.0%, gu=8.8%, and gd=-
1.5%   

 

Panel A*: S&P 500 Options 

IVATM,Short-

T 1,00           IVATM,Short-

T 
1,00         

  (100.00)             (100.00)         
SlopeMon -0,38 1,00         SlopeMon -0,24 1,00       

  (80.10) (100.00)           (100.00) (100.00)       
CurvMon -0,14 -0,47 1,00       CurvMon -0,35 -0,09 1,00     

  (67.90) (81.30) (100.00)         (100.00) (100.00) (100.00)     
SlopeMat -0,96 0,32 0,17 1,00     SlopeMat -0,40 0,00 0,27 1,00   

  (99.20) (76.40) (64.50) (100.00)       (100.00) (0.00) (100.00) (100.00)   
CurvMat 0,89 -0,28 -0,15 -0,91 1,00   CurvMat 0,02 0,07 -0,05 -0,29 1,00 

  (98.90) (74.80) (70.30) (98.50) (100.00)     (0.00) (0.00) (0.00) (100.00) (100.00) 

 

Panel B: π=0.00301, ρ=9.6%, σ=30.0%, gu=9.5%, and gd=-
5.0%   

 

Panel B*: Equity Options 

IVATM,Short-

T 1,00           IVATM,Short-

T 
1,00         

  (100.00)             (100.00)         
SlopeMon -0,35 1,00         SlopeMon -0,11 1,00       

  (74.60) (100.00)           (46.67) (100.00)       
CurvMon -0,12 -0,46 1,00       CurvMon -0,29 -0,11 1,00     

  (66.90) (79.70) (100.00)         (86.00) (64.67) (100.00)     
SlopeMat -0,42 0,31 0,00 1,00     SlopeMat -0,57 0,28 0,06 1,00   

  (89.90) (72.40) (58.90) (100.00)       (97.33) (80.00) (46.67) (100.00)   
CurvMat 0,38 -0,11 -0,09 -0,72 1,00   CurvMat 0,24 -0,25 0,03 -0,62 1,00 

  (79.70) (54.60) (52.80) (81.20) (100.00)     (76.67) (80.00) (41.33) (99.33) (100.00) 
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Table 4 
Simulated properties of the implied volatility surface under rational learning when the dividend volatility 

varies 
The table contains time series statistics concerning the level, slope, and curvature of the IVS in both the 
moneyness and maturity dimensions in an economy under breaks and incomplete information with learning 
when the dividend volatility follows a GARCH(1,1) process. The table shows average simulation outcomes using a 
one-parameter set up. IVATM,Short-T is defined in the notes to Figure 1, while 𝑆𝑙𝑜𝑝𝑒𝑀𝑜𝑛 , 𝑆𝑙𝑜𝑝𝑒𝑀𝑎𝑡 , 𝐶𝑢𝑟𝑣𝑀𝑜𝑛  and 
𝐶𝑢𝑟𝑣𝑒𝑀𝑎𝑡  are defined in the notes to Table 2. Serial Correlation refers to a Box-Pierce test applied to the first-
order Ljung-Box statistic. The ARCH(1) and ARCH(3) statistics are the values of the LM test for ARCH effects using 
one and three lags, respectively. The percentage of simulations with significant statistics at a 10% level for the 
associated test statistics are reported in parentheses. 

 
 

Variable Mean Std. 
Dev. Skewness Excess 

Kurtosis 
Serial 

Correlation  ARCH(1) ARCH(3) 

  Dividend volatility follows a GARCH(1,1) where α=0.2 

  π=0.00301, ρ=8.9%,  gu=8.8%, and gd=-1.5% 

IVATM,Short-T 20,71% 3,88% 1,02 3,51 56,74 45,43 51,27 

          (100.00) (100.00) (94.50) 

SlopeMon -0,39 0,18 -0,36 2,84 21,63 7,07 11,43 

          (83.60) (55.70) (59.20) 
CurvMon 35,31 21,61 0,16 12,90 16,30 4,60 9,62 

          (71.30) (55.30) (41.60) 
SlopeMat -0,12 0,16 -0,02 2,34 67,49 38,89 47,39 

          (100.00) (100.00) (94.60) 
CurvMat 2,09 2,39 0,25 5,39 60,80 35,32 40,05 

          (100.00) (98.30) (91.40) 
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Table 5 
Cross-sectional relations of IVS features under rational learning when the dividend volatility varies 

The table contains correlations for the level, slope, and curvature of the IVS in both the moneyness and maturity 
dimensions in an economy under breaks and incomplete information with learning when the dividend volatility 
follows a GARCH(1,1) process. The table shows average simulation outcomes using one parameter set up. 
IVATM,Short-T is defined in the notes to Figure 1, while 𝑆𝑙𝑜𝑝𝑒𝑀𝑜𝑛 , 𝐶𝑢𝑟𝑣𝑀𝑜𝑛 , 𝑆𝑙𝑜𝑝𝑒𝑀𝑎𝑡 , and 𝐶𝑢𝑟𝑣𝑀𝑜𝑛  are defined in the 
notes to Table 2. The percentage of simulations with significant statistics at a 10% level for the associated test 
statistics are reported in parentheses. 
 

Variable IVATM,Short-T SlopeMon CurvMon SlopeMat CurvMat 

  Dividend volatility follows a GARCH(1,1) where α=0.2 

 
π=0.00301, ρ=8.9%, gu=8.8%, and gd=-1.5% 

IVATM,Short-T 1,00         

  (100.00)         

SlopeMon -0,45 1,00       

  (85.30) (100.00)       
CurvMon -0,15 -0,58 1,00     

  (73.90) (86.90) (100.00)     
SlopeMat -0,88 0,25 0,13 1,00   

  (88.40) (72.10) (59.30) (100.00)   
CurvMat 0,73 -0,24 -0,13 -0,87 1,00 

  (87.20) (70.30) (64.30) (95.20) (100.00) 
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Table E1 
Comparing Fitted Deterministic Volatility Functions on Market Data vs. from Simulations from an 

Economy under Incomplete Information with Rational Learning 
The table contains OLS coefficient estimates and fit measures obtained from estimating equation (E1) on average 
implied volatilities from the U.S. option market compared to simulated option IVs from a Bayesian learning model 
under alternative calibrations.  

 

  b0 b1 b2 b3 b4 b5 R2 F Statistic p-value 

  Panel A: π=66.7%, ρ=8.9%, σ=5.0%, gu=8.8%, and gd=-1.5% 
α=0.2 2,70 -4,76 2,21 -0,74 0,20 0,47 0,89 53,84 0,00 
α=0.5 4,12 -7,53 3,52 -0,88 0,13 0,71 0,91 37,70 0,00 
α=5.0 -7,04 14,44 -6,94 -0,32 0,71 -0,68 0,94 71,55 0,00 

 
Panel B: π=66.7%, ρ=9.6%, σ=30.0%, gu=9.5%, and gd=-5.0% 

α=0.2 2,94 -4,90 2,40 -0,73 0,21 0,48 0,88 49,12 0,00 
α=0.5 4,11 -7,16 3,41 -0,94 0,13 0,72 0,90 36,30 0,00 
α=5.0 -5,54 13,99 -7,03 -0,33 0,72 -0,62 0,93 67,68 0,00 

 
Market Data 

S&P 500 
Options 7,31 -13,55 6,39 0,50 -

0,03 0,54 0,85 31,75 0,00 

Equity Options 4,60 -8,11 3,92 -0,22 0,05 0,12 0,81 43,61 0,00 
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