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?Università Bocconi and IGIER and �University of Minnesota

December 2016

Abstract

We characterize consistent random choice rules in terms of the optimality of

the support. We then proceed to study stochastic choice in a consumer theory

setting. We prove a law of demand for stochastic choice. We then move to a

temporal setting where we characterize the softmax decision criterion.

1 Introduction

It takes time to decide. Decisions are fully rational only when decision makers have
enough time to make up their minds and understand how their basic (unmodelled)
needs are satis�ed by the di¤erent alternatives at hand. Otherwise, if decision mak-
ers are, nevertheless, required to choose within a given time window,1 randomness
enters the picture even if they have a well de�ned preference over alternatives that
would determine their choices had they enough time to decide. Choices are, therefore,
stochastic.
The strands of literature that, in the di¤erent disciplines (such as economics, neu-

roscience and psychology), have dealt with stochasticity in choices have mostly focused
on pure choice behavior. Here we study how stochastic choice might a¤ect consumer
behavior, the most basic economic choice problem. We show that for an important class
of stochastic choices the law of demand for normal goods, arguably the main result of
traditional consumer theory, continues to hold on average when strictly dominated
alternatives are instinctively dismissed.

�We thank Federico Echenique, Ryota Iijima, and Kota Saito for helpful suggestions. We especially
thank Jay Lu with whom we proved an early version of Theorem 9. Simone Cerreia-Vioglio and
Massimo Marinacci gratefully acknowledge the �nancial support of ERC (Grant SDDM-TEA and
INDIMACRO, respectively).

1Without the burden of choice, incompleteness might otherwise arise.

1



The paper starts with an atemporal analysis, based on random choice functions,
that clari�es the economic rationale of the �average�normal law. We then move to a
temporal forced choice setting in which psychometric functions are introduced in order
to account for mental preferences. In particular, we characterize softmax psychometric
functions and then establish a law of demand for forced choice.

2 Atemporal analysis

2.1 Random choice rules and optimality

Let A be the collection of all non-empty �nite choice sets A of an all inclusive set of
alternatives X. In the rest of the paper, for each (not necessarily �nite) A � X, we
denote by �(A) the set of all �nitely supported probabilities on A.

De�nition 1 A random choice rule is a function p : A ! �(X) such that p (�; A) 2
�(A) for all A 2 A.

We interpret p (a;A) as the probability that a decision maker chooses alternative
a 2 A within the choice set A. In a (ergodic) long run setup, this probability can be
viewed as the long run frequency with which a is chosen. We regard p as a purely
behavioral notion that accounts for the decision maker�s choices. In other words, p is
a way to organize choice data, without any mental interpretation per se.

De�nition 2 A random choice rule p is consistent if

p (a;B) = p (a;A) p (A;B) 8a 2 A � B (1)

This condition is a form of the classic Luce�s choice axiom (see Luce [10]). It
ensures that p (�; A) and p (�; B) are linked via conditioning a la Renyi [13]. We denote
by �p : A� X the support correspondence.2

Example 1 (Luce) Given ' : X ! (0;1), de�ne p : A ! �(X) by

p (a;A) =
' (a)P
b2A ' (b)

8A 2 A (2)

This function p is a consistent random choice rule with full support (i.e., p (a;A) > 0
for all a 2 A). Under some mild conditions, Renyi [13] and Luce [10] proved that
this is the general form of consistent random choice rules that have full support. In
particular, the uniform rule p (a;A) = 1= jAj is the special case with ' = 1. It is close
in spirit to the analysis of Becker [5]. N

2That is, �p (A) = fa 2 A : p (a;A) > 0g.
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Example 2 (Optimization) A correspondence � : A � X is a choice correspon-
dence if ; 6= � (A) � A for all A 2 A. As proved by Arrow [2], � is optimal (or
rational) if and only if it satis�es the following version of WARP:

If A � B and � (B) \ A 6= ;, then � (B) \ A = � (A) (C)

Given any optimal correspondence, de�ne p : A ! �(X) by

p (a;A) =
1

j� (A)j�a (� (A)) =
(

1
j�(A)j if a 2 � (A)
0 else

(3)

This function p is easily seen to be a consistent random choice rule (without full
support and not in the Luce-Renyi form).3 In view of Arrow [2], we can give a mental
interpretation to (3) as a tie-breaking randomization rule that selects an optimal �
according to some underlying utility function �alternative within the set � (A). When �
is an optimal choice function,4 this rule takes the deterministic form p (b; A) = �a (fbg).5
Optimal choice functions can thus be viewed as a special, deterministic, rule p. N

Given the previous example, we will say that a choice correspondence � is optimal
if it satis�es (C). The previous example also seems to provide a very speci�c rule,
(3), where optimality of � implies consistency. The next result makes this observation
formal and much more general. Indeed, it characterizes consistent random choice rules
in terms of the optimality of the support correspondence.

Theorem 1 The function p : A ! �(X) is a consistent random choice rule if and
only if it has the form

p (a;A) =

(
'(a)P

b2�(A) '(b)
if a 2 � (A)

0 else
(4)

where ' : X ! (0;1) and � : A� X is an optimal choice correspondence. Moreover,
� is unique and coincides with �p.

Note that, compared to Luce�s rule (2), p (�; A) is not required to have full support.
In particular, Luce�s rule corresponds to the special case � (A) = A for all A 2 A
(which is trivially optimal). The optimization rule (3) is also a special case in that it
corresponds to ' = 1. So, the two previous examples are special cases of (4).
Note that, in Theorem 1, when � : A � X is a function, � (A) is a singleton for

all A 2 A. In this case, p is a degenerate random choice rule ��(A). Thus, standard

3Of course, provided that � is not such that � (A) = A for all A 2 A.
4That is, � (A) is a singleton for all A 2 A.
5Here �x denotes the (Dirac) probability measure at x 2 X, that is, �x (A) = 1 if x 2 A and 0

otherwise.

3



optimization can be regarded as a special case of consistent stochastic choice. This
is important for our study of stochastic choice in a consumer theory framework (our
main purpose), which can then be regarded as a generalization of the standard theory.
Moreover, our result allows us to interpret consistency as the stochastic counterpart of
optimality (that is, of WARP).
When in (4) � is rationalized by a utility function v : X ! R,6 the functions v

and ' can be interpreted as �rst and second order utility functions, respectively. In
particular, v determines the optimal actions in each choice set A, while ' takes care
of the tie-breaking among them. In a multicriteria spirit, we can think of v and '
as accounting for two di¤erent characteristics of each alternative a, with the second
characteristic becoming relevant when the �rst characteristic is not able to select a
unique best alternative.7

Theorem 1 shows that consistent random choice rules are a special case of what
Echenique and Saito [7, De�nition 1] call general Luce rules. These rules, axiomatically
characterized by [7, Theorem 1], take the form (4) where ' : X ! (0;1), but the choice
correspondence � is not necessarily optimal, despite satisfying Sen�s �. Echenique and
Saito achieve such a characterization with four axioms that in our case are replaced by
Renyi�s consistency.8

We conclude with a corollary. A random choice rule p is uniform if, given any
A 2 A, all possible alternatives in A have the same probability of being chosen; that
is, for each a 2 A

p (a;A) =
1

j�p (A)j
�a (�p (A)) =

(
1

j�(A)j if a 2 � (A)
0 else

Corollary 2 A uniform random choice rule p is consistent if and only if �p is optimal.
In this case, the binary relation de�ned on X by

a % b () p (a; fa; bg) � p (b; fa; bg)

is a weak order and �p (A) = fa 2 A : a % b 8b 2 Ag for all A 2 A.

2.2 Mental interpretation

The tie-breaking interpretation of Example 2 is best viewed as part of a mental inter-
pretation of random choice rules in terms of expected utility maximization over mixed

6That is, � (A) = argmaxa2A v (a).
7The �lexicographic�relation between these two utility functions can be seen as a decision theoretic

counterpart of the lexicographic measure theoretic results of Renyi [13] and [14].
8Random choice rules that satisfy Renyi�s consistency have been studied in game theory under the

name conditional-probability systems (see Myerson [11]). In this terminology, our result shows that
conditional-probability systems have optimal supports.
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actions. Speci�cally, we denote by � an element of �(A) when interpreted as a mixed
action.9 ;10

Proposition 3 If X is countable and p : A ! �(X) is a consistent random choice
rule, then there exists v : X ! R such that, for each A 2 A,

�p (A) = argmaxa2A v (a) (5)

and
p (�; A) 2 argmax�2�(A)

X
a2A

v (a)� (a) (6)

A consistent random choice rule can be viewed as an optimal mixed action with
respect to an expected utility criterion. Tie-breaking is then among optimal �pure�
actions.

2.3 Random consumption

Our aim here is to develop a consumer theory in a random choice setting which, inter
alia, encompasses the traditional deterministic theory as a special case. A relevant
related work is Mossin [12], which outlined a stochastic theory of consumption (with
a di¤erent framework and motivation). Related in spirit is also Gabaix [8], in which a
consumer theory under limited attention is developed.

Let X = Rn+ be the space of all bundles of goods and B : Rn++ � R++ � X

the budget correspondence de�ned by B (q; w) = fx 2 X : q � x � wg for each strictly
positive price and wealth pair (q; w) in Rn++ � R++. Now A is replaced with the class
B that contains A and all budget sets B (q; w).11

De�nition 3 A function d : Rn++�R++ ! �(X) is an (individual) stochastic demand
if there exists a consistent random choice rule p : B ! �(X) such that

d (q; w) (x) = p (x;B (q; w))

We interpret d (q; w) (x) as the probability that the bundle x 2 B (q; w) is chosen
at price q with wealth w. The average cost function c : Rn++�R++ ! R+ of the bundle
demanded is then de�ned by

c (q; w) =
X

x2B(q;w)

(q � x) d (q; w) (x)

9See Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci [4] for a decision theoretic setup in
which mixed actions play a key role.
10We omit the simple proof of the next result.
11In this section, random choice rules as well as the property of consistency are extended to this

class of subsets of X. Similarly, �p is de�ned over B.
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We denote by �d : Rn++ �R++ ! Rn+ the (individual) average demand function de�ned
by

�d (q; w) =
X

x2B(q;w)

xd (q; w) (x)

Clearly, c (q; w) = q � �d (q; w).

Example 3 If p is the random choice rule in (4),12 then

d (q; w) (x) =

(
'(x)P

y2�(B(q;w)) '(y)
if x 2 � (B (q; w))

0 else
(7)

and
�d (q; w) =

X
x2�(B(q;w))

x
' (x)P

y2�(B(q;w)) ' (y)

The uniform case ' = 1 is, as we already remarked, in the spirit of Becker [5]. N

This example shows that standard demand functions are included in our setup.
Indeed, in the special case in which ' = 1 and � is a choice function, the average
demand �d (q; w) = � (B (q; w)) is a classic Walrasian demand function.

2.3.1 Walras�law

Given a stochastic demand, in general, by construction, we only have c (q; w) � w.
Equality holds when the random choice p is stochastically monotone: p (x; fx; yg) = 0
whenever x� y.13We begin with a stochastic version of Walras�law and by formalizing
the previous observation.

Lemma 4 If w < w0, then c (q; w) � c (q; w0). If p is stochastically monotone, then
c (q; w) = w and

w < w0 =) c (q; w) < c (q; w0)

Stochastic monotonicity is, prima facie, a strong assumption that requires the con-
sumer to detect whether a bundle is dominant across all goods. Indeed, it seems
reasonable to say that comparisons between two bundles x and y of goods are easier to
make when one of them is strictly dominant, say x� y. Stochastic monotonicity can
be, then, viewed as a way to capture this comparative easiness, which in turn implies
a sharp Walras�law. Indeed, such a consumer always exhausts his budget.14

12It can be veri�ed that if � : B � X is an optimal choice correspondence such that � (A) 2 A for
all A 2 B, then p is indeed consistent on B. Extending the �if�part of Theorem 1.
13As usual, the notation x� y means that xi < yi for all i 2 f1; :::; ng.
14For instance, Gabaix [8, p. 1675] assumes that the consumer he studies �is boundedly rational,

but smart enough to exhaust his budget.�

6



Example 4 Let B 2 B and let @+B = fx 2 B : @x0 2 B; x0 � xg be the subset of
all elements of B that are not strictly dominated. If we assume �p (B) � @+B for all
B 2 B we have a simple random choice rule that satis�es stochastic monotonicity. N

By construction, both the stochastic demand and the average demand are homo-
geneous of degree zero, so there is no nominal illusion. In fact, in our analysis the
consumer is always able to assess correctly whether a bundle of goods is a¤ordable.

2.3.2 Law of demand

We can now study wealth and price e¤ects. As to wealth e¤ects, say that a good k is
normal if its average demand increases as wealth increases, that is, �dk (q; w0) � �dk (q; w)

if w0 > w. By Lemma 4, under stochastic monotonicity, we have q � �d (q; w0) > q � �d (q; w)
if w0 > w. So, intuitively, some of the goods have to be normal, at least locally. As to
price e¤ects, we have the following preliminary result.

Lemma 5 If q < q0, then �d (q0; w) 6> �d (q; w).

Next we show that a classic compensated law of demand continues to hold �on
average�.

Lemma 6 Let (q0; w0) and (q; w) be in Rn++ � R++. If q0 � �d (q; w) = c (q0; w0) and p is
stochastically monotone, then

(q0 � q) �
�
�d (q0; w0)� �d (q; w)

�
� 0 (8)

When a sharp Walras�law holds, the condition q0 � �d (q; w) = c (q0; w0) becomes a
standard Slutsky wealth compensation. In this case the law of demand for normal
goods �arguably the most important result of consumer theory �continues to hold on
average.

Proposition 7 (Law of Demand) Let p satisfy stochastic monotonicity. If wealth
and other prices do not change, an increase (decrease) in the price of a normal good k
decreases (increases) its average demand �dk.

Under consistency, on average the behavior of the consumer continues to satisfy
the normal law of demand provided he is able to select strictly dominant alternatives.
The standard consumer theory result for Walrasian demand functions, �rst stated in
Slutsky [16, p. 14], is the special case that corresponds to the deterministic demand
function d (q; w) = ��(B(q;w)), whose average demand is indeed the Walrasian demand
function, i.e., �d (q; w) = � (q; w). Our result thus generalizes the most important �nding
of classical consumer theory. At the same time, it goes well beyond that, for instance
it includes the purely random choice of Becker [5] (viewed as the uniform case).
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Remark 1 (i) We expect that a full-�edged �average�consumer theory can be devel-
oped along the lines of this section. (ii) If stochastic monotonicity is replaced by the
following condition

p (B (q; w) \B (q0; w0) ; B (q0; w0)) = 0

then the inequality in (8), holds strictly.

3 Forced choice and soft maximization

A timed random choice rule is a function p : [0;1]�A ! �(X) such that pt (�; A) 2
�(A) for all A 2 A and all t 2 [0;1]. We interpret pt (a;A) as the probability that
a 2 A is chosen from the choice set A if t is the amount of time that the decision maker
is given to make up his mind. Before moving on, we introduce two useful pieces of
notation: given any timed random choice rule p and any a; b 2 X, we denote

pt (a; b) = pt (a; fa; bg) and rt (a; b) =
pt (a; b)

pt (b; a)

for all t 2 [0;1]. Next we introduce a class of such rules that will play a key role in
our analysis.
A timed random choice rule p is:

� bounded if supt;s2(0;1) jrt+s (a; b)� rt (a; b) rs (a; b)j <1 for all a; b 2 X;

� strictly coherent if, given any t 2 (0;1),

pt (a; b) > pt (b; a) =) p1 (a; b) > p1 (b; a)

coherent if also weak inequalities are preserved;

� consistent if pt : A ! �(X) is consistent for all t 2 (0;1);

� continuous if lims!t ps (a;A) = pt (a;A) for all t 2 [0;1], all A 2 A, and all
a 2 A;

� separable if there are t > 0 and a countable C = Ct � X such that if a; b 2 X
and

pt (a; fa; bg) > pt (b; fa; bg)

then
pt (a; fa; b; cg) � pt (c; fa; b; cg) � pt (b; fa; b; cg)

for some c 2 C;

� with full support if pt : A ! �(X) has full support for all t 2 (0;1).
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De�nition 4 A timed random choice rule p is a psychometric function if:

(i) p0 is uniform and has full support;

(ii) p1 is uniform;

(iii) p is strictly coherent.

Property (i) says that without time to decide (t = 0), all alternatives have an equal
chance to be chosen. Choice is then purely random, as in Becker [5], or reasonless in
the terminology of Rubinstein [15]. Property (ii) says that with no time constraints the
alternatives that are chosen �must be�mutually indi¤erent �hence�chosen with the
same probability. Property (iii) says that the choice process gains in accuracy: once it
is probabilistically established that x dominates y, the probability of choosing x over
y never drops to 1=2 or below.

Proposition 8 Let X be countable. The following conditions are equivalent:

(i) p is a psychometric function and pt is consistent for all t 2 [0;1];

(ii) there exists u : X ! R, a family of increasing functions fgt : u (X)! (0;1)gt2[0;1],
and a family of functions f't : X ! (0;1)gt2[0;1] such that:

� g0 = 1u(X) and '0 = 1X ;

� g1 = idu(X) and '1 = 1X ;

� for each t 2 [0;1], each A 2 A, each a 2 A,

pt (a;A) =

8<:
't (a)P

b2argmaxA gt�u 't (b)
if a 2 argmaxA gt � u

0 else

and u (c) � u (d) implies 't (c) � 't (d) for all c; d 2 argmaxA gt � u.

The interpretation is straightforward:

� without time to decide, t = 0, choice is purely random;

� without time constraints, t =1, the DM maximizes u;

� with time constraints, 0 < t < 1, the DM choices are still determined by u
though imperfectly so (there may be noise or maybe u is being learned). Specif-
ically, �rst gt � u-dominated alternatives are excluded, the remaining ties are
then broken on argmaxA gt � u by randomizing through 't which is, in turn, an
increasing transformation of u once restricted to argmaxA gt � u.
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In sum, under time constraints, u still governs imperfectly both the selection of
possible alternatives and the tie breaking among them.
Next we characterize softmax rules, a very important example of consistent psy-

chometric functions, widely used in �elds that range from machine learning to neuro-
science.15

Theorem 9 Let X be countable. The following conditions are equivalent:

(i) p is a coherent, consistent, continuous, and bounded psychometric with full sup-
port;

(ii) there exists a utility function u : X ! R such that

pt (a;A) =

8>>>>>>><>>>>>>>:

1

jAj if t = 0

etu(a)P
b2A e

tu(b)
if t 2 (0;1)

1

jargmaxA uj
�a (argmaxA u) if t =1

(9)

for all A 2 A and all a 2 A.

In this case, u is unique up to an additive constant.

Inspection of the proof shows that, if X is uncountable, then the result remains
true if and only if the assumption that p is separable is added to point 1.

A Appendix

The class B denotes a collection of non-empty subsets of X that includes all �nite sets,
that is, A � B. In Section 2.3, for example, B is the collection of all non-empty �nite
sets as well as all the budget sets. We denote by A and B generic elements of B. Let
p : B ! �(X) be a consistent random choice rule, that is, p (�; A) 2 �(A) for all
A 2 B and

p (a;B) = p (a;A) p (A;B) 8a 2 A � B (10)

By �p : B � X, we denote the support correspondence. Note that �p (B) 2 A for all
B 2 B. Given B 2 B, for ease of notation, we might alternatively denote by ~B the
support of p (�; B). By (10), p (a;B) = p

�
a; ~B

�
for all a 2 ~B. In particular, given

C 2 B such that C � B,
p (C;B) = p

�
C \ ~B; ~B

�
(11)

15See, e.g., Sutton and Barto [18], Vermorel and Mohri [19], Soltani and Wang [17]. The term
softmax is due to Bridle [6].
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Lemma 10 Let A � B with A;B 2 B. The following statements are true:

1. A \ ~B = ~A \ ~B and p (A;B) = p
�
~A \ ~B; ~B

�
;

2. p (A;B) > 0 if and only if A \ ~B = ~A.

Proof 1. By de�nition of ~A, ~A \ ~B � A \ ~B. Viceversa, consider a 2 A \ ~B. By
contradiction, assume that a =2 ~A \ ~B. This implies that a =2 ~A, that is, p (a;A) = 0.
By (10), we can conclude that p (a;B) = 0, that is, a =2 ~B a contradiction with
a 2 A \ ~B. We conclude that A \ ~B � ~A \ ~B, proving the equality between the two
sets. Moreover, by de�nition and since p (a;B) = p

�
a; ~B

�
for all a 2 ~B, we have that

p (A;B) =
X
a2A\ ~B

p (a;B) =
X
a2A\ ~B

p
�
a; ~B

�
=
X
a2 ~A\ ~B

p
�
a; ~B

�
= p

�
~A \ ~B; ~B

�
2. By (10), p (a;B) = p (a;A) p (A;B) for all a 2 A. This implies that if p (A;B) >

0 and a 2 A, then p (a;B) > 0 if and only if p (a;A) > 0. It follows that A \ ~B = ~A.
As to the converse, assume that A \ ~B = ~A. Viceversa, since A; ~A 6= ;, if A \ ~B = ~A,
then there exists a 2 A which belongs to ~B. We can conclude that p (a;B) > 0, that
is, p (A;B) > 0. �

Let f : X ! V be a function that takes values in a vector space V . It can be
extended to B by de�ning � : B ! V as the average � (B) =

P
a2 ~B f (a) p (a;B) of f

with respect to p. Since p (a;B) = p
�
a; ~B

�
for all a 2 ~B and �p (B) = �p

�
~B
�
, we

have that � (B) = �( ~B) for all B 2 B.

Proposition 11 If the sets fBigni=1 � B are pairwise disjoint and B =
n[
i=1

Bi 2 B,

then

� (B) =

nX
i=1

p (Bi; B)� (Bi)

Proof By Lemma 10 and since Bi � B, it follows Bi \ ~B = ~Bi \ ~B 2 A for all
i 2 f1; :::; ng. This implies that:16 (a) ~Bi \ ~B are pairwise disjoint and (b) 

n[
i=1

~Bi

!
\ ~B =

n[
i=1

�
~Bi \ ~B

�
=

n[
i=1

�
Bi \ ~B

�
=

 
n[
i=1

Bi

!
\ ~B = B \ ~B = ~B

Let I =
n
i : Bi \ ~B 6= ;

o
. By the previous equality, I is not empty. On the one hand,

by Lemma 10 and since p (Bi; B) > 0 for all i 2 I, we have that Bi \ ~B = ~Bi for all
i 2 I. On the other hand, if i =2 I, then Bi \ ~B = ;, yielding that p (Bi; B) = 0 for all
16To ease notation, we write ~Bi in place of fBi.
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i 62 I. Thus, if i 62 I, there is no a 2 Bi such that p (a;B) > 0. Moreover, by (11), we
can conclude that for each i 2 I

0 < p (Bi; B) = p
�
Bi \ ~B; ~B

�
= p

�
~Bi \ ~B; ~B

�
and by consistency and since ~B � ~Bi \ ~B = ~Bi = Bi \ ~B 6= ; and ~Bi \ ~B 2 A for all
i 2 I, we have that

p
�
a; ~B

�
= p

�
a; ~Bi \ ~B

�
p
�
~Bi \ ~B; ~B

�
= p

�
a; ~Bi

�
p
�
~Bi \ ~B; ~B

�
for all a 2 ~Bi \ ~B = ~Bi and for all i 2 I. By Lemma 10 and since the elements ofn
~Bi \ ~B

o
i2I
are non-empty, pairwise disjoint, and �nite, we have

� (B) = �
�
~B
�
=
X
a2 ~B

f (a) p
�
a; ~B

�
=

X
a2

n[
i=1

( ~Bi\ ~B)

f (a) p
�
a; ~B

�

=
X

a2
[
i2I

( ~Bi\ ~B)

f (a) p
�
a; ~B

�

=
X
i2I

X
a2 ~Bi\ ~B

f (a) p
�
a; ~B

�
=
X
i2I

X
a2 ~Bi

f (a) p
�
a; ~B

�
=

X
i2I

X
a2 ~Bi

f (a) p
�
a; ~Bi

�
p
�
~Bi \ ~B; ~B

�
=

X
i2I
p
�
~Bi \ ~B; ~B

�X
a2 ~Bi

f (a) p
�
a; ~Bi

�
=
X
i2I
p
�
~Bi \ ~B; ~B

�X
a2 ~Bi

f (a) p (a;Bi)

=
X
i2I
p
�
Bi \ ~B; ~B

�
� (Bi) =

X
i2I
p
�
Bi \ ~B;B

�
� (Bi)

=

nX
i=1

p
�
Bi \ ~B;B

�
� (Bi) =

nX
i=1

p (Bi; B)� (Bi) ;

proving the statement. �

B Proofs

B.1 Atemporal setting

The main goal of this section is to prove Theorem 1. We start by introducing some
new notation and some preparatory result. Recall that for each a; b 2 X

p (a; b) = p (a; fa; bg) and r (a; b) =
p (a; b)

p (b; a)

12



Lemma 12 If p : A ! �(X) is a consistent random choice rule, then �p is optimal.

Proof Clearly, ; 6= �p (A) � A for all A 2 A. Let A;B 2 A such that A � B. Assume
that �p (B)\A 6= ;. We want to show that �p (B)\A = �p (A). Since p is consistent,
if a 2 �p (B) \ A, then 0 < p (a;B) = p (a;A) p (A;B). It follows that p (a;A) > 0,
that is, a 2 �p (A). Thus, �p (B) \ A � �p (A). As to the converse inclusion, let
a 2 �p (A) � A, that is, p (a;A) > 0. By contradiction, assume that a =2 �p (B), that
is, p (a;B) = 0. Since p is consistent, we then have 0 = p (a;B) = p (a;A) p (A;B).
Since p (a;A) > 0, this implies that p (A;B) = 0, that is, �p (B) \ A = ;. This
contradicts �p (B)\A 6= ;, proving the opposite inclusion and completing the proof.�

Proof of Theorem 1 �If�. Let p be given by (4) with � optimal and ' : X ! (0;1).
Since ' is strictly positive and � a choice correspondence, p is a well de�ned random
choice rule. Let A;B 2 A such that A � B and a 2 A. We have two cases:

1. � (B)\A 6= ;. Since � is optimal, � (B)\A = � (A). On the one hand, by (4), if
a 2 � (A), then a 2 � (B) and p (a;A) = ' (a) =

P
b2�(A) ' (b). We can conclude

that

p (a;B) =
' (a)P

b2�(B) ' (b)
=

' (a)P
b2�(A) ' (b)

P
b2�(B)\A ' (b)P
b2�(B) ' (b)

= p (a;A) p (A;B)

On the other hand, if a =2 � (A), we have that a 2 An� (B), so p (a;A) = 0 =

p (a;B). In both cases (1) holds.

2. � (B) \ A = ;. It follows that a =2 � (B) and p (A;B) = 0 = p (a;B). Again, (1)
holds.

Cases (i) and (ii) prove that p is consistent.

�Only if�. Let p : A ! �(X) be a consistent random choice rule and set

a % b () a 2 �p (fa; bg)

By Lemma 12, �p is optimal. Since �p is optimal, % is a weak order and

a % b () p (a; b) > 0

a � b () p (a; b) = 1

a � b () p (a; b) 2 (0; 1)

By [2] and since �p is optimal, observe that

�p (A) = fa 2 A : a % b 8b 2 Ag 8A 2 A (12)

13



Let fXi : i 2 Ig be the family of all equivalence classes of X with respect to �. Choose
ai 2 Xi for all i 2 I. De�ne ' : X ! (0;1) to be such that

' (x) = r (x; ai) =
p (x; ai)

p (ai; x)
8x 2 Xi;8i 2 I (13)

Consider i 2 I and let x � ai, we have that p (x; ai) ; p (ai; x) 2 (0; 1). Since i and x
were arbitrarily chosen, it follows that ' is well de�ned. By (12), we have that

�p (S) = S 8S 2 A such that S � Xi for some i 2 I (14)

This implies that for each S 2 A such that S � Xi and for each a; b 2 S

p (a; S) = p (a; b) p (fa; bg ; S) > 0
p (b; S) = p (b; a) p (fa; bg ; S) > 0

yielding that
p (a; S)

p (b; S)
=
p (a; b)

p (b; a)
= r (a; b) (15)

Next, consider a; b 2 X such that a � b. We have that there exists i 2 I such that
a � b � ai. By consistency and de�nition of ', we can conclude that

p (a; fa; b; aig) = p (a; ai) p (fa; aig ; fa; b; aig) =
p (a; ai)

p (ai; a)
p (ai; a) p (fa; aig ; fa; b; aig)

=
p (a; ai)

p (ai; a)
p (ai; fa; b; aig) = ' (a) p (ai; fa; b; aig)

p (b; fa; b; aig) = p (b; ai) p (fb; aig ; fa; b; aig) =
p (b; ai)

p (ai; b)
p (ai; b) p (fb; aig ; fa; b; aig)

=
p (b; ai)

p (ai; b)
p (ai; fa; b; aig) = ' (b) p (ai; fa; b; aig)

By (14), we have that p (ai; fa; b; aig) > 0 and p (b; fa; b; aig) > 0. By applying (15)
twice, we can conclude that

p (a; S)

p (b; S)
= r (a; b) =

p (a; fa; b; aig)
p (b; fa; b; aig)

=
' (a)

' (b)
8S 2 A such that a; b 2 S � Xi (16)

By consistency and since p (�p (A) ; A) = 1, we also have that

p (a;A) = p (a; �p (A)) p (�p (A) ; A) = p (a; �p (A)) 8a 2 �p (A)

We are ready to conclude our proof, that is, proving (4) where � = �p. We have two
cases:

1. a =2 �p (A). It trivially follows that p (a;A) = 0.

14



2. a 2 �p (A). By (12), all the elements in �p (A) are equivalent with respect to
% and therefore they are equivalent to some ai with i 2 I. It follows that
�p (A) [ faig 2 A and it is such that �p (A) [ faig � Xi. By (14), we have that
�p (�p (A) [ faig) = �p (A)[faig. By consistency and (15) and since a 2 �p (A),
we can conclude that

p (a;A) = p (a; �p (A)) =
p (a; �p (A) [ faig)

p (�p (A) ; �p (A) [ faig)
=

p(a;�p(A)[faig)
p(ai;�p(A)[faig)

p(�p(A);�p(A)[faig)
p(ai;�p(A)[faig)

=
r (a; ai)P

b2�p(A)
p(b;�p(A)[faig)
p(ai;�p(A)[faig)

=
r (a; ai)P

b2�p(A) r (b; ai)
=

' (a)P
b2�p(A) ' (b)

as wanted.

As for the uniqueness part, in both cases, we can consider p as in (4). It is immediate
to conclude that �p = �. �

Proof of Corollary 2 Before entering the proof details note that, by de�nition and
since p is uniform,

a � b () p (a; b) > p (b; a) () p (a; b) = 1

a � b () p (a; b) = p (b; a) () p (a; b) =
1

2
a � b () b � a () p (b; a) = 1 () p (a; b) = 0

In particular, a % b if and only if a 2 �p (fa; bg).17

By Theorem 1, if p is consistent, then �p is optimal. Conversely, if p is uniform and
�p is optimal, then ' = 1X is strictly positive, � = �p is optimal, and, for each A 2 A,

p (a;A) =

(
'(a)P

b2�(A) '(b)
if a 2 � (A)

0 else

therefore, by Theorem 1 again, p is consistent. Since in both cases, �p = � is consistent,
by [2], it follows that % is a weak order and

�p (A) = fa 2 A : a % b 8b 2 Ag 8A 2 A

holds. �

B.2 Consumer theory

Before starting the proofs, recall that X = Rn++ and B is the collection of all non-empty
�nite sets and all the possible budget sets. In this section, by being consistent with the
standard microeconomic literature, we will tend to denote the alternatives in X (that
is, bundles) by x and y instead of a and b. We need two ancillary facts:

17In the words of Arrow, % is the binary relation generated by �p.
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Proposition 13 Let d be a stochastic demand and let p : B ! �(X) be a consistent
random choice rule that generates d. The following statements are true:

1. If % is the weak order that rationalizes �p restricted to A, then

�p (B) = fx 2 B : x % y 8y 2 Bg 8B 2 B (17)

2. If x 2 �p (B (q; w)) and p is stochastically monotone, then for each x 2 �p (B (q; w))

q � x = w

Proof 1. Consider the random choice rule p restricted to A. Construct % as in
the proof of Theorem 1. Let B 2 B. By the proof of Theorem 1, if B 2 A, then
(17) holds. If B 62 A, then B = B (q; w) for some (q; w) 2 Rn++ � R++. As before,
de�ne ~B = �p (B). We next prove (17) by proving both inclusions. By contradiction,
assume that �p (B) 6� fx 2 B : x % y 8y 2 Bg. Since �p (B) � B, it follows that
there exists x 2 B such that x � y for some y 2 �p (B). Since ~B = �p (B) 2 A and

p
�
y; ~B

�
= p (y;B) for all y 2 ~B, we have that ~B = �p (B) = �p

�
~B
�
. By Theorem 1,

we can conclude that all the elements in �p
�
~B
�
are indi¤erent according to the weak

order %, thus, x � y for all y 2 ~B, as well as x 62 ~B. By Theorem 1, if we de�ne
A = ~B [ fxg � B, then A 2 A, p (x;A) = 1, and p (A;B) = 1. By consistency, this
implies that

p (x;B) = p (x;A) p (A;B) = 1

a contradiction with x 62 ~B, proving the � inclusion and that fx 2 B : x % y 8y 2 Bg
is non-empty. Viceversa, assume that �x 2 B is such that �x % y for all y 2 B.
De�ne A = ~B [ f�xg 2 A. By the previous part of the proof, we have that all the
elements of A are indi¤erent according to %. By Theorem 1 and consistency and since
1 � p

�
~B;B

�
� p (A;B) � 1, we have that

p (�x;B) = p (�x;A) p (A;B) = p (�x;A) > 0

proving that �x 2 ~B and the opposite inclusion.

2. By contradiction and since x 2 �p (B (q; w)) � B (q; w), assume that q �x < w. It
follows that there exists y 2 B (q; w) such that x� y and y 2 B (q; w). By consistency
and stochastic monotonicity and since x 2 �p (B (q; w)) and x 2 fx; yg � B (q; w), it
follows that

0 < p (x;B (q; w)) = p (x; fx; yg) p (fx; yg ; B (q; w)) = 0

a contradiction. �
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Proof of Lemma 4 In Proposition 11, de�ne f : X ! R by f (x) = q �x for all x 2 X.
Given a stochastic demand d, let p be such that d (q; w) (�) = p (�; B (q; w)). Set also
A = B (q; w) and B = B (q; w0). Clearly, we have that A � B and A;B 2 B. By
Lemma 10, it follows A \ ~B = ~A \ ~B. Note that B1 = ~A \ ~B and B2 = ~Bn ~A belong
to A � B (provided they are not empty), are pairwise disjoint, and ~B = B1 [B2 2 A.
Moreover, B2 � Ac. Otherwise, there would exist x 2 B2 \ A. Thus, we would have
that x 2 B2 and x 2 A. By consistency, we could conclude that x 2 ~B, x 62 ~A, and
x 2 A � B

0 < p (x;B) = p (x;A) p (A;B) = 0

a contradiction. Observe also that

c (q; w0) =
X

x2B(q;w0)

(q � x) d (q; w0) (x) =
X

x2B(q;w0)

(q � x) p (x;B (q; w0)) (18)

=
X

x2B̂(q;w0)

(q � x) p (x;B (q; w0)) = � (B (q; w0)) = � (B) (19)

Similarly, we have that c (q; w) = � (A) = �
�
~A
�
. Finally, since B2 � Ac, if B2 6= ;,

then we also have that ~B2 � B2 � Ac

� (B2) =
X
x2 ~B2

(q � x) p (x;B2) =
X

x2 ~B2\Ac
(q � x) p (x;B2)

> w
X

x2 ~B2\Ac
p (x;B2) = w

X
x2 ~B2

p (x;B2) = w

By Proposition 11 and since B1 and B2 are disjoint, if B1; B2 6= ;, then we can conclude
that

c (q; w0) = � (B) = �
�
~B
�
= � (B1 [B2) = p

�
B1; ~B

�
� (B1) + p

�
B2; ~B

�
� (B2) (20)

We have two cases:

1. p (A;B) > 0. By Lemma 10, it follows that B1 = ~A \ ~B = ~A 6= ;. On the one
hand, by (20), if B2 6= ;, then we have that

c (q; w0) = � (B) = �
�
~B
�
= � (B1 [B2) = p

�
B1; ~B

�
� (B1) + p

�
B2; ~B

�
� (B2)

= p
�
B1; ~B

�
�
�
~A
�
+ p

�
B2; ~B

�
� (B2) � p

�
B1; ~B

�
c (q; w) + p

�
B2; ~B

�
w

� p
�
B1; ~B

�
c (q; w) + p

�
B2; ~B

�
c (q; w) = c (q; w)

On the other hand, if B2 = ;, then ~A = ~A\ ~B = B1 = B1[B2 = ~B. This implies
that

c (q; w0) = � (B) = �
�
~B
�
= �

�
~A
�
= � (A) = c (q; w)
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2. p (A;B) = 0. By (11) and Lemma 10, it follows that

p (A;B) = p
�
A \ ~B; ~B

�
= p

�
~A \ ~B; ~B

�
= p

�
B1; ~B

�
= 0

that is, B1 = ; and ; 6= ~B = B2 � Ac, which immediately yields that

c (q; w0) = � (B) = �
�
~B
�
= � (B2) > w � c (q; w)

Points 1 and 2 prove the main statement.

Next, let us assume that p is stochastically monotone. Consider @+B (q; w) =
fx 2 B (q; w) : q � x = wg. We next show by contradiction that supp d (q; w) � @+B (q; w).
By contradiction, assume that there exists x 2 supp d (q; w) such that q �x < w. Then,
there exists z 2 B (q; w) such that such that x� z. Since, by stochastic monotonicity,
p (x; fx; zg) = 0, we have that

0 < d (q; w) (x) = p (x;B (q; w)) = p (x; fx; zg) p (fx; zg ; B (q; w)) = 0

contradicting x 2 supp d (q; w). This yields that supp d (q; w) � @+B (q; w). By (18),
this yields that c (q; w) = w. The rest of the statement trivially follows. �

Proof of Lemma 5 Clearly, since q < q0, B (q0; w) � B (q; w). De�ne A = B (q0; w)
and B = B (q; w). In Proposition 11, let f (x) = x. Given a stochastic demand d, let
p be such that d (q; w) (�) = p (�; B (q; w)). Set also A = B (q0; w) and B = B (q; w).
Clearly, we have that A � B and A;B 2 B. By Lemma 10, it follows A \ ~B = ~A \ ~B.
Note that B1 = ~A\ ~B and B2 = ~Bn ~A belong to A � B (provided they are not empty),
are pairwise disjoint, and ~B = B1 [ B2. Moreover, B2 � Ac. Otherwise, there would
exist x 2 B2 \ A. Thus, we would have that x 2 B2 and x 2 A. By consistency, we
could conclude that x 2 ~B, x 62 ~A, and x 2 A � B

0 < p (x;B) = p (x;A) p (A;B) = 0

a contradiction. Observe that

�d (q; w) =
X

x2B(q;w)

xd (q; w) (x) =
X

x2B(q;w)

xp (x;B (q; w))

=
X

x2B̂(q;w)

xp (x;B (q; w)) = � (B (q; w)) = � (B)

Similarly, we have that �d (q0; w) = � (A) = �
�
~A
�
. Finally, since B2 � Ac, if B2 6= ;,

then we also have that ~B2 � B2 � Ac

� (B2) =
X
x2 ~B2

xp (x;B2) =
X

x2 ~B2\Ac
xp (x;B2) and q0�� (B2) =

X
x2 ~B2\Ac

(q0 � x) p (x;B2) > w
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By Proposition 11 and since B1 and B2 are disjoint, if B1; B2 6= ;, then we have that

�d (q; w) = � (B) = �
�
~B
�
= � (B1 [B2) = p

�
B1; ~B

�
� (B1) + p

�
B2; ~B

�
� (B2) (21)

By (11) and Lemma 10 and since A � B, recall that

p (A;B) = p
�
A \ ~B; ~B

�
= p

�
~A \ ~B; ~B

�
= p

�
B1; ~B

�
(22)

By contradiction, assume that �d (q0; w) > �d (q; w). We have three cases:

1. p
�
B2; ~B

�
= 0. This implies that p

�
B1; ~B

�
= 1. By Lemma 10 and (22), it

follows that B1 = ~A \ ~B = ~A as well as B2 = ;, that is, ~B = B1 = ~A. We can
conclude that

�d (q; w) = � (B) = �
�
~B
�
= �

�
~A
�
= �d (q0; w)

a contradiction.

2. 1 > p
�
B2; ~B

�
> 0. This implies that 1 > p

�
B1; ~B

�
> 0. In particular, we have

that B1; B2 6= ;. By Lemma 10 and (22), it follows that B1 = ~A \ ~B = ~A. By
(21), we have that

�d (q; w) = p
�
B1; ~B

�
� (B1) + p

�
B2; ~B

�
� (B2)

= p
�
B1; ~B

�
�
�
~A
�
+ p

�
B2; ~B

�
� (B2)

= p
�
B1; ~B

�
�d (q0; w) + p

�
B2; ~B

�
� (B2)

This yields that

0 > �d (q; w)� �d (q0; w) = p
�
B2; ~B

�24X
x2 ~B2

xp (x;B2)� �d (q0; w)

35
that is,

0 >
X
x2 ~B2

xp (x;B2)� �d (q0; w) =) �d (q0; w) >
X
x2 ~B2

xp (x;B2)

In turn, since ~B2 � B2 � Ac, this yields that

w � q0 � �d (q0; w) � q0 �

0@X
x2 ~B2

xp (x;B2)

1A =
X

x2 ~B2\Ac
(q0 � x) p (x;B2) > w

a contradiction.
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3. p
�
B2; ~B

�
= 1. This implies that p

�
B1; ~B

�
= 0. In particular, we have that

B1 = ; and ; 6= ~B = B2. This implies that

�d (q; w) = � (B) = �
�
~B
�
= � (B2)

yielding that

w � q0 � �d (q0; w) � q0 � �d (q; w) = q0 � � (B2) > w

a contradiction.

Points 1, 2, and 3 prove the statement. �

Proof of Lemma 6 We �rst prove an ancillary claim:

Claim Let �B = B (�q; �w) and B̂ = B (q̂; ŵ). If p
�
�B \ B̂; B̂

�
= 0, then

�q � �d (q̂; ŵ) > �w

Proof of the Claim By assumption, the support of p
�
�; B̂
�
is contained in B̂ \ �Bc, in

particular, êB � �Bc. It follows that

�q � �d (q̂; ŵ) =
X
x2 êB

(�q � x) p
�
x; B̂

�
>
X
x2 êB

�wp
�
x; B̂

�
= �w

proving the claim. �
Consider (q; w) and (q0; w0) in Rn++�R++. De�ne B = B (q; w) and B0 = B (q0; w0).

By the previous claim and setting �B = B0 and B̂ = B, it follows that p (B0 \B;B) > 0.
Otherwise, we would have that w0 < q0 � �d (q; w) = c (q0; w0) � w0, a contradiction. Since
p (B0 \B;B) > 0, denote by �x 2 �p (B)\B0. By Proposition 13 and since �x 2 �p (B),
we have that �x % y for all y 2 B. We have two cases:

1. p (B0 \B;B0) = 0. By the previous claim and setting �B = B and B̂ = B0, it
follows that q � �d (q0; w0) > w.

2. p (B0 \B;B0) > 0. This implies that

q � �d (q0; w0) =
X
x2fB0

(q � x) p (x;B0) =
X

x2fB0\B
(q � x) p (x;B0)+

X
x2fB0\Bc

(q � x) p (x;B0)

(23)
Given x 2fB0, we have two subcases:
(a) x 2fB0 \Bc. In this case, q � x > w.
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(b) x 2 fB0 \ B = �p (B0) \ B. By Proposition 13, it follows that x % y for all
y 2 B0. In particular, since �x 2 B0, this implies that x % �x. At the same
time, since �x 2 B is such that �x % y for all y 2 B, we have that x % y for
all y 2 B. By Proposition 13 and since x 2 B, this yields that x 2 �p (B).
By stochastic monotonicity, we can conclude that q � x = w.

To sum up, by (23), we can conclude that

q � �d (q0; w0) �
X

x2fB0\B
wp (x;B0) +

X
x2fB0\Bc

wp (x;B0) = w

In both cases, we have that

(q0 � q) �
�
�d (q0; w0)� �d (q; w)

�
= q0 �

�
�d (q0; w0)� �d (q; w)

�
� q �

�
�d (q0; w0)� �d (q; w)

�
= q0 � �d (q0; w0)� q0 � �d (q; w)� q �

�
�d (q0; w0)� �d (q; w)

�
= w0 � w0 + w � q � �d (q0; w0) = w � q � �d (q0; w0)

By points 1 and 2, this implies the main statement. �

Proof of the Law of Demand Consider an initial price and wealth pair (q; w). Let
q0 2 Rn++ be such that q0k > qk and q0i = qi for all i 6= k. Let w0 = w0 (q0) be such that
w0 = q0 � �d (q; w) � q � �d (q; w) = w, since p is stochastically monotone. By Lemma 4
and since p is stochastically monotone, it follows q0 � �d (q; w) = w0 = c (q0; w0). In view
of Lemma 6, the di¤erence �d (q0; w0) � �d (q; w) quanti�es a substitution e¤ect on the
goods�average demand due only to the price change q0� q. This suggests the following
decomposition:

�d (q0; w)� �d (q; w) = �d (q0; w)� �d (q0; w0)| {z }
wealth e¤ect

+ �d (q0; w0)� �d (q; w)| {z }
substitution e¤ect

(24)

in which the r.h.s. accounts for, respectively, the wealth and substitution e¤ects on the
goods�demand. Note that the elements in (24) are vectors. Thus, the equality holds
componentwise. Since good k is normal and w � w0, we have

�dk (q
0; w) � �dk (q

0; w0) (25)

By Lemma 6 and the choice of q and q0 and q0 � �d (q; w) = w0 = c (q0; w0), we have that

(q0k � qk)
�
�dk (q

0; w0)� �dk (q; w)
�
= (q0 � q) �

�
�d (q0; w0)� �d (q; w)

�
� 0

Since q0k � qk > 0, it follows that �dk (q0; w0) � �dk (q; w) � 0. By (24) and (25), this
implies that

�dk (q
0; w)� �dk (q; w) =

�
�dk (q

0; w)� �dk (q
0; w0)

�
+
�
�dk (q

0; w0)� �dk (q; w)
�
� 0

proving the statement. Indeed, �dk (q0; w) � �dk (q; w) where in q0 only the price of k
increased, while the other prices did not change and wealth remained constant. �
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B.3 Temporal setting

Proof of Proposition 8 Assume (i) holds. By Corollary 2, the binary relation de�ned
on X by

x %1 y () p1 (x; y) � p1 (y; x)

is a weak order and, writing �t instead of �pt for all t 2 [0;1],

�1 (A) = fa 2 A : a %1 b for all b 2 Ag

for all A 2 A. Since X is countable, then there exists v1 : X ! R such that

x %1 y () v1 (x) � v1 (y)

and �1 (A) = argmaxA v1 for all A 2 A.
By Theorem 1, for each t 2 [0;1], �t is an optimal choice correspondence, therefore,

the binary relation de�ned on X by

x %t y () x 2 �t (fx; yg) () pt (x; y) > 0

is a weak order and

�t (A) = fa 2 A : a %t b for all b 2 Ag

for all A 2 A. Since X is countable, then there exists vt : X ! R such that

x %t y () vt (x) � vt (y)

and �t (A) = argmaxA vt for all A 2 A. Moreover, since p0 has full support, we can
assume v0 = 1X .
By Theorem 1, again, there exists a family of functions f't : X ! (0;1)gt2[0;1]

such that

pt (a;A) =

8<:
't (a)P

b2argmaxA vt 't (b)
if a 2 argmaxA vt

0 else

for each t 2 [0;1], each A 2 A, and each a 2 A. Moreover, since p0 and p1 are
uniform, we can assume '0 = '1 = 1X .
Next we show that, for each t 2 (0;1) and each A 2 A, v1 (x) � v1 (y) implies

vt (x) � vt (y) and, if x; y 2 argmaxA vt, also 't (x) � 't (y). Indeed, strict coherence
implies that

p1 (x; y) � p1 (y; x) =) pt (x; y) � pt (y; x)

therefore

v1 (x) � v1 (y) () p1 (x; y) � p1 (y; x) =) pt (x; y) � pt (y; x)
=) pt (x; y) > 0 () x %t y () vt (x) � vt (y)
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moreover, if x; y 2 argmaxA vt = �t (A), then

v1 (x) � v1 (y) =) pt (x; y) � pt (y; x) () pt (x; y) p (fx; yg ; A) � pt (y; x) p (fx; yg ; A)
() p (x;A) � p (y; A) () 't (x) � 't (y)

But also

� for t = 0, v1 (x) � v1 (y) implies v0 (x) = 1 � 1 = v0 (y) and, if x; y 2
argmaxA v0, also '0 (x) = 1 � 1 = 't (y).

� for t = 1, v1 (x) � v1 (y) implies v1 (x) � v1 (y) and, if x; y 2 argmaxA v1,
also '1 (x) = 1 � 1 = '1 (y).

Setting u = v1, g0 = 1u(X), and g1 = idu(X), and

gt (�) = vt (x) if � = u (x) 2 u (X)

for all t 2 (0;1), delivers (i). Indeed,

� u = v1 : X ! R is a function;

� g0 = 1u(X) and g1 = idu(X) are increasing and v0 = 1X = g0 � u, v1 = g1 � u;

� vt (x) = gt (u (x)) for all x 2 X and all t 2 (0;1), and gt is (well de�ned and)
increasing since v1 (x) � v1 (y) implies vt (x) � vt (y);

� f't : X ! (0;1)gt2[0;1] is a family of functions such that '0 = '1 = 1X ;

� for each t 2 [0;1], each A 2 A, each a 2 A, since vt = gt � u,

pt (a;A) =

8<:
't (a)P

b2argmaxA gt�u 't (b)
if a 2 argmaxA gt � u

0 else

moreover, if x; y 2 argmaxA gt � u and u (x) � u (y), it follows 't (x) � 't (y).

Conversely, assume (ii) holds.
Since, for each t 2 [0;1], 't : X ! (0;1) and �t = argmaxA gt � u is an optimal

choice correspondence, by Theorem 1, pt is consistent for all t 2 [0;1].
Since g0 = 1u(X) and '0 = 1X , then p0 is uniform and has full support.
Since g1 = idu(X) and '1 = 1X , then

p1 (a;A) =

8<:
1

jargmaxA uj
if a 2 argmaxA u

0 else

is uniform and in particular, p1 (a; b) � p1 (b; a) if and only if u (a) � u (b).
Given any t 2 (0;1), and any a; b 2 X, assume p1 (a; b) � p1 (b; a). Then

u (a) � u (b), and, since gt is increasing, therefore gt (u (a)) � gt (u (b)), so that
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� either argmaxfa;bg gt � u = fa; bg, then u (a) � u (b) implies 't (a) � 't (b),
whence pt (a; b) � pt (b; a);

� or argmaxfa;bg gt � u = fag, then pt (a; b) = 1 � 0 = pt (b; a).

This proves strict coherence and yields (i). �

Proof of Theorem 9 Assume (i) holds. Since p is consistent and continuous, if A � B
then, for all a 2 A,

p1 (a;B) = lim
t!1

pt (a;B) = lim
t!1

pt (a;A) pt (A;B) = p1 (a;A) p1 (A;B)

Then p1 is a uniform and consistent random choice rule. By Corollary 2, the binary
relation de�ned on X by

x % y () p1 (x; y) � p1 (y; x)

is a weak order and

�p1 (A) = fa 2 A : a % b for all b 2 Ag

for all A 2 A.
For each t 2 (0;1), coherence implies

x % y () p1 (x; y) � p1 (y; x) () pt (x; y) � pt (y; x)

Moreover, pt is consistent and has full support, therefore, for every A 2 A such that
x; y 2 A

pt (x;A) = pt (x; y) pt (fx; yg ; A)
pt (y; A) = pt (y; x) pt (fx; yg ; A)

therefore:

� x % y () pt (x; y) � pt (y; x) () pt (x;A) � pt (y; A);

� rt (x; y) = pt(x;A)
pt(y;A)

.

If X is countable, then there exists v : X ! R such that

x % y () v (x) � v (y)

Otherwise, let t be such that there exists a countable Ct � X realizing the separability
of p. Given any x; y 2 X, x � y () pt (x; fx; yg) > pt (y; fx; yg), but then, there
exists z 2 Ct such that pt (x; fx; y; zg) � pt (z; fx; y; zg) � pt (y; fx; y; zg), and so
x % z % y. This shows that Ct is a countable and �-order dense subset of X. Kreps
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[9, Theorem 3.5] guarantees that, also in this case, there exists v : X ! R such that
x % y () v (x) � v (y).
Summing up, given any t 2 (0;1] and any A 2 A, if x; y 2 A, then

x % y () v (a) � v (b) () pt (a;A) � pt (b; A) (26)

Now, �x any a; b 2 A 2 A and de�ne 'a;b : (0;1)! R by

'a;b (t) = rt (a; b) =
pt (a; b)

pt (b; a)
=
pt (a;A)

pt (b; A)
8t 2 (0;1)

The full support and continuity assumptions guarantee that 'a;b is well de�ned and
continuous. Next we show that

'a;b (t+ s) = 'a;b (t)'a;b (s) 8t; s 2 (0;1) (27)

Three cases have to be considered:

� If v (a) = v (b), then, by (26), 'a;b (t) = 1 for all t 2 (0;1), and (27) holds.

� If v (a) > v (b), then a � b and as discussed in the proof of Corollary 2, p1 (a; b) =
1 and p1 (b; a) = 0, then

lim
t!1

'a;b (t) =1

and 'a;b is unbounded above. Moreover, by boundedness of p, there existsM > 0

such that
��'a;b (t+ s)� 'a;b (t)'a;b (s)�� < M for all t; s 2 (0;1). Now, (0;1) is

a semigroup with respect to the addition +. Therefore, by Baker [3, Theorem 1],
(27) holds.18

� Else, v (a) < v (b), then the previous point shows

'b;a (t+ s) = 'b;a (t)'b;a (s) 8t; s 2 (0;1)

but then

'a;b (t+ s) =
pt+s (a; b)

pt+s (b; a)
=

1

'b;a (t+ s)
=

1

'b;a (t)'b;a (s)
= 'a;b (t)'a;b (s)

as wanted.

We conclude that the functional equation (27) holds, given any a; b 2 A. Continuity
of 'a;b implies that

'a;b (t) = e
h(a;b)t

for a unique h (a; b) 2 R (see, e.g., Aczel [1, Theorem 2.1.2.1, p.38]).

18Caveat: Baker writes the semigroup in multiplicative form, while we write it in additive form
because our operation is the usual addition of real numbers.
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Now �x some a� 2 X and de�ne u : X ! R by u (x) = h (x; a�). Fix any t 2 (0;1),
A 2 A, and a; b 2 A,

'a;b (t) =
pt (a;A)

pt (b; A)
=
pt (a; fa; b; a�g)
pt (b; fa; b; a�g)

=
pt (a; fa; b; a�g)
pt (a�; fa; b; a�g)

pt (a
�; fa; b; a�g)

pt (b; fa; b; a�g)

= 'a;a� (t)'a�;b (t) =
'a;a� (t)

'b;a� (t)
=
eh(a;a

�)t

eh(b;a�)t
=
eu(a)t

eu(b)t

hence, arbitrarily choosing c 2 A,

pt (a;A) =
pt (a;A)P
b2A pt (b; A)

=

pt(a;A)
pt(c;A)P
b2A

pt(b;A)
pt(c;A)

=
eu(a)t

eu(c)tP
b2A

eu(b)t

eu(c)t

=
etu(a)P
b2A e

tu(b)

Moreover, for all x; y 2 X

x % y () v (x) � v (y) () p1 (x; y) � p1 (y; x)

() eu(x)

eu(x) + eu(y)
� eu(y)

eu(x) + eu(y)
() u (x) � u (y)

but then, for every A 2 A,

�p1 (A) = fa 2 A : u (a) � u (b) for all b 2 Ag = argmaxA u

and, for every a 2 A,

p1 (a;A) =
1

j�p1 (A)j
�a (�p1 (A)) =

1

jargmaxA uj
�a

�
argmax

A
u
�

This proves (ii) holds, while the converse is trivial.
As to uniqueness of u, notice that, if �u represents p in the sense of point 2, then

eu(a)t

eu(b)t
= rt (a; b) =

e�u(a)t

e�u(b)t

for all t 2 (0;1) and all a; b 2 X. Therefore t (u (a)� u (b)) = t (�u (a)� �u (b)) for all
for all t 2 (0;1) and all a; b 2 X. �
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