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Abstract

We extend the epistemic analysis of dynamic games of Battigalli
and Siniscalchi (1999, 2002, 2007) from finite dynamic games to all
simple games, that is, finite and infinite-horizon games with finite
action sets at non-terminal stages and compact action sets at terminal
stages. We prove a generalization of Lubin’s (1974) extension result to
deal with conditional probability systems and strong belief. With this,
we can provide a short proof of the following result: in every simple
dynamic game, strong rationalizability characterizes the behavioral
implications of rationality and common strong belief in rationality.

KEYWORDS: Epistemic game theory, simple infinite dynamic game,
strong belief, strong rationalizability.

1 Introduction

Battigalli and Siniscalchi (henceforth BS) put forward the construction of a
“canonical” type structure of all hierarchies of conditional probability sys-

*We thank Roberto Corrao, Enrico De Magistris and Giacomo Lanzani for careful proof
reading and Emiliano Catonini and Nicodemo De Vito for helpful suggestions. Pierpaolo
Battigalli gratefully acknowledges financial support from the European Research Council
(grant 324219).



tems (CPS’s) that satisfy coherence and common full belief in coherence (BS
1999). This construction applies to a large class of simple infinite dynamic
games with compact metric sets of strategies, that is, finite and infinite-
horizon multistage games with finite action sets at non-terminal stages and
compact action sets at terminal stages (see Battigalli 2003). Simple games
include the infinite discounted repetitions of finite stage games, and all finite-
horizon games where feasible action sets are compact subsets of R™ in the
last stage and finite in previous stages. Thus, for all such games one can
construct a corresponding canonical structure that is complete (belief maps
are onto), compact, and continuous.

BS (2002) introduces the notion of “strong belief” to provide an epistemic
foundation of solution concepts with a forward-induction flavor: A CPS p (or
a type t; with such CPS) strongly believes an event E if 1 (E|C) = 1 for each
conditioning event C' that does not contradict E. BS (2002) shows that, in
a complete compact and continuous type structure based on a finite game
I' (hence, in the canonical structure based on T'), strong rationalizability’
characterizes the behavioral implications of rationality and common strong
belief in rationality (RCSBR). The solution can be computed by maximal
iterated deletion of conditionally dominated strategies (Shimoji and Watson,
1998). In generic finite games with complete and perfect information RCSBR
implies the backward induction path, although not (always) the backward
induction strategies.? Furthermore, BS (2002, 2003, 2007) show that similar
epistemic assumptions that take as transparent some restrictions on players’
beliefs justify the iterated intuitive criterion in signaling games, and similar
equilibrium refinements in more general games.?

This leaves a gap between the class of games for which BS could pro-
vide epistemic justifications of solution concepts—i.e., finite games—and the
class of simple dynamic games for which a complete compact and continuous
type structure can be constructed, as in BS (1999). We point out that many

'In finite games of complete information without chance moves, strong rationalizability
coincides with (the correlated version of) “extensive form rationalizability,” a solution
concept put forward by Pearce (1984) and further analyzed and clarified by Battigalli
(1996, 1997). Battigalli (2003) coined the term “strong rationalizability” to distinguish it
from other legitimate, but weaker notions of rationalizability for dynamic games.

2See BS (2002) and Battigalli (1997).

30f course, the general epistemic framework of BS allows for the analysis of differ-
ent epistemic assumptions not involving foward-induction reasoning, as illustrated in BS
(1999). See Battigalli et al. (2016).



interesting applications of game theory consist of such simple, but infinite
dynamic games. Here we fill this gap. As a preliminary step we prove a
generalization of Lubin’s (1974) extension result’ (originally given for prob-
ability measures, here applied to CPS’s): For every decreasing sequence of
events Iy, Fs, ... in the Polish state space X xT" and every CPS v on X that
strongly believes each projy E,,, there exists a CPS p on X xT" that strongly
believes each FE,, and such that v is the marginal of y. This technical lemma
allows us to provide streamlined proofs of results in epistemic game theory
for simple dynamic games. In particular, we prove the following:

Characterization result Fix a simple dynamic game I with complete
or incomplete information and, for each player i, a closed set A; of first-
order CPS’s representing some given transparent restrictions of i’s beliefs; the
profile A = (A,;) of restricted sets of first-order beliefs gives raise to a solution
procedure called strong A-rationalizability.® Let [A] denote the event that
such belief restrictions hold; then, the behavioral implications of m-mutual
strong belief in rationality and [A] are characterized by m + 1 steps of strong
A-rationalizability, and the behavioral implications of common strong belief
in rationality and [A] are characterized by strong A-rationalizability.

Related Literature. We refer to Dekel and Siniscalchi (2015) for an up-
to-date rigorous survey on epistemic game theory that adopts the approach
of this paper. Here we focus on earlier characterization results similar to
the one stated above. We already cited most of the literature on dynamic
epistemic game theory we build upon. The first characterization result for
type structures where beliefs are CPS’s is proved by Ben Porath (1997): In
generic finite games with complete and perfect information, a strategy is con-
sistent with rationality and common initial belief in rationality if and only
if it survives one round of (maximal) deletion of weakly dominated strate-
gies followed by the iterated deletion of strictly dominated strategies. Since
initial belief is a monotone operator, Ben Porath can prove his result restrict-
ing attention to finite (hence, incomplete) type structures. As argued by BS

4 Actually, the extension result of Lubin (1974) follows from Lemma 2.2 of Varadarajan
(1963).

®See Battigalli and Guaitoli (1997), Battigalli (2003, 2006) and BS (2003). BS (2007),
Battigalli and Friedenberg (2012), and Battigalli and Prestipino (2013) relate strong A-
rationalizability to the epistemic analysis of forward-induction reasoning.

6See also the preliminary draft of the treatise on epistemic game theory by Battigalli
et al. (2016).



(2002), this standard line of proof cannot be applied to epistemic assump-
tions featuring strong belief, which is not monotone; see also the discussion
in Battigalli and Friedenberg (2012) and Battigalli and Prestipino (2013).
Tan and Werlang (1988) consider the canonical type structure based on any
compact continuous game with simultaneous moves and state that rational-
izability characterizes the behavioral implications of rationality and common
belief in rationality; but they prove only one direction of the characteriza-
tion result, the one from the epistemic assumptions to the solution concept.
The other—more difficult—direction is proved by Arieli (2010) for continu-
ous games with simultaneous moves and Polish action spaces. Arieli’s proof
relies on Lubin’s extension lemma. Our proof is inspired by his. A version of
our technical lemma and characterization result is proved by Tebaldi (2011).”

The rest of the paper is structured as follows. Section 2 introduces pre-
liminary mathematical concepts and results. Section 3 presents our gener-
alization of Lubin’s extension result for conditional probability systems and
a sketch of proof for a special case that holds in simple dynamic games.
Section 4 presents our epistemic analysis of simple dynamic games, a short
proof of the main game theoretic results (Theorem 6 and Corollary 1), and
two illustrative economic applications. Section 5 discusses some extensions
and generalizations. All proofs but those of Theorem 6 and Corollary 1 are
collected in the Appendix.

2 Preliminaries

Following BS (1999), we first carry out a preliminary analysis within an ab-
stract probabilistic framework. Consider an individual who faces primitive
uncertainty about the true state z in some Polish space X. Given any topo-
logical space Y (possibly, but not necessarily Y = X), we denote by B(Y') its
Borel sigma-algebra, whose elements are called events (in V). We endow the
primitive uncertainty space X with a countable collection C C B(X) of Borel
subsets of X, which are the observables, or conditioning events. Presently,
we only require the elements of C to be measurable, although the pair (X, C)
will usually satisfy stronger conditions when constructed in the context of a
game.

TA master thesis supervised by P. Battigalli.



Besides the primitive uncertainty space, we also posit a Polish space T to
be interpreted as the set of possible hierarchies of beliefs, or types, or profiles
of types, and we regard the Polish space X x T as the relevant uncertainty
space. From now on, we reserve the name event for the Borel subsets of
X x T. We assume that the individual can only obtain direct information
about X, that is, the set of observable events is the collection of “cylinders”
of the form C' x T for some C' in C, denoted by C x T. There is an obvious
identification of the elements of C with the elements of C x T', and they are
all referred to as conditioning events. By the same identification, we can
write, with a small abuse of notation, (X x T',C) for the pair (X x T,C x T).
Furthermore, (X,C) can be identified with (X x T,C x T') if T' is a singleton.

Conditional Probability Systems and Strong Belief. For every topo-
logical space Y, let A(Y') denote the set of probability measures on B(Y).
We consider arrays of probability measures on Y indexed by elements of a
collection C C B(Y): i.e., = (uc)cec € [A(Y)]C. When we want to stress
the interpretation of uc as a conditional probability given C', we write it as

p(-C).

Definition 1. Let Y be a Polish space and C be a countable collection of
Borel subsets of Y. A conditional probability system (CPS) on (Y,C) is an
array of probability measures (1) cec in [A(Y)]¢ such that, for all E in B(Y),
and C, D in C, puc(C) =1 and

ECDCC= puc(E)=pp(E)uc(D). (1)

Using the conditional probability notation, (1) can be written as follows:
if EC D CC(C then

1 (E]C)
u(D|C)

Recall the setting introduced in the previous subsection, where condition-
ing events C' C X concern primitive uncertainty and correspond to cylinders

C x T in the overall uncertainty space ¥ = X x T. Then, beliefs of the
players are given by CPS’s on (X x T,C):

Remark 1. Let C C B(X) be countable; a CPS on (X x 7', C) is an element
of [A(X x T)|¢, say u, that satisfies the following conditions: puc(C xT) =1,
and

p(DIC) > 0= p(E|D) =

pe(E) = pp(E) pe(D x T)
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forall £in B(X xT) and C', D in C such that E C DxT CC x T.

The set A(X x T) is endowed with the topology of weak convergence of
measures. If X and T are Polish, then also A(X x T') is a Polish space (see
Aliprantis and Border 2006, Theorem 15.15), and so is [A(X x T)]¢ because
C is countable. By Remark 1, the set of CPS’s on (X x T',C) is a subset of
[A(X x T)]¢ and is denoted by A®(X x T).

Lemma 1. (BS 1999) If all the elements of the countable collection C are
clopen (closed and open), the set of CPS’s A¢(X xT) is closed in [A(X xT)]°.
Therefore, A°(X x T') is a Polish space.

Given spaces Y and @, for every probability measure v on their Cartesian
product Y x @, we let mrg,- v denote the marginal of vonY. If Q = Rx W,
it makes sense to consider the marginal on Y x R of a CPS pon (Y x Q,C).

Definition 2. Let Y be a Polish space and C a countable subset of B(Y').
Assume that Q = R x W, where R and W are Polish spaces. For any
= (pc)oee in [A(Y x Q)], the marginal of 4 on Y x R, denoted by
mrgy-, p i, is the array of probability measures v = (v¢)cec in [A(Y x R)|¢
such that vo = mrgy-, p pe for each C'in C.

Remark 2. Under the assumptions of Definition 2, we have mrgy, ,pu €
AC(Y x R) for every CPS pon (Y x R x W,C).

We conclude this paragraph introducing the notion of strong belief, which
is central to the epistemic analysis of dynamic games.

Definition 3. Given an event F in X x T and an array of probability mea-
sures 1 = (pc)cec in [A(X x T)|¢, we say that p strongly believes E if, for
every C in C,

EN(CXT)#0= po(E) = 1.

Let € be a decreasing (finite or infinite) sequence of events in X x T'. We say
that u in [A(X x T)|¢ strongly believes € if p strongly believes each element
of £.

Simple Conditional Spaces. We briefly mentioned earlier that in the
context of some dynamic games the information structure satisfies some nice
properties that allow for a simpler analysis. In line with our momentary
abstraction from the game-theoretic setting, we introduce these properties
with the following definition.



Definition 4. A pair (Y,C) with C C B(Y') is called a simple conditional
space if Y is a compact metrizable space, C is a countable collection of clopen
subsets of Y, and

(i) Y €C;

(ii) for all C",C", D in C, if C" O D and C” O D, then either C" O C” or
c" D C/;

(iii) for all D in C, the set {C € C : C O D} is finite.

If we interpret the elements of C as “nodes,” C' O D can be read as “node
C' weakly precedes node D,” and each node in (C,2) has a finite number
of predecessors, including Y. Thus, we refer to O as a (weak) precedence
relation and we can regard (C, D) as a tree with distinguish root Y.

Notice that, if (X,C) is a simple conditional space and T is a compact
metric space, then the pair (X x T,C x T') is also a simple conditional space.®
The following examples illustrate the relevance of this concept.

Example 1. The elements of X = AN are the paths (infinite histories) of
an infinitely repeated game with perfect monitoring and a finite set of action
profiles A in the stage game. The set A is endowed with the discrete metric
da (ie., da(z,y) = Lif @ # y, da(z,y) = 0 if z = y), and A" is endowed
with the “discounting metric,” defined for z = (a,)neny and 2/ = (a]

1
d N = —da(an,a).
(x,2) Zgn alan,a)
neN

With this, X is a compact metric space. Let H = A<No be the set of finite
histories (including the empty history) and let < denote the “(weak) prefix
of” precedence relation on H U X. In particular, given h in H and z in
X, write h < x if there exists 2’ in X such that z = (h,2’), i.e., = is the
concatenation of h and 2. Then, each cylinder X(h) = {z € X : h <z} is
clopen, H is countable, and the class of cylinders

C={Ce2*:3heHC=X(h)}

has a tree-like structure. Therefore, (X,C) is a simple conditional space,
where each node in C is interpreted as the event that a given finite sequence
of action profiles is observed. A

8Note that if C is clopen then so is C x T.
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Example 2. Let A = {a1, as, ...} be a countable set of atomic sentences and
X = {0, 1}* the set of valuation maps, that is, functions z: A — {0,1} that
assign a truth value (0 for “false”, 1 for “true”) to each atomic sentence a,, in
A. Let ® be the set of well-formed formulas in propositional logic constructed
from the atomic sentences in A with the logical connectives {—,V,A}. Let
F C 2% be the set that consists of all the extensions of the formulas in ®; for
example, given ¢ = (a,, A —a,,) in @, we have F' = ||¢|| = {z € X : z(a,,) =
1A z(a,) =0} € F. As in the previous example, {0, 1} is endowed with the
discrete metric and X is endowed with the “discounting metric.” Then F is
a countable algebra of clopen sets. But (X, F) is not a simple conditional
space, because F does not have a tree-like structure. Now, fix a sequence
(Cn)nen of finite partitions C,, C F, where, for each positive integer n, C,1
refines C,. For example, C, may be the partition of cylinders of the form
Cu(v1,...,v,) ={x € X :Vk € {1,...,n},z(ar) = v}, where v, € {0,1}
for every k in {1,...,n}. Then (X, Unen C’n) is a simple conditional space.
A

3 A Generalization of Lubin’s Lemma

For any Cartesian product X x T and subset £ C X x T, we let projy F
denote the projection of E onto X, that is,

projy E={re X :3teT, (z,t) € E)}.

Lubin (1974) proved an “extension” result for probability measures, es-
sentially stating the existence of a probability measure concentrated on a
given subset of a product space and with a given marginal. This is the
content of the following lemma, which adapts Lubin’s result to our simple
topological assumptions (see the Appendix for a more general statement).

Lemma 2. (Lubin 1974) Let X and T" be compact metrizable spaces and let
E C X x T be closed. For each v in A(X) such that v(projy E) = 1, there
exists some g in A(X x T') such that u(F) =1 and mrgy p = v.

We extend this result in two ways: first, we show that it holds for CPS’s;
second, while the above result just looks at a measure that assigns probability
one to an event, we look at a CPS that strongly believes a chain (decreasing
sequence) of events.



Lemma 3. Let X and T be compact metrizable spaces and let C be a
countable subcollection of B(X). Fix a decreasing sequence of closed events
E=(F1,...,E,) in X xT. For each CPS v on (X, C) that strongly believes
(projyx Ei,...,projx E,), thereis a CPS pon (X xT,C) that strongly believes
& and such that mrgy p = v.

We prove in the Appendix a more general version of this result, relying on
less stringent topological requirements. The proof uses the same technique
of the original proof of Lubin’s lemma (namely, the Jankov—von Neumann
selection theorem).

Nonetheless, given that our principal interest lies in the analysis of simple
dynamic games, we can take advantage of the structure of game trees. Indeed,
all that we need for our analysis of games is the following.

Remark 3. Lemma 3 holds, in particular, if (X,C) is a simple conditional
space.

While the remark is an obvious corollary of Lemma 3, we can provide
a constructive proof using Lubin’s lemma. Also this proof is presented in
the Appendix, and we give here only a sketch. Starting from a CPS v on
(X,C) that strongly believes (projy Ei,...,projx E,), Lemma 2 applied to
each measure v gives an array of probability measures i = (fic)cec in
[A(X x T)]¢ such that (i) mrgy ji = v, jic(C x T) =1 for all C in C, and (ii)
i1 strongly believes £. However, i need not be a CPS because it may fail to
satisfy the chain rule (1). To obtain the required CPS p we need to carefully
select some of the measures in i and construct ;1 from such measures so that
the chain rule is satisfied. Certainly, we want to derive pc from the initial
belief fix for each conditioning event C' with fix (C'xT) > 0 (i.e., vx(C) > 0):

_ x (EN(CxT))
po (E) = fx(C xT)

Now, think of C x T as a tree with root X x T, where C' xT' (weakly) precedes
D xT ifand only if C xT DO D x T (i.e., C D D). For each maximal (hence
possibly infinite) chain of events D C C x T starting with the root X x T,
pick the first C' x T in D such that ix (C' x T) = 0 (if it exists) and derive
wup from fic for every D x T in D with fic(D x T') > 0:

_ e (EN(D xT))

#o (B) fic(D x T)

9



Next, for each maximal chain D’ C C x T starting with C' x T', pick the first
D x T in D' such that jic(D x T') = 0 (if it exists) and derive pug from fip for
every £ x T in D’ such that ip(E x T') > 0. Proceeding in this way, one can
assign a probability measure concentrated on C' x T for each conditioning
event C'in C. The construction implies that the chain rule (1) holds and that
1 strongly believes £.

4 Interactive Epistemology in Infinite Dynamic
Games

We consider a class of dynamic games, with finite or infinite horizon, in
which each player has a finite set of feasible actions at each stage except
(possibly) the last one, where they are only required to have a compact set
of feasible actions (see Battigalli 2003). The length of the game, the set of
active players and their sets of feasible actions may be history-dependent.
We allow for incomplete information about payoff functions, but we assume
for simplicity that there is perfect monitoring of past actions and that the
feasibility constraints do not depend on private information. For such games,
we characterize the behavioral implications of rationality and common strong
belief in rationality.

4.1 Simple Infinite Dynamic Games

Our definition of game takes as primitive terms the actions and private in-
formation of each player, e.g., the output and cost function of a firm; we
refer to the latter as “information type.”? Histories are sequences of action
profiles. With this, nodes of the game tree are constructed as pairs of states
of nature and histories. We use the following notation on sequences: For any
range A, AN = .\ A" is the set of sequences (a', ..., a") of finite (but
otherwise arbitrary) length.!? In particular, the set A<No contains the empty
sequence @, which is the only element of A° (i.e., it is the unique sequence of

9Information types may be different from types in the sense of Harsanyi (1967-68), that
implicitly determine hieararchies of exogenous initial beliefs, and from the epistemic types
introduced later, that represent hierarchies of conditional probability systems.

10Note that A™ is the set of all sequences of elements of A with length n. In the rest of
the paper, it will be clear from the context whether a superscript stands for a product (as
in this case) or as a mere index (as, for example, in the statement of Lemma 3).
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length 0), and every sequence (a) of length 1, which we simply identify with
its only element a; AY is the set of infinite sequences (a"),en, that is, the set
of functions from N to A, and ASNo = A<No y AN, For all o/ in A<No and
h" in ASNo (B’ h") denotes the concatenation of A’ with h” (in particular,
h = (h,h') = (b, h) if ' = @), and we say that h' is a prefiz of h, written
R < h,if h = (h',h") for some h”. With this, the empty sequence is a prefix
of every sequence. A set nonempty H C A=No of finite or infinite sequences
in A is a tree if it is closed with respect to prefixes, that is, for every h in H
and every prefix b/ of h, h' € H; in particular, @ € H.

Fix a tree H C A=No: a sequence in H is terminal if it is not the
prefix of any other nonempty sequence in H, and it is nonterminal oth-
erwise. Thus, terminal sequences may have infinite length and nonterminal
sequences are necessarily finite. For each finite sequence h in H, we let
A(h) = {a € A : (h,a) € H}. The sets of nonterminal and terminal se-
quences are, respectively, H = {h € HN A<M : A(h) #0} and Z = H \ H.
A nonterminal sequence h in tree H is preterminal if (h,a) € Z for all a in

A(h).
Definition 5. A simple dynamic game structure is a tuple
<-[7 FI7 (@w Ai)i61>

where [ is a countable set of players, ©; is a nonempty compact metriz-
able space of information types, each A; is a nonempty compact metriz-
able space of actions (i € I), H is a tree of sequences of elements of
A = [l;c; Ai, called histories, such that, for every nonterminal history h
in H, (i) A(h) = [[;c; proja, A(h), (i) if h is not preterminal, A(h) is finite,
(iii) if A is preterminal, A(h) is compact.

Condition (i) means that what is feasible for a player cannot depend on
actions simultaneously chosen by other players. Thus, A;(h) = proj,, A(h)
is the (nonempty) set of feasible actions for player ¢ given history h in H.
Player i is active at history h if | A;(h)| > 1 and inactive otherwise (that is, if
|A;(h)| = 1). An information type of player i, §; € ©;, describes the private
information of i: for example, #; may be a preference, or a productivity
parameter. It is informally assumed that there are no other sources of private
information; in particular, the actions chosen in previous stages are public
information. In other words, we consider multistage game structures with
observable actions. We make this assumption only for notational simplicity.

11



The fact that A; does not depend on #; means that, at each stage, the history-
dependent set of feasible actions is common knowledge. It is easy to extend
our results to the case where A; depends on a discrete component of ;. We
can also add an explicit common source of uncertainty 6y, which is a payoff-
relevant parameter unknown to all the players; this is conceptually useful
for some purposes (see, e.g., Battigalli et al. 2011), but not here. Similarly,
we could easily add chance moves.!! We avoid these generalizations only
to simplify some aspects of the mathematical notation.!> The game tree
can be derived as follows: Let © = []..; ©; be the set of states of nature.
The nonterminal nodes of the game tree are the pairs (0, h) in © x H, the
terminal nodes are pairs in © x Z; node (0, h) precedes node (¢, 1) if 0 = ¢’
and h =< h'; information sets of player i have the form

{((0',K)eOx H:0 =0, h =hl,

for 6; in ©; and h in H (where, in the expression above, ¢ denotes the i-
th component of the profile #"). In words, all the nodes featuring the same
information type of ¢ and the same history are indistinguishable for 7.

We let payoffs be functions of the terminal nodes (6,z) in © x Z and
informally assume that such functions are common knowledge. All uncer-
tainty and private information about payoffs is therefore captured by states
of nature 6 = (0;);c; with the understanding that each ¢ knows his informa-
tion type ¢;. With this, we consider simple conditional spaces determined
by the game structure. Let the strategies of player ¢ be given by elements of
Si = [[,en Ai(h). Note that we take an “interim perspective”: 4 is “born”
with knowledge of his information type 6;, and s; only describes how ¢ behaves
as a function of h. Player ¢ does not know the types of the other players,
nor what strategies they are implementing; thus, the space of primitive un-
certainty for i is [, ;(©; x S;). To ease notation we write ¥; = ©; x S; and
=11 i 2j- The relevant conditioning events are determined as follows:
Each strategy profile s = (s;)ic; in S = [[,.; S; determines a unique terminal

1 Such features can be implicitly modeled within the present framework by letting 0 € I
be an indifferent “fictitious” player. Then 6, parameterizes residual uncertainty, about
which no nonfictitious player has private information, and Agy(h) is the set of realizations
of a chance move. Knowledge about the objective probabilities of chance moves can be
modeled by restrictions on players’ beliefs.

12Battigalli and Prestipino (2013) allow for imperfect monitoring, a dimension of com-
mon uncertainty, and chance moves, but they maintain that the game structure is finite.

12



history
s+ ((s) = (s(2),5(s(2)), 5(s(2), s(s(2))), - .),

where s(h) = (s;(h));es is the action profile determined by s at h. The set of
strategy profiles consistent with history h is

S(h)={se S:h=<((s)}
Note that!'?

S(h)={s € S:V(I,a) € H,(N,a) 3 h= s(h') = a} = [ [ projs, S(h).

el

Then, if A occurs, 7 is informed that the coplayers are implementing
strategies in subset S_;(h) = projg . S(h). Since feasibility constraints do
not depend on types, observed choices cannot reveal hard information about
0_;. We can therefore represent ¢’s information at h about the types of the
coplayers and the strategies they are implementing with the set ¥_;(h) =
©_; x S_;(h). Note that, if a = (a;,a_;) and a’ = (a},a_;), then £_;(h,a) =
Y. i(h,d’). Thus, we implicitly assume that player i’s beliefs about the strate-
gies and types of others, conditional on a given history, are independent of

his own actions. Let
Ci={¥_i(h):he H}

denote the set of conditioning events for player i.

Lemma 4. Fix a simple dynamic game structure (I, H, (6;, A;)ic;) and a
player i in I. Then (X_;,C;) is a simple conditional space.

Adding to a game structure a map from terminal nodes to outcomes
(or consequences) we obtain a game form, which is the mathematical repre-
sentation of the rules of the game; adding to the game form players’ type-
dependent preferences over (lotteries of) outcomes, we obtain a game with
incomplete information.

"¥More generally, in all games with perfect recall, S(h;) = projg, S(h;) x projg_, S(h;)
for each information set h; of each player ¢, which is all we really need.

14The intermediate step from game structure to game form could be skipped, defining
utility /payoff functions over terminal nodes. We keep this step because it adds conceptual
clarity at little cost.
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Definition 6. A simple dynamic game form is a tuple
<[7 H? (@la Ai>i€b Ya g>7

where (I, H,(0;, A;)icr) is a simple dynamic game structure, Y is a com-
pact metric space of outcomes, and g: © X Z — Y is a continuous outcome
function. A simple dynamic game with incomplete information is a tuple

I'= <Iv H? (617 Ai)i617 Y7 g, (Ui)i€l>7

where (I, H,(0;, Ai)icr, Y, g) is a simple dynamic game form and, for each
player 7, v;: ©; x Y — R is a continuous utility function; the composition

(97 Z) = Ul(e, Z) = Ui(e’h g(07 Z))
is called payoff function of player .

Henceforth we maintain the following:
Assumption 1. T is a simple dynamic game.

Comment: Structure I' is also called “game with payoff uncertainty”
(Battigalli and Siniscalchi, 2007) or “basic game” (Bergemann and Morris,
2016) to distinguish it from Bayesian games (Harsanyi, 1967-68), that is,
richer structures implicitly describing players’ infinite hierarchies of exoge-
nous initial beliefs about 6. The epistemic structures considered in this paper
implicitly describe players’ infinite hierarchies of conditional beliefs based on
(© x S, H), from which one can derive infinite hierarchies of exogenous initial
beliefs. But there is no need to refer to Bayesian games in our analysis.

Example 3. [Disclosure, see Battigalli 2006] Consider a buyer—seller
signaling game. The seller (player 1) has private information about the qual-
ity 0 € © = {1,..., K} of the object to sell. After some message m € A; of
the seller, the buyer (player 2) chooses a price as € Ay = [0, b] for the object,
where the upper bound b is large: b > K. Partial and terminal histories are,
respectively,

H={0YU(A x{w)) 2 {B}UA;, Z= (A x{w})x({w}xAs) = A x Ay,

where w denotes the pseudo-action of “waiting.” To ease notation, let Y = 7
and g = idyz. The utility of the seller is strictly increasing in the action

14



of the buyer, while the utility of the buyer is a quadratic loss function
ua(0*,m, as) = —(0* — az)?. Tt is assumed for simplicity that the message of
the sender has the form “quality is at least k,” which we denote by [0 > k],
for some k € ©; (note that ©; and A; are isomorphic in an obvious sense).
Moreover, information is verifiable and the seller is harshly punished if his
message conveys false information: for all 6* in ©¢, [# > k| in A;, and ay in
A27

s if 0* > k,

as — P otherwise,

U1<9*, [9 Z k‘],(@) = {

where P > b. With this, it is dominant for the seller to tell the truth, that
is, to send message [ > k| given his true type 6* only if 6* > k. The
game has finite horizon, but it is infinite, like the set of actions of the buyer.
Nonetheless, it is readily verified that it is a simple game. A

Example 4. [Reputation, see Schmidt 1993] Consider a finite, two-
player stage game G = (I = {1,2}, Ay, Ag,v1,v2) (v; : A1 Xx Ay — R, i €
{1,2}). Assume for simplicity that each player has a unique best reply to
each pure action of the coplayer in G. Let G be infinitely repeated, with
discount factors d; and d,. Player 1 is more patient than player 2: §; > 5.
The partial histories are the finite sequences in H = (A; x Ay)<N and the
set of terminal histories is Z = (A; X AQ)N. The constraint correspondence
is simply A;(h) = A;, for all h in H and each i.

To ease notation, let Y = Z and g = idz. The game has private values,
with ©, a singleton and ©; = © = {6°,6°, ...}. The payoff functions of types
0° and 0° of player 1, and player 2 are given by

w(6°,(a)2,) = (1 =01 Y o o), ua((ah)2y) = (1= 62) Y 55 Mus(a),

w (6, (a")32y) = (1= 61) ) 81 Mi(a"),

where v§(a) = 1 if a = (a}, a2) for some ay € As, and v$(a) = 0 otherwise,
with

a] = arg max vy | aj,arg max ve (a, as) | .
a1€A, as€Ag

In other words, player 1 can be either a normal (6°), or a “crazy” type (6¢), in
the latter case it is always dominant for him to choose the Stackelberg action
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aj. The strategy si that plays a] at each h is called Stackelberg strategy.
Even if there are other types besides #° and 6, they do not matter for our

analysis.
The game just described is simple, as is every infinite repetition of a finite
stage game. A

4.2 Epistemic Characterization Results

Following BS (1999), one can construct a canonical epistemic type structure
based on a simple dynamic game. Each epistemic type t; is an infinite hier-
archy of CPS’s t; = (1) men where p} is the first-order CPS of type t;, an
element of A% (X _;), u? is the second-order CPS of type ¢;, an element of
AS(T,.(25 x A%(X5))), so that yj = mrgy, 47, and so on. Denoting by
T; the set of infinite hierarchies satisfying coherence and common full belief
in coherence!® (a compact metrizable space), there is a canonical homeo-
morphism 3;: T; — A%(X_; x T_;) that determines, for each epistemic type
(hierarchy) ¢;, a CPS §;(t;) over information types, strategies, and epistemic
types (hierarchies) of the other players.

Comment: Guarino (2017) shows that the type structure of BS (1999)
is “canonical” because the sigma-algebra of events in ¥ x T is generated by
“expressions” of the following form (cf. Heifetz and Samet, 1998):

e “; would take action a; if h occurred” (i € I, h € H, a; € A;(h)),
e “i has private information 6,” (i € I, 6; € ©;),

e “j would assign at least probability p to ¢ conditional on h” (i € I,
h € H, ¢ expression about —i),

e “not ¢” and “p and ¢” (¢ and ¢ expressions).

Assumptions such as “7 is rational,” or “i strongly believes that his coplay-
ers are rational” can be expressed as events (measurable subsets) in the
canonical type structure. The behavioral implications of such assumptions
are given by the projections of these events on © x S.

15Roughly, this means that everybody’s lower-order beliefs are the marginals of higher-
order beliefs and there is common belief of this conditional on each history.
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4.2.1 Complete Type Structures

Although this construction of the canonical structure is the conceptual back-
drop of our epistemic analysis, we do not need to make it explicit for our for-
mal results. In fact, it is enough to work with any type structure with belief
maps that satisfy the continuity and surjectivity properties of the canonical
structure.

Definition 7. Fix a simple dynamic game I'. A complete epistemic type
structure based on I is a tuple (I, (T3, 3;),.;) Where, for each player i, T; is a
compact metrizable space of epistemic types and 3;: Ty — A% (X_; x T.;) is
a continuous surjective belief map.'® A profile (6;,s;,t;)ier in [[;o; 5 x T; is
a state of the world, (0;,s;,t;) in X; X T; is a personal state of player i.

The consideration of incomplete type structures entails restrictions on
players beliefs that are implicitly assumed to be transparent to the players,
but not explicit in the theoretical analysis.!” We therefore maintain the
following;:

Assumption 2. The given type structure (I, (T, f;),c;) is complete.

To ease notation, we let 3; , denote the component of 3; that corresponds
to conditioning event ¥._; (h). Similarly, for each y; € A% (X_; x T;) (re-
spectively, pu; € A% (X_;)), we let p;; denote the belief of i conditional
on ¥_; (h). The topological assumptions of the definition above, together
with Lemma 1, imply that A%(X_; x T_;) is a Polish space; therefore, it
makes sense to assume that all the belief maps 5; (and thus all their compo-
nents [3;,) are continuous—a convenient technical property satisfied by the
canonical structure. Completeness requires that for each CPS p; about the
information types, strategies, and epistemic types of the coplayers there is
an epistemic type t; with (5;(t;) = p;, that is, each conceivable system of
beliefs is represented in the type structure. In particular, this implies that,
for any history A € H, if there is a profile of information types, strategies,
and beliefs of the coplayers (6_;,s_;, ;) such that the strategies s_; are

Each type t; is also a type in the sense of Harsanyi (1967-68), because it de-
termines an initial belief about the information and epistemic types of the coplayers:
ti = mrgg . 7 . Bio(ti). Therefore I and (I, (T}, 3;),c ;) together yield a Bayesian game.
See Battigalli et al. (2011).

17See Battigalli and Friedenberg (2012), and Battigalli and Prestipino (2013).

i€l
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consistent with i and are best replies'® to the beliefs p_; given 6_;, then it
is possible for ¢, upon observing h, to believe that the coplayers are rational,
because there is a profile of epistemic types ¢_; such that (6;, s;,t_;) satisfies
rationality and is consistent with h. This is a key feature of the analysis of
forward-induction reasoning of BS (2002, 2007), which we extend here.'?

4.2.2 Epistemic Assumptions

Fix a simple dynamic game I" and a complete type structure (I, (13, 5;),c;)
based on I', which we interpret as the canonical type structure for I'. Our
basic assumption is that players are rational in the following sense. Let
Si(h) = projg, S(h), denote the set of strategies of ¢ that do not prevent
history h. Also, let

UZ'I OxS — R
(0,5) = wi(8,((s))

denote the strategic-form payoff function of s.

Definition 8. Strategy s! is a sequential best reply to CPS p; in A%(X_;)
given 0; if, for every h in H such that s} € S;(h),

8: € arg max /UZ(QZ,Sz,O'Z)Ml(dO'@|Z,L(h))
$:€S5;(h)

Player i is rational at personal state (0, s;,t;) if s; is a sequential best reply

to mrgy, . B3i(t;) given 6;.

Comment: By standard arguments, s; is a sequential best reply to u;
given 0; if and only if it is realization-equivalent to a strategy with the one-
shot-deviation property given (u;, 0;); that is, if and only if there exists some
s; such that

Vhe H, si(h) € arg max [ UilOhsihos o-i)m(doi[-4(A)
a; €EA;

and
vs—i S S—ia C(S:7 S—i) = C(8i7 S—i):

18The formal definition of best reply is given below.
19Battigalli and Friedenberg (2012) analyze forward-induction reasoning when contex-
tual assumptions rule out completeness.
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where s}|,a; is the strategy consistent with h that chooses a; at h and coin-
cides with s! at each history that does not weakly precede h (hence, at all
histories following h). In simple dynamic games with finite horizon, this is
equivalent to the standard “folding-back” rationality of dynamic program-
ming. If players’ preferences were dynamically inconsistent,? then the con-
ceptually appropriate best reply condition should be the one-shot-deviation
property.

To ease notation, we let r;(u;, 0;) denote the set of sequential best replies
to p; given ;. Then we can define the event “player ¢ is rational” as

Ry = {(0i, 81, t:) € Xy x T} 55 € ry(mrgy , f(t),05)}
Lemma 5. For each ¢ € I, the sequential best reply correspondence

T AC’(Z,Z) X @z = S,L
(,uz',@i) — Ti(ﬂz‘,ez’)

is upper hemicontinuous with nonempty values, and R; is nonempty and
closed.

As argued by Battigalli (2003) and BS (2003), it is often plausible in
applications to assume that players’ first-order beliefs satisfy some restric-
tions and that this is transparent. Such restrictions may depend on the
information type. For example, we may want to assume that beliefs satisfy
independence across coplayers, or that beliefs about 6_; given 6; are derived
from a common prior on ©. Battigalli (2003, 2006) and BS (2003) provide
many other examples and applications.

Definition 9. A system of first-order belief restrictions is a profile of closed-
graph correspondences A = (A;);c;, where A;: ©; = A%(X_;) and A; has
nonempty values for each 7 in I.

Welet A, 5, C A%(3_;) denote the resulting nonempty closed set of CPS’s
for information type 6;, and we let [A;] denote the event in X; x T; that i
satisfies the restrictions 4;, that is,

[A,] = {(0“ Si,ti) cmrgy, | Bz(tz) S Aiﬁi}.

For example, because of ambiguity aversion (cf. Battigalli et al., 2017) or for psycho-
logical reasons (cf., Battigalli and Dufwenberg, 2009, Section 6).

20
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Remark 4. Since the graph of A; is closed and the map (0;,s;,t;) —
(Gi, S;, MIZy, Bi(ti)) is continuous, [A;] is closed.

BS (2007) consider two systems of epistemic assumptions: common initial
belief in rationality and in the belief restrictions, and common strong belief
in rationality and in the belief restrictions. Here we focus on the latter, which
models a form of forward-induction reasoning. The analysis of the former is
simpler and can be carried out adapting the techniques of this paper (see
Section 5). For each event £_; C ¥_; x T_;, define SB;(F_;) C 3; x T; as
the event that ¢ strongly believes E_;:

SBy(E_;) = Six{t; € T, :Yh € H,(E_; "\ (S_; (h) x T;) # 0) = Bin () (E_;) = 1}

In words, ¢ strongly believes E_; if he is certain of £_; conditional on every
history h that does not contradict F_;. Since X_; (&) = X_;, strong belief
implies belief at the beginning of the game.

Remark 5. If E_; is closed, the set
M; (E_;) = N {pi € A% (2 x T3) : i (B-y) = 1}
heH:(S_;(h)xT_;)#0
of CPS’s p; that strongly believe E_; is closed; since [3; is continuous,
SB,(E_;) = X; X 5{1 (M; (E-;))
is closed as well.

Consider the following sequence of events: for each player 1,
e R =R, N[A];

e for each positive integer m, R>™ = R&™ SBi(I L. RJ-A’m).

Note that the sequence is well defined, because—by an easy induction
argument—Lemma 5 and Remarks 4-5 imply that each set RiA "™ is closed.
To ease notation, let RS> = Mmen RM™,

The sequence of events (Hle 7 R® m) embodies the “best rationaliza-
meN

tion principle”: If (0;, s;,t;) € RiA "> then player i is rational at (6;, s;, ;) and

Bi (t;) strongly believes each event in the decreasing sequence (Régm . };
meNU{oo
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this means that player ¢ always believes in the highest level m € NU {oo} of
“strategic sophistication” consistent with what he observes.?!

Definition 10. Player i satisfies A-rationality and mutual strong belief in
A-rationality of order m — 1 at personal state (6;, s;,t;) if (6;, s, ;) € Rf’m;
player i satisfies A-rationality and common strong belief in A-rationality at
personal state (0;, s;,t;) if (0;,s;,t;) € R?”’o.

4.2.3 Characterization Theorem

We are interested in the behavioral implications of the foregoing epistemic
assumptions. In particular, for each information type 6;, the section at 6; of
projs, RZ-A "™ is the set of strategies consistent with A-rationality and mutual
strong belief in A-rationality of order m — 1 given 6;; similarly, the section
at 0; of projy, RiA > is the set of strategies consistent with A-rationality
and common strong belief in A-rationality given ;. The main result of this
paper yields a characterization of these behavioral implications by means
of a solution concept, called “strong A-rationalizability,” related to Pearce’s

(1984) notion of rationalizability for finite games in extensive form.

Definition 11. (cf. Battigalli 2003) Fix a system of belief restrictions A.
For each player 7, let

EiA’l = {(0s,5:) : i € Do, 55 € T, 03) )
then recursively define, for each ¢ in I and for each positive integer m,
ZiA’erl = {(‘91, Si) . E',U/z S Aiﬂi, S; € rz(,ul,Hz),‘v’k € {1, e ,m},Vh €eH

ST £ 0= s (SR Lm) =1},
where ©5% = T, S finally, let S0 = (), 59" Strategy s; is m-
strongly A-rationalizable for information type 0; if (6;,5;) € S2™; strategy
s; is strongly A-rationalizable for 0; if (6;,s;) € Zf’oo.

In words, a strategy is strongly A-rationalizable for information type
0; if it can be justified as a sequential best reply to a first-order CPS p;
that strongly believes each set Ei’.k of k-strongly A-rationalizable profiles of

21See BS (2002) and Battigalli (1996).

21



information types and strategies of the coplayers.?? On top of the applications
mentioned—for example—by Battigalli and Guaitoli (1997), Battigalli (2003,
2006), and BS (2003), this solution concept is used in the analysis of self-
enforcing agreements®® and of robust implementation/mechanism design.*!

Comment: Battigalli and Prestipino (2013) show that, if the belief re-
strictions A are “closed under compositions,” the solution algorithm can
be simplified, requiring at each step m + 1 that p; strongly believes Ei’-m
(only). In particular, this simplification holds when the restrictions concern
only independence, or initial beliefs (e.g., exogenous beliefs), or there are no
restrictions at all (cf. Battigalli, 1997).2°

The following theorem and corollary are the main game theoretic results
of this paper. We provide a proof in the main text because its simplicity
illustrates the power of Lemma 3.

Theorem 6. For every player i, pair (0;,s;) in ¥;, and positive integer m,
strateqy s; is m-strongly A-rationalizable for information type 0; if and only
if there exists an epistemic type t; in T; such that i satisfies A-rationality
and mutual strong belief in A-rationality of order m — 1 at personal state
(Qi, Si, tz), that iS,

Vi€ I,¥m € N, ™ = projg, RP™.

Proof. Let RZ-A’O = Y; x T_;, so that the basis step is trivial. Sup-
pose by way of induction that ™ = projs;, R&™ for all i and m < n.
Let (6;,s;,t;) € RZ-A 1. then the inductive hypothesis implies that p! =
mrgy, - 3i(t;) is a CPS in Ay, that strongly believes Eiﬁm for each m < n
and s; € r;(ul,0;); hence, (0;,5) € L2 For the other direction, let
(0;,8;) € EZ-A’"H. By definition of ZiA’"H, there exists some v; € A,

22To our knowledge, this solution concept for games of incomplete information was first
put forward by Battigalli and Guaitoli (1997, first presented in conferences and circulated
as working paper in 1988). They consider as belief restriction a stochastic independece
condition for CPS’s.

23Tebaldi (2011), Catonini (2017b), and Harrington (2017). See Section 5.

24 Artemov et al. (2013) analyze robust virtual implementation with respect to A-
rationalizability in static mechanisms. Mueller (2016) applies strong rationalizability to
dynamic mechanisms. Bergemann and Morris (2016 and references therein) apply to
static mechanisms the solution concept without belief restrictions and call it “belief-free
rationalizability.”

25Battigalli and Guaitoli (1997) and BS (2002, 2003) correctly rely on such simplified
algorithm.
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such that v; strongly believes X2 = projs, . R2™ for each m < n and
s;i € 1i(v4,0;). By Lemma 3 and the inductive hypothesis, there is a CPS p; on
(2_;xT_;,C;) such that y; strongly believes (R2™)" _,. Since 3; is surjective,

there exists some t; in T; so that ;(t;) = u;; therefore, (0;,s;,t;) € RiA’”H.I

Corollary 1. For every player i and pair (0;,s;) in X;, strategy s; is strongly
A-rationalizable for information type 0; if and only if there exists an epistemic
type t; in T; such that i satisfies A-rationality and common strong belief in
A-rationality at personal state (6;, s;, t;); that is,

A, 00

i

Vie I, ¥ = projy, R

Proof. One inclusion is immediate (and does not use compactness):

D = ﬂ £ = ﬂ projy, R™ D Projs, <ﬂ RiA7m) = projy, R,

meN meN meN

where the first and last equalities hold by definition, the second equality
follows from Theorem 6, and the inclusion is obvious. To show the converse
let 0; € ZiA’oo = (nen PIOJs;, RiA’m, so that for every m € N there exists ¢]"
in T; such that (0;, ") € R™™. This implies that, for every m € N, the
section T of R™™ at o; is nonempty. Like (R™™)men, also (T ) men is
a decreasing sequence of closed nonempty subsets of a compact space. By
the finite intersection property of compact spaces, (,,cn 7o is nonempty. If
t; is an element of the intersection, we have (0;,t;) € (,,en R™™. Hence,

0; € projs, [\ men R™™ and the claim follows. |

Example 5. Consider Example 3. Strategies of the seller are identified with
his actions, while the set of strategies of the buyer is Sy = A‘;lx{w} > Af,
Therefore, the set of beliefs of the seller (whose only observable event about
the buyer corresponds to the empty history) is identified with A(S;), and we
do not impose exogenous restrictions, that is, A; y = A(Ss) for each 6. The
conditioning events for the buyer correspond to the empty history and the
possible messages by the seller:

CQ = {@1 X Al,@1 X {[9 Z 1]},...,@1 X {[(9 Z K]}}

The belief system of the buyer is given by a CPS in A®(0; x A;). We
assume that the buyer is “mildly skeptical,” in the sense that, after observing
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a message, he assigns probability greater than some small positive value to
the worst state consistent with it. Formally,

Ay = {p € A®(0; x Ay) : Yk € Oy, 1 (K|[0 > k]) > ¢},

where 1 (+|[0 > k]) is the marginal on ©; of the component of the CPS con-
ditional on ©; x {[@ > k]}, and ¢ is a fixed positive real number (we assume
e small and, in particular, less than 1).

Battigalli (2006) shows that the only A-rationalizable message of a seller
of type k is a; = [# > k], and the A-rationalizable response of the buyer to
such message is as = k. The result follows from forward-induction reasoning:
First note that strong belief in the rationality of the seller implies that the
buyer believes that he tells the truth. With this, weak skepticism implies that
the strategy of the buyer satisfies s, ([0 > K]) > so([0 > K —1]). Given that
the seller believes in Ry N[A2]NSBy(Ry), if § = K he will never send message
[0 > K —1], because he believes he can make the buyer increase as by sending
message [0 > K]. Thus, SBs(R;) N SBy (R NSBy (Ry N [Ag] NSBy(Ry)))
implies that if the rational buyer receives message [ > K — 1] he is certain
that # = K — 1 and chooses s3([ > K — 1]) = K — 1. An induction
argument shows that so([¢ > k]) = k for each k. Formally, the following “full
disclosure” result holds:

Sp = {0710 > k) € 01 x Ay < 0" =k},
E2A’Oo = {32 €Sy :Vk € {17 ‘-‘7K}782([9 2> k]> - k}

Hence, by the characterization result in Corollary 1, these are the sets of
type—strategy pairs consistent with rationality, weak scepticism, and common
strong belief in rationality and weak skepticism. A

Example 6. Consider now the infinitely repeated game described in Exam-
ple 4. There are no restrictions on the beliefs of player 1: that is,

V91 c @1, A1791 = Acl (Sg),
while player 2 initially assigns probability at least ¢ to the crazy type 6
AQ = {(ug € AC2(61 X Sl) : /12,@({90} X Sl) > 8},

where € € (0,1) is given. Call this restriction e-possibility of #°. Adapting a
proof by Fudenberg and Levine (1989) one can show that if the Stackelberg
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action aj is played long enough, and player 2 strongly believes that player 1
is rational,?® then player 2 eventually assigns conditional probability close to
1 to aj.

Suppose that the stage game has “conflicting interests,” that is, the Stack-
elberg action holds player 2 to his maxmin payoff:

Vg (ai, arg max vy (a7, (lg)) = aIlneiE1 max vz (a1, as9) .
Then, adapting arguments from Schmidt (1993) and Watson (1993), one can
show that the Stackelberg payoff for player 1 is an approximate lower bound
on his strongly A-rationalizable expected payoff as he becomes infinitely
patient; the reason is that he can eventually “teach” player 2 to play the
stage-game best reply to the Stackelberg action:?”

Vi, € A <S§°’A> , lim max E,, (U (s1,))

61—1s81€51

2

> lim B, (U (s3,:)) >0 (a’{, arg max vs (aj, ag)) )
61—1 as €A

By Corollary 1, under common strong belief in rationality and e-possibility of
0¢, the expected payoff of a rational and very patient player 1 is approximately
bounded below by the Stackelberg payoff. A

5 Discussion

In this section we discuss some extensions and generalizations of our analysis.

More general information structures. For the sake of simplicity, we
restricted our attention to simple incomplete-information dynamic games
with observable actions, distributed knowledge of 6 (i.e., pooling players’
private information, the true state of nature @ is identified), and without

26Tn this case, 2’s belief in the rationality of 1 after any Stackelberg history h* =
((af, a%) , (af, a%) ,) is implied by e-possibility of 6°.

2TIf 6 is a “committment type” whose only feasible action is the Stackelberg actions,
then the result also holds for “weak,” or “initial” A-rationalizability. See also Battigalli
and Watson (1997), who consider a countable sequence a short-run players in the role of
player 2.
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chance moves. All these simplifications can be removed without affecting the
main characterization result.?®

Common initial belief in rationality. We focused on epistemic assump-
tions that capture a form of forward-induction reasoning because this makes
the analysis more challenging compared to other assumptions such as com-
mon initial belief in rationality, or common belief in rationality conditional
on a fixed family of observable events. It is quite straightforward to extend
to simple infinite dynamic games the characterization results concerning such
assumptions obtained for finite games. Adapting the statement and proof of
Lemma 3, we obtain the following:

Lemma 7. Let X and T be compact metrizable spaces and let C be a
countable subcollection of B(X). Fix some family F C C and a closed event
E C X xT. For each CPS v on (X,C) such that vo(projy E) = 1 for every
C € F, thereis a CPS ppon (X x T, C) such that mrgy = v and puc (E) =1
for every C' € F.

Letting 7 = {X} C C in this modified lemma, we can prove that the be-
havioral implications of rationality (and A-restrictions) and common initial
belief in rationality (and in the A-restrictions) are characterized by “weak”
or “initial” (A-)rationalizability (see Battigalli 2003, BS 1999 and 2007, Bat-
tigalli et al. 2016). A similar result holds for rationality and common belief

in rationality conditional on a fixed family F of nonterminal histories (see
BS 1999).

Transparent belief restrictions. Battigalli and Prestipino (2013) prove,
for finite games, that strong A-rationalizability also characterizes the be-
havioral implications of a stronger set of epistemic assumptions than those
considered here, that is, stronger than rationality, [A] and common strong
belief in rationality and [A]. Specifically, define the mutual full belief oper-
ator B (-) as follows: for every event £ = [[.., £,

B(E) = []Bi (E-) = [[{(6i,s1,1:) : Vh € H,Bin(t:) (E_;) =1}

el el

28For an epistemic analysis of finite, but otherwise general dynamic games of incomplete
information, see Battigalli and Prestipino (2013).
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An event is transparent at a state (0, s,t) if E is true and there is common
full belief of E at (6, s,t), that is,

where B? (F) = E. Also, as in BS (2002), let

CSB(E) = [[ E:n'SB; (E_y)

iel
denote the mutual correct strong belief operator. It is routine to check that

[[r>™ =csB™ " (RN[A))

iel
for each m. Battigalli and Prestipino (2013) prove that

¥m € N, proje, sCSB™ ! (RN [A]) = [ =™ = proje.sCSB™ " (R N B* ([A]))

icl
and

Proje,sCSB™ (RN [A]) = H EiA’oo = Proje,sCSB™ (RN B* ([A])),

el

that is, one can replace [A] with transparency of [A] in the epistemic assump-
tions considered here. This is equivalent to saying that A-rationalizability
characterizes the behavioral implication of rationality and common strong
belief in rationality in the substructure of the canonical structure obtained
by assuming transparency of the restrictions A.?? By inspection of the proof
of Battigalli and Prestipino, it is clear that it can be applied verbatim to the
more general case of simple games considered here.

Self-enforcing agreements and forward induction. Let A represents
the restrictions implied by belief in the compliance with a preplay nonbinding
agreement. Harrington (2017) applies strong A-rationalizability to analyze
incomplete collusive agreements in infinite oligopoly models where firms set

29Gee the discussion in Battigalli and Friedenberg (2012), and Battigalli and Prestipino
(2013).
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prices in a finite grid. Such games are simple and our result provides an epis-
temic foundation of Harrington’s analysis. Catonini (2017a,b) develops a the-
ory of self-enforcing (possibly incomplete) agreements in finite games based
on forward-induction reasoning. He argues that strong A-rationalizability
can capture aspects of such a theory, although a somewhat different solution
concept, selective rationalizability, is more appropriate. Catonini’s argument
refers to the result by Battigalli and Prestipino (2013) mentioned above,
which shows that A-rationalizability implicitly gives “epistemic priority” to
belief in the agreement over belief in rationality when they cannot be rec-
onciled. Catonini (2017a) shows that selective rationalizability characterizes
the behavioral implications of CSB* ([A] N CSB* (R)). Lemma 3 allows to
extend Catonini’s theory to simple infinite games.

Evidence games Example 3 is a special case of the class of evidence games
where an agent (player 1) has the ability to exhibit verifiable information
about a discrete state of nature and a principal (player 2) chooses a reward.
There is a rich literature about mechanisms and evidence games,*® which are
therefore an important subset of the class of infinite dynamic games with
incomplete asymmetric information analyzed in this paper. We conjecture
that the forward-induction analysis of Example 5 and—more generally—the
epistemic analysis allowed by our results can be fruitfully applied to shed
light on this literature.

Psychological games. Following up on seminal work on psychological
games by Geanakoplos et al. (1989), Battigalli and Dufwenberg (2009) argue
that interesting psychological aspects of interaction can be captured by let-
ting the utility of terminal nodes depend on (hierarchical) conditional beliefs
of coplayers. This makes the space of utility-relevant states infinite even if the
game form is finite. One can think of rationalizability for standard or psy-
chological games as an iterated deletion of utility relevant states that do not
satisfy best reply conditions. In most applications, psychological utility only
depends on low-order (e.g., first-order) beliefs of other players, which makes
the iterated deletion algorithm relatively simple (see Attanasi et al. 2017,
and Battigalli et al. 2013).3! However, given that the utility-relevant space

30See, for example, Hart et al. (2017) and the references therein.
31 Battigalli and Dufwenberg (2009) analyze rationalizability for dynamic psychological
games, but they do not give structure to the psychological utility functions, which are
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is infinite, one cannot apply the techniques of BS (2002, 2007) to provide an
epistemic foundation. Battigalli et al. (2017) give an algorithmic definition
of rationalizability in games where psychological utilities depend on m-order
beliefs, then use Lemma 3 to show that such rationalizability characterizes
the behavioral and m-order belief implications of rationality and common
strong belief in rationality.

Non simple games. The main reason to restrict our analysis to simple
dynamic games is that this allows us to prove that the topological prop-
erties of the primitive uncertainty conditional space (X,C) are inherited by
(X x A®(X),C): if (X, C) is a simple conditional space, sois (X x A (X),C)
(see BS 1999 and Lemmas 1, 4). However, the requirement that each con-
ditioning event C' in C is clopen is restrictive in some applications. For
example, suppose that ©_; is uncountable and that ¢ gets signals about 6_;;
then, even if signals are discrete, the set of profiles (6;, sj)j _; consistent with
an information set h;, ¥_; (h;) may be not clopen. Similarly, facial expres-
sions and other observable features of coplayers in face-to-face interaction
may be signals of, say, coplayers’ first-order beliefs; then, the set of profiles
(Qj, 55, u})j ” consistent with an information set h; may be not clopen. We
note that Lemma 3 does not assume the clopeness of conditioning events
in C. Therefore, it can perhaps be applied to more general constructions of
hierarchical belief spaces where such clopeness is not required.

6 Appendix: Proofs

6.1 Proof of Lemma 3

At the cost of introducing additional mathematical concepts, we are able to
prove a general result that implies Lemma 3 (as well as Lubin’s original the-
orem). The underlying intuition is not changed by the different assumptions,
so that the reader unfamiliar with the more advanced concepts can easily
adapt every statement to the simpler case. For an overview of the defini-
tions and results that we mention in the next paragraph, see, for example,
Aliprantis and Border (2006).

allowed to depend on beliefs of all orders. Therefore, their definition of rationalizability
does not directly provide a computation algorithm, as it coincides with the very definition
of the epistemic assumptions of rationality and common strong belief in rationality.
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Recall that a subset of a Polish space is analytic if it is the continuous
image of a Polish space. If S is a subset of a Polish space X, and Y is a
measurable space, a function f: S — Y is analytically measurable if, for
every measurable subset B of Y, the preimage f~!(B) belongs to the re-
striction to S of the sigma-algebra on X generated by the analytic subsets.
Every analytic subset of a Polish space X is universally measurable, that
is, it is p-measurable for every Borel measure ;1 on X. So, an analytically
measurable function f: .S — Y is also universally measurable. Although
not all y-measurable subsets of X are Borel measurable, we follow the stan-
dard practice and, for every py-measurable subset E, we denote by u* (E) the
measure of F under the completion of ;.32

Theorem 8 (Jankov—von Neumann Selection). If X and T' are Polish spaces
and E is analytic in X xT', then there is an analytically measurable function
f: projx E — T such that (z, f(x)) € E for every x in projy E.

For a proof, see, for example, Kechris (1995, Section 18). The previous
theorem is used in the proof of many results on the existence of extensions
of measures, such as that of Lubin (1974). Lemma 3 follows easily from the
following theorem.

Theorem 9. Let X and T be Polish spaces, C a countable collection of Borel
subsets of X, and (Fy, ..., E,) a finite, decreasing sequence of Borel subsets
of X x T such that, for each m = 1,...,n, projyx E,, is Borel in X. If v is
a CPS on (X,C) that strongly believes (projy E1,...,projx E,), then there
exists a CPS p on (X x T,C) that strongly believes (Ey, ..., E,) and such
that mrgy 1 = v.

Proof. The main idea behind the proof is to construct a particular
function f: X — X x T, with some measurability properties, so that the
components of the CPS u we are looking for are given by the push-forward
meastres Voo f 1 of the corresponding components of . We divide the proof
into several steps.

Step 1. Construct a finite, Borel ordered partition (Py, Py, ..., P,) of X.

32The completion of u € A(X) is the unique measure defined by
w* (B) = inf {u(F) : EC F € B(X)}
for every pu-measurable subset £ C X i.e., u* is the outer measure induced by p. Observe

that u* (E) = p(E) it E € B(X).
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Note that, since (E1, ..., E,) is decreasing, so is (projy E1, . .., projy E,).
Fork=1,....n—1, let

Py, = (projx Ex) \ (projy Eyi1),

and define Py = X \ projy E1 and P, = projy F,. These sets are Borel and
disjoint, and (Fy, Py, ..., P,) is an ordered partition of X. Monotonicity of
the sequence (Ey, ..., E,) also implies that

projxy By = P,UP, L U---UP, (k=1,...,n). (2)

Step 2. On each Py, define an analytically measurable function gy with values
in T using the Jankov—von Neumann Selection Theorem.

Define gy: Py — T as an arbitrary constant function. For k =1,... , n—1,
let
Fy = Ep \ (projx Eg1 x 1),

which is a Borel (so analytic) subset of X x T. It is easy to show that
projy Fy, = Py (see step (6) below). By the Jankov—von Neumann Theo-
rem, there exists an analytically measurable function g,: P, — T such that
(x, gr(x)) € Fy for every x in Py. Since F), C Ey, it holds that (z, gx(z)) € Ej
for every x in Pj. Finally, invoke Jankov—von Neumann once more and let
gn: P, — T be analytically measurable and such that (z, g,(x)) € E, for all
x in P,. Figure 1 is a graphical representation of g, and P, (k = 1,...,n)
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for the case n = 3 (note that the shaded area is given by Fy U Fy U Ej).

Figurel. Measurable selection.

Step 3. Define an analytically measurable function g piecewise on X so that
it satisfies (x,g(x)) € Ey for every x in projy Ej.

Let g: X — T be defined by g(x) = gi(x) for z in P, and k = 0,...,n.
By construction, (z,g(z)) € Ej for every x in P, (k = 1,...,n). Since
(E1,...,E,) is decreasing, then, by construction of (F,...,P,), we have
that (z,g(x)) € Ej for every x in P, U Py U---U P,. Hence, it follows
from (2) that (x,g(x)) € Ej for every x in projy Ejy. As a final remark,
we note that g is analytically (and so universally) measurable since each gy
is analytically measurable and has an analytically measurable domain, and
g YB) =g, (B)U---Ug;(B) for every Borel subset B of T.

Step 4. Define i as an an array of push-forwards, and verify that it is a
CPS.

Let f: X — X x T be defined by
fz) = (z,9(2)).
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Since g is analytically measurable, so is f. For every C' in C, define the
measure jic by

pe(B) = vo(f(B))
for every Borel subset B of X x T. Since f is analytically measurable, then
f71(B) is universally measurable subset of X, hence vc-measurable, and the

right hand side makes sense. Moreover, i = (uc)cec is a CPS on (X x T, C):
for every C'in C,

1e(C x T) = vi(fHC x T)) = ve(C) = 1,

and, for every C, D in C, B Borel subset of X x T, if BC DxT CC xT
then

ve(f7H(B))
ve(D)vp(f~1(B))

S HD x T)vp(f(B))
(D x T)pp(B),

pic(B)

14

where the second equality holds because v isa CPSand BC DxT CCxT
implies f~'(B) C D C C, with f~'(B) either Borel or v}-null.

Step 5. The CPS p has v as its marginal and strongly believes (Ey, . .., E,).

We have (mrg jic)) (B) — pe(projy! (B)) = vi(f ~(proj3 (B))) = ve(B)
for every Borel subset B of X. Now recall that, by assumption, v strongly
believes the sequence (projy Ei,...,projx E,). Suppose that C € C and
(C' x T)N Ey # 0, which occurs if and only if C N projy Ey # 0. Then
vo(projx Ey) = 1, and

pe(Ex) = vi(f 7 (B) = vo({z € X« (2, g(2)) € Er}) > ve(projx Ey) = 1,

where the inequality follows from the construction of ¢ and monotonicity of
measures. Since k is arbitrary, u strongly believes (Ey, ..., E,).

Step 6. Verify an intermediate claim.
Step 2 above uses the fact that, for k =1,...,n—1, projy Fj = Px, that
is,
projx (B \ (projx Exi1 X T)) = (projx Ex) \ (projx Ep+1)-
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This follows from the chain of equivalent statements:

z € projx (L \ (projx Ei1 x T'))
< (It € T)[(x,t) € E; \ (projy Exi1 x T)]
<~ (FteT)|(x,t) € Ex A (2,t) ¢ projy Exi1 x T
< (FteT)|[(x,t) € Ex)] Nz ¢ projy Exi1
<z € (projy Ex) \ (projx Ej1).

This completes the proof. [ |

6.2 A “Constructive” Proof of Remark 3

Fix some v € A®(X) that strongly believes (projy E1,...,projyx E,). Define
recursively a partition {Co,Ci,...} of C as follows: Let Co = {C € C :
vx(C) > 0}. Recursively, suppose we have defined Cy, . .. ,C,,, and let

Cn1={C €C\(CuU---UC,):YVCEC,CDC=CeCU---UCy}

be the collection of conditioning events C' not in Cy U - - - U C,,, whose strict
predecessors C' are all in Cy U - - - U C,,; then, let

Cm+1:{D€C\<COU"'UCm)23065m+1762D,V@<D) >0}

For convenience, let Co = {X}. Note that, by definition of Crm and since v is a
CPS, we have C,,, C C,, for every m = 0,1,... (in particular, Cy = { X} C Cy).

Claim 1. Every element of C,, has a unique predecessor in C,y,.

First note that it is true by definition that each element of C,, has at
least one predecessor in C,,; we only have to prove uniqueness. The claim
is obvious for m = 0. For m = 1,2,..., let C' € C,, and consider any
two distinct predecessors C',C" O C (if they exist); then—by the tree-like
property of C—either C” O €’ or C' D C”. Thus, by definition of C,,, at
most one of C” and C" can belong to C,,. OJ

Claim 2. {Cy,C,...} is a partition of C.
By the construction above, it is clear that the collections C,,, are pairwise
disjoint. Let us show that C = UC"‘ Pick any C' in C. By definition of

n>0
simple conditional space, the collection of predecessors (supersets) of C' in
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C, denoted by C2(C), is finite and totally ordered by D. Hence, C2(C') can
be written as {Cy,...,C,,} where all Cy’s are distinct (kK = 0,...,m) and
X=CyD:-DCp DC, =C. Remark that, for every k less than m,
{Cy,...,Cy} is the set of strict predecessors of Cy,1. We show inductively
that

Cr,eCyU---UC

for all £ =0,...,m, so that, in particular, C' = C,, € CoU---UC,, C UCn.
n>0
Indeed, Cy = X € Cy is trivially true. Suppose that Cy € Co U --- U Cy for

allk=0,... 0 <m—1:if Cpyq € CoU---UC, we are done; if not, every
strict predecessor of Cy11 belongs to CoU- - -UC, by the inductive hypothesis,
which implies—by definition of C;,;—that Cyy1 € Cpyp1 C Cpyy. O

By Claims 1-2, we can define a map e : C — C that associates each C' € C
with the earliest predecessor C' of C such that vs(C) > 0: let C,, be the
cell of partition {Cy,Cy,...} that contains C, then C' = e(C) is the unique
predecessor of C' in C,,.

Note that C' N projy E,, # 0 if and only if E,, N (C x T) # (), for all
m = 0,...,n and C in C. Since v strongly believes each projy F,,, by
Lemma 2 we can find an array of probability measures i = (fi¢)cec in
[A(X x T)]¢ (possibly not a CPS) such that mrgy i = v and ji strongly
believes £. More explicitly: for all C'in C and for all m =0,...,n,

mrgy e = Vo,

and
E,N(CxT)#0= pc(E,N(CxT))=1.

We use some of these measures to construct the desired CPS pu:
For all m = 0,1,..., for all C'in C,,, and for all F in B(X x T, let

_ o) (EN(CXT))
flec)(C < T)

where the denominator is positive because fio(c)(C' x T) = mrgy fie(cy(C) =
Ve(c)(C) > 0 by definition of e (C'). Since {Cy,Cy,. ..} is a partition of C, we
obtain an array (uc)cee in [A(X x T)]¢. Clearly, uc(C x T) = 1 for all C
in C.

po(E)

Claim 3. v is the marginal of p.
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For each C' in C and each event of the form F x T for E in B(X),

fiec) (ENC)XT))  vee)(ENC)

ExT)= =
el ) o) (@ xT) ve()(C)
ENC)vee)(C
vo( Jveo(©) _ | g
Ve(C)(C)
where we used the definition of e(C) and the fact that v satisfies the chain
rule (1). O

Claim 4. p strongly believes &.

Let m € {1,...,n} and C' € C. We must show that E,, N (C x T) # ()
implies pc(En,) = 1. If E,, N (C x T) # 0, then C Nprojy E,, # 0, and
e(C) Nprojy B, # 0 because C' C e(C) by definition. Since fi strongly
believes &, fiec)(Em) = 1, which implies fie(c)(En N (C X T')) = fie(cy(C xT)
and thus

fieo)(Em N (C X T))  fie(e)(C x T)

Em = — = — = 1.
Ho(Bin) fie(c)(C x T) fie(c)(C x T)

Claim 5. pu satisfies the chain rule (1).

Fix an event E and two conditioning events C' and D in C with F C
D xT CC xT. We must show that uc(E) = pup(E) pc(D x T). There are
two cases: (i) If e(C) = e(D), then

e (E)  fen)(E)

Ho(B) = (OCxT) fie(D )(CxT)
_ ue(m(E) p)(D xT)
fie() (D X T) ue )(C'xT)

= pp(E) pe(D x T).

(ii) If e(C) # e(D), then D C e(D) C C C e(C) and ve)(e(D)) = 0.
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Therefore fic(cy(E) = fie(c)(D x T') = 0, which implies that (1) holds:
freo) (E)
pe(E) = fie(cy(C X T)
=0
fiep)(E)  fec)(D X T)
fie(D)(D X T') fie(c) (C % T)
— in(E) pe(D x T).

0

Since v is the marginal of p, which strongly believes £ and satisfies all
the properties of a CPS, the theorem is proved. [

6.3 Other proofs
6.3.1 Proof of Lemma 4

Let H, = HN A" be the set of nonterminal histories of length n. By assump-
tion, H,, is finite for each n = 0,1, ... ; therefore, H = UnGNO H,, is countable.
Each set A;(h) is a compact metrizable space; hence, the countable Cartesian
product S; = [],c5 A;(h) is compact and metrizable as well. The set ©; is
compact metrizable and I\ {i} is countable, hence ¥_; = [[,,(©; x 5;) is
a compact metrizable space.

We have to show that C; is a countable collection of clopen subsets of
>._; with a tree-like structure. The collection C; is countable because H is
countable, and it inherits its tree-like structure from the countable tree H:
indeed, ¥_; = ¥_;(@) € C;, and the set of strict predecessors of any ¥_;(h)
in C; is the finite collection C;*(h) = {3_;(R') : K’ < h}; pick any pair of
distinct predecessors ¥;(h’) and ;(h”) in C;*(h). Since H is a tree, either
h < h" and E_i<h”> C Z_Z(h/) or h” < h' and E_Z<h,) - Z_i<h”).

Obviously, ¥_;(@) = ¥_; is closed and open in ¥_;. To see that ¥_;(h)
is closed for each h in H \ {@}, let h = (a',...,a™) and note that

o) =[]0 x{aj} x---x{ajt x [ Ai)

J# h'€H:h!£h

where each set in the product is closed. To see that X_;(h) is also open in
Y._;, we first show that X (h) is open in ¥. Note that {X(h') : ' € H,}

37



is the finite partition of subsets of ¥ obtained from the preimages through
map (6,s) — ((s) of the elements of the finite partition {Z(h') : b’ € H,}
of Z. Each ¥ (k') is a product of closed subsets (see above) and it is closed
as well; therefore, the finite union ey \pny () is closed and X(h) =
2\ Unren,ny B(R') is open. Since a Cartesian product C' =[], C; C X is
open if and only if each C; is open, it follows that each X; (k) is open and
Y_i(h) =[1;4 %; is open. |

6.3.2 Proof of Lemma 5

The result follows from standard compactness-continuity arguments and is
therefore omitted (see Battigalli, 2003). [

References

[1] AviprANTIS, C.R., AND K.C. BORDER. (2006): Infinite Dimensional
Analysis. Berlin: Springer-Verlag.

[2] ArIELI, I. (2010): “Rationalizability in Continuous Games,” Journal of
Mathematical Economics, 46, 912-924.

[3] ArTEMOV, G., T. KUNIMOTO, AND R. SERRANO (2013): “Robust
Virtual Implementation: Toward a Reinterpretation of the Wilson Doc-
trine,” Journal of Economic Theory, 148, 424-447.

[4] ATTANASI, G., P. BATTIGALLI, AND R. NAGEL (2017): “Disclosure of
Belief-Dependent Preferences in a Trust Game,” IGIER Working Paper
506, Bocconi University.

[5] BATTIGALLI, P. (1996): “Strategic Rationality Orderings and the Best
Rationalization Principle,” Games and FEconomic Behavior, 13, 178-
200.

[6] BATTIGALLI, P. (1997): “On Rationalizability in Extensive Games,”
Journal of Economic Theory, 74, 40-61.

[7] BATTIGALLI, P. (2003): “Rationalizability in Infinite, Dynamic Games
of Incomplete Information,” Research in Economics, 57, 1-38.

38



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BATTIGALLI, P. (2006): “Rationalization in Signaling Games: Theory
and Applications,” International Game Theory Review, 8, 1-27.

BarticaLLl, P., AND M. DUFWENBERG (2009): “Dynamic Psycho-
logical Games,” Journal of Economic Theory, 144, 1-35.

BATTIGALLI, P., AND A. FRIEDENBERG (2012): “Forward Induction
Reasoning Revisited,” Theoretical Economics, 7, 57-98.

BATTIGALLI, P., AND D. GuArTOLI (1997): “Conjectural Equilibria
and Rationalizability in a Game with Incomplete Information,” in De-
cisions, Games and Markets, ed. by P. Battigalli, A. Montesano and F.
Panunzi. Dordrecht: Kluwer Academic Publishers, 97-124.

BATTIGALL,I P., AND PRESTIPINO (2013): “Transparent Restrictions
on Beliefs and Forward Induction Reasoning in Games with Asymmetric
Information,” The B.E. Journal of Theoretical Economics, 13: Iss. 1

(Contributions), 1-53.

BATTIGALLL, P., AND M. SINISCALCHI (1999): “Hierarchies of Condi-
tional Beliefs and Interactive Epistemology in Dynamic Games,” Journal
of Economic Theory, 88, 188-230.

BATTIGALLIL, P., AND M. SINISCALCHI (2002): “Strong Belief and For-
ward Induction Reasoning,” Journal of Economic Theory, 106, 356-391.

BATTIGALLI, P., AND M. SINISCALCHI (2003): “Rationalization and
Incomplete Information,” Advances in Theoretical Economics, 3 (1), Ar-
ticle 3.

BarTicALLl, P., AND M. SINISCALCHI (2007): “Interactive Episte-

mology in Games with Payoff Uncertainty,” Research in Economics, 61,
165-184.

BATTIGALLI, P., AND J. WATSON (1997): “On ‘Reputation’ Refine-
ments with Heterogeneous Beliefs,” Fconometrica, 65, 369-374.

BATTIGALLI, P., G. CHARNESS AND M. DUFWENBERG (2013). “De-
ception: The Role of Guilt,” Journal of Economic Behavior and Orga-
nization, 93, 227-232.

39



[19]

[23]

[24]

[25]

[26]

[27]

28]

BarTicarLl, P., R. CORRAO, AND F. SANNA (2017): “Epistemic
Game Theory Without Type Structures. An Application to Psycholog-
ical Games,” mimeo, Bocconi University.

BATTIGALLI, P., A. FRIEDENBERG, AND M. SINISCALCHI (2016):
Epistemic Game Theory. Reasoning About Strategic Uncertainty, mimeo
(preliminary and incomplete).

BarTicaLLi, P., E. CATONINI, G. LANZANI, AND M. MARINACCI
(2017): “Ambiguity Attitudes and Self-Confirming Equilibrium in Se-
quential Games,” mimeo, Bocconi University.

Barticaril, P., A. D1 Tiwrio, E. GRILLO AND A. PENTA (2011):
“Interactive Epistemology and Solution Concepts for Games with Asym-
metric Information,” The B.FE. Journal of Theoretical Economics, 11,

Iss. 1 (Advances), Article 6.

BeEN PORrATH, E. (1997): “Rationality, Nash Equilibrium, and Back-
ward Induction in Perfect Information Games,” Review of FEconomic
Studies, 64, 23-46.

BERGEMANN, D.; AND S. MORRIS (2016): “Belief-free Rationalizabil-
ity and Informational Robustness,” Cowles Foundation Discussion Paper
2066, Yale University.

CaToONINI, E. (2017a): “Rationalizability and Epistemic Priority Or-
derings,” mimeo, Higher School of Economics, Moscow.

CaToNINI, E. (2017b): “Self-enforcing Agreements and Forward-
Induction Reasoning,” mimeo, Higher School of Economics, Moscow.

DEKEL, E., AND M. SINISCALCHI (2015): “Epistemic Game Theory,”
in Handbook of Game Theory with Economic Applications, Volume 4,
ed. by P. Young and S. Zamir. Amsterdam: North-Holland, 619-702.

FUDENBERG, D., AND D.K. LEVINE (1989): “Reputation and Equi-
librium Selection in Games with a Patient Player,” Econometrica, 57,
759-T78.

GEANAKOPLOS, J., D. PEARCE, AND E. STACCHETTI (1989): “Psy-

chological Games and Sequential Rationality,” Games and Economic
Behavior, 1, 60-79.

40



[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

GUARINO, F. (2017): “The Topology-Free Construction of the Univer-
sal Type Structure for Conditional Probability Systems,” mimeo, Maas-
tricht University.

HARRINGTON, J. (2017): “A Theory of Collusion with Partial Mutual
Understanding,” Research in Economics, 71, 140-158.

HARrsANYI, J. (1967-68): “Games of Incomplete Information Played by
Bayesian Players. Parts I, II, III,” Management Science, 14, 159-182,
320-334, 486-502.

HART, S., I. KREMER, AND M. PERRY (2017) “Evidence Games: Truth
and Commitment,” American Economic Review, 107, 690-713.

HeireTZ, A., AND D. SAMET (1998): “Topology-Free Typology of
Beliefs,” Journal of Economic Theory, 82, 324-341.

KECHRIS, A. (1995): Classical Descriptive Set Theory. Berlin: Springer
Verlag.

LUBIN, A. (1974): “Extensions of Measures and the von Neumann Se-

lection Theorem,” Proceedings of the American Mathematical Society,
43, 118-122.

MUELLER, C. (2016): “Robust Virtual Implementation under Common
Strong Belief in Rationality,” Journal of Economic Theory, 162, 407—
450.

PEARCE, D. (1984): “Rationalizable Strategic Behavior and the Prob-
lem of Perfection,” Fconometrica, 52, 1029-1050.

ScHMIDT, K. (1993): “Reputation and Equilibrium Characterization in
Repeated Games with Conflicting Interests,” Econometrica, 61, 325-351.

SHIMOJI, M., AND J. WATSON (1998): “Conditional Dominance, Ra-
tionalizability, and Game Forms,” Journal of Economic Theory, 83, 161-
195.

TAN, T., AND S. WERLANG (1988): “The Bayesian Foundation of

Solution Concepts of Games,” Journal of Economic Theory, 45, 370-
391.

41



[42] TEBALDI, P. (2011): Agreements in Dynamic Games, Master’s thesis,
Bocconi University, Milan.

[43] WATSON, J. (1993): “A ‘Reputation’ Refinement without Equilibrium,”
FEconometrica, 61, 199-205.

[44] VARADARAJAN, V., S. (1963): “Groups of Automorphisms of Borel
Spaces,” Transactions of the American Mathematical Society, 109, 191-
220.

42



	wp602cover.pdf
	Interactive Epistemology in Simple Dynamic Games with a Continuum of Strategies
	Pierpaolo Battigalli, Gabriele Beneduci, Pietro TebaldiWorking Paper n. 602


