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Abstract

We establish suffi cient conditions that ensure the uniqueness of Tarski-type fixed points of
monotone operators. Several applications are presented.

1 Introduction

In this paper we establish suffi cient conditions that ensure in ordered vector spaces the uniqueness of
fixed points a la Tarski [36], often a highly desirable property in the many applications in economics
and operations research in which such fixed points appear (cf. Topkis [38]).
More specifically, our results establish the existence and uniqueness of fixed points of monotone

operators that are either order concave or subhomogenous. Their common feature is to require that
no fixed points belong to the lower perimeter of the domain. This novel notion, which we introduce
in Section 3, is thus a keystone of our analysis.
We establish our main results in Sections 4 and 5. The results of the latter section rely on a

close relation between the subhomogeneous case and the contractive property according to a metric
introduced by Thompson [37]. This novel connection, elaborated in the Appendix, permits to prove
the uniqueness and global attractiveness of fixed points of subhomogeneous operators. Besides the
role of lower perimeters, this connection is the other main contribution of this paper.
We illustrate our uniqueness results with some applications on recursive utilities, integral equa-

tions, complementary problems, variational inequalities, and operator equations in Section 6. We
conclude by discussing the related literature in Section 7.

2 Preliminaries

In this introductory section we briefly present a few basic notions that we use in the paper (we refer
to [11], [24] and [31] for comprehensive studies).

Posets A poset (A,≥) is chain complete (resp., σ-complete) if it has a minimum element and if
every (resp., countable) chain has a supremum.1 A lattice is complete when every nonempty subset
has an infimum and supremum element. A lattice is complete if and only if is chain complete.
If a ≤ b are two elements of a poset A, then [a, b] = {x ∈ A : a ≤ x ≤ b} is an order interval. A

poset is Dedekind (σ-complete) complete if every order interval is (countably) chain complete.
An element a ∈ A is: (i) dominated if there is b ∈ B such that a < b, (ii) minimal if there is no

b ∈ A such that b < a, (iii) a minimum if a ≤ b for all b ∈ A.
∗We wish to thank Gaetano Bloise and Efe Ok for some very helpful comments. The financial support of ERC

(grant INDIMACRO) is gratefully acknowledged.
1The minimum can be actually regarded as the supremum of the empty chain.
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Spaces Throughout the paper V is a (partially) ordered vector space with order relation ≥ and K
will always denote its positive cone. If V is Dedekind σ-complete, then it is Archimedean.2 When V
is a lattice, it is called Riesz space. In this case, to be Dedekind complete amounts to say that the
order intervals [a, b] ⊆ V are complete lattices.

Fixed points A self-map T : A→ A ismonotone (or order preserving) if a ≤ b implies T (a) ≤ T (b)
for all a, b ∈ A.
A fixed point theorem due to Tarski [36] p. 286 says that the set of fixed points of a monotone

self-map defined on a complete lattice is a nonempty complete lattice. A generalized version of this
result says that set of fixed points of a monotone self-map defined on a chain complete poset is a
nonempty chain complete poset.3

A self-map T : A → A is order continuous if, given any countable chain {an} ⊆ A for which
sup an exists, we have T (sup an) = supT (an). Clearly, order continuous self-maps are monotone. A
fixed point theorem, essentially due to Kantorovich [17] p. 68, says that the set of fixed points of a
order continuous self-map defined on a chain σ-complete poset has a least fixed point.

Concavity A subset A of an V is order convex if a ≤ c ≤ b and a, b ∈ A imply c ∈ A. This amounts
to say that A contains all order intervals (and so all segments) determined by its elements.
A self-map T : A→ A defined on an order convex subset is order concave if

T (ta+ (1− t) b) ≥ tT (a) + (1− t)T (b)

for all t ∈ [0, 1] and all a, b ∈ A with a ≤ b. Order concave and order convex operators are studied in
Amann [3, Chapter V], along with their differential characterizations.

Subhomogeneity The study of subhomogeneity for operators was pioneered by Krasnoselskii [19].
An operator T : K → K is called:4

(i) subhomogeneous if T (αx) ≥ αT (x) for all x ∈ K and all α ∈ [0, 1];5

(ii) strictly subhomogeneous if the inequality is strict when α ∈ (0, 1) and x 6= 0;

(iii) strongly subhomogeneous if

T (αx) ≥ ϕ (x, α)T (x) ∀0 6= x ∈ K,∀α ∈ (0, 1) (1)

with α < ϕ (x, α) < 1;6

(iv) subhomogeneous of order p ∈ (0, 1) if T (αx) ≥ αpT (x) for all x ∈ K and all α ∈ [0, 1].

Note that for a subhomogeneous operator we have T (0) ≥ 0. Subhomogeneous operators of order p
are strongly subhomogeneous with ϕ (x, α) = αp (they are, actually, the most convenient class of such
operators). For brevity, throughout the paper operators in (iv) will be called p-subhomogeneous.7

2That is, if x ≥ 0 and nx ≤ y for every n ∈ N, then x = 0. In fact, the countable chain · · · ≥ nx ≥ · · · ≥ x has a
supremum supnx in the order interval [0, y]. But 2−1 sup (2n)x = supnx = sup (2n)x, so 0 ≤ x ≤ supnx = 0.

3This result, as stated, can be found in Markowsky [27] p. 65. The existence of a least fixed point is due to Abian
and Brown [1] p. 80.

4Though for simplicity we consider a cone domain, we can actually consider any star-shaped subset A of K, i.e.,
αx ∈ A if x ∈ A and α ∈ [0, 1]. Throughout the paper, we consider these more general domains whenever needed.

5Different authors use different terminologies. Subhomogeneous operators are called concave by [19] and sublinear
by [3]. For a class of subhomogeneous operators, [9] coined the term “pseudoconcave operators”.

6Under mild assumptions, ϕ (x, α) can be chosen to be monotone and continuous in α. See the proof of Proposition
36.

7They are also called p-concave operators by some authors. Strongly subhomogeneous operators are also called
ϕ-concave (see [22]).
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Norms and units A positive element e ∈ V is an order unit for V if the interval [−e, e] is
absorbing, that is, V =

⋃
λ>0 λ [−e, e]. More in general, for every nonzero element u ∈ K the

set Vu =
⋃
λ>0 λ [−u, u] is a nontrivial vector subspace of V that has u as an order unit. If V is

Archimedean, then Vu can be equipped with an order unit norm (see [19] and [3]):

‖x‖u = inf {λ > 0 : −λu ≤ x ≤ λu} .

This norm is simply called the u-norm. The cone Ku = K ∩ Vu is a closed cone in (Vu, ‖·‖u) with
nonempty interior consisting of the order units of Vu.

Links and the Thompson metric Two elements x, y ∈ K are linked (see [37]), written x ∼ y, if
there exist scalars α, β > 0 such that

αy ≤ x ≤ βy.
The binary relation ∼ is an equivalence relation that partitions the positive cone K in disjoint
components, which form the quotient set K/ ∼. We denote by Q (x) the equivalence class with
representative x ∈ K, i.e., Q (x) = {y ∈ K : x ∼ y}.
If x ∼ y define

d (x, y) = inf
{
λ ≥ 0 : e−λx ≤ y ≤ eλx

}
. (2)

The binary relation d defines a distance, the so-called Thompson metric, on each component Q of K
provided V is Archimedean (see [37] and [30]). Note that if x and y are comparable, say x ≤ y, then
(2) reduces to d (x, y) = inf

{
λ ≥ 0 : y ≤ eλx

}
.

The positive cone K in a normed ordered space is called normal if 0 ≤ x ≤ y implies ‖x‖ ≤ γ ‖y‖
for some γ ≥ 1.

Theorem 1 (Thompson) Let V be a normed ordered space. If K is normal, then convergence in
the Thompson metric implies convergence in norm. If, in addition, V is Banach, then each metric
space (Q, d) is complete.

3 Lower perimeter

3.1 Definition and characterizations

Let A be a set in an ordered vector space V . The lower perimeter ∂�A of A is defined by

∂�A = {x ∈ A : ∃y ∈ A, y > x and tx+ (1− t) y /∈ A for all t > 1} .

In words, ∂�A consists of the dominated elements a of A such that the segments that join them with
a dominant element b of A cannot be prolonged beyond a without exiting A. In contrast, an element
a ∈ A does not belong to ∂�A if it is either undominated (i.e., it is maximal) or ta + (1− t) b ∈ A
holds for some t > 1 whenever a < b ∈ A.

Proposition 2 A dominated and minimal element of a convex set A belongs to ∂�A.

Proof Let x ∈ A be dominated, with x < z ∈ A, and minimal. Suppose by contradiction that
x /∈ ∂�A. Then, there exists t > 1 such that tx+ (1− t) z ∈ A, which contradicts minimality because
tx+ (1− t) z < x. �

Of course, ∂�A may contain non-minimal elements, as the characterizations of lower perimeters
that we are about to establish will show. We first characterize lower perimeters of intervals via the
link equivalence relation ∼.

Proposition 3 Let I = [a, b] ⊆ V , with a < b. An element x ∈ I does not belong to ∂�I if and only
if x− a ∼ b− a.
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Proof Let x ∈ I\∂�I. If x = b, the result is obvious. Thus, suppose a ≤ x < b. By definition,
(1− t) b+ tx ≥ a for some t > 1. Setting t = 1 + δ, this is equivalent to (1 + δ)x− δb ≥ a for some
δ > 0. Namely, (1 + δ)x ≥ a+ δb. By subtracting (1 + δ) a from both sides, we get

(1 + δ) (x− a) ≥ δ (b− a) .

Hence,

b− a ≥ x− a ≥ δ

1 + δ
(b− a)

So, x − a and b − a are linked. Conversely, suppose a ≤ x < b and x − a ∼ b − a. Given that
x − a < b − a, this means that λ (x− a) ≥ b − a and that λ > 1. Otherwise, x − a ≥ b − a which
implies x = b. As λ > 1, we can set δ = (λ− 1)

−1
> 0, that is, 1/λ = δ/ (1 + δ). Consequently,

x− a ≥ 1

λ
(b− a) =

δ

1 + δ
(b− a) ≥ δ

1 + δ
(b′ − a)

for every b′ ≤ b. So, (1 + δ)x− δb′ ≥ a. By the substitution t = 1 + δ, it becomes tx+ (1− t) b′ ≥ a
for some t > 1. This suffi ces to conclude that x ∈ I\∂�I. �

Next we characterize the lower perimeters of the positive cone.

Proposition 4 Let V be Archimedean V , with order units. An element x ∈ K does not belong to
∂�K if and only if x ∼ e for some order unit e ∈ K.

Namely, K\∂�K is the set of the all order units of V which, indeed, is easily seen to be the
component Q (e) = {x ∈ K : x ∼ e}.

Proof Let x ∈ K\∂�K. We have λe > x for some λ, as e is an order unit. In view of the previous
proof (1 + δ)x ≥ δλe for some δ > 0. Hence,

λe ≥ x ≥ δλ

1 + δ
e

and so x ∼ e. Conversely, let x ∼ e and b > x. Then, λe ≥ b for some λ and x ≥ µe because x ∼ e.
Hence,

b > x ≥ µ

λ
b.

It follows that µ/λ < 1. Therefore, µ/λ = δ/ (1 + δ) for some δ > 0. Namely, (1 + δ)x − δb ≥ 0
which means x ∈ K\∂�K. �

This proposition establishes a sharp topological characterization of the lower perimeter of K.
Indeed, the space V can be equipped with the order unit norm ‖·‖e, where e is an order unit of V .
Hence, by Proposition 4 we have

K\∂�K = intK

according to the topology induced by ‖·‖e. So, ∂�K is the boundary of K.

In a similar vein, we have the following geometric version of Proposition 3.

Proposition 5 Let I = [a, b] ⊆ V , with a < b and V Archimedean. An element x ∈ I does not
belong to ∂�I if and only if it belongs to a+ intKb−a.
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Here, intKb−a denotes the interior of the coneKb−a = K∩Vb−a in the normed space
(
Vb−a, ‖·‖b−a

)
generated by the vector b− a > 0.

Proof By Proposition 3, I\∂�I = a + J\∂�J where J = [0, b− a]. Moreover, x ∈ J\∂�J if and
only if x ∼ b − a and x ∈ [0, b− a]. On the other hand, b − a is an order unit of

(
Vb−a, ‖·‖b−a

)
.

Consequently, the elements of J\∂�J are the order unit of
(
Vb−a, ‖·‖b−a

)
contained in [0, b− a]. It

is well known that the set of order unit of
(
Vb−a, ‖·‖b−a

)
agrees with the interior of the cone Kb−a.

Hence, J\∂�J = intKb−a ∩ [0, b− a], as desired. �

Finally, a dual notion of upper perimeter ∂�A can be defined, for which dual results hold. For
instance, in the dual version of Proposition 3 we have

x ∈ I\∂�I ⇐⇒ b− x ∼ b− a. (3)

In what follows, whenever needed we take for granted such dual results for upper perimeters.

3.2 Examples

We now present a few examples of lower perimeters that will be useful in the rest of the paper. We
consider the space RX of the real-valued functions f : X → R defined on a set X, endowed with
the pointwise order between functions. A piece of notation: if f, g ∈ RX , we write f � g when
infx∈X [g (x)− f (x)] > 0.8

Proposition 6 Let V be a vector subspace of RX . Consider an interval I = [f, g] ⊆ V , with f < g.
Then,9

∂�I =

{
h ∈ I : inf

x∈X

h (x)− f (x)

g (x)− f (x)
= 0

}
. (4)

In particular, if f � g and supx∈X [g (x)− f (x)] <∞, then

∂�I =

{
h ∈ I : inf

x∈X
[h (x)− f (x)] = 0

}
. (5)

Proof By Proposition 3, we have h ∈ I\∂�I if and only if h − f ≥ ε (g − f) for some ε > 0. Note
that if g (x)− f (x) = 0 then h (x)− f (x) = 0. Therefore, we have h ∈ I\∂�I if and only if

inf
x∈X

h (x)− f (x)

g (x)− f (x)
> 0

and so (4) holds. The two conditions f � g and supx∈X [g (x)− f (x)] <∞ mean that M ≥ g− f ≥
ε > 0. Hence, in this case

1

ε
(h− f) ≥ h− f

g − f ≥
1

M
(h− f) ,

which shows the equivalence of (4) and (5). �

By similar methods one can show that the lower perimeter of the positive cone B+ (X) of the
space of bounded functions B (X) ,

∂�B+ (X) =

{
h ∈ B+ (X) : inf

x∈X
h (x) = 0

}
.

as well as the following characterization for the space L∞ (X,Σ, µ) —whose points are, as usual,
classes of functions. For simplicity, we consider only the counterpart of (5).

8This notation is consistent with the familiar relation x� y between vectors x and y of Rn.
9 In (4) we adopt the convention 0/0 = 0.
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Proposition 7 Let I = [f, g] ⊆ L∞ (X,Σ, µ), with ess infx∈X [g (x)− f (x)] > 0. Then

∂�I =

{
h ∈ I : ess inf

x∈X
[h (x)− f (x)] = 0

}
.

We turn now to a real (or complex) Hilbert space H with inner product (·, ·). Let Ls (H) be the
real Banach space of all linear self-adjoint operators on H, endowed with the usual operator norm
‖·‖. Endow Ls (H) with the Loewner order, with positive cone

L+
s (H) = {A ∈ Ls (H) : (Ax, x) ≥ 0} .

It is known that Ls (H) is not a lattice, unless dimH = 1 (see [24, Ch. 8]). However, bounded order
intervals of Ls (H) are chain complete.10

The Loewner order is just the pointwise order of quadratic functions on the unit sphere S of H,
i.e., for all A,B ∈ Ls (H),

A ≥ B ⇐⇒ (Ax, x) ≥ (Bx, x) ∀x ∈ S.

So, Proposition 6 applies and leads to the next result, where we set [A]∞ = infx∈S (Ax, x) for all
A ∈ Ls (H).

Proposition 8 Let I = [A,B] ⊆ Ls (H), with [B −A]∞ ≥ ε > 0. Then

∂�I = {X ∈ I : [X −A]∞ = 0} .

4 Existence and uniqueness: order concavity

Throughout this section, V denotes a Dedekind σ-complete ordered vector space.

Lemma 9 Let T : A → A be a monotone and order concave self-map defined on an order convex
subset A of V . Assume that either A is Dedekind complete or T is order continuous. Suppose that:

(i) for each b ∈ A\∂�A, there is b ≥ a ∈ A such that T (a) > a;

(ii) T (a) 6= a for all a ∈ ∂�A.

Then, T has a least fixed point in A if and only if it has a unique fixed point in A.

Observe that ∂�A might be empty. A dual result holds for order convex operators by considering
the upper perimeter ∂�A. It actually suffi ces to consider the conjugate map T̃ : −A → −A defined
by T̃ (x) = −T (−x) .

Proof Let ξ be the least fixed point in A. Suppose, per contra, that it is not unique. Let ζ be
another fixed point. Clearly, ξ < ζ (so ξ is a dominated element of A). By (ii), ξ /∈ ∂�A. By (i), there
exists a ≤ ξ such that T (a) > a. This implies that a < ξ. For each n ∈ N, set

xn = ξ − 1

n
(ζ − ξ) ,

i.e.,

ξ =
1

1 + n−1
xn +

n−1

1 + n−1
ζ.

10An earlier result is due to Vigier (see [24, Th. 53.4]). See also [16].

6



Clearly, xn < ξ for each n ∈ N, and so xn 6= T (xn) for all n ∈ N. Since ξ /∈ ∂�A, there exists n0 ∈ N
such that xn ∈ A for all n ≥ n0. Hence, by order concavity of T , for all n ≥ n0 we have

1

1 + n−1
xn +

n−1

1 + n−1
ζ = ξ = T (ξ) ≥ 1

1 + n−1
T (xn) +

n−1

1 + n−1
ζ.

Hence,
xn > T (xn) ∀n ≥ n0 (6)

As V is Dedekind σ-complete, the supn xn exists. Let us show that supn xn = ξ. Suppose not. Then,
there exists an element η such that

ξ − 1

n
(ζ − ξ) ≤ η < ξ.

Hence n (ξ − η) ≤ ζ − ξ for every n ∈ N. Since a Dedekind σ-complete ordered vector space is
Archimedean, we have the contradiction ξ ≤ η. We conclude that supn xn = ξ. In turn, this implies
xn̄ > a for some n̄ ∈ N. Since A is order convex, [a, xn̄] ⊆ A. By (6), T maps the interval [a, xn̄] into
itself because T (a) > a. The set [a, xn̄] is countably chain complete. Consider two cases.
(i) If A is Dedekind complete, then [a, xn̄] is chain complete, so by the generalized Tarski’s Theorem

there is a fixed point of T that belongs to [a, xn̄];
(ii) if T is order continuous, the same is true by Kantorovich’s Theorem. In both cases, since ξ

is the least fixed point in A, we then have ξ ∈ [a, xn̄], which contradicts xn̄ < ξ. We conclude that
ζ = ξ. �

In view of the generalized Tarski’s Theorem and of Kantorovich’s Theorem, we have the following
existence and uniqueness result for fixed points.

Theorem 10 Let T : A→ A be a monotone and order concave self-map defined on an order convex
and chain σ-complete subset A of V . Assume that either A is chain complete or T is order continuous.
If T (x) 6= x for all x ∈ ∂�A, then T has a unique fixed point.

Proof (i) Assume that A is chain complete. Then, the existence of a least fixed point is guaranteed
by the generalized Tarski’s Theorem. As A is chain complete, it has a minimum element a. In view
of Proposition 2 a ∈ ∂�A and so a < T (a). The hypotheses of Lemma 9 are then satisfied, so the
fixed point is unique.
(ii) Assume that T is order continuous. The existence of a least fixed point is then ensured by

Kantorovich’s Theorem. Since A is chain σ-complete, it has a minimum element a. Since a ∈ ∂�A,
we have a < T (a). The hypotheses of Lemma 9 are then satisfied, so the fixed point is unique. �

In Riesz spaces, order convex and chain complete subsets are order intervals. Therefore, the
previous theorem is usually applicable to self-maps defined on order intervals, as some examples will
show later in the paper. The following result deals, instead, with self-maps defined on positive cones
of σ-chain complete ordered vector spaces, a case not covered by the previous theorem.

Theorem 11 Let T : K → K be a monotone and order concave self-map. Let e ∈ K be an order
unit of V . Then, T has a unique fixed point on K provided:

(i) T (x) 6= x for all x ∈ ∂�K;

(ii) T (λe) ≤ λe for all λ > 0 suffi ciently large;

(iii) the intervals [0, λe] are chain complete or T is order continuous.
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Proof By (ii), there is λ0 > 0 such that T is a monotone self-map on the intervals [0, λe] if λ ≥ λ0.
By (iii), there is a least fixed point ξ ∈ [0, λ0e]. For the same reason, there is a least fixed point ζ in
the interval [0, λe]. Hence, ζ ≤ ξ that in turn implies ξ ≥ ζ. So, ξ is the least fixed point for every
interval [0, λe] . If now η is any fixed point of T : K → K, we have η ∈ [0, λe] for some λ because e is
an order unit. Therefore, ξ ≤ η and so ξ is the least fixed point in K. By (i), being T (0) > 0, Lemma
9 guarantees the existence of the unique fixed point ξ in K. �

The lower perimeter plays a key role in the previous results. Indeed, the requirement that there
are no fixed points on the lower perimeter is needed. For instance, consider the self-map T (x1, x2) =
(1/2,

√
x2) defined on the cone R2

+. It is monotone and concave, with T (0, 0) > (0, 0), but it has the
two fixed points (1/2, 0) and (1/2, 1). Clearly, (1/2, 0) ∈ ∂�R2

+.

Example 12 Define T : R2
+ → R2

+ by

T (x1, x2) =
(
µ1x

α1
1 + λ1x

β1
2 + ε1, µ2x

α2
1 + λ2x

β2
2 + ε2

)
where all parameters are positive and ε1 + ε2 > 0. Clearly, T is monotone. It is also concave when
α1, α2, β1, β2 ∈ [0, 1]. By Proposition 4,

∂�R2
+ =

{
(x1, x2) ∈ R2

+ : x1 · x2 = 0
}
.

Observe that
T1 (x) · T2 (x) > 0 = x1 · x2 ∀ (0, 0) 6= x ∈ ∂�R2

+

and that T (0, 0) > (0, 0) provided ε1 + ε2 > 0. Consequently, T (x) 6= x for every x ∈ ∂�R2
+.

Now set α = max {α1, α2, β1, β2}, σ = max {λ1 + µ1, λ2 + µ2} and ε = max {ε1, ε2}. There exists
a scalar L̄ such that, for every t ≥ L̄ ≥ 1, we have σtα+ε ≤ t. Accordingly, if x1, x2 ≤ L with L ≥ L̄,
then

λix
αi
1 + µix

βi
2 + εi ≤ (λi + µi)L

α + ε ≤ σLα + ε ≤ L.
In turn, this implies T ([0, Le]) ⊆ [0, Le] if L ≥ L̄ and e = (1, 1), which is an order unit of R2. By
Theorem 11, we conclude that T has a unique fixed point ξ ∈ R2

+. Since T is order continuous, ξ can
be then obtained by iterating the map from (0, 0), i.e., Tn (0, 0) ↑ ξ. N

Example 13 Define T : [0, 1]
n → [0, 1]

n by

T (x1, x2, .., xn) =

(
λi

n∏
k=1

x
αik
k + εi

)n
i=1

.

If εi ≥ 0, λi + εi ≤ 1 and αik > 0 for each i and k, then T maps monotonically [0, 1]
n into itself.

Assume now:

(i) αik > 1 for every i, k = 1, ..., n;

(ii) λi + εi < 1 for some i = 1, ..., n.

From (i) it follows that T is order convex, though it is not convex.11 Clearly, the upper perimeter
of [0, 1]

n is:
∂� [0, 1]

n
= {x ∈ [0, 1]

n
: x1 ∨ x2 ∨ · · · ∨ xn = 1} .

Therefore, if x ∈ ∂� [0, 1]
n and x 6= 1, then λi

n∏
k=1

x
αik
k + εi < 1 for all i.12 Hence, T (x) 6= x in these

cases. On the other hand, by (ii) we have T (1) < 1. So, Theorem 10 guarantees the existence of a
unique fixed point ξ in [0, 1]

n, which can be computed recursively as Tn (1) ↓ξ. N
11The functions ϕ (x1, x2, .., xn) = xα1

1 xα2
2 · · · x

αn
n with αi ≥ 1 are ultramodular (see [25]), so order convex.

12Throughout by boldface k we mean the constant vector or function that assumes value k ∈ R.
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5 Existence and uniqueness: subhomogeneity

5.1 Subhomogeneity and order concavity

In this section we consider versions of the previous uniqueness results for subhomogeneous operators.
The techniques that we use here are altogether different from those of the previous section and rely
on a connection with the Thompson metric that will be fully developed in the Appendix. Note that
the fixed point problems based on subhomogeneous operators are often defined on cones, while those
based on order concave operators are often defined on bounded intervals.
To best appreciate the scope of these results, it is important to understand first the relations

between order concavity and subhomogeneity.

Proposition 14 An order concave operator T : K → K is subhomogeneous if and only if T (0) ≥ 0.

Proof Let T be order concave. If T (0) ≥ 0, then T (αx) ≥ αT (x) + (1− α)T (0) ≥ αT (x) for all
x ∈ K. So, T is subhomogeneous. The converse is trivially true since for a T subhomogeneous it
holds T (0) ≥ 0. �

A weak notion of concavity at 0 is relevant for subhomogeneity. Say that an operator T : K → K
is subconcave at 0 if, for a fixed element u ∈ K, we have

T (αx) ≥ αT (x) + (1− α)u ∀x ∈ K,∀α ∈ [0, 1] .

This definition implies that T (0) ≥ u. So, order concave operators T : K → K are subconcave at
0 provided T (0) ≥ 0. In turn, operators T : K → K that are subconcave at 0 are easily seen to be
subhomogeneous (strictly if u > 0).

Proposition 15 Let T : K → K be subconcave at 0.

(i) If T ([0, y]) ⊆ [0, y] for some y ∈ K with u ∼ y, then T is p-subhomogeneous on [0, y] for some
p ∈ (0, 1).

(ii) If T ([0, λ0e]) ⊆ [0, λ0e] for some λ0 > 0 and an order unit e ∼ u, then T is strongly subhomo-
geneous on K.

(iii) If ImT ⊆ Q (u) for some 0 < u ∈ K, then T is strongly subhomogeneous.

Proof (i) By hypothesis, there is a positive scalar λ ≤ 1 for which u ≥ λy (note that u ≤ T (0) ≤ y).
We can assume λ < 1 (the case λ = 1 is trivial). Hence, if x ∈ [0, y] we have

T (αx) ≥ αT (x) + (1− α)u ≥ αT (x) + (1− α)λy ≥ αT (x) + (1− α)λT (x) (7)

= [α+ (1− α)λ]T (x) .

On the other hand, the property of superdifferentiability at α = 1 of the concave function α→ α1−λ

defined on R+, with λ ∈ [0, 1], yields the inequality

α1−λ ≤ 1 + (1− λ) (α− 1) = α+ (1− α)λ. (8)

In view of (7), we get T (αx) ≥ α1−λT (x) for all x ∈ [0, y] and α ∈ [0, 1]. Hence, T is (1− λ)-
subhomogeneous.
(ii) As T is subconcave, it is subhomogeneous. Hence, if µ ≥ 1 then T (µλ0e) ≤ µT (λ0e) ≤ µλ0e.

Namely, T ([0, λe]) ⊆ [0, λe] holds for every λ ≥ λ0. Now, given a vector x ∈ K, we have x ∈ [0, λe]
and T ([0, λe]) ⊆ [0, λe], as long as λ is large enough. Point (i) provides the desired result.
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(iii) This points follows from point (ii) but here we prove it directly. By hypothesis, T (αx) =
T (αx+ (1− α) 0) ≥ αT (x) + (1− α)T (0), and both T (x) and T (0) lie in Q (u). Hence, T (0) ≥
λ (x)T (x), with λ (x) ∈ (0, 1). Therefore,

T (αx) ≥ αT (x) + (1− α)T (0) ≥ (α+ (1− α)λ (x))T (x)

= α
[
1 + (1− α)α−1λ (x)

]
T (x) .

as desired. �

By Proposition 14, order concave operators T cannot be subhomogeneous as soon as T (0) < 0.
On the other hand, the next example shows that subhomogeneous operators might well be convex, a
further stark illustration that order concavity and subhomogeneity are only partially related.

Example 16 The monotone convex functions ϕ : R+ → R+ defined by ϕ (t) = (1 + tn)
1/n are

strongly subhomogeneous on R+ and p-subhomogeneous on each bounded interval of R+. Since
ϕ′ (t) t/ϕ (t) = tn/ (1 + tn) < 1, this assertion will be a consequence of Corollary 34 (see Appendix).
N

A more interesting example is the Bellman operator T : B (X)→ B (X) defined by

T (v) (x) = sup
y∈D(x)

u (x, y) + βv (y) (9)

where D : X ⇒ X is a nonempty valued correspondence on some set X, u : GrD → R is a bounded
(short-run) objective function and β ∈ (0, 1) is a discount factor.
Though the Bellman operator is convex, it is subhomogeneous when it is positive. Set ū =

infx∈X infy∈D(x) u (x, y).

Proposition 17 If ū ≥ 0, the Bellman operator T : B+ (X)→ B+ (X) is subhomogeneous (strongly
if ū > 0).

Proof Let ū ≥ 0. Then,

T (αv) (x) = sup
y∈D(x)

u (x, y) + αβv (y) = sup
y∈D(x)

αu (x, y) + αβv (y) + (1− α)u (x, y)

≥ α sup
y∈D(x)

[u (x, y) + βv (y)] + (1− α) ū = αT (v) (x) + (1− α) ū.

Thus, T is subconcave at 0 if ū ≥ 0 (though it is not concave at 0). This, in turn, implies that T is
subhomogeneous. Now, let ū > 0. The function ū1X is trivially linked to 1X . Therefore, the result is
a consequence of Proposition 15-(ii) because T : [−L,L]→ [−L,L] whenever L ≥ (1− β)

−1
N , with

|u (x, y)| ≤ N �

Remark Though we considered the bounded case, most of the properties that we established continue
to hold in more general dynamic programming formulations.13

5.2 Existence and uniqueness

We can now establish the subhomogeneous counterparts of the order concave existence and uniqueness
results for fixed points of Section 4. Throughout this subsection, V denotes an Archimedean ordered
vector space.
We begin with the counterpart of Theorem 10. Here d is the Thompson metric.

13For instance (see [32]), we can define T : V → V as T (v) = maxL∈L [uL + Lv], where L is a set of linear operators
mapping V onto V (the policies) and such that for each L ∈ L, the inverse operator of I −L exists and is positive. We
do not pursue further this line because we will be interested in nonadditive temporal utilities.
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Theorem 18 Let T : [0, a]→ [0, a] be a monotone and strongly subhomogeneous self-map defined on
a chain σ-complete interval of V . Assume that either [0, a] is chain complete or T is order continuous.
If T (x) 6= x for all x ∈ ∂� [0, a], then T has a unique fixed point x̄. Moreover, for every initial point
x0 ∈ [0, a] we have

d (Tn (x0) , x̄)→ 0 (10)

provided x0 /∈ ∂� [0, a].

Note that the order interval [0, a] is star-shaped in K, a property that we need in the subhomo-
geneous case (so we cannot consider generic order intervals, as we did in the order concave case).
The global attracting property (10) is remarkable. In particular, when V is normed with a normal
positive cone, then this property actually holds with respect to norm convergence (cf. Theorem 1).
Next we state the subhomogeneous counterpart of Theorem 11.

Theorem 19 Let T : K → K be monotone and strongly subhomogeneous and e ∈ K an order unit
of V . Then, T has a unique fixed point on K provided:

(i) T (x) 6= x for each x ∈ ∂�K;

(ii) T (λe) ≤ λe for some λ > 0;

(iii) [0, λe] is chain complete or T is order continuous.

The proofs of these two results require a non-trivial analysis that we conduct later in the paper
in Section A, after some applications are presented. Such analysis relies on a connection between
subhomogeneity and the Thompson metric (Proposition 31), which is a main contribution of this
paper.

6 Applications

6.1 Recursive utilities

Though the study of recursive utilities dates back to Koopmans [18], the idea of using intertemporal
aggregators to generate recursive utilities is due to Lucas and Stokey [23] and [35]. Specifically, an
aggregator is a function W : R+ × R+ → R that satisfies the following properties:

(i) W is positive and monotone;

(ii) the equation W (c, ζ) = ζ has at least a positive solution for each c ≥ 0.

A recursive utility U : l∞+ → R generated by an aggregator W is a solution U : l∞+ → R to the
Koopmans equation, i.e.,

U (c0, c1, c2, ....) = W (c0, U (c1, c2, ....)) . (11)

More concisely,
U (0c) = W (c0, U (1c))

where 0c = (c0, c1, c2, ....) and 1c = (c1, c2, ....) denotes the shift operator. For instance, standard
time-additively separable U are generated by the aggregators W (c, ζ) = u (c) + βζ.

A key issue is whether an aggregator determines a unique recursive utility. The next proposi-
tion addresses this issue for a class of aggregators, introduced in [26] under the name of Thompson
aggregators, that cannot be treated by the standard contraction methods employed by [23].
For simplicity, we restrict the analysis to utility functions U (c) defined over bounded consumption

streams c = (c0, c1, c2, ....) ∈ l∞+ . The result is similar to the one proved in [26], the novelty being
here the use of the techniques developed in this paper to prove it.14

14We refer to [26] for extensions to unbounded and to stochastic streams of consumption.
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Proposition 20 Suppose the aggregator W : R+ × R+ → R satisfies the conditions:

(a) ζ 7−→W (c, ζ) is concave at 0;

(b) W (c, 0) > 0 for each c > 0.

Then, W generates a unique recursive utility function on int l∞+ . Moreover, we can replace int l∞+
with the entire cone l∞+ if (b) is replaced by the stronger condition:

(b*) W (0, 0) > 0.

Proof Under assumptions (a) and (b), it easy to prove that the function ζ 7−→W (c, ζ) /ζ is strictly
decreasing in (0,∞) for all c > 0.15 This implies, in turn, that the equation W (c, ζ) = ζ has a unique
solution ζc for every c > 0 and, moreover, W (c, ζ) < ζ if ζ > ζc.

Fix now any two numbers 0 < ε < L and consider the interval [ε, L] ⊆ int l∞+ where, with abuse
of notation, we set ε = (ε, ε, ...) and the same for L. Consider the space B ([ε, L]) of the bounded
functions on [ε, L]. Elements U ∈ B+ ([ε, L]) are regarded as utility functions, and the recursive
utilities will be fixed points of the operator T : B+ ([ε, L])→ B+ ([ε, L]) defined by

T (U) (0c) = W (c0, U (1c)) .

By assumption (ii), there is a positive scalar ζL such that W (L, ζL) = ζL. If we take any arbitrary
u ≥ ζL, the operator T maps the interval [0,u] ⊆ B+ ([ε, L]) into itself. Actually, if 0 ≤ U (c) ≤ u,
then by the monotonicity condition (i) we have:

0 ≤ T (U) (c) = W (c0, U (1c)) ≤W (L, u) ≤ u.

Clearly T is monotone and let us show that it is subconcave at 0. Actually, thanks to (a),

T (αU) (0c) = W (c0, αU (1c)) ≥ αW (c0, U (1c)) + (1− α)W (c0, 0)

≥ αW (c0, U (1c)) + (1− α)W (ε, 0) .

As W (ε, 0) > 0, the constant function W (ε, 0) is linked to the function 1 and so Proposition 15-(ii)
implies that T : B+ ([ε, L])→ B+ ([ε, L]) is strongly subhomogeneous.
In view of Theorem 19, to conclude that T has a unique fixed point in B+ ([ε, L]) it is suffi cient

to show that ∂�B+ ([ε, L]) does not contain any recursive utility. Let [U ]∞ = infc∈[ε,L] U (c). If U is
recursive, then

[U ]∞ = inf
c∈[ε,L]

U (c) = inf
c∈[ε,L]

W (c0, U (1c)) = inf
ε≤c0≤L

inf
1c∈[ε,L]

W (c0, U (1c))

≥ inf
ε≤c0≤L

W

(
c0, inf

1c∈[ε,L]
U (1c)

)
= inf
ε≤c0≤L

W (c0, [U ]∞) = W (ε, [U ]∞) ≥W (ε, 0) > 0.

By Proposition 6, U /∈ ∂�B+ ([ε, L]). Thus, T has a unique fixed point in B+ ([ε, L]).
Since the two numbers 0 < ε < L are arbitrary, we conclude the existence and uniqueness of the

recursive function defined on
⋃
ε>0,L>0 [ε, L] = int l∞+ .

If assumption (b*) holds, we can then replicate the proof by replacing the interval [ε, L] with
[0, L]. In this case,

[U ]∞ ≥ inf
0≤c0≤L

W (c0, [U ]∞) = W (0, [U ]∞) ≥W (0, 0) > 0

The previous arguments now establish the uniqueness of the fixed point of T : B+

(
l∞+
)
→ B+

(
l∞+
)
.

�
15See [26, Lemma 1] for this and other related properties.
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Remarks 1) By Tarski’s Theorem, under the only assumptions (i) and (ii) the map T : B+

(
l∞+
)
→

B+

(
l∞+
)
has fixed points. Specifically, there is the least U and the greatest U recursive functionals

in B
(
l∞+
)
—see [26] and [7] for details. Therefore, our result implies that U = U on int l∞+ . That is,

all the recursive preferences coincide over int l∞+ .
2) Though the condition W (0, 0) = 0 holds for several aggregators, condition (b*) is still of some

interest. On one hand, it encompasses aggregators of the type W̃ (c, ζ) = W (u (c) , ζ) where u (c) is
the short-run utility of consumption: the hypothesis u (0) ≥ η > 0 is then acceptable. On the other
hand, aggregators satisfying condition (b*) come up when we consider perturbed utility aggregators
Wη (c, ζ) = W (c, ζ) + η for small η > 0. This approach may be employed to study the behavior of
the unique fixed point as η ↓ 0 (see [7]).
3) If the aggregator W is continuous, it is easy to show that the least recursive function U is

lower semicontinuous in the relative product topology of l∞+ , while U is upper semicontinuous on
the bounded sets of l∞+ (see [26, Theorem 4]). Consequently, under (a) and (b) the unique recursive
preference on int l∞+ are continuous in the relative product topology on the bounded sets of int l∞+ .

Rather than solving directly the Koopmans equation (11), it is often useful to analyze an auxiliary
“parametric”problem.16 Specifically, for a given consumption plan c = (ct)t≥0 ∈ l∞+ , we introduce
the operator Tc : l∞+ → l∞+ defined, at every time t, by

Tc (v)t = W (ct, vt+1) ∀v ∈ l∞+ . (12)

Clearly, the sequence vt = U (tc) is a fixed point of Tc if U is a solution of (11). Conversely, the
utility U may be recovered by the fixed point of Tc as the sequence c varies.

The following is a uniqueness result that parallels Proposition 20.

Proposition 21 Let W satisfy (a) and (b). The operator Tc : l∞+ → l∞+ has a unique fixed point
provided lim inft→∞ ct > 0.

Proof Suppose first that ct ≥ η > 0 for all t. In this case the proof follows the same lines of that
of Proposition 20. The operator is strongly subhomogeneous and Theorem 11 provides the desired
result.
In the more general case, we have ct ≥ η > 0 for all t ≥ N. Let v̄ and v be the greatest and the

least fixed points of Tc, respectively. Obviously, we have N v̄ = Nv because both are fixed points of
T
Nc, which has a unique fixed point thanks to the first part of the proof. By induction, we have

v̄N−1 = W (cN−1, v̄N ) = W (cN−1, vN ) = vN−1

and so on. Therefore, v̄ = v. �

6.2 Bellman equations

We turn briefly to the Bellman equations associated with utilities that are recursively generated by
aggregators. Now, the Bellman operator T : B+ (X)→ B+ (X) is defined by

T (v) (x) = sup
y∈D(x)

W (u (x, y) , v (y)) . (13)

We get back to (9) when W (c, ζ) = u (c) + βζ. Under mild assumptions — e.g., the continuity of
W (c, ·) — for any recursive utility function U : l∞+ → R+ generated by W , the associated value
function v ∈ B+ (X) is a fixed point of the Bellman operator (see [7]). In principle, its Bellman
equation may admit multiple fixed points. Next we formulate a basic uniqueness result.

16This approach, used in [26], is especially useful in the stochastic case as well as in studying the associated Bellman
equations.
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Proposition 22 Let W satisfy (a) and (b). If either (b*) or ū > 0 holds (see Example 16), then the
Bellman operator has a unique fixed point in B+ (X).

Proof Let u (x, y) ≤ N . Then, by (a) and (b) there is a scalar ζ such thatW (N, ζ) ≤ ζ. This implies
that T ([0, ζ1X ]) ⊆ [0, ζ1X ]. Like in Proposition 17 we can easily show that T is subconcave at 0.
More specifically, T (αf) ≥ αT (f) + (1− α)ϕ where ϕ (x) = infy∈D(x)W (u (x, y) , 0).

Under (b*), we have ϕ (x) ≥ W (0, 0). While in the case ū > 0, we have ϕ (x) ≥ W (ū, 0) > 0. In
both cases we can invoke Proposition 15-(ii) and infer that T is strongly subhomogeneous. For the
same reason, if v is a fixed point then either v (x) ≥W (0, 0) or v (x) ≥W (ū, 0). Hence v /∈ ∂�B+ (X).
Theorem 19 then implies the existence of a unique solution of the Bellman equation. �

Following [7], we can provide milder assumptions than those of the last proposition that still
make the value function unique. Here we will use a method that fits well our theory and which
differs partially from that of [7]. In the next result, besides standard convexity conditions, we add the
crucial assumption on the existence of a feasible plan generating strictly positively utility along the
path. Here v̄ and v denote the greatest and the least fixed point of T , respectively (their existence is
ensured by Tarski’s Theorem).

Proposition 23 Suppose that:

(i) X is a convex set, the correspondence D : X ⇒ X has a convex graph, and u : GrD → R is
bounded and concave;

(ii) W satisfies (a) and (b) and W (·, ζ) is concave.

If for every x ∈ X the supremum in (13) is attained, then v̄ (x) = v (x) for all x ∈ X such that
either D (x) = {x} or there is a feasible path (x∗t )t≥0 with x

∗
0 = x and

lim inf
t→∞

u
(
x∗t , x

∗
t+1

)
> 0. (14)

We refer to [7] for more comments about the interiority assumption (14). It is, however, fairly mild
and so this result guarantees the uniqueness of the fixed point of (13) for standard problems, avoiding
cake-like models. Actually, it suffi ces to postulate the existence of a sustainable state x∗, with strictly
positive utility u (x∗, x∗) > 0, which may be reached from any state x for which D (x) 6= {x}.

Proof The case D (x) = {x} is trivial since v̄ (x) = v (x). Fix then an initial vector x0 for which the
condition (14) holds. By (iii), there exists a sequence x̄ = (x̄t) such that

v̄ (x̄t) = W (u (x̄t, x̄t+1) , v̄ (x̄t+1))

For sake of simplicity, by setting v̄ (x̄t) = v̄t and c̄t = u (x̄t, x̄t+1), it becomes

v̄t = W (c̄t, v̄t+1) . (15)

Consider now the existing plan (14), x∗ = (x∗t ), with x
∗
0 = x̄0 = x0 postulated by our hypothesis.

Define the feasible perturbed plan x = (1− α) x̄+ αx∗ with α ∈ (0, 1). Since v is also a fixed point,
we have

vt ≥W
(
ct, vt+1

)
(16)

where, accordingly, we have set vt = v (xt) and ct = u
(
xt, xt+1

)
. Observe further that by construction

lim inf
t→∞

ct > 0 if α > 0 (17)

and that (16) is equivalent to the condition Tcv ≤ v by using the auxiliary operator (12). Proposition
21 implies that Tc has a unique fixed point w∗ in l∞+ . More precisely, w

∗ ∈ [0, v] .
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Now by the concavity of u, we have ct ≥ (1− α) c̄t + αc∗t , where c
∗
t = u

(
x∗t , x

∗
t+1

)
. So,

W (ct, v̄t+1) ≥ (1− α)W (c̄t, v̄t+1) + αW (c∗t , v̄t+1) ≥ (1− α)W (c̄t, v̄t+1) .

In view of (15), it follows that (1− α) v̄t ≤W (ct, v̄t+1), namely, Tcv ≥ (1− α) v.
Let us first assume that ct ≥ η > 0 for every t ≥ 0, in place of (17). Then Tc turns out to be

p-subhomogeneous for some p ∈ (0, 1), i.e., Tc (αw) ≥ αpw if α ∈ [0, 1].

Set µ0 = (1− α)
1/(1−p)

< 1. We have

Tc (µ0v) ≥ µp0Tc (v) ≥ µp0 (1− α) v = µ0v.

Consequently, µ0v ≤ w∗ ≤ v. As α→ 0+, we have that µ0 → 1 and so v ≤ v. That is, v (x0) = v (x0).
If now it holds condition (17), then ct ≥ η > 0 for every t ≥ N . In this case we can use the above

argument for the operator T
Nc and so concluding that v (xN ) = v (xN ). Then

v (xN−1) = W (u (x̄N−1, x̄N ) , v̄ (x̄N )) = W (u (x̄N−1, x̄N ) , v (x̄N )) ≤ v (x̄N−1) .

Therefore, v (xN−1) = v (x̄N−1) and recursively we get again v (x0) = v (x0). �

6.3 Implicit utilities and integral equations

Implicit utilities Dekel [13]’s implicit utilities are fixed points of problems like:∫ 1

0

k (x, y, ϕ (y)) dx = ϕ (y) ∀y ∈ [0, 1]

where ϕ ∈ B = B ([0, 1]) is the unknown bounded function and the kernel k : [0, 1]
3 → [0, 1] is such

that:
(i) k (·, y, z) is continuous on [0, 1] for every y, z ≥ 0,
(ii) k (x, y, ·) is increasing and concave for every x, y ≥ 0.
Denote by 0 and 1 the functions constant to 0 and 1 for all y ∈ [0, 1], respectively. Let us consider

the self-map T : [0,1]→ [0,1] defined by17

T (ϕ) (y) =

∫ 1

0

k (x, y, ϕ (y)) dx

Under our assumptions on the kernel k, the integral operator T is monotone and order concave. By
Proposition 6, we have

∂� [0,1] =

{
ϕ ∈ B : inf

y∈[0,1]
ϕ (y) = 0

}
.

So, adding the assumption

inf
y∈[0,1]

∫ 1

0

k (x, y, 0) dx = η > 0,

we have T (ϕ) 6= ϕ for all ϕ ∈ ∂� [0,1] because T (ϕ) ≥ T (0) ≥ η > 0.
By Theorem 10, the self-map T has then a unique fixed point. More is true, however. Observe

that T is subconcave at 0 and T (0) ∼ 1. Hence, by Proposition 15-(i), T is p-subhomogeneous. The
positive cone of B ([0, 1]), equipped with the supnorm, is normal. So, by Theorem 18 the iterates
Tn (ϕ0) converge uniformly to the unique fixed point from any initial function ϕ0 ∈ [0,1] such that
infy∈[0,1] ϕ (y) > 0.

17The example can be generalized to integrals with respect to finitely additive Borel probability measures defined on
the unit interval.
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Finally, note that assumption (ii) can be replaced by the elasticity condition

D3k (x, y, t) t

k (x, y, t)
≤ p < 1 ∀0 ≤ x, y ≤ 1,∀t ∈ (0, 1]

provided k (x, y, ·) is increasing and differentiable. Indeed, by Corollary 34 in Appendix the function
k (x, y, ·) is p-subhomogeneous. In turn, this implies that T is p-subhomogeneous as well.

Integral operators An interesting class of integral operators is

ϕ (x) =

∫
k (x, y, ϕ (y))π (dy | x) ∀x ∈ X (18)

where ϕ ∈ C (X), π is a transition function on the compact metric space X and k : X×X×R+ → R+

is continuous and bounded (with other additional suitable conditions).
Equations like (18) arise in economics for instance in Markov equilibria (see for instance [35, Ch.

17]). They may be handled in different ways. For brevity, we just outline two possible routes. A first
method circumvents the unpleasant fact that the space C (X) is not a σ- Dedekind complete lattice.
Therefore, the operator T is replaced with the operator T ∗ : B+ (X)→ B+ (X) defined by

T ∗ (f) (x) =

∫ ∗
k (x, y, f (y))π (dy | x) ∀x ∈ X

where the symbol
∫ ∗ denotes the outer integral of a function ψ ∈ B+ (X) (see [6, Appendix A])

We can easily give conditions to apply Theorem 19 and to get a unique fixed point f∗ in B+ (X).
Note incidentally that f∗ attracts all the initial functions of B+ (X) according to the supnorm (thanks
to the normality of the positive cone; cf. Theorem 1). Then, under a Feller property that guarantees
the continuity of T ∗ (f) when f is continuous, the fixed point f∗ will be continuous — being the
uniform limit of continuous functions. Hence, f∗ solves (18).
A second method is to study directly the operator T : C (X) → C (X) which is well-defined

under a Feller property. The space C (X) is Banach space under the supnorm and its positive cone
is normal. So, the component intC (X) is a complete metric space with respect to the Thompson
metric (Theorem 1). Consequently, if T is p-subhomogeneous we get the fixed point by the Banach
fixed point principle.

6.4 Complementary problems and variational inequalities

Let V be a vector lattice. The complementary problem, associated with a map F : K → V , asks for
a point x∗ ∈ K that satisfies the orthogonality condition18

F (x∗) ∧ x∗ = 0.

For all λ > 0 we have:

F (x) ∧ x = 0⇐⇒ F (x) ∧ λx = 0⇐⇒ [F (x)− λx] ∧ 0 = −λx
⇐⇒ [λx− F (x)] ∨ 0 = λx⇐⇒ λ−1 [λx− F (x)]

+
= x

So, the complementary problem amounts to finding the fixed points of the self-map Tλ : K → K
defined by

Tλ (x) = λ−1 [λx− F (x)]
+ (19)

where λ > 0 is an arbitrarily fixed parameter. The next result, which involves the upper perimeter,
provides conditions that ensure the existence and uniqueness of complementary problem through the
fixed point of Tλ.
18 In Rn this complementary problem reduces to familiar problem of finding a vector x∗ ≥ 0 for which F (x∗) ≥ 0

and x∗ · F (x∗) = 0 hold. This finite dimensional problem has two distinct extensions in infinite dimensional settings:
the topological complementary problem and the order complementary problem. For the latter, we refer readers to [14]
and [8].
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Proposition 24 Let V be a Dedekind complete vector lattice. Consider the following assumptions:

(i) λx− Fx is λ-weakly order-Lipschitz,19 i.e., there exists λ > 0 such that

F (x2)− F (x1) ≤ λ (x2 − x1) ∀0 ≤ x1 ≤ x2, (20)

(ii) F is order concave on K,

(iii) there exists x̄ ∈ K such that F (x̄) ≥ 0,

(iv) Tλ (x) 6= x for all x ∈ ∂� [0, x̄].

Under (i) and (iii), there exists a vector ξ ∈ [0, x̄] such that F (ξ) ∧ ξ = 0. Under (i)-(iv), such
a vector ξ is unique. Moreover, (iv) holds if (iii) is replaced by the stronger assumption: ∃σ >
0, F (x̄) ≥ σx̄.

The linear case F (x) = Lx+ q, where L : V → V is a linear operator and q ∈ V , has been studied
by [8]. The existence part of this theorem is, essentially, a nonlinear version of [8, Theorem 3.4] (note
that (ii) trivially holds in such a case).

Proof Clearly, the operator x→ x+ of V into V is monotone and convex. Therefore, by (i) it follows
that x 7→ [λx− F (x)]

+ is monotone. Likewise, (i) and (ii) imply that x 7→ [λx− F (x)]
+ is order

convex.
Note that the (iii) means that λx̄−F (x̄) ≤ λx̄. Hence, Tλ (x̄) = λ−1 [λx̄− F (x̄)]∨ 0 ≤ x̄∨ 0 = x̄.

Namely, Tλ (x̄) ≤ x̄. Consequently, the first claim follows from Tarski’s Theorem applied to the
self-map Tλ : [0, x̄]→ [0, x̄]. Theorem 10 provides the uniqueness result.
Regarding the last statement, if F (x̄) ≥ σx̄ then

λx̄− F (x̄)

λ
≤
(

1− σ

λ

)
x̄.

Therefore, for suffi ciently large values of λ, we have Tλ (x̄) ≤ (1− σ/λ) x̄ with 0 < 1− σ/λ < 1. By
monotonicity property of Tλ we have that Tλ [0, x̄] ⊆ [0, ρx̄], where ρ = 1 − σ/λ. Hence, the fixed
points of Tλ lie into [0, ρx̄]. Let Tλ (z) = z. From the condition 0 ≤ z ≤ ρx̄ it follows that

(1− ρ) x̄ ≤ x̄− z ≤ x̄.

Consequently, x̄ − z is linked to x̄. In view of (3), we have that necessarily the fixed point z ∈
[0, x̄] \∂� [0, x̄]. Therefore, condition (iv) holds. �

Example 25 This example, an elaboration of [8, Example 3.10], shows inter alia that the condition
on the upper perimeter is needed. Let B = B ([−1, 1]) and F : B → B be given by

F (f) = i+f − i

where i ∈ B is the identity function i (t) = t. In view of (19), the associated fixed point problem is

Tλf =
1

λ

[
λf − i+f + i

]+
.

Since i+f ≤ f , the linear operator f 7−→ i+f is λ-weakly order-Lipschitz. Specifically, Tλ is monotone
for any λ ≥ 1. Thus, set λ = 1. Namely, consider the monotone and convex operator T : B+ → B+

given by
T (f) =

[
f − i+f + i

]+
.

19See [29], who study the close relation with the notion of Z-map in [34] and of λI map in [8].
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It is easy to check that T maps the interval [0,L] into itself, where L is the constant functions
L (t) ≡ L ≥ 1. Moreover, T (L) < L. Nevertheless, the uniqueness part of Proposition 24 fails.
Actually it is easy to see that T has the continuum of fixed points

fk (t) =

 0 if t ∈ [−1, 0)
k if t = 0
1 if t ∈ (0, 1]

for each k ≥ 0. Consequently, the fixed point fL belongs to ∂� [0,L] for every interval [0,L]. N

Observe that to get the uniqueness of the fixed point in the last example, it is suffi cient to consider
the space L∞ ([−1, 1] , dx). Clearly, essup [fk] = 1 and so [fk] /∈ ∂� [0,L] for L > 1.

Example 26 A slight modification of the above example, in which we set

F (f) = i+f − i+ ε (21)

with ε > 0, leads to uniquely solvable operators. Actually, if we consider the constant functions
L (t) ≡ L ≥ 1, we have F (L) ≥ σL for 0 < σ ≤ ε/L. Therefore, the complementary problem has a
unique solution in B ([−1, 1]) thanks to Proposition 24. N

The last example leads to some interesting considerations on how uniqueness may imply continuity.
The fixed points of the maps

Tε (f) =
[
f − i+f + i− ε

]+
associated with (21), for λ = 1, are indeed continuous functions, i.e., fε ∈ C ([−1, 1]). A direct check
is hard because we cannot replace the space B [−1, 1] with the incomplete vector lattice C ([−1, 1]).
However, as Tnε (L) ↓ fε, the function fε is upper semicontinuous. By the uniqueness of the fixed
point, Tnε (0) ↑ fε holds as well, and so fε is also lower semicontinuous.20

As well known, the complementary problem is closely related with the solvability of variational
inequalities. Specifically, let C be a nonempty closed and convex subset of an Hilbert lattice H and
let F : C → H. The variational problem associated with the pair (C,F ) is to find an x∗ ∈ C such
that

〈F (x∗) , x− x∗〉 ≥ 0 ∀x ∈ C. (22)

The variational property of the metric projection πC : H → C entails the equivalence of (22) with
the fixed point problem

x∗ = πC (x∗ − λF (x∗))

where λ > 0 is a given parameter.
An order-theoretic approach to the variational problem (22) is studied by [21] and [29]. The

solvability of (22) in such approach is based on the fact that πC is order-preserving if and only if C
is a sublattice of H (see [29, Lemma 2.4]). Here, without any pretense to be exhaustive, we establish
a uniqueness result in order to further illustrate our approach.

Proposition 27 Let F : C = {x ≤ b} → H be λ-weakly order-Lipschitz and order convex. If

(i) there is a < b such that F (a) ≤ 0,

(ii) x 6= πC (x− λF (x)) for all x ∈ ∂� [a, b],

then there is a unique vector x∗ ∈ [a, b] that solves the variational problem (22).

20Note, in passing, that by Dini’s Theorem the two sequences of continuous functions Tnε (L) and T
n
ε (0) approach

the continuous function fε uniformly.
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Proof Define Φλ : C → C by Φλ (x) = πC (x− λF (x)). Then

Φλ (x) = [x− λF (x)] ∧ b = b− [λF (x) + b− x]
+
. (23)

The vector x∗ solves (22) if and only if x∗ = Φλ (x∗). Consider now the interval [a, b]. Clearly,
Φλ (b) ≤ b. Further, a ≤ a − λF (a) that, in turn, implies a = πC (a) ≤ πC (a− λF (a)) = Φλ (a).
Hence, Φλ ([a, b]) ⊆ [a, b]. By the, by now, usual arguments based on Theorem 10 we get the desired
result because the self-map Φλ is monotone and, in view of (23), order concave. �

The concavity or convexity of the projections is a key condition to obtain unique solutions to the
variational inequality.21 Unfortunately, this condition can be rather demanding.22 So, we end with a
positive result on cones. Here, C◦ is the polar cone of a cone C.

Proposition 28 Let C ⊆ H be a closed and convex cone. The projection πC is convex (resp.,
concave) if either C is a lattice and C ⊇ K (resp., C ⊇ −K) or C◦ is a lattice and C ⊆ K (resp.,
C ⊆ −K).

Proof Assume that C is a lattice with C ⊇ K. Let x, y ∈ H. The variational property of the metric
projection for cones implies x−πC (x) ∈ C◦ and y−πC (y) ∈ C◦. Therefore, x+y−πC (x)−πC (y) ∈
C◦ ⊆ −K. Hence, x+ y ≤ πC (x) + πC (y). As C is a lattice, πC is monotone. Consequently,

πC (x+ y) ≤ πC (πC (x) + πC (y)) = πC (x) + πC (y)

We conclude that πC is subadditive. As πC is positively homogeneous (see, e.g., [12, Proposition
5.6]), πC is convex on H. The concavity of πC , provided the lattice C ⊇ −K is proved similarly.
By the Moreau decomposition (see [12, Proposition 5.6]), for each x ∈ H we have x = πC (x) +

πC◦ (x). For instance, if C◦ be a lattice such that C ⊆ K, then C◦ ⊇ −K. By what has been already
proved, πC◦ is concave. Hence, πC = I − πC◦ is convex. Similar argument holds when C ⊆ −K. �

6.5 Operator equations

Define T : L+
s (H)→ L+

s (H) by

T (X) =

m∑
k=1

ϕk ((Xhk, hk)) (X +Ak)
ϑk (24)

where h1, h2, ..., hm ∈ H, A1, ..., Am ∈ L+
s (H), ϕ1, ϕ2, ..., ϕm : R++ → R+, and ϑk ∈ (0, 1). The

resolution of the existence of fixed points of these operators is closely related to what studied in [16].
It is well known that the operator functions X 7−→ (X +Ak)

ϑk are monotone and concave in
L+
s (H). Moreover, for λ > 0 large enough, T maps the interval [0, λI] into itself (see [16] for more
details). By the chain completeness of [0, λI], it follows the existence of fixed points in [0, λI] .
Here, we are interested in the uniqueness of the fixed point. It is a consequence of Theorem 19

by taking the identity operator I ∈ L+
s (H) as order unit. Formally:

Proposition 29 The operator T : L+
s (H)→ L+

s (H) has a unique fixed point provided:

(i) Ak̄ ≥ σI for some k̄ and σ > 0;

(ii) ϕk are increasing, concave and bounded and ϕk (0) > 0 for all k;

(iii) ϑk < ϕk (0) /ϕk (∞) for all k.

21The classical strict monotonicity condition 〈x− y, F (x)− F (y)〉 > 0 for all x, y ∈ C also guarantees a unique
solution, but it is not related to order arguments.
22For instance, it easy to see that the projections on intervals [a, b] are neither convex nor concave.
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Proof Let us first show that T is strongly subhomogeneous. Observe that by the same method em-
ployed to prove Proposition 15-(i) implies that the scalar functions ϕk are strongly subhomogeneous,
more specifically,

ϕk (αt) ≥ α1− ϕk(0)

ϕk(∞)ϕk (t) ∀t ≥ 0,∀α ∈ [0, 1] .

By setting t = (Xhk, hk) ≥ 0, we have

ϕk ((αXhk, hk)) ≥ α1− ϕk(0)

ϕk(∞)ϕk ((Xhk, hk)) .

Moreover, by monotonicity,
(αX +Ak)

ϑk ≥ αϑk (X +Ak)
ϑk .

Consequently,

ϕk ((αXhk, hk)) (αX +Ak)
ϑk ≥ α1−ηkϕk ((Xhk, hk)) (X +Ak)

ϑk

holds where ηk = ϑk − ϕk (0) /ϕk (∞) and, at last,

T (αX) ≥ α1−min ηkT (X) .

Under (iii), min ηk > 0 and so T is strongly subhomogeneous.
It remains to show that point (i) of Theorem 19 is fulfilled, that is, that no fixed point lies in

∂�L+
s (H). In view of condition (i),

m∑
k=1

ϕk ((Xhk, hk)) (X +Ak)
ϑk ≥ ϕk̄ (0) (X +Ak̄)

ϑk̄ ≥ ϕk̄ (0)σϑk̄I.

Hence T ([0, λI]) ⊆ [σ1I, λI] where σ1 = ϕk̄ (0)σϑk̄ . It follows that Fix (T ) ⊆ [σ1I, λI] . By Proposi-
tion 8, Fix (T ) ⊆ [0, λI] \∂� [0, λI]. This concludes the proof. �

We end by studying an extension of the discrete algebraic Riccati equation associated with the
operator R : L+

s (H)→ L+
s (H) defined by

R (X) = Y +

m∑
k=1

A∗kΦ (X)Ak (25)

where Y ∈ L+
s (H), Ak ∈ L (H) and Φ is a positive Loewner function defined on R+.

Fixed points of (25) have been studied —when dimH <∞ —in [33] via a Banach-like contraction
result for posets. We provide here an alternative method based on our approach.

Proposition 30 The operator R : L+
s (H)→ L+

s (H) has a unique fixed point X∗ in L+
s (H) provided:

(i) Y ≥ σI for some σ > 0,

(ii) R
(
X̄
)
≤ X̄ for some X̄ ∈ L+

s (H).

Moreover, in this case the iterates Rn (0) norm converge to the fixed point X∗.

Proof Clearly, R is monotone. Moreover, it is well known that the monotonicity of X 7−→ Φ (X)
implies that it is also concave, because Φ is positive. This implies, in turn, that R is concave. As
R (0) ≥ Y ≥ σI, the operator R is also subconcave at 0. Moreover, we have

σI ≤ Y ≤ R (0) ≤ R
(
X̄
)
≤ X̄ ≤

∥∥X̄∥∥ I
Hence R (0) is linked to X̄. By Proposition 15-(ii), the operator R is strongly subhomogeneous in
L+
s (H). Theorem 19 implies the existence and the uniqueness of the fixed point in L+

s (H), because
there are no fixed point in ∂�L+

s (H).
Note that the cone L+

s (H) is normal, therefore the convergence in norm is a consequence of
Proposition 36. �
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7 Related literature

The starting point of our analysis was a special case of our Theorem 10 proved in Baiocchi and Capelo
[5] p. 224. The results that we proved here are more general, partly because —by leveraging on the
notion of lower perimeter that we introduced —they are able to best exploit the interplay between
order and vector structures. Earlier results on unique fixed points of concave and monotone self-maps
can also be found in Amann [2] and [3]. They are, however, different from ours. For instance, also [2,
p. 372] proves a version of Theorem 10 (see also [3, Theorem 24.4]). However, not relying upon the
results of Kantorovich and Tarski,23 it uses order notions of monotonicity and concavity on a hybrid
structure (ordered topological vector spaces with weak units) that are stronger than the standard
ones. Our analysis takes, in contrast, advantage of the Tarski-type theorems that enable us to use
standard notions of order concavity and monotonicity through the notion of lower perimeter.
The results on subhomogeneous operators offer often a powerful alternative to those related to

the order concavity. The results presented here are inspired to Krasnoselskii’s seminal work, though
the key connection with the Thompson metric that we develop in the Appendix is new.
Similar topological results can be found in [3]. More recently, the uniqueness part of the fixed point

theorem established by [20] is closely related to Proposition 35, though adapted to spaces of functions
(their existence result rests on Kantorovich’s Theorem). We must also mention that many authors
used related similar arguments to establish uniqueness results for equilibria of dynamic economies
determined as fixed points (see [9] and [10]).
Finally, our analysis does not rely on any a priori given metric structure, so it is different from

the recent fixed point literature that combines order and metric structures (see, e.g., [33], [15], and
[28]). It is, instead, closely related to the papers that - like [20] and [7] — study the uniqueness of
solutions of Bellman equations, as it was detailed in the paper.

A Proofs of Section 5.2 and related analysis

A.1 A key connection

There is a close connection between the subhomogeneity property introduced in Section 5 and the
Thompson distance d, as well as with the logarithmic transformation of an operator. Next we explicit
some results along this line. Throughout this section, V denotes an Archimedean ordered vector space
and Q ∈ K/ ∼ is a component of K.

Proposition 31 Let T : Q→ K be monotone.

(i) T is subhomogeneous if and only if it is not expansive, i.e.,

d (T (x) , T (y)) ≤ d(x, y) ∀x, y ∈ Q.

(ii) T is strongly subhomogeneous if and only if

d (T (x) , T (y)) < d(x, y) ∀x 6= y ∈ Q. (26)

(iii) T is p-subhomogeneous if and only if it is a p-contraction, i.e.,

d (T (x) , T (y)) ≤ pd(x, y) ∀x, y ∈ Q. (27)

Moreover, thanks to subhomogeneity, we have T (Q) ⊆ Q if and only if T (x0) ∈ Q for some
element x0 ∈ Q.

23These authors are not mentioned in Amann [3]. Tarski’s Theorem is discussed in a later paper, [4], whose results
are, however, not related to ours (it proves, inter alia, fixed point results a la Abian and Brown [1]).
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Proof (iii) Let T be p-subhomogeneous. By definition (2) and the fact that the infimum is a minimum,
being V Archimedean, then e−d(x,y)x ≤ y ≤ ed(x,y)x, for x, y ∈ Q. It follows that

e−pd(x,y)T (x) ≤ T (y) ≤ epd(x,y)T (x) .

In turn, this gives d (T (x) , T (y)) ≤ pd(x, y). Conversely, assume that (27) holds. In particular,
d (T (x) , T (αx)) ≤ pd(x, αx) holds for x ∈ K and α ∈ (0, 1). Since d(x, αx) = − logα, we get
d (T (x) , T (αx)) ≤ −p logα. Moreover,

T (x) ≤ ed(T (x),T (αx))T (ax) (28)

which provides T (x) ≤ e− logαpT (αx) = α−pT (αx), as desired.
(ii) Relation (28) can be interpreted as T (αx) ≥ ϕ (x, α)T (x), where ϕ (x, α) = e−d(T (x),T (αx)).

Under condition (26), we have ϕ (x, α) > α, whenever α ∈ (0, 1). This proves (ii). The proof of (i) is
similar. �

A particularly elegant case is when V is the space of bounded functions B (X) endowed with the
supnorm, and the component Q is that containing a unit vector e, that is, Q (e) = intB+ (X) =
B+ (X) \∂�B+ (X).

Proposition 32 Let B+ (X) be the cone of positive functions in B (X). The Thompson metric d on
intB+ (X) is

d (f, g) = sup
x∈X
|log f (x)− log g (x)|

Moreover, the map L : intB+ (X) → B (X) defined by L (f) (x) = log f (x) is an isometry of
(intB+ (X) , d) onto (B (X) , ‖·‖).

Proof Clearly, for two functions f, g ∈ intB+ (X) , we have

e−λg ≤ f ≤ eλg ⇐⇒ |log f − log g| ≤ λ

which provides the desired result. Moreover, observe that the transformation L : f 7−→ log f is a
bijection with inverse L−1 : f 7−→ ef . Therefore,

d (f, g) = ‖log f − log g‖ = ‖L (f)− L (g)‖

and so L is an isometry. �

The logarithmic transformation is useful to solve the fixed problem f = T (f) for operators
T : intB+ (X)→ intB+ (X).24 If L : intB+ (X)→ B (X) denotes the log transformation f 7−→ log f ,
the conjugate operator is T̃ = L ◦ T ◦ L−1 : B (X)→ B (X). That is, T̃ (f) = log T

(
ef
)
. Clearly, f∗

is a fixed point of T if and only if L (f∗) is a fixed point of T̃ .
The following corollaries are straightforward applications of Propositions 31 and 32.

Corollary 33 A monotone T : intB+ (X)→ intB+ (X) is

(i) p-subhomogeneous if and only if T̃ = L ◦ T ◦ L−1 is a p-contraction on (B (X) , ‖·‖);

(ii) strongly subhomogeneous if and only if
∥∥∥T̃ f − T̃ g∥∥∥ < ‖f − g‖ for all f 6= g ∈ B (X).

When X is a singleton, B (X) = R, and intB+ (X) = (0,+∞). The previous result has then the
following useful consequence.

24The logarithmic transformation is often used in fixed points problems. See for instance [35, Sect. 17.2] and [20].
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Corollary 34 A monotone and differentiable f : (0,+∞)→ (0,+∞) is:

(i) p-subhomogeneous if f ′ (x)x/f (x) ≤ p < 1 for all x > 0;

(ii) strongly subhomogeneous if f ′ (x)x/f (x) < 1 for all x > 0.

By setting f̃ (t) = log f (et), the derivative is Df̃ (t) = f ′ (et) et/f (et) = f ′ (x)x/f (x). So,∣∣∣Df̃ (t)
∣∣∣ ≤ p implies that f̃ is a contraction.

An operator T : K → K is said to be Q-monotone on a given component Q if

x < y =⇒ T (x) + v (x, y) ≤ T (y) ∀x, y ∈ Q

for some v (x, y) ∈ Q. The next proposition, which is closely related to [19, Theorems 6.3 and 6.4],
deals with uniqueness (though not existence) of fixed points.25

Proposition 35 Let T : K → K be monotone and strongly subhomogeneous.

(i) There is at most a unique fixed point x̄ on every component Q of K; we have T (y) < y for all
x̄ < y ∈ Q.

(ii) The same result holds on every component Q on which T is strictly subhomogeneous and Q-
monotone.

Proof Recall that the Archimedean property of V ensures the well known fact that the interval
{λ ∈ R : λx ≤ y} has a greatest element for arbitrarily fixed vectors x, y ∈ V , as long as it is not
empty.
(i) Let T (x1) = x1, T (x2) = x2 and x1 6= x2 ∈ Q where Q ⊆ K is a component. It is not

restrictive to assume x1 � x2 (otherwise, replace x1 by x2). Since x1 and x2 are comparable, there
is an α > 0 such that αx1 ≤ x2. Pick the greatest ᾱ for which αx1 ≤ x2 holds. Observe that ᾱ < 1,
otherwise, with ᾱ ≥ 1, we would have x1 ≤ ᾱx1 ≤ x2 which is a contradiction. Hence, ᾱx1 ≤ x2 with
0 < ᾱ < 1. Then,

x2 = T (x2) ≥ T (ᾱx1) ≥ ϕ (ᾱ, x1)T (x1) = ϕ (ᾱ, x1)x1. (29)

As ϕ (ᾱ, x1) > ᾱ, this contradicts the hypothesis made on ᾱ. Hence x1 = x2.
Regarding the second point, observe that the chain of inequalities holds true by setting x2 = x̄

and y = x1 and where T (x̄) = x̄ and T (y) > y. Therefore the three relations T (x̄) = x̄, T (y) > y
and y � x̄ must be inconsistent. Hence our claim follows.

(ii) As in point (i), assume the existence of the two fixed points x1 6= x2 ∈ Q, with x1 � x2. Let
ᾱx1 ≤ x2, where ᾱ enjoys the same property like in (i). If ᾱx1 = x2, then

x2 = T (x2) = T (ᾱx1) > ᾱx1.

Hence, ᾱx1 < x2. By Q-monotonicity,

ᾱx1 ≤ T (ᾱx1) ≤ T (x2)− u = x2 − u,

with u ∈ Q. Namely, x2 ≥ ᾱx1 +u. Since u, x1 ∈ Q, we have u ≥ λx1 for some λ > 0. It follows that
x2 ≥ (ᾱ+ λ)x1, a contradiction. �

Having dealt with uniqueness, next we consider global attractiveness.26

25Point (i) could be directly deduced from point (ii) of Proposition 31 because (26) implies the uniqueness of the
fixed point of the operator.
26 In the special case in which the operator is p-subhomogeneous, the result easily follows from the contraction

property established in Proposition 31-(iii).
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Proposition 36 Let T : K → K be monotone and strongly subhomogeneous. Let x̄ ∈ Q be a fixed
point of T . Then T (Q) ⊆ Q and, given any initial condition x0 ∈ Q, the iterates Tn (x0) order
converge to x̄, with

d (Tn (x0) , x̄)→ 0

where d is the Thompson metric defined on Q.

Recall that Thompson convergence implies norm convergence when the space V is endowed with
a norm and the cone K is normal (Theorem 1).

Proof We begin with the following claim.

Claim There exists α < ϕ (x, α) < 1, for α ∈ (0, 1) and x > 0, such that (1) holds and ϕ (x, ·) is
continuous and monotone on [0, 1]. Specifically, we can take

ϕ (x, α) = e−d(T (x),T (αx)) = max {β > 0 : T (αx) ≥ βT (x)} . (30)

Proof of the Claim The relation ϕ (x, α) = e−d(T (x),T (αx)) has been already observed in the proof
of Proposition 31. The last equality is easily obtained. Also the monotonicity property of ϕ (x, ·) is
easy. Let us show the continuity of ϕ (x, ·). Let (αn) be an increasing sequence in (0, 1) such that
αn ↑ α∗. Then

T (αnx) = T
(αn
α∗
α∗x

)
≥ αn
α∗
T (α∗x) ≥ αn

α∗
ϕ (x, α∗)T (x) .

In view of (30), this implies

ϕ (x, αn) ≥ αn
α∗
ϕ (x, α∗)

By taking limit, this leads to limn ϕ (x, αn) ≥ ϕ (x, α∗). As ϕ (x, ·) is increasing, we have also
limn ϕ (x, αn) ≤ ϕ (x, α∗) . The right limits are proved in the same way. �

We can now prove our proposition. The first statement is easy. Let now x0 ∈ Q (x̄). This implies
that there is some t0 ∈ (0, 1) for which

t0x̄ ≤ x0 ≤
1

t0
x̄. (31)

As T is strongly subhomogeneous, then there exists a continuous function ϕ for which T (tx̄) ≥
ϕ (t)T (x̄) holds for each t ∈ [0, 1] and 0 < ϕ (t) < 1 if t ∈ (0, 1). By (31) we get

ϕ (t0) x̄ ≤ T (x0) ≤ 1

ϕ (t0)
x̄

and, iterating this procedure, we get the relation

tnx̄ ≤ Tn (x0) ≤ 1

tn
x̄

where tn = ϕ (tn−1). Thanks to the continuity of ϕ, the increasing trajectory (tn) must approach a
fixed point of ϕ. Hence, tn ↑ 1. By definition of Thompson metric (2), it follows that

d (Tn (x0) , x̄) ≤ − log tn −→ 0.

On other hand,

− (1− tn) x̄ ≤ Tn (x0)− x̄ ≤
(

1

tn
− 1

)
x̄

where (1− tn) ↓ 0 and 1/tn − 1 ↓ 0. Therefore, Tn (x0) order converges to x̄. �
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A.2 Proofs of Section 5.2

Theorem 18 By hypothesis, the fixed points must lie in [0, a] \∂� [0, a], which agrees with Q (a) ,
thanks to Proposition 3. By Proposition 35, the fixed point is unique whenever it exists. The rest of
the proof is now obvious. �

Inspection of this proof shows that the condition T (x) 6= x for all x ∈ ∂� [0, a] is enough to
establish that T has at most one fixed point.

Theorem 19 If (i) holds, then the fixed points will be located inK\∂�K. By Proposition 4, K\∂�K =
Q (e). Therefore, Proposition 35 provides the first desired result. As to the last claim, under (ii) we
have that T maps monotonically [0, λe] into itself and thus (iii) implies the existence of fixed points.
�

Inspection of this proof shows that under (i) T has at most one fixed point.
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