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Abstract

We show that a probability measure on a metric space X has full support if and only if

the set of all probability measures that are absolutely continuous with respect to it is dense

in P (X). We illustrate the result through a general version of Laplace�s method, which in
turn leads to a general stochastic convergence result to global maxima.

1 Introduction

A probability measure � on a �nite space X has full support if and only if the set P� (X) of all
probability measures that are absolutely continuous with respect to � coincides with the set P (X)
of all probability measures. Here we show that, on a metric space X, a probability measure � has

full support if and only if P� (X) is dense in P (X).
Since the assumption of full support is equivalent to strict positivity on nonempty open sets,

our result sheds light on the notion of strict positivity of a probability measure in the in�nite case.

In a functional analysis perspective, it can be regarded as a characterization of strictly positive

continuous linear functionals in the dual pair hCb (X) ; ca (X)i.
To illustrate this result, we prove a general version of Laplace�s method. Speci�cally, if � is a

full support measure on the compact metrizable set K and u 2 C (K), then

vn =
1

n
log

Z
K

enu(x)d� (x)! v = max
x2K

u (x)

By variational methods we show that, when the maximizer xu of u on K is unique, to the sequence

fvng corresponds a sequence f�ng of measures on K that, eventually, concentrates on xu. More-

over, if K is contained in a re�exive and separable Banach space, the sequence of the barycenters

of �n weakly converges to xu.
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2 Setup and preliminaries

LetX be a topological space. We denote by C (X) (resp., Cb (X)) the vector space of all continuous

(resp., continuous and bounded) functions f : X ! R, by B (X) the Borel sigma-algebra of X, and
by P (X) the set of all Borel probability measures on B (X) with the topology � (P (X) ; Cb (X))
of weak convergence.

Given any � 2 P (X), we denote by P� (X) (resp., P?� (X)) the collection of all � 2 P (X)
that are absolutely continuous with respect to � (resp., that have continuous and bounded density

with respect to �), and by `� : Cb (X)! R the positive linear functional `� (f) =
R
X
fd�.

De�nition 1 The support of � 2 P (X), denoted by supp�, is (if it exists) a closed subset of X
with �-null complement and such that � (G) > 0 for all open subsets G of X having nonempty

intersection with it.

The probability measure � has full support if supp� = X, that is, � (G) > 0 for all nonempty

open subsets G of X.

If X is the dual of a separable normed space (for example, a re�exive and separable Banach

space), we endow it with the weak* topology and consider the Borel sigma-algebra generated by

this topology. With this topology, compact sets are metrizable and their closed and convex hulls

are compact too.1 The next basic result is a slight modi�cation of Proposition 1.1 of Phelps (2001).

Proposition 1 If � 2 P (X) has bounded support, then there exists a unique element m 2 X

such that

h�;mi =
Z
X

h�; xi d� (x) (1)

for all linear and continuous functionals � : X ! R.

The element m, called barycenter of �, belongs to the closed and convex hull of supp�. When

X is Rn, the barycenter of a Borel probability measure � on Rn that has bounded support is easily
seen to be the vector m =

R
X
xd� (x).

3 Main result

We state and prove our main result. The equivalence between points (i) and (iv), i.e., between

the strict positivity of � and `�, is essentially known and reported here for completeness and

perspective.

1Because of the Alaoglu�s Theorem and of Theorem 6.30 of Aliprantis and Border, 2006 (henceforth, AB).
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Theorem 1 Let X be a metric space. The following conditions are equivalent for � 2 P (X):

(i) � has full support X;

(ii) cl (P?� (X)) = P (X);

(iii) cl (P� (X)) = P (X);

(iv) `� is strictly positive, i.e.,
R
X
fd� > 0 for all 0 6= f 2 C+b (X).

Proof If X is a singleton, the statement is trivial. Let us assume that X contains more than one

point.

(i) implies (ii). We �rst show that ��x 2 cl (P?� (X)) for all �x 2 X. Let �x 2 X, and, for each

n 2 N, consider the sets Bn and Cn de�ned by

Bn =

�
x 2 X : d (x; �x) � 1

n

�
and Cn =

�
x 2 X : d (x; �x) � 2

n

�
.

Both sets are closed and clearly Bn\Cn = ?. If n is large enough, say for all n � �n, both sets are
nonempty because there exists x 6= �x in X. By the Urysohn Lemma (e.g., [1, Theorem 2.46]), it

follows that for each n � �n there exists 'n 2 Cb (X) such that 'n (X) � [0; 1], 'n (Bn) = 1, and
'n (Cn) = 0. Since �x 2 supp� and 'n (�x) = 1,2 it follows that

kn =

Z
X

'nd� > 0 8n � �n:

Now, for each n � �n, set  n = 'n=kn and de�ne the measure �n : B ! R by �n (B) =
R
B
 nd�.

Notice that �n 2 P?� (X) because  n 2 Cb (X).
We next show that �n ! ��x. De�ne Sn = fx 2 X : d (x; �x) � 2=ng for all n � �n. Notice that

Scn � Cn so that 1 =
R
Sn
 nd� +

R
Scn
 nd� =

R
Sn
 nd� = �n (Sn) for all n � �n. Consider an open

subset G of X. We have two cases:

1. �x 62 G. It follows that lim inf �n (G) � 0 = ��x (G).

2. �x 2 G. For n � �n large enough, say n � �m, we have that Sn � G. Then, for all n � �m,

�n (G) � �n (Sn) � 1, yielding that lim inf �n (G) � 1 = ��x (G).

In both cases, lim inf �n (G) � ��x (G) holds. Since G was an arbitrarily chosen open subset of

X, by the Portmanteau Theorem (e.g., [1, Theorem 15.3]) it follows that �n ! ��x.

Since �x was arbitrarily chosen in X, we have that f�xgx2X � cl (P?� (X)). Since P?� (X) is
convex, then cl (P?� (X)) is closed and convex, it follows that cl (P?� (X)) � cl

�
co
�
f�xgx2X

��
. But

2E.g., [1, Lemma 12.16].
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co
�
f�xgx2X

�
is dense in P (X) (e.g., [1, Theorem 15.10]), we conclude that P (X) � cl (P?� (X)) �

cl
�
co
�
f�xgx2X

��
= P (X).

(ii) implies (iii). This follows from P?� (X) � P� (X).

(iii) implies (iv). By contradiction, assume that cl (P� (X)) = P (X) and `� is not strictly
positive. In this case, there exists g 2 C+b (X) n f0g such that

R
X
gd� = 0. Consider the open

set G = fx 2 X : g (x) > 0g 6= ?. Since
R
X
gd� = 0, then � (fx 2 X : g (x) > 0g) = 0, that is,

� (G) = 0. Consider �x 2 G. Since cl (P� (X)) = P (X), there exists a net f��g � P� (X) such that
�� ! ��x. For each �, since �� is absolutely continuous with respect to �, we have that �� (G) = 0.

Since �� ! ��x, by the Portmanteau Theorem, we have that 0 = lim inf �� (G) � ��x (G) = 1, a

contradiction.

(iv) implies (i). By contradiction, assume that `� is strictly positive and there exists a nonempty

open subset G of X with � (G) = 0. Consider �x 2 G. By the Urysohn Lemma, and since Gc is

closed and nonempty, there exists ' 2 Cb (X) such that ' (X) � [0; 1], ' (�x) = 1, and ' (x) = 0
for all x 2 Gc. Since ' 2 C+b (X) n f0g, it follows that

0 < `� (') =

Z
X

'd� =

Z
G

'd�+

Z
Gc
'd� = 0;

a contradiction. �

Finally, observe that the result depends only on the topology of X, so we could have used the

term metrizable, rather than metric, throughout.

4 Illustration: Laplace�s Method

Consider the optimization problem

max
x

u (x) sub x 2 K (2)

where u : X ! R is a continuous function and K is a compact and metrizable set.

Laplace�s Method is a fundamental method to �nd maximum values and maximizers of this

general optimization problem. For this reason, it plays an important role in many applications

(see, e.g., Parpas and Rustem, 2009, for an introductory overview and some relevant references).

To illustrate the scope of our main result, here we establish a general abstract version of this

classic method. A related result appears in Hwang (1980), though in a di¤erent setup and with

an altogether di¤erent approach.

In the statement we denote by w
=) the � (P (X) ; Cb (X))-convergence and by �x the Dirac

probability measure concentrated on a point x 2 X.
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Theorem 2 Let X be a topological space, u : X ! R a continuous function, � a Borel probability
measure with compact and metrizable support K, and fsng � (0;1) a divergent sequence. Then

1

sn
log

Z
X

esnud�! max
K

u as n!1 (3)

Moreover, if u has a unique maximizer xu in K,3 then

�n
w
=) �xu as n!1 (4)

where �n is, for each n 2 N, de�ned by

�n (B) =

R
B
esnud�R

X
esnud�

8B 2 B (X) (5)

Proof First assume K = X, that is, X is compact and metrizable, and � has full support. In this

case, � (P (X) ; Cb (X)) = � (P (X) ; C (X)) is the relative weak* topology on P (X), and P (X)
is compact and metrizable with respect to it (see Theorems 14.15 and 15.11 of AB). Denote

R (�k�) =
( R

X
d�
d�
log
�
d�
d�

�
d� if �� �

1 else

the relative entropy of any � in P (X) with respect to � (see Chapter 1.4 of Dupuis and Ellis,
1997, henceforth DE).

For each n 2 N, set fn = �snu and observe that, by Proposition 1.4.2 of DE,

� log
Z
X

e�fnd� = min
�2P(X)

�
R (�k�) +

Z
X

fnd�

�
and the minimum of this variational formula is uniquely attained at the element �n of P (X) given
by

�n (B) =

R
B
e�fn(x)d� (x)R

X
e�fn(y)d� (y)

for all Borel subsets B of X. Recalling our substitution

� 1
sn
log

Z
X

esnud� =
1

sn

�
� log

Z
X

e�fnd�

�
=
1

sn
min

�2P(X)

�
R (�k�)� sn

Z
X

ud�

�
= min

�2P(X)

�
1

sn
R (�k�)�

Z
X

ud�

�
For each n 2 N , the function Fn : P (X)! (�1;1] de�ned by

Fn (�) =
1

sn
R (�k�)�

Z
X

ud� 8� 2 P (X)

3A simple condition that ensures such uniqueness on convex sets is the strict quasi-concavity of u.
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is weak* lower semicontinuous on P (X) (see Lemma 1.4.3 of DE and Proposition 1.9 of Dal Maso,
1993; henceforth, DM). Moreover, the sequence fFng is decreasing and pointwise converges to

F1 (�) = �domR(�k�) (�)�
Z
X

ud� 8� 2 P (X) (6)

By Proposition 5.7 of DM, this sequence �-converges to the weak* lower semicontinuous envelope

sc� F1 of F1. Since U : � 7!
R
X
ud� is continuous and everywhere �nite on P (X), by Proposition

3.7 and Example 3.4 of DM�
�
scF1

�
(�) =

�
�
sc�domR(�k�)

�
(�)�

Z
X

ud� = �cl(domR(�k�)) (�)�
Z
X

ud�

For each � 2 P?� (X), d�=d� is bounded and continuous, hence there exists k � 0 such that

0 � d�=d� � k and so

�1
e
� d�

d�
log

�
d�

d�

�
� k2 =) R (�k�) <1 =) � 2 domR (�k�)

Therefore P?� (X) � domR (�k�) and so, by Theorem 1, P (X) = cl (P?� (X)) � cl (domR (�k�)) =
P (X). Summing up, Fn �-converges to �

R
X
ud�. By Theorem 7.4 of DM, this implies

lim
n!1

min
�2P(X)

�
1

sn
R (�k�)�

Z
X

ud�

�
= min

�2P(X)

�
�
Z
X

ud�

�
= � max

�2P(X)

�Z
X

ud�

�
= �max

x2X
u (x)

But, for all n 2 N we have

min
�2P(X)

�
1

sn
R (�k�)�

Z
X

ud�

�
= � 1

sn
log

Z
X

esnud�

So, (3) holds.

Moreover, if u has a unique maximizer xu in X, then U has �xu as its unique maximizer. In

fact, if � 2 P (X) n f�xug, then � (X n fxug) > 0, and soZ
X

ud�xu �
Z
X

ud� =

Z
X

(u (xu)� u (x)) d� (x)

=

Z
fxug

(u (xu)� u (x)) d� (x) +

Z
Xnfxug

(u (xu)� u (x)) d� (x)

where the �rst summand is null, the second is strictly positive.4 Since P (X) is compact, the
sequence Fn is equi-coercive (see De�nition 7.6 of DM); in addition, it �-converges to �U with

unique minimum point �xu in P (X). For each n, the probability measure �n is a minimizer for
Fn in P (X). By Corollary 7.24 of DM, �n weak* converges to �xu .

4
R
Bnfxug (u (x

u)� u (x)) d (x) = 0 would imply  (fx 2 B n fxug : u (xu)� u (x) > 0g) = 0, a contradiction

because u (xu)� u (x) > 0 for all x 2 B n fxug.
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In the general case, consider the compact and metrizable space K, the continuous function

w = ujK , and the Borel probability measure � = �jK . It is easy to show that � has full support

on K. In facts, if O is a nonempty open subset of K, there exists an open subset G of X such

that ? = O = G \ K = G \ supp�; by de�nition of support, it follows � (G) > 0, but then

� (O) = � (G \ supp�) = � (G \ supp�) + � (G \ (supp�)c) = � (G) > 0. The previous part of

the proof implies
1

sn
log

Z
K

esnwd� ! max
K

w as n!1

But s�1n log
R
X
esnud� = s�1n log

R
K
esnwd� for all n 2 N and maxK u = maxK w, thus (3) holds.

Moreover, if u has a unique maximizer xu in K, again by the previous part of the proof we

can consider the sequence f�ng of probability measures de�ned by

�n (L) =

R
L
esnwd�R

K
esnwd�

8n 2 N

for all Borel subsets L of K, and have that, given any g 2 C (K),Z
K

gd�n ! g (xu) as n!1

But for each f 2 Cb (X), fjK 2 C (K) and
R
X
fd�n =

R
K
fjKd�n for all n 2 N, then the sequence

f�ng, de�ned by (5), � (P (X) ; Cb (X)) converges to �xu . �

If X is the dual of a separable normed space and is endowed with the weak* topology, then

the boundedness of the support of � is equivalent to its compactness, and � as we observed

in the previous section �each �n has a barycenter mn in the weak* closed and convex hull of

K = supp�. Next we show that these barycenters weak*-converge to the maximizer. Here w�
=)

denotes weak*-convergence.

Proposition 2 Let X be the dual of a separable normed space. Under the assumptions of Theorem

2, we have

mn
w�
=) xu as n!1

where mn is, for each n 2 N, the barycenter of �n.

In particular, ifX is a separable and re�exive Banach space, then its weak and weak* topologies

coincide and so mn weakly converges to xu. Clearly, the sequence of barycenters is included in K

if this set is convex.

When X is Rn and ` is a sigma-�nite Borel measure, we have

1

sn
log

1

` (K)

Z
K

esnu(x)d` (x)! max
K

u as n!1 (7)
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and, if xu is the unique maximizer of u on K,

mn =

R
K
esnu(x)xd` (x)R

K
esnu(y)d` (y)

! xu (8)

This convergence in Rn has been �rst established by Pincus (1968, 1970) (see Hiriart-Urruty, 1995,
p. 22). The weak* convergence (4) thus substantially generalizes his results.
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