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Abstract

In this teaching note we discuss the relation between rational inattention and a major branch

of information theory called “rate distortion theory.” Focusing on methods, we translate tools

from rate distortion theory into the language of rational inattention. These tools provide an

alternative, more primitive, approach to the study of optimal attention allocation.

1 Introduction

Rational inattention, due to Sims (2003), borrows ideas from information theory to study how eco-

nomic agents allocate attention. It became one of the leading models of costly information acquisition

in economics.1 Cost of information is measured by Shannon’s mutual information, the main measure

of informational content used in information theory.

This note discusses the relation between rational inattention and a branch of information theory

called “rate distortion theory.”We explain how tools from rate distortion theory can be used to study

rational inattention. Discussions about rational inattention and information theory usually focus on

foundational aspects, e.g., does information theory provide a foundation for rational inattention? Here

we abstract away from those concerns and focus on methods.

The formal relation between rational inattention and rate distortion theory is easy to explain: the

two fields study optimization problems that are dual to each other. In rational inattention, the alloca-

tion of attention is represented by the maximization of expected utility subject to a cost proportional

to mutual information. Rate distortion theory studies lossy data compression: the minimization of

mutual information subject to an upper bound on the expected loss from compressing the data. By

thinking of loss functions as the negative of utility functions, we see that the problems of optimal

attention allocation and lossy data compression are dual to each other.

This note analyzes an abstract version of these optimization problems. In particular, we borrow

from Gallager (1968, 1972) and, especially, Csiszar (1974a, 1974b). Their methods lead to a primitive

approach not based on Lagrange multipliers, which are the main technique used in applications.

∗We wish to thank Roberto Corrao for some very useful comments and the financial support of ERC (grant INDI-
MACRO).

1See Mackowiak et al. (2018) for a recent survey of rational inattention.
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Avoiding Lagrange multipliers is particularly useful for settings with continuous variables where the

regularity conditions required by infinite-dimensional convex programming may be hard to verify.

The relation to rate distortion theory is known to researchers in rational inattention. Methods

from rate distortion theory, however, have not been fully integrated into the rational inattention

literature yet. The contribution of this note is to make these methods more accessible to economists,

in particular to graduate students, interested in rational inattention.

We organize this note in two sections. Section 2 presents a purely mathematical analysis, abstract-

ing away from applications, while Section 3 explains how the mathematical results apply to rational

inattention and rate distortion theory.

2 Theory

2.1 Preliminaries

Spaces Let (X,X ) and (Y,Y) be Polish spaces with Borel sigma-algebras X and Y, respectively.
Unless otherwise stated, we denote by x and y generic elements of X and Y , and by A and B generic

elements of the sigma algebras X and Y, respectively.
We endow (X,X ) with a (Borel) probability measure µ : X → [0, 1]. We denote by ∆(Y ) the set

of all probability measures on (Y,Y), with generic element ν : Y → [0, 1]. We equip ∆(Y ) with the

weak topology and the corresponding Borel sigma-algebra. For ν, ν′ ∈ ∆(Y ), we write ν � ν′ when

ν is absolutely continuous with respect to ν′, i.e., ν′ (B) = 0 implies ν (B) = 0 for all B ∈ Y.

Barycenters and kernels A stochastic kernel σ : X → ∆(Y ) is a measurable map from (X,X )

into the Polish space ∆(Y ). We denote by Σ the collection of all these kernels; its elements will be

written as σ(·|x). Define µ⊗ σ ∈ ∆(X × Y ) by

(µ⊗ σ)(A×B) =

∫
A

σ(B|x)dµ(x).

The barycenter νσ ∈ ∆(Y ) of kernel σ is the probability measure

νσ(B) =

∫
X

σ(B|x)dµ(x),

So, it is the marginal of µ⊗ σ on Y . We denote by µ× ν the product measure on X × Y of marginals

µ and ν.

Let k : X × Y → R be a measurable function. Throughout the paper we assume that:

1. k is bounded above, that is, supx,y k(x, y) <∞,

2. k(·, y) is µ-integrable for some y ∈ Y .2

The kernel σν associated with a probability measure ν ∈ ∆(Y ) is defined by

σν(B|x) = K(x; ν)

∫
B

ek(x,y)dν(y),

where K(x; ν) = 1/
∫
Y
ek(x,y)dν(y) is a normalizing constant. Kernel σν is well defined: by Tonelli’s

Theorem, for every B the function x 7→
∫
B
ek(x,y)dν(y) is measurable, and so x 7→ σν(B|x) is a

measurable map. For every x the probability measures σν(·|x) and ν are equivalent, with density

dσν(·|x)/dν = K(x; ν)ek(x,·).

2As it will be seen later, this condition ensures that supσ V (σ) > −∞.
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Entropy For ν, ν′ ∈ ∆ (Y ), the relative entropy D(ν‖ν′) is defined by

D(ν‖ν′) =


∫
Y

(
log dν

dν′

)
dν if ν � ν′

+∞ else

where the convention log 0 = −∞ is adopted. For kernels σ, σ′ ∈ Σ, by the chain rule (see Lemma

1.4.3 of Dupuis and Ellis, 1997)

D(µ⊗ σ‖µ⊗ σ′) =

∫
X

D(σ(·|x)‖σ′(·|x))dµ(x).

This rule relies on both spaces X and Y being Polish.

2.2 The theorem

We consider the concave functional U : Σ→ R ∪ {−∞} given by3

U(σ) =

∫
X×Y

k(x, y)d(µ⊗ σ)(x, y)−D(µ⊗ σ‖µ× νσ)

as well as the concave functional V : ∆(Y )→ R ∪ {−∞} given by

V (ν) =

∫
X

(
log

∫
Y

ek(x,y)dν(y)

)
dµ(x) = −

∫
X

logK(x; ν)dµ(x)

Next we state the main result of the note, which relates the variational problems based on these

two functionals.

Theorem 1 We have
sup
σ
U(σ) = sup

ν
V (ν).

If kernel σ̂ solves supσ U(σ), then its barycenter νσ̂ solves supν V (ν) and σ̂(·|x) = σνσ̂ (·|x) for µ-almost

all x. Conversely, if probability measure ν̂ solves supν V (ν), then its kernel σν̂ solves supσ U(σ) and

ν̂ = νσν̂ .

According to this theorem, we thus have

sup
σ

∫
X×Y

k d(µ⊗ σ)−D(µ⊗ σ‖µ× νσ) = sup
ν

∫
X

(
log

∫
Y

ekdν

)
dµ.

Therefore, the two variational problems are equivalent in terms of value attainment. Moreover, if we

identify kernels that are equal µ-a.e., then the barycenter map σ 7→ νσ is a bijection between the

solution sets arg maxσ U(σ) and arg maxν V (ν), and its inverse is the kernel map ν 7→ σν .4

We can diagram these relations between the solution sets as follows:

ν=νσ−→
1:1

arg maxσ U(σ) arg maxν V (ν).
σ=σν←−
1:1

Summing up, this beautiful theorem proves that two, prima facie altogether different, variational

problems are equivalent in terms of value attainment and that their solutions are in a one-to-one

correspondence via two natural maps, one the inverse of the other.
3Concavity is a consequence of the convexity of the mapping (ν, ν′)→ D(ν‖ν′).
4We have not proved yet that the solutions sets are nonempty. We will do it later on in Proposition 7 under additional

regularity assumptions.
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2.3 Proof

We consider the functional W : Σ×∆(Y )→ R ∪ {−∞} given by

W (σ, ν) =

∫
X×Y

k(x, y)d(µ⊗ σ)(x, y)−D(µ⊗ σ‖µ× ν).

The functional W is related to U and V by the following key identities.

Lemma 2 If σ(·|x)� ν for µ-almost all x, then

W (σ, ν) = U(σ)−D(νσ‖ν) (1)

= V (ν)−D(µ⊗ σ‖µ⊗ σν). (2)

Proof Let W (σ, ν) = a− b, where b = D(µ⊗ σ‖µ× ν) and

a =

∫
X×Y

k(x, y)d(µ⊗ σ)(x, y) =

∫
X

(∫
Y

k(x, y)dσ(y|x)

)
dµ(x).

Since σ(·|x)� ν for µ-almost all x, we have

b =

∫
X

D(σ(·|x)‖ν)dµ(x) =

∫
X

(∫
Y

log

(
dσ(·|x)

dν

)
dσ(·|x)

)
dµ(x).

Identity (1) follows from

b =

∫
X

(∫
Y

log

(
dσ(·|x)

dσν(·|x)

dσν(·|x)

dν

)
dσ(·|x)

)
dµ(x)

=

∫
X

(∫
Y

log

(
dσ(·|x)

dσν(·|x)

)
dσ(·|x)

)
dµ(x) +

∫
X

(∫
Y

log

(
dσν(·|x)

dν

)
dσ(·|x)

)
dµ(x)

=

∫
X

D(σ(·|x)‖σν(·|x))dµ(x) +

∫
X

(∫
Y

log
(
K(x; ν)ek(x,·)

)
dσ(·|x)

)
dµ(x)

= D(µ⊗ σ‖µ⊗ σν)− V (ν) + a.

Identity (2) follows from

b =

∫
X

(∫
Y

log

(
dσ(·|x)

dνσ

dνσ
dν

)
dσ(·|x)

)
dµ(x)

=

∫
X

(∫
Y

log

(
dσ(·|x)

dνσ

)
dσ(·|x)

)
dµ(x) +

∫
X

(∫
Y

log

(
dνσ
dν

)
dσ(·|x)

)
dµ(x)

=

∫
X

D(σ(·|x)‖νσ)dµ(x) +

∫
Y

log

(
dνσ
dν

)
dνσ

= D(µ⊗ σ‖µ× νσ) +D(νσ‖ν).

�
Building on (1) and (2), the next lemma generalizes a classic formula.

Lemma 3 We have
V (ν) = W (σν , ν) = sup

σ
W (σ, ν). (3)

If probability measure ν̂ solves supν V (ν), then ν̂ = νσν̂ .

This lemma generalizes the well-known variational formula for relative entropy (cf. p. 27 of Dupuis

and Ellis, 1997):

log

∫
Y

ef(y)dν(y) = sup
ν′

{∫
Y

f(y)dν′(y)−D(ν′‖ν)

}
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for every bounded Borel measurable function f : Y → R. Indeed, (3) reduces to this classic formula
when X is a singleton, so that we can identify Σ with ∆(Y ) and k with f . This variational formula

plays an important role in decision theory (see, e.g., Hansen and Marinacci, 2016).

Proof If the set {x : σ(·|x) 6� ν} is not µ-null, then D(µ⊗ σ‖µ× ν) =∞, and so V (ν) ≥W (σ, ν) =

−∞. If instead, µ-a.e., σ(·|x)� ν, then by (1) we have

V (ν) = W (σ, ν) +D(µ⊗ σ‖µ⊗ σν) ≥W (σ, ν).

Overall, V (ν) ≥ supσW (σ, ν) and the supremum is attained by the kernels for which, µ-a.e., σ(·|x) =

σν(·|x). Actually, W (σν , ν) = V (ν) .

Now let ν̂ solve supν V (ν). We observe that V (ν̂) is finite. Indeed, if ν puts probability 1 on the

y such that k(·, y) is µ-integrable, then

−∞ <

∫
X

k(x, y)dµ(x) = V (ν) ≤ V (ν̂).

By (1) and (2), we can write

V (ν̂) = W (σν̂ , ν̂) = U(σν̂)−D(νσν̂‖ν̂) = W (σν̂ , νσν̂ )−D(νσν̂‖ν̂)

= V (νσν̂ )−D(νσν̂‖ν̂)−D(µ⊗ σν̂‖µ⊗ σνσν̂ ).

Since V (ν̂) ≥ V (νσν̂ ) and V (ν̂) is finite, we must have D(νσν̂‖ν̂) = 0, that is, ν̂ = νσν̂ (see Lemma

1.4.1 of Dupuis and Ellis, 1997). �

The next lemma mirrors the last one.

Lemma 4 We have
U(σ) = W (σ, νσ) = sup

ν
W (σ, ν).

If kernel σ̂ solves supσ U(σ), then σ̂(·|x) = σνσ̂ (·|x) for µ-almost all x.

Proof If the set {x : σ(·|x) 6� ν} is not µ-null, then D(µ⊗ σ‖µ× ν) =∞, and so U(σ) ≥W (σ, ν) =

−∞. If instead, µ-a.e., σ(·|x)� ν, then by (1) we have

U(σ) = W (σ, ν) +D(νσ‖ν) ≥W (σ, ν).

Overall, U(σ) ≥ supνW (σ, ν) and the supremum is attained by the barycenter of σ and soW (σ, νσ) =

U(σ).

Now let σ̂ solve supσ U(σ). We observe that U(σ̂) is finite. Indeed, if µ⊗ σ = µ× νσ and νσ puts
probability 1 on the y such that k(·, y) is µ-integrable, then

−∞ <

∫
X

k(x, y)dµ(x) = U(σ) ≤ U(σ̂).

In particular, D(µ⊗ σ̂‖µ× νσ̂) <∞, which implies σ̂(·|x)� νσ̂ for µ-almost all x. By (1) and (2) we

can write (being σ̂(·|x)� νσ̂, µ-a.e.)

U(σ̂) = W (σ̂, νσ̂) = V (νσ̂)−D(µ⊗ σ̂‖µ⊗ σνσ̂ ) = W (σνσ̂ , νσ̂)−D(µ⊗ σ̂‖µ⊗ σνσ̂ )

= U(σνσ̂ )−D(νσνσ̂ ‖νσ̂)−D(µ⊗ σ̂‖µ⊗ σνσ̂ ).

Since U(σ̂) ≥ U(σνσ̂ ) and U(σ̂) is finite, we must have D(µ⊗ σ̂‖µ⊗σνσ̂ ) = 0, that is, σ̂(·|x) = σνσ̂ (·|x)

for µ-almost all x (see Lemma 1.4.1 of Dupuis and Ellis, 1997). �

We can now easily prove the theorem.

Proof of Theorem 1 It follows immediately from Lemmas 3 and 4. �
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2.4 Optimality condition

In this section we characterize the solutions of the variational problem supν V (ν).

Proposition 5 A probability measure ν̂ solves supν V (ν) if and only if∫
X

K(x; ν̂)ek(x,y)dµ(x) ≤ 1 ∀y ∈ Y. (4)

Proof “If”. Let ν̂ satisfy condition (4). It is enough to apply the inequality log t ≤ t − 1 to prove

that ν̂ solves supν V (ν). For each ν ∈ ∆(Y ), we have

V (ν) =

∫
X

(
log

∫
Y

ek(x,y)dν(y)

)
dµ(x) =

∫
X

(
log

(∫
Y
K(x; ν̂)ek(x,y)dν(y)

K(x; ν̂)

))
dµ(x)

=

∫
X

(
log

(∫
Y

K(x; ν̂)ek(x,y)dν(y)

))
dµ(x)−

∫
X

logK(x; ν̂)dµ(x)

≤
∫
X

(∫
Y

K(x; ν̂)ek(x,y)dν(y)− 1

)
dµ(x) + V (ν̂)

=

∫
Y

(∫
X

K(x; ν̂)ek(x,y)dµ(x)− 1

)
dν(y) + V (ν̂) ≤ V (ν̂).

“Only if”. Let V (ν̂) = supν V (ν). If ν is any element of the convex set ∆(Y ), we have

V ((1− t)ν̂ + tν) = V (ν̂ + t (ν − ν̂)) ≤ V (ν̂)

for every t ∈ [0, 1]. This implies that the directional derivative is negative, i.e.,

V ′ (ν̂; ν − ν̂) = lim
t→0+

V (ν̂ + t(ν − ν̂))− V (ν̂)

t
≤ 0.

Since V is concave, this limit exists (finite or infinite) because the scalar function t 7−→ t−1 [V (ν̂ + t(ν − ν̂))− V (ν̂)]

increases as t ↓ 0.

Hence, V ′ (ν̂; ν − ν̂) ≤ 0 for all ν ∈ ∆(Y ) is a necessary condition. On the other hand,

V ′ (ν̂; ν − ν̂) = lim
t→0+

V ((1− t)ν̂ + tν)− V (ν̂)

t

= lim
t→0+

∫
X

(
log
(
(1− t)

∫
Y
ekdν̂ + t

∫
Y
ekdν

))
dµ−

∫
X

(
log
∫
Y
ekdν̂

)
dµ

t

= lim
t→0+

∫
X

log
(
(1− t)

∫
Y
ekdν̂ + t

∫
Y
ekdν

)
− log

∫
Y
ekdν̂

t
dµ

=

∫
X

lim
t→0+

log
(
(1− t)

∫
Y
ekdν̂ + t

∫
Y
ekdν

)
− log

∫
Y
ekdν̂

t
dµ

where the last step is justified by the monotone convergence theorem because the integrand function

increases as t ↓ 0. A straightforward computation leads to

V ′ (ν̂; ν − ν̂) =

∫
X

[∫
Y
ekdν∫

Y
ekdν̂

]
dµ− 1 ≤ 0

If ν puts probability 1 on a generic point y ∈ Y , we get∫
X

K (x, ν̂) ek(x,y)dµ ≤ 1

which is the desired necessary condition. �

Condition (4) has the following useful equivalent formulation.
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Corollary 6 A probability measure ν̂ satisfies (4) if and only if there is a set B ∈ Y of full ν̂-measure
such that ∫

X

K(x; ν̂)ek(x,y)dµ(x) = 1 ∀y ∈ B,∫
X

K(x; ν̂)ek(x,y)dµ(x) ≤ 1 otherwise.

Proof Of course, these conditions imply (4). The converse implication relies on the following routine
claim.

Claim. If ν ∈ ∆(Y ) and f is integrable and such that f(y) ≤
∫
fdν for all y, then f(y) =

∫
fdν for

ν-almost all y.

Proof of the Claim. By contradiction, we suppose there are ν ∈ ∆(Y ) and f such that f(y) ≤
∫
fdν

for all y but the set B = {y : f(y) =
∫
fdν} has not full ν-measure. Thus we have∫

fdν =

∫
{y:f(y)<

∫
fdν}

fdν +

∫
{y:f(y)=

∫
fdν}

fdν

< (1− µ(B))

∫
fdν + µ(B)

∫
fdν =

∫
fdν

which is a contradiction. Therefore, if f(y) ≤
∫
fdν for all y, then we must have f(y) =

∫
fdν for

ν-almost all y. This completes the proof of the Claim. �

In view of the Claim, to conclude the proof is enough to observe that, by the Tonelli Theorem,∫
Y

(∫
X

K(x; ν̂)ek(x,y)dµ(x)

)
dν̂(y) =

∫
X

(
K(x; ν̂)

∫
Y

ek(x,y)dν̂(y)

)
dµ(x) = 1.

Hence, condition (4) is equivalent to∫
X

K(x; ν̂)ek(x,y)dµ(x) ≤
∫
Y

(∫
X

K(x; ν̂)ek(x,y)dµ(x)

)
dν̂(y)

for all y ∈ Y and so the Claim yields the desired result. �

2.5 Existence

Under additional regularity conditions, the next proposition verifies that the solution set arg maxν V (ν)

is nonempty.

Proposition 7 Let Y be compact and k(x, ·) upper semi-continuous on Y for µ-almost all x. The

functional V is weakly upper semicontinuous and there exists at least an element ν̂ of ∆(Y ) such that

V (ν̂) = supν V (ν).

Proof Let νn → ν. The functions ek(x,·) are upper semicontinuous and bounded for µ-almost all x.

Therefore

lim sup
n→∞

∫
Y

ek(x,y)dνn(y) ≤
∫
Y

ek(x,y)dν(y)

for µ-almost all x (see Theorem 15.5 of Aliprantis and Border, 2006). This in turn implies that

lim sup
n→∞

log

∫
Y

ek(x,y)dνn(y) ≤ log

∫
Y

ek(x,y)dν(y)

7



for µ-almost all x. As a consequence, Fatou’s lemma implies

lim sup
n→∞

∫
X

(
log

∫
Y

ek(x,y)dνn(y)

)
dµ(x) ≤

∫
X

lim sup
n→∞

(
log

∫
Y

ek(x,y)dνn(y)

)
dµ(x)

≤
∫
X

(
log

∫
Y

ek(x,y)dν(y)

)
dµ(x).

The weak upper semi-continuity of the functional is thus proved. The weak compactness of ∆(Y )

concludes the proof (see Theorem 2.43 of Aliprantis and Border, 2006). �

We conclude that, by Proposition 7 and Theorem 1, if Y is compact and k(x, ·) is upper semi-
continuous on Y for µ-almost all x, then we have

max
σ

U(σ) = max
ν

V (ν).

and so the solutions sets of the two variational problems are nonempty.

2.6 A parametric version

In applications, a simple parametric version of Theorem 1 is often useful. Specifically, given a non-zero

scalar parameter λ, define Vλ : ∆(Y )→ R by

Vλ(ν) =

∫
X

(
λ log

∫
Y

e
k(x,y)
λ dν(y)

)
dµ(x)

and Uλ : Σ→ R by

Uλ(σ) =

∫
X×Y

k(x, y)d(µ⊗ σ)(x, y)− λD(µ⊗ σ‖µ× νσ). (5)

The parametric kernel σνλ associated to probability measure ν ∈ ∆ (Y ) is given by

σνλ(B|x) = Kλ(x; ν)

∫
B

e
k(x,y)
λ dν(y),

where Kλ (x; ν) = 1/
∫
Y
e
k(x,y)
λ dν(y) is a normalizing constant.

We can now state and prove the parametric version of Theorem 1. Here we need the function k to

be bounded to consider also negative values of the parameter λ.

Corollary 8 If k is bounded, we have

λ > 0 =⇒ sup
σ
Uλ(σ) = sup

ν
Vλ(ν),

λ < 0 =⇒ inf
σ
Uλ(σ) = inf

ν
Vλ(ν).

If we identify kernels that are equal µ-a.e., then for each λ 6= 0 the barycenter map σ 7→ νσ is a

bijection between the solution sets, and the kernel map ν 7→ σνλ is its inverse.

Proof Let λ > 0. We have:

sup
σ

∫
X×Y

k(x, y)d(µ⊗ σ)(x, y)− λD(µ⊗ σ‖µ× νσ)

=λ sup
σ

∫
X×Y

k(x, y)

λ
d(µ⊗ σ)(x, y)−D(µ⊗ σ‖µ× νσ)

=λ sup
ν

∫
X

(
log

∫
Y

e
k(x,y)
λ dν(y)

)
dµ(x)

= sup
ν

∫
X

(
λ log

∫
Y

e
k(x,y)
λ dν(y)

)
dµ(x)
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For λ < 0,

inf
σ

∫
X×Y

k(x, y)d(µ⊗ σ)(x, y)− λD(µ⊗ σ‖µ× νσ)

=λ sup
σ

∫
X×Y

k(x, y)

λ
d(µ⊗ σ)(x, y)−D(µ⊗ σ‖µ× νσ)

=λ sup
ν

∫
X

(
log

∫
Y

e
k(x,y)
λ dν(y)

)
dµ(x)

= inf
ν

∫
X

(
λ log

∫
Y

e
k(x,y)
λ dν(y)

)
dµ(x).

�

So far we have assumed that λ 6= 0. If k is continuous, we have

lim
λ→0−

Vλ(ν) =

∫
X

min
y∈supp(ν)

k(x, y)dµ(x) and lim
λ→0+

Vλ(ν) =

∫
X

max
y∈supp(ν)

k(x, y)dµ(x)

for all ν that have compact support (see Cerreia-Vioglio et al., 2018). The functional Vλ has thus

no meaningful value at λ = 0 because at that point occurs a transition between maximization and

minimization standpoints.

3 Applications

3.1 Rational inattention

A decision maker (DM, for short) faces a choice under uncertainty. Let X be a finite set of states.

The DM has to choose an action from some finite set Y and each action has state-dependent utility.

Let u : X × Y → R be her utility function. Uncertainty about the state is represented by a subjective
probability measure µ on X.

Before choosing what action to take, the DM can run an experiment to reduce the uncertainty she

faces. Let Z be a finite set of signals. An experiment is a stochastic kernel τ : X → ∆(Z) mapping

states into probability measures on signals. We denote by τ(z|x) the probability of observing signal

z in state x. A decision function f : Z → ∆(Y ) specifies a (mixed) action for every possible signal

realization.

To maximize expected utility, the DM can run any experiment she desires subject to a cost propor-

tional to its informational content. Shannon’s mutual information is used to quantify such content:

given experiment τ , the quantity

D(µ⊗ τ‖µ× ντ ) =
∑
x,z

(
log

τ(z|x)∑
x′ τ(z|x′)µ(x′)

)
τ(z|x)µ(x)

is the called mutual information of signal and state. It is the relative entropy between µ⊗ τ and the
product of the marginals µ× ντ .5

Overall, the DM solves the rational inattention problem

max
τ,f

∑
x,y,z

u(x, y)f(y|z)τ(z|x)µ(x)− λD(µ⊗ τ‖µ× ντ ), (6)

5Here ντ is the barycenter of τ . A standard textbook reference for mutual information, entropy, and related notions
is chapter 2 of Cover and Thomas (2006).
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where λ > 0 is a scale factor parametrizing the marginal cost of information (see Matejka and McKay,

2015). Rational inattention was introduced in economics by Sims (2003) to model optimal attention

allocation. Stripped of this interpretation, (6) is a costly information acquisition problem with two

distinctive features: many experiments are available and the cost of information has a particular

functional form based on mutual information.

In rational inattention, a revelation principle is often invoked to bypass decision functions (see,

e.g., Corollary 1 in Matejka and McKay, 2015).

Proposition 9 Suppose Z has more elements than Y . Given σ̂ : X → ∆(Y ), the following statements

are equivalent:

(i) σ̂ solves problem

max
σ

∑
x,y

u(x, y)σ(y|x)µ(x)− λD(µ⊗ σ‖µ× νσ). (7)

(ii) There are τ̂ : X → ∆(Z) and f̂ : Z → ∆(Y ) solving (6) such that

σ̂(y|x) =
∑
z

f̂(y|z)τ̂(z|x) ∀x ∈ X,∀y ∈ Y.

In view of this revelation principle, problem (7) is equivalent to

max
σ

Uλ(σ)

where Uλ is given by (5), with k = u. The analysis of Section 2 can therefore be applied to study

optimal attention allocation.

3.2 Rate distortion theory

Rate distortion theory is a major branch of information theory, due to Shannon (1959), that studies

lossy data compression.6 The basic problem in data compression is to represent a given message using

the minimum amount of information without incurring any distortion, that is, without losing any

data. This is called lossless data compression. Sometimes, however, a perfect representation would

require too much information and losing some data is unavoidable. Lossy data compression is about

representing a given message using the minimum amount of information without exceeding a certain

level of distortion.

For every level of distortion d > 0, the rate distortion function specifies the exact amount of

information necessary to represent a given message without exceeding (on average) d. To illustrate,

let a message be an element of the finite set X with probability measure µ. The message has to

be represented by an element of the finite set Y . Representing x by y leads to distortion or loss

l(x, y) ≥ 0. The rate distortion function R : (0,∞) → [0,∞) is the value function of the following

optimization problem:

R (d) = min
σ
D(µ⊗ σ‖µ× νσ) sub

∑
x,y

l(x, y)σ(y|x)µ(x) ≤ d. (8)

The Lagrangian L associated with this convex program is:

L (σ, λ) = D(µ⊗ σ‖µ× νσ) + λ

(∑
x,y

l(x, y)σ(y|x)µ(x)− d
)

= D(µ⊗ σ‖µ× νσ) + λ
∑
x,y

l(x, y)σ(y|x)µ(x)− λd,

6Textbook references for rate distortion theory are Berger (1971) and chapter 10 of Cover and Thomas, 2006. A
comprehensive survey is Berger and Gibson (1998).
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where λ ≥ 0 is the multiplier. Under the hypothesis that problem (8) has solutions, the saddle

property of the Lagrangian L leads to the following result.

Proposition 10 We have R(d) = maxλ≥0 {Q(λ)− λd}, where

Q (λ) = min
σ

[
D(µ⊗ σ‖µ× νσ) + λ

∑
x,y

l(x, y)σ(y|x)µ(x)

]
. (9)

Proof The min-max property of the Lagrange function yields maxλ≥0 minσ L (σ, λ) = R (d). In view

of the definition of L, we have minσ L (σ, λ) = Q(λ)− λd, as desired. �

To compute the rate distortion function, therefore, we can first study the unconstrained optimiza-

tion problem (9). We have the obvious relation

Q(λ) = λmin
σ
U− 1

λ
(σ) for λ > 0

with k = l. The analysis of Section 2 can therefore be applied to study lossy data compression.
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