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Abstract

One of the most well-known models of non-expected utility is Gul (1991)’s

model of Disappointment Aversion. This model, however, is defined implicitly,

as the solution to a functional equation; its explicit utility representation is un-

known, which may limit its applicability. We show that an explicit representation

can be easily constructed, using solely the components of the implicit one. We

also provide a more general result: an explicit representation for preferences in

the Betweenness class that also satisfy Negative Certainty Independence (Dillen-

berger, 2010).
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1 Introduction

One of the most well-known models of non-expected utility preferences is Gul (1991)’s

model of Disappointment Aversion (henceforth DA). Its popularity is related both to

the intuitive nature of the model, where the value of each outcome is determined rela-

tively to an endogenously-defined “expected” payoff, capturing reference dependence;

and to that it generalizes expected utility by adding only one parameter, potentially

helping its applicability. DA preferences are behaviorally distinct from alternative

models that use probability weighting, and as such can also accommodate violations

of expected utility that are conceptually unrelated to distorted beliefs or pessimism —

but are rather linked to a form of reference dependence.

Despite its behavioral appeal, there is one limitation to the applicability of the

DA model: the value of each lottery is the solution of an equation that changes with

the lottery – a so-called implicit representation. The (explicit) utility representation

is instead unknown. This may be a concern if one wishes to apply this model to

solve optimization problems, as is typically needed in Economics. The same concern

applies to the broader class of Betweenness preferences, studied in Dekel (1986) and

Chew (1989) and to which the DA model belongs: for such preferences only an implicit

representation is known, while the explicit one is still elusive.1

The goal of this paper is to address these issues: we provide an explicit representa-

tion for DA preferences, showing that it can be easily obtained using solely the compo-

nents of its implicit one. In fact, our results are more general: we provide an explicit

representation for Betweenness preferences that satisfy Negative Certainty Indepen-

dence (Dillenberger, 2010; Cerreia-Vioglio et al., 2015), of which the most prominent

specification of the DA model is a special case (and which is consistent with almost all

of the experimental evidence, such as the certainty effect and Allais paradox).

Let p be a lottery over monetary outcomes. Its value according to the DA model

is the unique v that solves

v = Ep(kv) (1)

where kv is given by

kv (x) =


u (x) u (x) ≤ v

u(x)+βv
1+β

u (x) > v
.

Here u is a utility function over money, and β ∈ (−1,∞) represents the coefficient of

either disappointment aversion (β > 0) or elation seeking (β < 0). Note that this is

an implicit equation, as the value v appears on both sides of Equation (1). In this

model the value v is similar to expected utility, except that the individual gives an

1This is the case not only for the broad class, but also for most of its special cases. A notable

exception is Chew and MacCrimmon (1979a,b)’s model of weighted-utility.
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additional weight β to disappointing outcomes – those with a utility lower than the

value of the lottery itself.2 The DA model is thus a model of endogenous reference

dependence: possible payoffs generate disappointment (or elation) depending on how

their utilities compare to an endogenously-determined value – the utility of the lottery.3

When β > 0, the disappointing outcomes receive greater weight, whereas the opposite

is true for β < 0, justifying the terms disappointment aversion/elation seeking. If

β = 0, the model reduces to expected utility.

In Section 3 we show that these preferences admit the following explicit represen-

tation. When β > 0, the case of disappointment aversion, preferences are represented

by

V (p) = min
v

k−1
v


Ep(kv)


,

while when β ∈ (−1, 0), the case of elation-seeking, they are represented by

V (p) = max
v

k−1
v


Ep(kv)


.

This means that one can easily construct an explicit representation for preferences in

this class using solely the components of the implicit representation in Equation (1)

– taking the min or the max of the certainty equivalents computed using each of the

possible utilities involved. We also use our results to show additional properties of this

model: for example, that it exhibits prudence only if it is expected utility.

There are at least two benefits of having an explicit representation. The first one

is practical: it facilitates the applications of these models by simplifying optimization

problems with these preferences. This is particularly relevant because DA preferences,

while continuous, are not even Gateaux differentiable.4 Therefore, one cannot apply

differential methods via some ad hoc implicit function theorem, or Machina (1982)’s

local utility approach and its extensions to the Gateaux case. But when β > 0,

our results imply that the same optimization problem becomes a standard maxmin

problem, for which one can apply the well-known Sion (1958)’s minimax theorem.

Finding the optimum on a convex set with DA preferences then amounts to computing

the optimum for some expected utility functional. We discuss this issue in Section 3.2.

2To see this, note that the value of a simple lottery p can equivalently be defined as the unique v

that solves

v =


{x:u(x)>v} u(x)p(x) + (1 + β)


{x:u(x)≤v} u(x)p(x)

1 + β


{x:u(x)≤v} p(x)
.

3We should stress that this is different from other models of endogenous reference dependence

under risk, e.g., Köszegi and Rabin (2006, 2007): both models are conceptually and behaviorally

distinct (Masatlioglu and Raymond, 2016). For example, the DA model satisfies Betweenness, while

both models above do not.
4See, e.g., Safra and Segal (2009).
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The second advantage is instead conceptual: an explicit representation may help

capturing the mental process adopted by the agent. While highly idealized, one can

easily imagine a cautious (if β > 0; optimistic otherwise) decision process that involves

the maxmin criterion. It is instead less immediate to take the solution of an implicit

equation as a descriptive decision making procedure. This argument is not behavioral,

but relies on going beyond the ‘as if’ approach in interpreting representation theorems.5

After formally stating the result above for DA preferences (Theorem 3), we discuss

an explicit representation for generic Betweenness preferences that also satisfy Nega-

tive Certainty Independence (Theorem 4), of which the previous result is a corollary.6

Again the explicit representation is the min of the certainty equivalents using the func-

tions (called local utilities) used in Dekel (1986)’s implicit representation. We also

characterize, in terms of a notion of local risk aversion, the properties of these local

utilities.

We conclude the paper by showing one potential application of our main result: how

our explicit representation may simplify optimization problems using these preferences.

2 Preliminaries

Consider a nontrivial compact interval [w, b] ⊆ R of monetary prizes. Let ∆ be the

set of lotteries (Borel probability measures) over [w, b], endowed with the topology of

weak convergence. We denote by x, y, z generic elements of [w, b] ; by p, q, r generic

elements of ∆; and by δx ∈ ∆ the degenerate lottery (Dirac measure at x) that gives

the prize x ∈ [w, b] with certainty. The set ∆0 denotes the subset of ∆ of all simple

lotteries (convex linear combinations of Dirac measures). We denote by C ([w, b]) the

space of continuous functions on [w, b] and we endow it with the topology induced by

the supnorm. The set Unor ⊆ C ([w, b]) is the collection of all strictly increasing and

continuous functions v : [w, b] → R such that v (w) = 0 and v (b) = 1. Given p ∈ ∆

and a strictly increasing v ∈ C ([w, b]), we define c (p, v) = v−1 (Ep (v)). Lastly, we

denote by p FSD q, the case in which p first order stochastically dominates q (i.e.,

Ep (v) ≥ Eq (v) for all v ∈ Unor).

The primitive of our analysis is a binary relation  over ∆. The symmetric and

asymmetric parts of  are denoted by ∼ and, respectively, ≻. A certainty equivalent

5A related argument appears in Chapter 17 of Gilboa (2009). Dekel and Lipman (2010) argued

that “While the story need not be literally true for the model to be useful, it plays an important role.

Confidence in the story of the model may lead us to trust the models predictions more. Perhaps more

importantly, the story affects our intuitions about the model and hence whether and how we use and

extend it.”
6More precisely, only the case of β ≥ 0 in Theorem 3 is a corollary of Theorem 4. The other case

is obtained using specular techniques.
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of a lottery p ∈ ∆ is a prize xp ∈ [w, b] such that δxp ∼ p. Throughout the paper, we

focus on binary relations  that satisfy the following three standard assumptions.

A 1 (Weak Order) The relation  is complete and transitive.

A 2 (Continuity) For each q ∈ ∆, the sets {p ∈ ∆ : p  q} and {p ∈ ∆ : q  p} are

closed.

A 3 (Strict First Order Stochastic Dominance) For each p, q ∈ ∆

p ≻FSD q =⇒ p ≻ q.

Betweenness Preferences

We study binary relations that satisfy the following assumption:

A 4 (Betweenness) For each p, q ∈ ∆ and λ ∈ [0, 1]

p ∼ q =⇒ p ∼ λp+ (1− λ) q ∼ q.

Betweenness implies neutrality toward randomization among equally-good lotteries:

if satisfied, then the agent has no preference for, or aversion to, randomization between

indifferent lotteries. Binary relations satisfying this property were studied by Dekel

(1986) and Chew (1989).

We say that a binary relation is a Betweenness preference if and only if it satisfies

Weak Order, Continuity, Strict First Order Stochastic Dominance, and Betweenness.

Dekel (1986) proves a version of the following result:7

Theorem 1 (Dekel, 1986) If  is a Betweenness preference, then there exists a func-

tion k : [w, b]× [0, 1] → R such that:

1. x → k (x, t) is strictly increasing and continuous on [w, b] for all t ∈ (0, 1),

2. t → k (x, t) is continuous on (0, 1) for all x ∈ [w, b],

3. k (w, t) = 0 and k (b, t) = 1 for all t ∈ [0, 1],

7Dekel’s original result deals with a generic set of consequences and considers a weaker form of

monotonicity. At the same time, it uses a stronger form of Betweenness. Given these differences, we

prove Theorem 1 in Appendix C. Finally, we focus on the normalized representation of Dekel (that is,

k satisfies the condition in point 3). Later we comment on how to use our results for non-normalized

representations. Also observe that even though k (·, 0) and k (·, 1) are not assumed to be continuous,

they are implicitly assumed to be integrable, given (2).
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4.  can be represented by a continuous utility function which strictly preserves first

order stochastic dominance, V̂ : ∆ → [0, 1], where for each p ∈ ∆, V̂ (p) is the

unique number in [0, 1] such that



[w,b]

k

x, V̂ (p)


dp = V̂ (p) . (2)

Fixing t, the function k (·, t) is called the local utility at t. The function k thus sum-

marizes the collection of local utilities, one for each t ∈ [0, 1]. While the theorem above

characterizes Betweenness preferences, it does not provide an explicit representation:

indeed, V̂ (p) is the solution to (2), thus a fixed point of a functional equation.

An important class of Betweenness preferences is the one arising from Gul (1991)’s

model of Disappointment Aversion (DA). These preferences admit a continuous utility

function Ṽ : ∆ → R such that, for each p ∈ ∆, Ṽ (p) is the unique number that solves



[w,b]

k̃

x, Ṽ (p)


dp = Ṽ (p) (3)

where k̃ : [w, b]× Im u → R is defined by

k̃ (x, s) =


u (x) if u (x) ≤ s
u(x)+βs
1+β

if u (x) > s
∀x ∈ [w, b] , ∀s ∈ Im u; (4)

here u is a strictly increasing continuous utility function and β ∈ (−1,∞).8 We

discussed its interpretation in the Introduction. We say that a binary relation is a

DA preference if and only if it admits a utility function Ṽ which satisfies (3) for some

pair (u, β).

Negative Certainty Independence

As noted by Dillenberger (2010), a DA preference with β > 0 satisfies the following

axiom.

A 5 (Negative Certainty Independence) For each p, q ∈ ∆, x ∈ [w, b], and λ ∈
[0, 1]

p  δx =⇒ λp+ (1− λ) q  λδx + (1− λ) q. (5)

Negative Certainty Independence, initially suggested in Dillenberger (2010), is

meant to capture the certainty effect. It states that if the sure outcome x is not

enough to compensate the agent for the risky prospect p, then mixing it with any

8A careful inspection of (4) also suggests that two types of normalizations are due to link the

implicit representation of Gul (1991) to the one of Dekel (1986) as in Theorem 1. In proving our

results below, we also address these minor technical points.
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other lottery, thus eliminating its certainty appeal, will not result in the mixture of δx

being more attractive than the corresponding mixture of p. The opposite condition,

termed Positive Certainty Independence, simply inverts the role of p and δx in (5).

We say that a binary relation is a Cautious Expected Utility preference if and only

if it satisfies Weak Order, Continuity, Strict First Order Stochastic Dominance, and

Negative Certainty Independence. Cerreia-Vioglio et al. (2015) prove the following:9

Theorem 2 (Cerreia-Vioglio, Dillenberger, Ortoleva, 2015) If  is a Cautious

Expected Utility preference, then there exists W ⊆ Unor such that V : ∆ → R, defined
by

V (p) = inf
v∈W

c (p, v) ∀p ∈ ∆, (6)

is a continuous utility representation of .

3 Explicit Representations

We start by providing an explicit representation of DA preferences.

Theorem 3 Let  be a DA preference and Wda =

k̃ (·, z)



z∈Imu
. The following

statements are true:

1. If β > 0, then V : ∆ → R, defined by

V (p) = min
v∈Wda

c (p, v) ∀p ∈ ∆, (7)

is a continuous utility representation of .

2. If β = 0, then V : ∆ → R, defined by

V (p) = c (p, u) ∀p ∈ ∆, (8)

is a continuous utility representation of .

3. If β < 0, then V : ∆ → R, defined by

V (p) = max
v∈Wda

c (p, v) ∀p ∈ ∆,

is a continuous utility representation of .

9More precisely, Cerreia-Vioglio et al. (2015) state the result below as an “if and only if” but using

a weaker form of monotonicity. However, for ease of comparison with Theorem 1, we provide it using

Strict First Order Stochastic Dominance.
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In the case of disappointment aversion (β > 0), our utility representation is the

smallest of the certainty equivalents obtained using the local utilities. In the opposite

case of elation seeking (β < 0), it is instead the largest. Thus, the difference between

the two behaviors is not only in the way in which disappointing/elating outcomes are

weighted, but also in how they are aggregated – using the min or the max.

When β > 0, Gul’s model satisfies Negative Certainty Independence. We thus

know that it must admit a Cautious Expected Utility representation. The content of

Theorem 3 is then to show that this involves precisely the local utilities derived in the

implicit representation. Thus, the explicit representation can be easily derived using

solely the implicit one. When β < 0, the model does not satisfy Negative Certainty

Independence. Instead, the opposite axiom holds, Positive Certainty Independence

(Artstein-Avidan and Dillenberger, 2015). In this case the individual is elation seeking,

and violates expected utility in a way opposite to the certainty effect.

We now use Theorem 3, and the machinery developed to prove it, to derive further

properties of DA preferences. Recall the notion of prudence (also known as downside

risk aversion): the preference for additional risk on the upside rather than the downside

of a gamble (Eeckhoudt and Schlesinger, 2006).10 Intuitively, one could think that risk

aversion is to aversion to mean preserving spreads as prudence is to aversion to mean-

variance preserving transformations (Menezes et al., 1980). This behavioral feature is

often modeled as monotonicity with respect to the third degree risk order. Formally,

define p pru q if and only if Ep (v) ≥ Eq (v) for all v ∈ C ([w, b]) such that the derivative

v′ exists on (w, b) and is convex. A binary relation  on ∆ exhibits prudence if and

only if p pru q =⇒ p  q. Our next result shows that the DA model is inconsistent

with prudence unless it is expected utility.

Proposition 1 Let  be a DA preference. It exhibits prudence if and only if β = 0

(i.e., it is expected utility), and u′ exists on (w, b) and is convex.

3.1 A General Result

We now show that any generic Betweenness preference that satisfies Negative Certainty

Independence also admits an explicit representation of the Cautious Expected Utility

form where the utilities in W are the local ones obtained in Theorem 1, that is, Wbet =

{k (·, t)}t∈(0,1).

Theorem 4 Let  be a Betweenness preference. The following statements are equiv-

alent:

10The name prudence and its relation with precautionary savings date back to Kimball (1990). In

the case of expected utility preferences, prudence implies preference for skewness.
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(i)  satisfies Negative Certainty Independence;

(ii) The functional V : ∆ → R, defined by

V (p) = min
v∈Wbet

c (p, v) ∀p ∈ ∆, (9)

is a continuous utility representation of . In particular, for each p ∈ ∆\ {δw, δb}
the function vp = k


·, V̂ (p)


is such that

vp ∈ argminv∈Wbet
c (p, v) . (10)

Like in the case of the previous result, Theorem 4 shows that these preferences admit

an explicit representation of the Cautious Expected Utility class – which follows from

Theorem 2. As before, the key contribution is to show that the utilities involved are

exactly the local utilities identified in Theorem 1, included in Wbet. Again, the explicit

representation can be easily derived using solely the components of the implicit one. In

addition, Equation (10) shows that the local utility giving the implicit representation

of Dekel (1986) is also the one achieving the minimum in representation (9).

While Theorem 4 provides an explicit characterization for Betweenness preferences

that satisfy Negative Certainty Independence, one may be interested in the following

question: what are the characteristics of the local functions k(·, t) that guarantee that

preferences satisfy Negative Certainty Independence (and thus admit a representation

as in Theorem 4)? Our next result provides an answer. In stating it, the following

notation will be used: Given f : [0, 1] → [0, 1], we say that f is convex at t ∈ (0, 1) if

and only if for each n ∈ N, {ti}ni=1 ⊆ [0, 1], and {λi}ni=1 ⊆ [0, 1] such that
n

i=1 λi = 1

t =
n

i=1

λiti =⇒ f (t) ≤
n

i=1

λif (ti) .

For each s, t ∈ (0, 1), define fs,t to be the transformation from k (·, t) to k (·, s), that
is, fs,t : [0, 1] → [0, 1] is such that k (x, s) = fs,t(k (x, t)) for all x ∈ [0, 1]. Note that fs,t

must exist since k (·, t) and k (·, s) are strictly increasing and continuous. Moreover,

fs,t is strictly increasing, continuous, and such that fs,t (0) = 0 and fs,t (1) = 1.

Proposition 2 Let  be a Betweenness preference. The following statements are

equivalent:

(i) For each t ∈ (0, 1) and for each s ∈ (0, 1) the function fs,t is convex at t;

(ii)  satisfies Negative Certainty Independence.

Proposition 2 states that testing Negative Certainty Independence amounts to

checking if for each t ∈ (0, 1) the transformations fs,t are convex at t for all s ∈ (0, 1).

This is a handy tool because fs,t = k(·, s) ◦ k−1(·, t) and is thus computable.
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Remark 1 This property of convexity is implied by the following sufficient condition:

the subdifferential of fs,t is nonempty at t, ∂fs,t (t) ∕= ∅.11 This takes a simple geometric

interpretation, as it amounts to saying that the graph of fs,t is supported by a line at the

point (t, fs,t (t)) , that is, there exists a function g : [0, 1] → R such that g (t′) = mt′+ l

for all t′ ∈ [0, 1] , where l,m ∈ R and

fs,t (t) = g (t) as well as g (t′) ≤ fs,t (t
′) ∀t′ ∈ [0, 1] . (11)

▽

Next, we discuss the possibility of obtaining more parsimonious explicit represen-

tations for the preferences we consider – for example, ones that involve finitely many

utilities only. The following result shows that this is not the case: within the class of

Cautious Expected Utility preferences, whenever Betweenness holds, either the prefer-

ence is expected utility, or the set W ⊆ Unor must be infinite.12

Proposition 3 Let  be a Cautious Expected Utility preference. If W ⊆ Unor satisfies

(6) and |W| < ∞, then either  satisfies Independence or  violates Betweenness.

Finally, we show that there are models in the Betweenness class that satisfy Negative

Certainty Independence but are not DA preferences. The following is an example that

considers another form of disappointment aversion.

Example 1 Consider a Betweenness preference with local utilities k : [0, 1]×[0, 1] → R
defined as

k (x, t) =


x if x ≤ t

x2 − tx+ t if x > t
∀x ∈ [0, 1] , ∀t ∈ [0, 1] .

This retains the idea of disappointment aversion, but allows the weight to depend

on the value x.13 In Appendix C, relying on Proposition 2 and Remark 1, we show

that these preferences satisfy Negative Certainty Independence and therefore admit an

explicit representation. ▽

3.2 Explicit Representations and Applications

In this section we illustrate how our explicit representation can be useful for applica-

tions. In economic models agents need to pick the best action from a set of options,

11We provide a proof in Appendix C.
12Appendix C.1 provides further results and a discussion.
13This is a special case of Chew (1985)’s model of semi-implicit weighted utility, where [w, b] is set

to be equal to [0, 1].

9



which is often assumed to be convex and compact. As we pointed out in the Introduc-

tion, however, differential methods cannot be used to solve these optimization problems

when preferences belong to the DA class, as these are not Gateaux differentiable. We

will now show how our explicit representation results might facilitate solving this class

of problems.

Consider a Betweenness preference  that satisfies Negative Certainty Indepen-

dence — for DA preferences, this amounts to assuming β ≥ 0. By Theorem 4,  is

represented by

V (p) = min
v∈Wbet

c (p, v) ∀p ∈ ∆ (12)

where Wbet = {k (·, t)}t∈(0,1). We further assume:

α) k (·, t) is strictly increasing and continuous on [w, b] for all t ∈ [0, 1]; and

β) k is jointly continuous on [w, b]× [0, 1].

Note that both assumptions are satisfied by DA preferences as well as the prefer-

ences in Example 1.

Proposition 4 Let  be a Betweenness preference that satisfies Negative Certainty

Independence and such that k satisfies α and β. If A is a convex and compact subset

of ∆, then

max
p∈A

min
v∈co(Wbet)

c (p, v) = min
v∈co(Wbet)

max
p∈A

c (p, v) .

In particular, if p̄ ∈ A is such that V (p̄) ≥ V (p) for all p ∈ A, then there exists

v̂ ∈ co (Wbet) such that Ep̄ (v̂) ≥ Ep (v̂) for all p ∈ A.

The result above says that any alternative that maximizes the original preference

in A is also a maximizer of an expected utility preference with Bernoulli utility v̂.

The function v̂ is a “convex linear combination” of the utilities in Wbet which are

used to represent . The conceptual importance of Proposition 4 can be illustrated

assuming that  is risk averse (i.e., k (·, t) is concave for all t ∈ (0, 1)). Assume that

for the optimization problem at hand (say, a portfolio problem), it is known that under

Expected Utility risk aversion leads to certain qualitative properties of the maximizers

(like preference for diversification). If each function k (·, t) is concave, then v̂ is concave.

This, paired with Proposition 4, implies that the same qualitative properties are shared

by the maximizers of the Betweenness preference .
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Appendix

A The Expected Utility Core

We start by defining the expected utility core of , i.e., the subrelation ′ defined as:14

p ′ q ⇐⇒ λp+ (1− λ) r  λq + (1− λ) r ∀λ ∈ (0, 1] , ∀r ∈ ∆.

This notion is useful for two reasons. First, as Remark 2 below shows, in order to find

a canonical representation of a Cautious Expected Utility preference, it is sufficient

to find an expected multi-utility representation of ′. This is instrumental in proving

Theorem 4 (cf. Proposition 9). Second, as shown by Cerreia-Vioglio et al. (2017), in

general ′ summarizes the risk attitudes of the decision maker irrespective of whether

or not  satisfies Negative Certainty Independence. In particular,  is averse to Mean

Preserving Spreads if and only if ′ is, which is equivalent to have all the utilities

representing the latter being concave. Similar considerations hold for prudence, a fact

we will exploit while proving Proposition 1.

Remark 2 In addition to what is stated in Theorem 2, it can also be shown that the

following are true:

1. There exists a set W ⊆ Unor such that

p ′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ W (13)

and V : ∆ → R defined as in Equation (6) is a continuous utility representation

of .

2. If W ⊆ Unor satisfies (13), then it satisfies (6).

3. The set W ⊆ Unor can be chosen to be

Wmax− nor = {v ∈ Unor : p ′ q =⇒ Ep (v) ≥ Eq (v)} .

4. If W ⊆ Unor satisfies (13), then

W ⊆ Wmax− nor as well as co (W) = cl (Wmax− nor) .

▽

We call a set W that satisfies (6) and (13) a canonical representation.

14Under Axioms A 1-2, one can show that ′ satisfies all the assumptions of expected utility with

possibly the exception of completeness; and that it is the largest subrelation of  satisfying these

properties. See Cerreia-Vioglio (2009); Cerreia-Vioglio et al. (2015, 2017).
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B Compactness and Risk Aversion

In studying the intersection of Betweenness preferences and the Cautious Expected

Utility model, an important role is played by the latter admitting a compact repre-

sentation. In this appendix, we show that this feature is behaviorally related to two

properties: Strict First Order Stochastic Dominance and a notion of risk aversion.

We start by introducing a notion of comparative risk aversion which is much weaker

than, but in line with, the one used by Machina (1982) and which rests on the idea

of Simple Compensated Spread (SCS). Given two lotteries p, q ∈ ∆, the idea of SCS

involves two elements: a) a notion of “being more dispersed” and b) a notion of having

“the same value”. The former is objective, while the latter is subjective. More precisely,

given r ∈ ∆, denote by Fr : [w, b] → R the cumulative distribution function

Fr (x) = r ([w, x]) ∀x ∈ [w, b] .

Given a binary relation , q is a SCS of p for  if and only if

a) there exists z ∈ [w, b] such that


Fp (x) ≤ Fq (x) ∀x ∈ [w, z)

Fp (x) ≥ Fq (x) ∀x ∈ [z, b]
. (14)

b) p ∼ q.

One of the reasons why Machina (1982) introduced the notion of Simple Compen-

sated Spread is to define a notion of comparative risk aversion for non-expected utility

models. Machina’s definition of comparative risk aversion indeed reads as follows: 1

is more risk averse than 2 if and only if whenever q is a SCS of p for 2, then p 1 q.

Intuitively, if q is more dispersed than p, that is, it is riskier, but it is still good enough

to compensate decision maker 2, then it is weakly less good for the more risk averse

decision maker 1.

In what follows, we restrict ourselves to a particular class of SCSs and to a particular

class of decision makers 2.

Definition 1 Let p, q ∈ ∆0 and u ∈ Unor. We say that q is an Extreme Simple Com-

pensated Spread of p if and only if there exist x̄ ∈ (w, b) and γ ∈ (0, 1) such that:

1. p (x) = q (x) for all x ∈ (w, b) / {x̄};

2. q (b)−p (b) = γ (p (x̄)− q (x̄)) ≥ 0 and q (w)−p (w) = (1− γ) (p (x̄)− q (x̄)) ≥ 0;

3. c (p, u) = c (q, u).

12



Assume q is an Extreme Simple Compensated Spread of p. Intuitively, conditions

1 and 2 capture the idea of q “being more dispersed” than p, since probability mass is

shifted from an interior point x̄ to the extrema w and b. Condition 3 instead captures

the idea that p and q “have the same value”. Indeed, p and q must have the same

quasi-arithmetic mean with respect to u.

It is easy to verify that given p, q ∈ ∆0 and u ∈ Unor, if q is an Extreme Simple

Compensated Spread of p, then q is a SCS of p for the expected utility binary relation

2 induced by u.15

Remark 3 Given p, q ∈ ∆0, if q is an Extreme Simple Compensated Spread of p, we

will denote it by p ESCS q. Note that this latter notation is incomplete, since it does

not refer to u explicitly. Nevertheless, in what follows, it will always be clear from the

context what is u. ▽

Definition 2 Let  be a binary relation on ∆. We say that  is not infinitely risk

loving if and only if there exists u ∈ Unor such that

p ESCS q =⇒ p  q. (15)

Alternatively, we say that  satisfies NIRL.

In light of Machina’s notion of comparative risk attitudes,  satisfies NIRL if and

only if it is more risk averse than some expected utility decision maker, where, in

our case, aversion to Simple Compensated Spreads is imposed on the much smaller

class of extreme spreads. We proceed by characterizing the NIRL property within

the class of Cautious Expected Utility preferences. Before doing so, we introduce a

property, Sensitivity, which will help our analysis and, given all the other assumptions,

is equivalent to NIRL.

A 6 (Sensitivity) The binary relation  is such that:

1. For each λ ∈ (0, 1) there exists x ∈ (w, b) such that

δx ′ λδb + (1− λ) δw.

2. For each x ∈ (w, b) there exists λ ∈ (0, 1) such that

δx ′ λδb + (1− λ) δw.

The next proposition elaborates on the relation between NIRL and Sensitivity.

15Let z in (14) be x̄ of Definition 1.
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Proposition 5 Let  be a Cautious Expected Utility preference and W ⊆ Unor satisfy

(13). If  satisfies NIRL, then the following statements are true:

(a) There exists u ∈ Unor such that for each p, q ∈ ∆0

p ESCS q =⇒ p ′ q.

(b)  satisfies Sensitivity.

Proof. Since  satisfies NIRL, there exists u ∈ Unor such that for each p, q ∈ ∆0

p ESCS q =⇒ p  q. (16)

In the rest of the proof, u will be fixed.

(a). Consider p, q ∈ ∆0. It follows that

p ESCS q =⇒ λp+ (1− λ) r ESCS λq + (1− λ) r ∀λ ∈ (0, 1] , ∀r ∈ ∆0

=⇒ λp+ (1− λ) r  λq + (1− λ) r ∀λ ∈ (0, 1] , ∀r ∈ ∆0

=⇒ λp+ (1− λ) r  λq + (1− λ) r ∀λ ∈ (0, 1] , ∀r ∈ ∆ =⇒ p ′ q.

The first implication follows from the definition of ESCS. The second implication

follows from (16). The third implication follows from the density of ∆0 in ∆ and since

 satisfies Continuity. The last implication follows from the definition of ′.

(b). Consider λ ∈ (0, 1). Define x ∈ [w, b] to be such that u (x) = Eλδb+(1−λ)δw (u).

Since u ∈ Unor, note that x ∈ (w, b). It is immediate to check that δx ESCS λδb +

(1− λ) δw. By point (a), it follows that δx ′ λδb + (1− λ) δw. Viceversa, consider

x ∈ (w, b). Let λ ∈ [0, 1] be such that u (x) = Eλδb+(1−λ)δw (u). Since u ∈ Unor, note

that λ ∈ (0, 1). It is immediate to check that δx ESCS λδb + (1− λ) δw. By point (a),

it follows that δx ′ λδb + (1− λ) δw. 
The next result characterizes NIRL for Cautious Expected Utility preferences.

Proposition 6 Let  be a Cautious Expected Utility preference and W ⊆ Unor satisfy

(6) and (13). The following statements are equivalent:

(i)  satisfies NIRL;

(ii) There exists u ∈ Unor for each v ∈ W such that there exists fv : [0, 1] → [0, 1]

where v = fv ◦ u and fv (γ) ≥ γ for all γ ∈ [0, 1];

(iii) There exists u ∈ Unor such that v ≥ u for all v ∈ W.
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Proof. (i) implies (ii). Since  satisfies NIRL, there exists u ∈ Unor such that for each

p, q ∈ ∆0

p ESCS q =⇒ p  q.

Since each v ∈ W is strictly increasing and continuous and so is u, for each v ∈ W
there exists fv : [0, 1] → R which is strictly increasing, continuous, and such that

v = fv ◦ u. Since u and v are normalized, fv (0) = 0 = fv (1)− 1 for all v ∈ W . Next,

consider γ ∈ (0, 1) and define q = γδb + (1− γ) δw. Define x ∈ [w, b] to be such that

u (x) = Eq (u). Since u ∈ Unor, note that x ∈ (w, b). It is immediate to check that

δx ESCS q. By the proof of point (a) of Proposition 5 and since W represents ′, it

follows that δx ′ q, that is, for each v ∈ W

fv (γ) = fv (Eq (u)) = fv (u (x)) = v (x) = Eδx (v) ≥ Eq (v) = γ.

Since γ was arbitrarily chosen, the implication follows.

(ii) implies (iii). Since u ∈ Unor, for each x ∈ [w, b] we have that u (x) ∈ [0, 1].

Thus, we can conclude that

v (x) = fv (u (x)) ≥ u (x) ∀x ∈ [w, b] , ∀v ∈ W ,

proving the implication.

(iii) implies (i). Consider p, q ∈ ∆0 and assume that p ESCS q with respect to u.

If p (x̄) = q (x̄), where x̄ is like in Definition 1, then p = q and p  q. Assume then

that p (x̄) > q (x̄). Consider v ∈ Unor. Since p and q are in ∆0, it follows that

Ep (v) =


x∈[w,b]

v (x) p (x) and Eq (v) =


x∈[w,b]

v (x) q (x) .

This implies that

Ep (v)− Eq (v) = (p (b)− q (b)) v (b) + (p (w)− q (w)) v (w) + (p (x̄)− q (x̄)) v (x̄)

= (p (b)− q (b)) v (b) + (p (x̄)− q (x̄)) v (x̄) .

Since p ESCS q and v was arbitrarily chosen in Unor, we can conclude that

Ep (v)− Eq (v) = −γ (p (x̄)− q (x̄)) v (b) + (p (x̄)− q (x̄)) v (x̄)

= (−γv (b) + v (x̄)) (p (x̄)− q (x̄))

= (−γ + v (x̄)) (p (x̄)− q (x̄)) ∀v ∈ Unor

where γ ∈ (0, 1) is like in Definition 1. Since u ∈ Unor, we have that

Ep (u)− Eq (u) = (−γ + u (x̄)) (p (x̄)− q (x̄)) .
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Since Ep (u) = Eq (u) and p (x̄) > q (x̄), this implies that −γ + u (x̄) = 0. Since v ≥ u

for all v ∈ W , this implies that −γ + v (x̄) ≥ −γ + u (x̄) = 0 for all v ∈ W . In turn,

this yields that 0 ≤ (−γ + v (x̄)) (p (x̄)− q (x̄)) = Ep (v)−Eq (v) for all v ∈ W . We can

conclude that c (p, v) ≥ c (q, v) for all v ∈ W , yielding that p  q and proving NIRL.

Remark 4 Note that (iii) implies (i) holds also if W only satisfies (6). ▽

The next corollary shows that if  is risk averse, that is averse to Mean Preserving

Spreads, then  is not infinitely risk loving according to Definition 2.

Corollary 1 Let  be a Cautious Expected Utility preference. If  is risk averse, then

 satisfies NIRL.

Proof. Since  is a Cautious Expected Utility preference, consider a set W that

satisfies (6) and (13). By (Cerreia-Vioglio et al., 2015, Theorem 3), if  is risk averse,

then W is such that each v ∈ W is concave. Consider u ∈ Unor to be such that

u (x) = x−w
b−w

for all x ∈ [w, b]. Since each v ∈ W is concave and normalized, it is

immediate to see that v ≥ u. By Proposition 6, the statement follows. 

In order to characterize the compactness of the set W , we are going to need the

following two ancillary results. Lemma 1 is routine we report a proof for ease of

reference.

Lemma 1 Let W be a subset of Unor. The following statements are equivalent:

(i) W is sequentially compact with respect to the pointwise convergence topology;

(ii) W is norm compact.

Proof. (ii) implies (i). It is trivial.

(i) implies (ii). Consider {vn}n∈N ⊆ W . Observe that, by construction, {vn}n∈N
is uniformly bounded. By assumption, there exists {vnk

}k∈N ⊆ {vn}n∈N and v ∈ W
such that vnk

(x) → v (x) for all x ∈ [w, b]. By (Aliprantis and Burkinshaw, 1998, p.

79) and since v is a continuous function and each vnk
is increasing, it follows that this

convergence is uniform, proving the statement. 

Theorem 5 Let  be a Cautious Expected Utility preference and let V : ∆ → R be a

continuous utility representation of  such that

V (p) = inf
v∈W

c (p, v) ∀p ∈ ∆

where W = Wmax− nor. If  satisfies Sensitivity, then W is sequentially compact with

respect to the topology of pointwise convergence.
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Proof. Since  satisfies Strict First Order Stochastic Dominance, it follows that

V strictly preserves first order stochastic dominance. We next prove a few ancillary

claims.

Claim 1: For each ε > 0 there exists δ ∈ (0, b− w) such that for each v ∈ W

v (w + δ) < ε. (17)

Proof of the Claim. By contradiction, assume that there exists ε̄ > 0 such that for

each δ ∈ (0, b− w) there exists vδ ∈ W such that vδ (w + δ) ≥ ε̄. In particular, for

each k ∈ N such that 1
k
< b− w there exists vk ∈ W such that vk


w + 1

k


≥ ε̄. Define

λk ∈ [0, 1] for each k > 1
b−w

to be such that

λk = vk


w +

1

k


≥ ε̄ > 0. (18)

Define pk = λkδb + (1− λk) δw for all k > 1
b−w

. Without loss of generality, we can

assume that λk → λ. Note that λ ≥ ε̄. Define p = λδb + (1− λ) δw. It is immediate to

verify that pk → p and p ≻FSD δw. Since Epk (vk) = λk and by (18) and by definition

of V , it follows that

w ≤ V (pk) ≤ v−1
k (Epk (vk)) = w +

1

k
∀k >

1

b− w
.

Since V is continuous and by passing to the limit, we have that V (p) = w = V (δw), a

contradiction with V strictly preserving first order stochastic dominance. □
Claim 2: For each x ∈ (w, b) and for each ε > 0 there exists δ ∈ (0,min {x− w, b− x})
such that for each v ∈ W

v (x+ δ)− v (x− δ) < ε. (19)

Proof of the Claim. By contradiction, assume that there exist x̄ ∈ (w, b) and ε̄ > 0 such

that for each δ ∈ (0,min {x̄− w, b− x̄}) there exists vδ ∈ W such that vδ (x̄+ δ) −
vδ (x̄− δ) ≥ ε̄. In particular, for each k ∈ N such that 1

k
< min {x̄− w, b− x̄} there

exists vk ∈ W such that vk

x̄+ 1

k


− vk


x̄− 1

k


≥ ε̄. Define λk ∈ [0, 1] for each

k > 1
min{x̄−w,b−x̄} to be such that

λk = vk


x̄+

1

k


− vk


x̄− 1

k


≥ ε̄ > 0. (20)

Define pk = λkδb+(1− λk) δx̄− 1
k
for all k > 1

min{x̄−w,b−x̄} . Without loss of generality, we

can assume that λk → λ. Note that λ ≥ ε̄. Define p = λδb+(1− λ) δx̄. It is immediate
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to verify that pk → p and p ≻FSD δx̄. By (20), it follows that for each k > 1
min{x̄−w,b−x̄}

Epk (vk) = λkvk (b) + (1− λk) vk


x̄− 1

k



= vk


x̄+

1

k


− vk


x̄− 1

k


+ (1− λk) vk


x̄− 1

k



= vk


x̄+

1

k


− λkvk


x̄− 1

k


≤ vk


x̄+

1

k


.

By definition of V and since V (strictly) preserves first order stochastic dominance,

this implies that

x̄− 1

k
≤ V (pk) ≤ v−1

k (Epk (vk)) ≤ x̄+
1

k
∀k >

1

min {x̄− w, b− x̄} .

Since V is continuous and by passing to the limit, we have that V (p) = x̄ = V (δx̄), a

contradiction with V strictly preserving first order stochastic dominance. □
Claim 3: For each ε ∈ (0, 1) there exists δ ∈ (0, b− w) such that for each v ∈ W

1− v (b− δ) ≤ ε. (21)

Proof of the Claim. Given ε ∈ (0, 1), define λε ∈ (0, 1) by λε = 1− ε. Since  satisfies

Sensitivity, we have that there exists x ∈ (w, b) such that δx ′ λεδb + (1− λε) δw.

Define δ = b − x. Note that δ ∈ (0, b− w). Since W = Wmax− nor represents ′, this

implies that

v (b− δ) = v (x) ≥ λεv (b) + (1− λε) v (w) = λε ∀v ∈ Wmax− nor = W ,

proving the statement. □
Claim 4: For each x ∈ (w, b) we have infv∈W v (x) > 0.

Proof of the Claim. Since  satisfies Sensitivity, we have that for each x ∈ (w, b) there

exists λ ∈ (0, 1) such that δx ′ λδb + (1− λ) δw. Since W = Wmax− nor represents ′,

this implies that

v (x) ≥ λv (b) + (1− λ) v (w) = λ ∀v ∈ Wmax− nor = W ,

yielding that infv∈W v (x) ≥ λ > 0. □
Consider {vn}n∈N ⊆ W ⊆ Unor. By Helly’s Theorem (see, e.g., (Carothers, 2000,

Lemma 13.15)), there exists {vnk
}k∈N ⊆ {vn}n∈N and v̄ ∈ R[w,b] such that vnk

(x) →
v̄ (x) for all x ∈ [w, b] and v̄ is increasing. It is immediate to see that v̄ is such that

v̄ (w) = 0 = v̄ (b)− 1. We are left to show that v̄ ∈ Wmax− nor, that is, v̄ is continuous,

strictly increasing, and such that p ′ q implies Ep (v̄) ≥ Eq (v̄). By Claims 1, 2, and 3,
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it follows that v̄ satisfies (17), (19), and (21) with weak inequalities. This implies that

v̄ is continuous at each point of [w, b]. We next show that v̄ is strictly increasing. We

argue by contradiction. Assume that v̄ is not strictly increasing. Since v̄ is increasing,

there exist x, y ∈ [w, b] such that y > x and v̄ (y) = v̄ (x). By Claim 4 and since

y > x ≥ w, we have that v̄ (y) , vnk
(y) ≥ infv∈W v (y) > 0 for all k ∈ N. Define

{λk}k∈N ⊆ [0, 1] by

λk =
vnk

(x)

vnk
(y)

∀k ∈ N.

Define also pk = λkδy + (1− λk) δw for all k ∈ N. Since limk λk = v̄(x)
v̄(y)

= 1, it is

immediate to see that pk → δy and that

Epk (vnk
) = λkvnk

(y) + (1− λk) vnk
(w) = vnk

(x) ∀k ∈ N.

Thus, we also have that

V (pk) ≤ v−1
nk

(Epk (vnk
)) ≤ x ∀k ∈ N.

Since V is continuous and by passing to the limit, we obtain that x < y = V (δy) =

limk V (pk) ≤ x, a contradiction. Finally, assume that p ′ q. Since {vnk
}k∈N ⊆ W ,

it follows that Ep (vnk
) ≥ Eq (vnk

) for all k ∈ N. By the Lebesgue Dominated Conver-

gence Theorem and since {vnk
}k∈N is a uniformly bounded sequence which converges

pointwise to v̄, it follows that Ep (v̄) ≥ Eq (v̄), proving that v̄ ∈ Wmax− nor. 

We are ready to characterize the compactness of the representing set W . In a

nutshell, the next result shows that the class of Cautious Expected Utility preferences

that admit a compact representation is the subset that further satisfies NIRL.

Theorem 6 Let  be a binary relation on ∆. The following statements are equivalent:

(i)  satisfies Weak Order, Continuity, Strict First Order Stochastic Dominance,

Negative Certainty Independence, and NIRL;

(ii) There exists a compact set W in Unor such that

p  q ⇐⇒ min
v∈W

c (p, v) ≥ min
v∈W

c (q, v) .

In particular, W can be chosen to be Wmax− nor and the latter is compact.

Proof. Before starting, we add an intermediate point:

(iii)  satisfies Weak Order, Continuity, Strict First Order Stochastic Dominance,

Negative Certainty Independence, and Sensitivity.

(i) implies (iii). It follows from point (b) of Proposition 5.
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(iii) implies (ii). By Theorem 2 and Remark 2, we have that the setWmax− nor ⊆ Unor

is such that the function V : ∆ → R, defined by

V (p) = inf
v∈Wmax− nor

c (p, v) ∀p ∈ ∆, (22)

is a continuous utility representation of . By Theorem 5 and since  satisfies Sensi-

tivity, it follows that Wmax− nor is sequentially compact with respect to the topology of

pointwise convergence. By Lemma 1, this implies that Wmax− nor is also compact with

respect to the topology induced by the supnorm. We can conclude that the inf in (22)

is attained and so the statement follows.

(ii) implies (i). Consider V : ∆ → R defined by

V (p) = min
v∈W

c (p, v) ∀p ∈ ∆.

By hypothesis, V is well defined and it represents . Since W is compact, we have

that V is continuous. By (Cerreia-Vioglio et al., 2015, Theorem 1), this implies that 
satisfies Weak Order, Continuity, and Negative Certainty Independence. Next, consider

p, q ∈ ∆ such that p ≻FSD q. Consider also v ∈ W such that V (p) = c (p, v). Since v

is strictly increasing, we have that V (p) = v−1 (Ep (v)) > v−1 (Eq (v)) ≥ V (q), proving

that  satisfies Strict First Order Stochastic Dominance. We are left to show that 
satisfies NIRL. Define u : [w, b] → [0, 1] by u (x) = minv∈W v (x). Since W is compact,

it is immediate to verify that u ∈ Unor. By Proposition 6 and Remark 4,  satisfies

NIRL. 

C Betweenness

Proof of Theorem 1. Compared to (Dekel, 1986, Proposition 2), we only need to

prove that the following form of Betweenness holds

p  q =⇒ p  λp+ (1− λ) q  q ∀λ ∈ (0, 1)

and

p ≻ q =⇒ p ≻ λp+ (1− λ) q ≻ q ∀λ ∈ (0, 1) .

The proof of the first implication is routine.16 As for the second, suppose p ≻ q.

By the first implication, we have that p  λp + (1− λ) q  q for all λ ∈ (0, 1). By

contradiction, assume that there exists λ̄ ∈ (0, 1) such that p ∼ λ̄p +

1− λ̄


q. We

have two cases:

16For example, it can be proved by using the techniques of (Cerreia-Vioglio et al., 2011, Lemma

56).
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1. p = δb. Since p ≻ q, we have that δb = p ∕= q, yielding that p ≻FSD λ̄p+

1− λ̄


q.

Since  satisfies Strict First Order Stochastic Dominance, we can conclude that

p ≻ λ̄p+

1− λ̄


q, a contradiction.

2. p ∕= δb. Since  satisfies Betweenness, we have that

1 ≥ λ ≥ λ̄ ⇒ λp+ (1− λ) q ∼ p. (23)

Since  satisfies Strict First Order Stochastic Dominance, we have that γp +

(1− γ) δb ≻ p for all γ ∈ (0, 1). By (23) and since  satisfies Strict First Order

Stochastic Dominance, we also have that

1 ≥ λ ≥ λ̄ =⇒ λ (γp+ (1− γ) δb) + (1− λ) q ≻ p ∀γ ∈ (0, 1) .

Next, we are going to define an ancillary object rη,γ = η (γp+ (1− γ)δb)+(1−η)q

for all η, γ ∈ (0, 1). Note that for each η, γ ∈ (0, 1) and for each λ ∈

λ̄, 1


⊆

(0, 1), we have that

λp+ (1− λ) rη,γ =

= λp+ (1− λ) [η (γp+ (1− γ)δb) + (1− η) q]

= (λ+ (1− λ) ηγ) p

+ (1− λ− (1− λ) ηγ)


(1− λ) η (1− γ)

(1− λ− (1− λ) ηγ)
δb +

(1− λ) (1− η)

(1− λ− (1− λ) ηγ)
q


.

Since γp+(1− γ)δb ≻ p ≻ q for all γ ∈ (0, 1) and  satisfies Continuity, for each

γ ∈ (0, 1) there exists η̄γ ∈ (0, 1) such that rη̄γ ,γ = η̄γ (γp+ (1− γ)δb)+(1−η̄γ)q ∼
p. Since  satisfies Betweenness, λp+ (1− λ) rη̄γ ,γ ∼ p for all λ ∈


λ̄, 1


and for

all γ ∈ (0, 1). Fix a generic γ ∈ (0, 1). Choose λ ∈

λ̄, 1


close enough to 1, so

that λ̂ = λ+ (1− λ) η̄γγ ∈

λ̄, 1


. Note that

r̂
def
=

(1− λ) η̄γ (1− γ)

(1− λ− (1− λ) η̄γγ)
δb +

(1− λ) (1− η̄γ)

(1− λ− (1− λ) η̄γγ)
q ≻FSD q.

By the characterization of λp+ (1− λ) rη̄γ ,γ, we can also conclude that

(λ+ (1− λ) η̄γγ) p+ (1− λ− (1− λ) η̄γγ) r̂ ∼ p. (24)

By (23) and (24), we can conclude that λ̂ ∈

λ̄, 1


,

λ̂p+

1− λ̂


r̂ ∼ p ∼ λ̂p+


1− λ̂


q and λ̂p+


1− λ̂


r̂ ≻FSD λ̂p+


1− λ̂


q.

Since  satisfies Strict First Order Stochastic Dominance, it follows that λ̂p +
1− λ̂


r̂ ≻ λ̂p +


1− λ̂


q, a contradiction. A similar proof yields that λp +

(1− λ) q ≻ q for all λ ∈ (0, 1). 

21



We next prove a few results pertaining to the expected utility core of a Betweenness

preference. We start with a definition and an observation. Define K : ∆ × [0, 1] → R
by

K (r, t) =



[w,b]

k (x, t) dr ∀r ∈ ∆, ∀t ∈ [0, 1] .

It is immediate to see that K is affine wrt the first component. Note that for each

r ∈ ∆ and for each t ∈ [0, 1]

K

r, V̂ (r)


=



[w,b]

k

x, V̂ (r)


dr = V̂ (r) = V̂ (r) k (b, t) +


1− V̂ (r)


k (w, t)

=



[w,b]

k (x, t) d

V̂ (r) δb +


1− V̂ (r)


δw



= K

V̂ (r) δb +


1− V̂ (r)


δw, t


.

Finally, we have that for each p ∈ ∆ the number V̂ (p) ∈ [0, 1] is the unique number

such that

V̂ (p) = K

p, V̂ (p)


.

Proposition 7 Let  be a Betweenness preference. If K (p, t) ≥ K (q, t) for all t ∈
(0, 1), then p  q.

Proof. Consider p, q ∈ ∆. By contradiction, assume that K (p, t) ≥ K (q, t) for all

t ∈ (0, 1) and q ≻ p. We have two cases: either q = δb or q ∕= δb. In the first case, note

that 1 ≥ K (p, t) ≥ K (q, t) = 1 for all t ∈ (0, 1), that is, K (p, t) = 1 for all t ∈ (0, 1).

Since each k (·, t) is strictly increasing and normalized, we have that p = δb = q, a

contradiction with q ≻ p. In the second case, we have that V̂ (q) ∈ (0, 1). On the one

hand, since  admits a representation a la Dekel, note that

V̂ (q) = K

q, V̂ (q)


≤ K


p, V̂ (q)


. (25)

On the other hand, by working hypothesis, we have q ≻ p which implies that V̂ (q) >

V̂ (p). It follows that

V̂ (q) > V̂ (p) = K

V̂ (p) δb +


1− V̂ (p)


δw, V̂ (q)



= K

V̂ (p) δb +


1− V̂ (p)


δw, V̂ (p)


= V̂ (p) = K


p, V̂ (p)


.

In particular, we have that

K

V̂ (p) δb +


1− V̂ (p)


δw, V̂ (p)


= V̂ (p) = K


p, V̂ (p)


(26)

and
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V̂ (q) > K

V̂ (p) δb +


1− V̂ (p)


δw, V̂ (q)


. (27)

Define r = V̂ (p) δb +

1− V̂ (p)


δw. By (25) and (27) and since K is affine wrt the

first component, it follows that there exists λ ∈ (0, 1] such that

K

λp+ (1− λ) r, V̂ (q)


= V̂ (q) ,

proving that λp + (1− λ) r ∼ q. By (26) and since  is a Betweenness preference,

we have that r ∼ p, which yields that p ∼ λp + (1− λ) r ∼ r. We can conclude that

q ≻ p ∼ λp+ (1− λ) r ∼ q, a contradiction. 

Proposition 8 Let  be a Betweenness preference. If p ′ q, then K (p, t) ≥ K (q, t)

for all t ∈ (0, 1).

Proof. Consider p, q ∈ ∆. By contradiction, assume that p ′ q and that there exists

t̄ ∈ (0, 1) such that K (p, t̄) < K (q, t̄). Then, there exist λ ∈ (0, 1] and y ∈ [w, b] such

that V̂ (λp+ (1− λ) δy) = t̄.17 It follows that

t̄ = K (λp+ (1− λ) δy, t̄) = λK (p, t̄) + (1− λ)K (δy, t̄)

< λK (q, t̄) + (1− λ)K (δy, t̄) = K (λq + (1− λ) δy, t̄) .

Define r1 = λp + (1− λ) δy and r2 = λq + (1− λ) δy so that t̄ = V̂ (r1). In particular,

we have that

V̂ (r1) < K

r2, V̂ (r1)


. (28)

Since p ′ q and ′ satisfies Independence, it follows that r1 ′ r2. Since ′ is a

subrelation of , this implies that r1  r2, that is, V̂ (r1) ≥ V̂ (r2). Define r3 =

V̂ (r2) δb +

1− V̂ (r2)


δw. On the one hand, it is immediate to see that r2 ∼ r3. On

the other hand, by (28), we have that

K

r3, V̂ (r1)


= V̂ (r2) ≤ V̂ (r1) < K


r2, V̂ (r1)


.

Since K is affine wrt the first component, there exists γ ∈ [0, 1) such that

K

γr2 + (1− γ) r3, V̂ (r1)


= V̂ (r1) ,

yielding that γr2 + (1− γ) r3 ∼ r1. Since  satisfies Betweenness and r2 ∼ r3, this

yields that

r2 ∼ γr2 + (1− γ) r3 ∼ r1.

We can then conclude that V̂ (r2) = V̂ (r1), that is, V̂ (r1) = V̂ (r2) = K

r2, V̂ (r2)


=

K

r2, V̂ (r1)


, a contradiction with (28). 

17If V̂ (p) ≥ t̄ > 0 = V̂ (δw), then y = w and if V̂ (p) < t̄ < 1 = V̂ (δb), then y = b. The existence of

λ is then granted by the continuity of V̂ .
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Proposition 9 If  is a Betweenness preference, then

p ′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Wbet.

Moreover, the set Wbet is either a singleton or infinite.

Proof. Define ′′ by

p ′′ q ⇐⇒ Ep (v) ≥ Eq (v) ∀v ∈ Wbet.

By Proposition 8, we have that if p ′ q, then K (p, t) ≥ K (q, t) for all t ∈ (0, 1), that

is, p ′′ q. By Proposition 7, if p ′′ q, that is K (p, t) ≥ K (q, t) for all t ∈ (0, 1), then

p  q. By (Cerreia-Vioglio et al., 2017, Lemma 1 and Footnote 10), we can conclude

that p ′′ q implies p ′ q, proving that ′′ coincides with ′. Finally, assume that

Wbet is not a singleton. It follows that there exist t1, t2 ∈ (0, 1) and x̄ ∈ (w, b) such that

k (x̄, t1) ∕= k (x̄, t2). Wlog, assume that k (x̄, t1) < k (x̄, t2). By contradiction, assume

that |Wbet| ∈ N. By the intermediate value theorem and since k (x̄, ·) is continuous on
(0, 1), it follows that

{k (x̄, t)}t∈(0,1) ⊇ [k (x̄, t1) , k (x̄, t2)] .

Since k (x̄, t1) < k (x̄, t2), it follows that
{k (x̄, t)}t∈(0,1)

 = ∞, a contradiction with
{k (x̄, t)}t∈(0,1)

 ≤ |Wbet| ∈ N. 

We now prove Theorem 4 and Proposition 2.

Proof of Theorem 4. (ii) implies (i). By (Cerreia-Vioglio et al., 2015, Theorem 1),

the statement trivially follows.

(i) implies (ii). Since  is a Betweenness preference, it satisfies Weak Order, Con-

tinuity, and Strict First Order Stochastic Dominance. By Theorem 2 and Remark 2,

and since Wbet = {k (·, t)}t∈(0,1) represents ′, it follows that W in (6) can be chosen

to be Wbet. This yields (6) and, in particular, (9) with inf in place of min. Note that

for each v ∈ Wbet we have that V (δw) = w = c (δw, v) and V (δb) = b = c (δb, v). Thus

the inf is attained for δw and δb. The proof below yields that the inf is attained at

each p ∈ ∆, proving (9).

We next prove (10). Consider p ∈ ∆\ {δw, δb}. Since  satisfies Strict First Order

Stochastic Dominance, we have that V̂ (p) ∈ (0, 1) and it is the unique number in [0, 1]

such that 

[w,b]

k

x, V̂ (p)


dp = V̂ (p) . (29)

Define vp = k

·, V̂ (p)


∈ Wbet. Define x̄ ∈ [w, b] to be such that x̄ = c (p, vp). Note

that

vp (x̄) = vp (c (p, vp)) = vp


v−1
p



[w,b]

k

x, V̂ (p)


dp


=



[w,b]

k

x, V̂ (p)


dp.
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By (29), it follows that



[w,b]

k

x, V̂ (p)


dδx̄ = vp (x̄) = V̂ (p) .

Since  is a Betweenness preference, we have that V̂ (δx̄) = V̂ (p), that is, δx̄ ∼ p and

so x̄ = xp. This yields that

V (p) = xp = x̄ = c (p, vp) ,

proving that the inf is attained at vp. 

Proof of Proposition 2. Before starting, define V : ∆ → R by

V (p) = inf
v∈Wbet

c (p, v) ∀p ∈ ∆.

Define vt = k (·, t) for all t ∈ [0, 1]. Recall that ∆0 is the subset of all simple lotteries,

that is, ∆0 = co

{δx}x∈[w,b]


.

Claim: If s, t ∈ (0, 1) and fs,t is convex at t, then for each p ∈ ∆0

Ep (vt) = t =⇒ c (p, vt) ≤ c (p, vs) .

Proof of the Claim. Let p ∈ ∆0 and Ep (vt) = t. If p = δx, then the statement is trivially

true, since c (p, vs) = x = c (p, vt). Otherwise, we have that there exist n ∈ N\ {1},
{xi}ni=1 ⊆ [w, b], and {λi}ni=1 ⊆ [0, 1] such that

n
i=1 λi = 1 and

n
i=1 λiδxi

= p.

Define ti = vt (xi) ∈ [0, 1] for all i ∈ {1, ..., n}. Since Ep (vt) = t, this implies that
n

i=1 λiti =
n

i=1 λivt (xi) = Ep (vt) = t. Since fs,t is convex at t, we have that

fs,t (Ep (vt)) = fs,t (t) ≤
n

i=1

λifs,t (ti) =
n

i=1

λifs,t (vt (xi)) =
n

i=1

λivs (xi) = Ep (vs) .

Since vs = fs,t ◦ vt, we have that fs,t = vs ◦ v−1
t . This implies that c (p, vt) ≤ c (p, vs).□

(i) implies (ii). Let p ∈ ∆\ {δw, δb}. Since  satisfies Strict First Order Stochastic

Dominance, we have that V̂ (p) ∈ (0, 1) and it is the unique number in [0, 1] such that



[w,b]

k

x, V̂ (p)


dp = V̂ (p) . (30)

Define t = V̂ (p) and consider vt. Let also s be an element of (0, 1) and consider vs as

well as fs,t. Since ∆0 is dense in ∆, we have that there exists a sequence {qn}n∈N ⊆ ∆0

such that qn → p. Since  satisfies Weak Order, we have that either {n ∈ N : qn  p}
is infinite or {n ∈ N : p  qn} is infinite or both. We have two cases:
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1. |{n ∈ N : qn  p}| = ∞. It follows that there exists a subsequence {qnk
}k∈N such

that qnk
→ p and qnk

 p for all k ∈ N. Since  satisfies Weak Order, Continuity,

and Strict First Order Stochastic Dominance, it follows that for each k ∈ N there

exists λnk
∈ [0, 1] such that pnk

= λnk
qnk

+ (1− λnk
) δw ∼ p. By (30) and since

qnk
→ p, we have that Eqnk

(vt) → Ep (vt) = t. By (30) and since pnk
∼ p, we

have that Epnk
(vt) = t for all k ∈ N. This implies that

0 = lim
k


Epnk

(vt)− Eqnk
(vt)


= lim

k
(1− λnk

)

vt (w)− Eqnk

(vt)


= (vt (w)− t) lim
k

(1− λnk
) ,

proving that λnk
→ 1, since vt (w)− t = 0− t ∕= 0. It follows that {pnk

}k∈N ⊆ ∆0,

pnk
∼ p for all k ∈ N, and pnk

→ p.

2. |{n ∈ N : p  qn}| = ∞. It follows that there exists a subsequence {qnk
}k∈N such

that qnk
→ p and p  qnk

for all k ∈ N. Since  satisfies Weak Order, Continuity,

and Strict First Order Stochastic Dominance, it follows that for each k ∈ N there

exists λnk
∈ [0, 1] such that pnk

= λnk
qnk

+ (1− λnk
) δb ∼ p. By (30) and since

qnk
→ p, we have that Eqnk

(vt) → Ep (vt) = t. By (30) and since pnk
∼ p, we

have that Epnk
(vt) = t for all k ∈ N. This implies that

0 = lim
k


Epnk

(vt)− Eqnk
(vt)


= lim

k
(1− λnk

)

vt (b)− Eqnk

(vt)


= (vt (b)− t) lim
k

(1− λnk
) ,

proving that λnk
→ 1, since vt (b)− t = 1− t ∕= 0. It follows that {pnk

}k∈N ⊆ ∆0,

pnk
∼ p for all k ∈ N, and pnk

→ p.

In both cases, it follows that there exists a sequence {pnk
}k∈N ⊆ ∆0 such that

pnk
∼ p for all k ∈ N and pnk

→ p. The condition pnk
∼ p yields that Epnk

(vt) = t for

all k ∈ N. By the previous claim and since {pnk
}k∈N ⊆ ∆0 and fs,t is convex at t, this

implies that c (pnk
, vt) ≤ c (pnk

, vs) for all k ∈ N. By passing to the limit and since

s ∈ (0, 1) was arbitrarily chosen, we obtain that

c (p, vt) ≤ c (p, vs) ∀s ∈ (0, 1) . (31)

We can conclude that

V (p) = min
s∈(0,1)

c (p, vs) = min
v∈Wbet

c (p, v) = c (p, vt) .

By using the same technique in the proof of (i) implies (ii) in Theorem 4, we have that

x̄ = c (p, vt) is such that p ∼ δx̄, that is, x̄ = xp. Since p ∈ ∆\ {δw, δb} was arbitrarily
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chosen, we have that V (p) = xp for all p ∈ ∆.18 This implies that V is a utility

representation of . Since  satisfies Continuity and V (δx) = x for all x ∈ [w, b], it

is immediate to see that V is continuous. By Theorem 4, this implies that  satisfies

Negative Certainty Independence.

(ii) implies (i). By Theorem 4, we have that V : ∆ → R, defined by

V (p) = min
v∈Wbet

c (p, v) = min
s∈(0,1)

c (p, vs) ∀p ∈ ∆,

is a continuous utility representation of . By contradiction, assume that there exist

t ∈ (0, 1) and s′ ∈ (0, 1) such that fs′,t is not convex at t. It follows that there exist n ∈
N\ {1}, {ti}ni=1 ⊆ [0, 1], and {λi}ni=1 ⊆ [0, 1] such that

n
i=1 λi = 1 and t =

n
i=1 λiti as

well as fs′,t (t) >
n

i=1 λifs′,t (ti). Consider {xi}ni=1 such that vt (xi) = ti. Define p ∈ ∆0

to be such that p =
n

i=1 λiδxi
. It follows that Ep (vt) =

n
i=1 λivt (xi) =

n
i=1 λiti = t.

Since  is a Betweenness preference, this implies that p ∼ δx̄ where x̄ = c (p, vt). In

particular, we have that xp = x̄. At the same time, we also have that

fs′,t (Ep (vt)) = fs′,t (t) >
n

i=1

λifs′,t (ti) =
n

i=1

λifs′,t (vt (xi)) =
n

i=1

λivs′ (xi) = Ep (vs′) .

Since fs′,t = vs′ ◦ v−1
t , we can conclude that

min
s∈(0,1)

c (p, vs) = V (p) = xp = c (p, vt) > c (p, vs′) ≥ min
s∈(0,1)

c (p, vs) ,

a contradiction. 

Proof of Remark 1. Denote fs,t simply by f . Let t ∈ (0, 1). Assume that f : [0, 1] →
[0, 1] is such that ∂f (t) ∕= ∅. By assumption, we have that there exists m ∈ R such

that

f (t′)− f (t) ≥ m (t′ − t) ∀t′ ∈ [0, 1] .

Define g : [0, 1] → R by g (t′) = mt′ + l for all t′ ∈ [0, 1] where l = f (t) − mt. Note

that

f (t) = g (t) and g (t′) ≤ f (t′) ∀t′ ∈ [0, 1] .

Next consider n ∈ N, {ti}ni=1 ⊆ [0, 1], and {λi}ni=1 ⊆ [0, 1] such that
n

i=1 λi = 1 and
n

i=1 λiti = t. It follows that

f (t) = g (t) = g


n

i=1

λiti


=

n

i=1

λig (ti) ≤
n

i=1

λif (ti) ,

proving convexity at t. 
18Clearly, V (δx) = x if either x = w or x = b.

27



Proof of Theorem 3. Before starting, we need to define few objects: α : Im u → R,
γ : Im u → R, g : [0, 1] → R, V̂ : ∆ → R and k : [w, b]× [0, 1] → R. We set

α (s) =
1

k̃ (b, s)− k̃ (w, s)
and γ (s) =

−k̃ (w, s)

k̃ (b, s)− k̃ (w, s)
∀s ∈ Im u.

We also set

g (λ) = Ṽ (λδb + (1− λ) δw) ∀λ ∈ [0, 1]

and, since g is strictly increasing, continuous, and Im g = Im u = Im Ṽ ,19

V̂ (p) = g−1

Ṽ (p)


∀p ∈ ∆.

Finally, we set

k (x, t) = α (g (t)) k̃ (x, g (t)) + γ (g (t)) ∀x ∈ [w, b] , ∀t ∈ [0, 1] .

It is easy to check that k and V̂ satisfy all the assumptions of Theorem 1.20 Since

k (·, t) = α (g (t)) k̃ (·, g (t)) + γ (g (t)) ∀t ∈ [0, 1]

and g : [0, 1] → Im u is strictly increasing, continuous, and onto, we have that for

each t ∈ [0, 1] there exists an element z ∈ Im u such that k (·, t) is a positive affine

transformation of k̃ (·, z). Similarly, for each z ∈ Im u there exists an element t ∈ [0, 1]

such that k̃ (·, z) is a positive affine transformation of k (·, t). Recall that Wda =
k̃ (·, z)



z∈Imu
. It follows that infv∈Wbet

c (p, v) = minv∈Wda
c (p, v) for all p ∈ ∆.

1 and 2. We first show that if β ≥ 0, then fs,t is convex at t for all s, t ∈ (0, 1). We

do so by proving that ∂fs,t (t) ∕= ∅ (see Remark 1). We thus need to compute vs ◦ v−1
t

where vt (x) = k (x, t) and vs (x) = k (x, s) for all x ∈ [w, b]. Fix s, t ∈ (0, 1). Note that

v−1
t (z) = k̃−1


z − γ (g (t))

α (g (t))
, g (t)


∀z ∈ [0, 1] .

Consider f : [0, 1] → [0, 1] defined by f (z) = fs,t (z) = α (g (s)) k̃

k̃−1


z−γ(g(t))
α(g(t))

, g (t)

, g (s)


+

γ (g (s)) for all z ∈ [0, 1]. Since s and t are fixed, to ease notation, define α (g (s)) = α

and γ (g (s)) = γ as well as α (g (t)) = α′ and γ (g (t)) = γ′. Note that α,α′ > 0.

Finally, set ṽs = k̃ (·, g (s)) and ṽt = k̃ (·, g (t)). Therefore, we have that

f (z) = αṽs


ṽ−1
t


z − γ′

α′


+ γ ∀z ∈ [0, 1] .

19Indeed, one has that for each λ ∈ [0, 1]

g (λ) = Ṽ (λδb + (1− λ) δw) =
λu(b) + (1 + β)(1− λ)u(w)

1 + β(1− λ)
.

20Indeed, points 1 and 2 are satisfied on [0, 1] and not just (0, 1).

28



Note that ∂f (t) ∕= ∅ if and only if there exists m ∈ ∂f (t), that is,

f (t′)− f (t) ≥ m (t′ − t) ∀t′ ∈ [0, 1] .

Such an m exists if and only if there exists m ∈ R such that

αṽs


ṽ−1
t


t′ − γ′

α′


− αṽs


ṽ−1
t


t− γ′

α′



= αṽs


ṽ−1
t


t′ − γ′

α′


+ γ − αṽs


ṽ−1
t


t− γ′

α′


− γ

= f (t′)− f (t) ≥ m (t′ − t) ∀t′ ∈ [0, 1] ,

if and only if there exists m ∈ R such that for each t′ ∈ [0, 1]

ṽs


ṽ−1
t


t′ − γ′

α′


− ṽs


ṽ−1
t


t− γ′

α′


≥ m

α
(t′ − t) =

m
α
α′


t′ − γ′

α′ − t− γ′

α′


.

This latter condition holds if there exists m̃ ∈ ∂f̃


t−γ′

α′


where f̃ = ṽs ◦ ṽ−1

t . Observe

that: a) g (t) = t−γ′

α′ and b) for each z ∈ [0, 1]

k̃ (x, g (z)) =


u (x) u (x) ≤ g (z)

u(x)+βg(z)
1+β

u (x) > g (z)
.

This yields that

k̃−1 (x, g (z)) =


u−1 (x) x ≤ g (z)

u−1 (x (1 + β)− βg (z)) x > g (z)

We now compute f̃ (·) = ṽs ◦ ṽ−1
t (·) = k̃ (·, g (s)) ◦ k̃−1 (·, g (t)). If t = s, clearly f̃ is the

identity and therefore ∂f̃ (g (t)) ∕= ∅. Otherwise, there are two cases to consider:

1. t > s : In this case, we have that

k̃

k̃−1 (x, g (t)) , g (s)


=






x x ≤ g (s)
x+βg(s)
1+β

g (s) < x ≤ g (t)
x(1+β)+β[g(s)−g(t)]

1+β
g (t) < x

.

Note that

d

dx


k̃

k̃−1 (x, g (t)) , g (s)


=






1 x < g (s)
1

1+β
g (s) < x < g (t)

1 g (t) < x

.

which clearly yields 1 ∈ ∂f̃ (g (t)), since β ≥ 0.
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2. t < s. In this case, we have that

k̃

k̃−1 (x, g (t)) , g (s)


=






x x ≤ g (t)

x (1 + β)− βg (t) g (t) < x ≤ g(s)+βg(t)
1+β

x(1+β)+β[g(s)−g(t)]
1+β

g(s)+βg(t)
1+β

< x

.

Note that

d

dx


k̃

k̃−1 (x, g (t)) , g (s)


=






1 x < g (t)

1 + β g (t) < x < g(s)+βg(t)
1+β

1 g(s)+βg(t)
1+β

< x

.

which clearly yields 1 ∈ ∂f̃ (g (t)), since β ≥ 0.

To sum up, we showed that if β ≥ 0, then ∂f̃ (g (t)) ∕= ∅ which yields that ∂fs,t (t) =

∂f (t) ∕= ∅. By Remark 1, it follows that fs,t is convex at t. By Proposition 2 and since

s, t ∈ (0, 1) were arbitrarily chosen, we have that β ≥ 0 implies that  satisfies Negative

Certainty Independence. By Theorem 4, it follows that if β ≥ 0, then V : ∆ → R,
defined by

V (p) = min
v∈Wbet

c (p, v) = min
v∈Wda

c (p, v) ∀p ∈ ∆

is a continuous utility representation of  where Wbet = {k (·, t)}t∈(0,1). Thus, if β > 0,

then (7) follows. If β = 0, then Wda = {u} and (8) follows.

3. The statement follows from a specular argument.21 

Proof of Proposition 1. “Only if”. By (Cerreia-Vioglio et al., 2017, Fact 2 and

Lemma 1), if  exhibits prudence, then any set representing ′ via an expected multi-

utility representation must be made of functions which are differentiable on (w, b) and

have convex derivatives there. By Proposition 9, we can conclude that this set can be

chosen to be Wbet = {k (·, t)}t∈(0,1). By the discussion at the beginning of the proof

of Theorem 3, Wbet can be replaced by Wda =

k̃ (·, z)



z∈Imu
. Since u is strictly

increasing, the condition of differentiability of each of these local utilities forces u′ to

exist on (w, b) and be convex, as well as β to be equal to 0 and preferences to be

expected utility. The “if” part is trivial. 
21A sketch of a possible proof is as follows. Since  satisfies Weak Order, Continuity, and Strict

First Order Stochastic Dominance, there exists a continuous utility function V : ∆ → R such that

V (δx) = x for all x ∈ [w, b]. By Proposition 9 and the identification at the beginning of the proof

of Theorem 3, the expected utility core ′ of  admits an expected multi-utility representation with

set Wbet. After some tedious algebra, one can show that if β < 0, then  satisfies Positive Certainty

Independence. By mimicking Steps 4 and 5 in the proof of Theorem 1 of Cerreia-Vioglio et al. (2015),

we obtain that V (p) = supv∈Wbet
c (p, v) = supv∈Wda

c (p, v) for all p ∈ ∆. Since Wda is compact, we

have that the sup is actually attained.
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Proof of Example 1. For each t ∈ [0, 1] define vt (x) = k (x, t) for all x ∈ [0, 1].

Given s, t ∈ (0, 1), we need to show that f = vs ◦ v−1
t is convex at t. Before starting,

observe that v−1
t : [0, 1] → R

v−1
t (x) =


x if x ≤ t

t+
√

t2+4(x−t)

2
if x > t

∀x ∈ [0, 1] .

Clearly, if s = t, then f = vs ◦ v−1
t is the identity on [0, 1] and it is convex at t. We

then have two cases:

1. t > s. In this case, we have that for each x ∈ [0, 1]

f (x) = vs

v−1
t (x)


=






x if x ≤ s

x2 − sx+ s if s < x ≤ t
t+
√

t2+4(x−t)

2

2

− s


t+
√

t2+4(x−t)

2


+ s if x > t

.

Consider g : [0, 1] → R to be such that g (x) = m (x− t) + f (t) and m =

max {2t− s, 1}. We have three cases:

(a) 0 ≤ t′ ≤ s. Note that

g (0) = f (t)−mt ≤ f (t)− t = t2 − st+ s− t = (t− 1) (t− s) < 0.

We can conclude that

g (t′) = m (t′ − t) + f (t) ≤ f (t) + t′ − t

= t′ + f (t)− t ≤ t′ = f (t′) .

(b) s < t′ ≤ t. Define h : [0, 1] → R by h (x) = x2−sx+s for all x ∈ [0, 1]. Note

that h (t) = f (t) and h′ (t) = 2t− s ≤ m, yielding h′ (t) (t′ − t) ≥ m (t′ − t)

for all t′ ≤ t. Since h is convex, we have that

f (t′) = h (t′) ≥ h′ (t) (t′ − t)+h (t) ≥ m (t′ − t)+f (t) = g (t′) ∀t′ ∈ (s, t] .

(c) t′ > t. Define h̃ : [t, 1] → R by h̃ (x) =


t+
√

t2+4(x−t)

2

2

−s


t+
√

t2+4(x−t)

2


+

s for all x ∈ [t, 1]. It follows that h̃ is concave. Note that h̃ (t) = f (t) = g (t).

Since h̃ is concave and g is affine, it is enough to verify that h̃ (1) ≥ g (1)

to prove that f (t′) = h̃ (t′) ≥ g (t′) for all t′ ∈ [t, 1]. Since t ∈ (0, 1) and

h̃ (1) = 1, observe that if m = 2t− s, then

g (1) = m (1− t) + f (t) = (2t− s) (1− t) + t2 − st+ s

= 2t− 2t2 − s+ st+ t2 − st+ s

= 2t− t2 = t+ t (1− t) ≤ 1 = h̃ (1) .
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Since 0 < s < t < 1, if m = 1, then

g (1)− h̃ (1) = g (1)− 1 = 1− t+ f (t)− 1 = 1− t+ t2 − st+ s− 1

= −t+ t2 − st+ s = t (t− 1) + s (1− t)

= (t− s) (t− 1) < 0,

proving that g (1) < h̃ (1).

Subpoints a–c just showed that the subdifferential of f is nonempty at t and, in

particular, f is convex at t.

2. t < s. In this case, we have that for each x ∈ [0, 1]

f (x) = vs

v−1
t (x)


=






x if x ≤ t
t+
√

t2+4(x−t)

2
if t < x ≤ s̄

t+
√

t2+4(x−t)

2

2

− s


t+
√

t2+4(x−t)

2


+ s if x > s̄

where s̄ is such that
t+
√

t2+4(s̄−t)

2
= s.22 Consider g : [0, 1] → R to be such that

g (x) = x. We have three cases:

(a) 0 ≤ t′ ≤ t. Clearly, we have that f (t′) ≥ g (t′).

(b) t < t′ ≤ s̄. Define h : [t, s̄] → R by h (x) =
t+
√

t2+4(x−t)

2
for all x ∈ [t, s̄].

Since h is concave and g is affine, if we verify that h (t) ≥ g (t) and h (s̄) ≥
g (s̄), then f (t′) = h (t′) ≥ g (t′) for all t′ ∈ [t, s̄]. Note that h (t) = t = g (t).

On the other hand, we have that

h (s̄) =
t+


t2 + 4(s̄− t)

2
≥

t+


t2 + 4s̄ (s̄− t)

2

=
t+

√
t2 + 4s̄2 − 4s̄t

2
=

t+


(2s̄− t)2

2
= s̄ = g (s̄) .

(c) t′ > s̄. Define h̃ : [s̄, 1] → R by h̃ (x) =


t+
√

t2+4(x−t)

2

2

−s


t+
√

t2+4(x−t)

2


+

s for all x ∈ [s̄, 1]. Since h̃ is convex, h̃ (1) = 1, and h̃′ (1) = 2−s
2−t

∈ (0, 1), we

have that

h̃ (t′) ≥ h̃′ (1) (t′ − 1) + h̃ (1) ≥ 1 (t′ − 1) + h̃ (1)

= t′ − 1 + 1 = t′ = g (t′) ∀t′ ∈ [s̄, 1] .

22Since
t+
√

t2+4(t−t)

2 = t < s < 1 =
t+
√

t2+4(1−t)

2 and the map x → t+
√

t2+4(x−t)

2 is strictly

increasing and continuous on [t, 1], we have that s̄ exists and s̄ > t.
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Subpoints a–c just showed that the subdifferential of f is nonempty at t and, in

particular, f is convex at t. 

Proof of Proposition 4. Define W = co (Wbet). Given the assumptions, W is

convex and compact and (12) holds with W in place of Wbet.
23 First, note that the

map c : ∆×W → [w, b], defined by

c (p, v) = v−1 (Ep (v)) ∀ (p, v) ∈ ∆×W ,

is quasiconcave and upper semicontinuous in the first argument and quasiconvex and

lower semicontinuous in the second argument. By Sion’s minimax theorem and since

A is a convex and compact set of ∆, this implies that

max
p∈A

min
v∈W

c (p, v) = min
v∈W

max
p∈A

c (p, v) .

Let v̂ ∈ W be such that maxp∈A c (p, v̂) ≤ maxp∈A c (p, v) for all v ∈ W . Note that

max
p∈A

min
v∈W

c (p, v) = max
p∈A

V (p) = V (p̄) = min
v∈W

c (p̄, v) ≤ c (p̄, v̂)

≤ max
p∈A

c (p, v̂) ≤ min
v∈W

max
p∈A

c (p, v) .

Since maxp∈A minv∈W c (p, v) = minv∈W maxp∈A c (p, v), this yields that

c (p̄, v̂) = max
p∈A

c (p, v̂) ,

proving the statement. 

C.1 Betweenness Preferences and Finite Representations

In this section, we further explore the intersection of Betweenness preferences and

Cautious Expected Utility preferences which admit a finite representation.

We start by showing that any canonical representation of a Betweenness preference

that satisfies Negative Certainty Independence must contain either one element or

infinitely many. We prove this under an additional assumption: namely,  is not

infinitely risk loving, which we called NIRL.

Proposition 10 Let  be a Betweenness preference that satisfies Negative Certainty

Independence and NIRL. If W ′ ⊆ Unor satisfies (6) and (13), then either |W ′| = 1 or

|W ′| = ∞.

23Note that u : [w, b] → [0, 1], defined by u (x) = mint∈[0,1] k (x, t) for all x ∈ [w, b], belongs to Unor.

In particular, we have that v ≥ u for all v ∈ Wbet. By Theorem 4 and Propositions 6 and 9, we

have that  satisfies NIRL. By Theorem 6, this implies that Wmax− nor is compact and satisfies (12).

Finally, by Remark 2, we have that co (Wbet) = cl (Wmax− nor) = Wmax− nor.
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Proof. Recall that Wbet = {k (·, t)}t∈(0,1). Define by E the set of extreme points of

Wmax− nor. By contradiction, assume that |W ′| = n ∈ N\ {1}.
Step 1: The set E is a nonempty finite subset of cl (Wbet), contains more than one

element, and satisfies (6) and (13).

Proof of the Step. By Theorems 2, 6, and 4, Proposition 9, and Remark 2, it follows that

Wmax− nor is compact and therefore co (W ′) = co (Wbet) = cl (Wmax− nor) = Wmax− nor.

By (Megginson, 1998, Theorem 2.10.6 and Corollary 2.10.16) and Proposition 9, it

follows that ∅ ∕= E ⊆ cl (Wbet) and E ⊆ cl (W ′) = W ′. It follows that E is a nonempty

finite subset of cl (Wbet). Clearly, it contains more than one element. Otherwise,

by Krein-Milman’s theorem (see (Megginson, 1998, Theorem 2.10.6)), 1 = |co (E)| =
|co (W ′)| ≥ |W ′| > 1, a contradiction. Moreover, by Krein-Milman’s theorem again, it

is immediate to see that E satisfies (13). By Remark 2, it follows that E satisfies (6)

as well. □
By Step 1, we have that E ⊆ cl (Wbet). In particular, cl (Wbet) contains more

than one element. By Proposition 9, it follows that Wbet cannot be a singleton and,

therefore, it contains infinitely many elements. Moreover, by Theorem 4, we have that

V (p) = min
v∈E

c (p, v) = min
v∈Wbet

c (p, v) ∀p ∈ ∆. (32)

By the Krein-Milman’s Theorem and (Aliprantis and Border, 2006, Corollary 5.30)

and since E is finite, it follows that

co (E) = co (E) = Wmax− nor ⊇ Wbet.

Since E is finite and not a singleton, there exists a finite collection E = {vm}nm=1 ⊆ Unor

with n ≥ 2. Consider t̄ ∈ (0, 1) such that k (·, t̄) ∕= vm for all m ∈ {1, ..., n}. Since Wbet

is infinite, such a t̄ exists. It follows that v̄ = k (·, t̄) =
n

m=1 λmvm where λm ≥ 0 for all

m ∈ {1, ..., n} and
n

m=1 λm = 1. Moreover, v̄ ∕∈ E . Define I (t̄) =

p ∈ ∆ : V̂ (p) = t̄


.

By Theorem 4, we have that

c (p, v̄) = V (p) ∀p ∈ I (t̄) . (33)

Step 2: There exists i ∈ {1, ..., n} for each p ∈ I (t̄) such that V (p) = c (p, vi).

Proof of the Step. By contradiction, assume that for each i ∈ {1, ..., n} there exists pi ∈
I (t̄) such that V (pi) ∕= c (pi, vi). Since (32) holds, this implies that V (pi) < c (pi, vi).

Fix i ∈ {1, ..., n}. By (33) and since pi ∈ I (t̄), it follows that if λi > 0, then

V (pi) = c (pi, v̄) > V (pi) ,

a contradiction,24 that is, λi = 0. Since i was arbitrarily chosen, then λi = 0 for all

i ∈ {1, ..., n}, a contradiction with
n

m=1 λm = 1. □
24Note that

c (pi, vm) ≥ V (pi) ∀m ∈ {1, ..., n} and c (pi, vi) > V (pi) ,
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By Step 2 and (33), it follows that there exists i ∈ {1, ..., n} such that c (p, vi) =

V (p) and c (p, v̄) = V (p) for all p ∈ I (t̄), that is,

Ep (vi) = vi (V (p)) and Ep (v̄) = v̄ (V (p)) ∀p ∈ I (t̄) . (34)

In the next two steps, we show that v̄ = vi. First, define p̄ = t̄δb + (1− t̄) δw. It is

immediate to check that p̄ ∈ I (t̄). Let then x̄ be such that δx̄ ∼ p̄. Since t̄ ∈ (0, 1), we

have that x̄ ∈ (w, b).

Step 3: vi (x̄) = v̄ (x̄).

Proof of the Step. Since  satisfies Negative Certainty Independence, we have that

δx̄ ∼ γp̄+(1− γ) δx̄, that is, x̄ = V (δx̄) = V (γp̄+ (1− γ) δx̄) and γp̄+(1− γ) δx̄ ∈ I (t̄)

for all γ ∈ [0, 1]. By (34), it follows that for each γ ∈ (0, 1)

Eγp̄+(1−γ)δx̄ (vi) = vi (V (γp̄+ (1− γ) δx̄)) and Eγp̄+(1−γ)δx̄ (v̄) = v̄ (V (γp̄+ (1− γ) δx̄)) ,

that is, γ t̄ + (1− γ) vi (x̄) = vi (x̄) and γ t̄ + (1− γ) v̄ (x̄) = v̄ (x̄) for all γ ∈ (0, 1). By

choosing γ = 1
2
and subtracting the two equations, we can conclude that

1

2
(vi (x̄)− v̄ (x̄)) = vi (x̄)− v̄ (x̄) ,

that is, vi (x̄) = v̄ (x̄). □
Step 4: vi = v̄.

Proof of the Step. By contradiction, assume that vi ∕= v̄. Since vi, v̄ ∈ Unor, this implies

that there exists x ∈ (w, b) such that vi (x) ∕= v̄ (x). By Step 3, we have two cases:

1. x > x̄. There exists γ ∈ (0, 1) such that γδx + (1− γ) δw ∼ δx̄ ∈ I (t̄). By (34)

and Step 3, we have that

γvi (x) = Eγδx+(1−γ)δw (vi) = vi (x̄) = v̄ (x̄) = Eγδx+(1−γ)δw (v̄) = γv̄ (x) ,

that is, γvi (x) = γv̄ (x), a contradiction, since γ ∕= 0 and vi (x) ∕= v̄ (x).

2. x < x̄. There exists γ ∈ (0, 1) such that γδx + (1− γ) δb ∼ δx̄ ∈ I (t̄). By (34)

and Step 3, we have that

γvi (x)+1−γ = Eγδx+(1−γ)δb (vi) = vi (x̄) = v̄ (x̄) = Eγδx+(1−γ)δb (v̄) = γv̄ (x)+1−γ,

that is, γvi (x) = γv̄ (x), a contradiction, since γ ∕= 0 and vi (x) ∕= v̄ (x). □
that is,

Epi (vm) ≥ vm (V (pi)) ∀m ∈ {1, ..., n} and Epi (vi) > vi (V (pi)) .

If λi > 0, then

Epi (v̄) =

n

m=1

λmEpi (vm) >

n

m=1

λmvm (V (pi)) = v̄ (V (pi)) .
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By Step 4, we can conclude that vi = v̄, a contradiction with v̄ ∕∈ E . 

Corollary 2 Let  be a Betweenness preference that satisfies Negative Certainty Inde-

pendence and NIRL. If W ′ ⊆ Unor satisfies (6) and (13), then  violates Independence

if and only if |W ′| = ∞.25

We next turn to Cautious Expected Utility preferences that admit a finite rep-

resentation, that is, |W| < ∞ where W is only assumed to represent , but might

fail to represent ′. This was analyzed in Proposition 3. From an economic point

of view, this is an important class. Indeed, one could speculate that in applications,

finite specifications may be appealing. The proposition shows that this apparently

harmless assumption comes with a behavioral counterpart: either expected utility, or

violations of Betweenness. From a technical point of view, this result is the conceptual

counterpositive of Proposition 10. Apart from few technical details, Proposition 10

says that, given a Cautious Expected Utility preference which is not expected util-

ity, if it satisfies Betweenness, then any canonical representation must contain infinite

elements. Thus, the counterpositive of this statement is, given a Cautious Expected

Utility preference, if a canonical representation contains finitely many elements, then it

violates Betweenness. Starting from a finite specification W of the Cautious Expected

Utility model, does not rule out that any canonical representation might contain in-

finitely many elements. Indeed, a priori, given a canonical representation W ′, we only

know that co (W) ⊇ co (W ′) = Wmax− nor.
26 One could have a situation similar to the

following one: Think of W as a finite set of points (loosely speaking, say four vertices

of a square, so that co (W) = co (W) is the square) and W ′ as a circle fully contained

in co (W); clearly W is finite and W ′ is not. Moreover, W ′ cannot be fully refined to

be finite, otherwise one would not be able to obtain co (W ′) = Wmax− nor. However,

Proposition 3 shows that this cannot be the case.

Proof of Proposition 3. Consider W . Since W satisfies (6), recall that

V (p) = min
v∈W

c (p, v) ∀p ∈ ∆.

Since W is finite, it is compact. By Theorem 6, this implies that Wmax− nor is compact.

Say that v ∈ W is redundant in W if and only if for each p ∈ ∆\ {δx}x∈[w,b] there exists

25We remind the reader that Independence is the standard assumption:

p  q =⇒ λp+ (1− λ) r  λq + (1− λ) r ∀r ∈ ∆, ∀λ ∈ [0, 1] .

26For the sake of simplicity, we are assuming that W ′ is compact as well.
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v̄ ∈ W\{v} such that c (p, v) ≥ c (p, v̄). Define

W1=


W\{v} if ∃v ∈ W redundant in W

W if ∕ ∃v ∈ W redundant in W
.

Note that in both cases

V (p) = min
v∈W1

c (p, v) ∀p ∈ ∆.

If W1 = W , then we stop. Otherwise, we compute

W2=


W1\ {v} if ∃v ∈ W1 redundant in W1

W1 if ∕ ∃v ∈ W1 redundant in W1

.

Note that V (p) = minv∈W2 c (p, v) for all p ∈ ∆. By iterating this procedure and

since W is finite, we get to a set Wk ⊆ W with k ∈ N such that Wk = Wk+1 and

V (p) = minv∈Wk
c (p, v) for all p ∈ ∆. If |Wk| = 1, then clearly  is expected utility

and satisfies Independence. If |Wk| ∈ N\ {1}, then we show that Wk represents not

only , but also ′. Since Wk is finite, we enumerate it as {vl}ml=1. By (Cerreia-

Vioglio et al., 2015, Theorem 2), note that co (Wk) ⊇ Wmax− nor. By contradiction,

assume that co (Wk) ⊃ Wmax− nor. Since Wmax− nor is convex and compact, we have

that Wk ∕⊆ Wmax− nor.
27 Without loss of generality, say that v1 is the element in Wk

that does not belong to Wmax− nor. Since Wk = Wk+1, we have that no element in Wk

is redundant in Wk. In particular, v1 has this property. This implies that there exists

p̂ ∈ ∆ such that

x̂ = c (p̂, v1) < c (p̂, vl) ∀l ∈ {2, ...,m} . (35)

At the same time, by (Aliprantis and Border, 2006, Corollary 5.30) and since co (Wk) =

co (Wk) ⊃ Wmax− nor and

V (p) = min
v∈Wmax− nor

c (p, v) ∀p ∈ ∆,

there exists v̄ ∈ Wmax− nor such that c (p̂, v̄) = V (p̂) = c (p̂, v1). Moreover, there exists

{λl}ml=1 ⊆ [0, 1] such that
m

l=1 λl = 1 and v̄ =
m

l=1 λlvl. Since v1 ∕∈ Wmax− nor, this

implies that λ1 ∕= 1 and λl > 0 for some l ∈ {2, ...,m}. By (35), this implies that

Ep̂ (vl) > vl (x̂) ∀l ∈ {2, ...,m} =⇒
m

l=1

λlEp̂ (vl) >
m

l=1

λlvl (x̂)

=⇒ Ep̂ (v̄) > v̄ (x̂) =⇒ c (p̂, v̄) > x̂ = c (p̂, v1) ,

a contradiction.

27Otherwise, co (Wk) ⊆ Wmax− nor, a contradiction.
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We thus showed that co (Wk) = co (Wk) = Wmax− nor. This implies thatWk satisfies

both (6) and (13). Moreover, Wk is finite. By Theorem 6, this implies that  satisfies

Strict First Order Stochastic Dominance, Negative Certainty Independence, and NIRL.

By Proposition 10 and since Wk is finite, we can conclude that either |Wk| = 1 and 
satisfies Independence or 1 < |Wk| < ∞ and  violates Betweenness. 
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