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Abstract

We consider revealed preference relations over risky (or uncertain) prospects, and allow
them to be nontransitive and/or fail the classical Independence Axiom. We identify
the “rational part”of any such preference relation as its largest transitive subrelation
that satisfies the Independence Axiom and that exhibits some coherence with the
original relation. It is shown that this subrelation, which we call the rational core of
the given revealed preference, exists in general, and under fairly mild conditions, it
is continuous. We obtain various representation theorems for the rational core, and
decompose it into other core concepts for preferences. These theoretical results are
applied to compute the rational cores of a number of well-known preference models
(such as Fishburn’s SSB model, justifiable preferences, and variational and multiplier
modes of rationalizable preferences). As for applications, we use the rational core
operator to develop a theory of risk aversion for nontransitive nonexpected utility
models (which may not even be complete). Finally, we show that, under a basic
monotonicity hypothesis, the Preference Reversal Phenomenon cannot arise from the
rational core of one’s preferences.
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1 Introduction

The revealed preference relation of a decision maker over a given set of risky prospects
is deduced from her choices.1 To wit, if the agent is observed to choose a lottery p
from a given feasible set, then she is declared to prefer p over all lotteries in that set.
If the choices of the agent across all choice problems are “consistent”—this is captured
in decision theory by a variety of postulates, such as the axioms of revealed preference
and the Independence Axiom —then the resulting revealed preference relation satisfies
the basic rationality tenets of transitivity and affi nity.
However, it is unrealistic to presume that every choice problem is equally reveal-

ing. Depending on the context, some choices may be “easy,” even “trivial,” for an
agent, while others may be “hard”enough that she may feel justifiably insecure about
them. (For instance, most agents would choose the sure lottery that pays them $10
over that pays them $5 “easily,”while they may find ranking two complicated lot-
teries with large supports “diffi cult.”) It is only reasonable that such (subjectively)
“hard”choice problems may cause the choices of the agent fail the strict requirements
of rationality. This, in turn, results in the preference relation revealed through such
choices fail properties like transitivity and affi nity. Indeed, the literature provides
ample instances of this situation in a variety of contexts. The experimental demon-
strations of nontransitivity of revealed preferences in the context of risk, for instance,
go back to Tversky (1969), which is to cite but one reference from a rather large
literature. Besides, numerous explanations and models that accommodate nontran-
sitivity of preferences are offered in the literature, including regret theory (Loomes
and Sugden (1982)), nontransitive indifference and similarity (Luce (1956), Fishburn
(1970), and Rubinstein (1988)), framing effects (Kahneman and Tversky (1979) and
Salant and Rubinstein (2008)), and multi-agent decision-making (Hara, Ok and Riella
(2018)), among others. Similarly, the famous Allais paradox, along with the certainty
and common ratio effects, demonstrates how the revealed risk preferences of an agent
may easily fail the so-called Independence Axiom.
These considerations prompt the following query: Given a (reflexive) revealed

preference relation R on a set X of lotteries (which may fail transitivity and/or the
Independence Axiom), is there a reasonable way of identifying the part of R that cor-
responds to “sure”rankings of the individual? In other words, is there a subrelation
S of R such that when a lottery p is ranked over q with respect to S, we understand
that the agent is perfectly “confident” about this ranking? As this subrelation is
unobservable (while R is), one needs to approach this query axiomatically. Insofar as
the “easy”decisions of the agent would not lead to inconsistent choices, it is natural
to require S to be transitive and satisfy the Independence Axiom, thereby not falling

1For concreteness, our discussion in this section is couched only in terms of preferences over
lotteries. The bulk of the paper, however, applies to any context in which convex combinations
of choice objects are themselves choice objects. In fact, Section 6 is devoted to preferences over
Anscombe-Aumann acts.
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prey to the Allais paradox and its derivatives. (It is in this sense that S is a rational
part of R.) Moreover, it stands to reason that R should act in coherence with S. To
clarify, suppose the agent declares that p R q and q S r (or p S q and q R r) for some
lotteries p, q and r. According to our interpretation, this says that the agent declares
p superior to q (although she may not be completely confident in this judgement)
while she is sure that q is better for her than r. It then seems reasonable that the
agent would prefer p over r, albeit, she may be insecure about this decision (that is,
p R r holds, but not necessarily p S r). Consequently, in addition to transitivity and
affi nity, it makes sense to require S to satisfy the following property:

p R q S r or p S q R r implies p R r

for all p, q and r in X. When this property holds, we say that R is transitive with
respect to S. In turn, we define the rational core of R —we denote this as core(R) —
as the largest transitive subrelation of R that satisfies the Independence Axiom and
with respect to which R is transitive.2

The notion of rational core is naturally motivated from the viewpoint of making
welfare evaluations for individuals whose revealed preferences R over lotteries are
either nontransitive or nonaffi ne (in the sense of failing the Independence Axiom).
In this case, using R alone, we may at times not even be able to determine what a
best option is for the individual in question in a finite menu of choices. Moreover,
the agent may have declared that p is strictly better than q (with respect to R), and
yet we observe her choose 1

2
p + 1

2
q over p. It is quite possible that this person may

in time realize the incoherence of her choices, and change the latter one the next
time around. But, of course, this reasoning is purely hypothetical, there is no way of
using it to make a welfare evaluation on the part of the agent. In short, when R is
nontransitive and nonaffi ne, one is not able to conclude comfortably that “an agent
would be better off if she is given p over q”just because it is observed that she chose
p over q at some point (that is, p R q). But if core(R) applies here, that is, p core(R)
q, one would be far more confident in the validity of this statement. After all, p
core(R) q is interpreted as saying that the agent “surely”prefers p over q; this sort
of a ranking of p and q may never appear as a part of cyclic choice and/or violation
of the Independence Axiom, and as such, there does not seem to be any reason for
the agent to have ex-post qualms about the superiority of p over q. In short, core(R)
may be used as a partial, but convincing, criterion in making welfare judgements
on behalf of an economic agent, in precisely the same way the Pareto criterion is a
partial, but convincing, rule of social welfare evaluation. (In fact, we will show in the
body of the paper that there are formal similarities between these two preorders.)
In passing, we note that this motivation also explains why we define core(R) as the
largest transitive and affi ne subrelation of R with respect to which R is transitive.

2One may wish to dispense with this transitivity property, and focus instead on the largest
transitive subrelation of R that satisfies the Independence Axiom. Unfortunately, even when R is
complete and satisfies the Independence Axiom, such a subrelation of R need not exist.
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The primary goal of the present paper is to investigate the internal structure of
the concept of rational core, identify its basic properties, and compute it for various
models of preferences that fail to satisfy either the transitivity property or the Inde-
pendence Axiom. After introducing some basic nomenclature in Section 2, we begin
our exposition by revisiting two different notions of “core”that have already received
some attention in the literature. The first of these aims to identify the largest rational
part of a given (revealed) preference relation R insofar as rationality is captured by
transitivity alone. Nishimura (2018) has recently attacked this problem axiomatically
by considering a class of abstract operators that map any given binary relation R
into a transitive subrelation of it. All of Nishimura’s operators agree when R is com-
plete, and map R to a particularly interesting subrelation. In Section 3.1, we note
that this subrelation exists even when R is not complete, and it coincides with the
largest transitive subrelation of R with respect to which R is transitive.3 Following
Nishimura (2018), we call this subrelation the “transitive core”of R, and denote it
as T(R). The second core concept we borrow from the literature is the largest part of
R that satisfies the Independence Axiom. In Section 3.2, we introduce this part of R
as its affi ne core, and denote it by A(R). This notion has made frequent appearance
in the recent literature on nonexpected utility theory under risk and uncertainty —it
was introduced first by Ghirardato, Maccheroni and Marinacci (2004) in the context
of uncertainty —but we develop it here in a more general setting. In particular, we
provide a general characterization for it, and show that it always exists, and it is
transitive if so is R.
The first main result of the paper (Theorem 3.4) shows that the rational core of

R decomposes into its affi ne and transitive cores in a pleasant way:

core(R) = A(T(R)). (1)

Thus, for transitive R, the rational core and affi ne core coincide. Moreover, if R
satisfies a natural strengthening of the Independence Axiom, then its rational and
transitive cores coincide (Proposition 3.8).4 Furthermore, our second main result
(Theorem 3.6) uses (1) to show that the rational core of R is a continuous preorder,
provided thatR is continuous and satisfies a mild monotonicity condition. This allows
us to utilize some well-known representation theorems of decision theory to obtain
an “expected multi-utility”representation for core(R) in the context of risk (and an
“expected multi-prior” representation for it in the context of uncertainty). It is in
this sense that core(R) is a unanimity ordering, and hence shows formal similarities
to the classical Pareto ordering.
We use these general results to compute the rational cores of a variety of pref-

erence models. In the context of risk, for instance, we compute the rational core
3Both in this definition and that of the rational core, the requirement of transitivity of the

subrelation is redundant, but this is inconsequential as long as our heuristic discussion is concerned.
4It turns out that the order of applying the affi ne and transitive cores in the decomposition (1)

is important. In Section 6.2, we provide a nontrivial example that shows that core(R) may be a
proper subset of T(A(R)).
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for the so-called rationalizable preferences (which rank one lottery p over another
iff the expected utility of p exceeds that of the latter with respect to at least one
Bernoulli utility function in a given collection of utilities) as well as for Fishburn’s
skew-symmetric bilinear (SSB) model (which relaxes both transitivity and affi nity in
order to account for the famous Preference Reversal Phenomenon). In the context of
uncertainty (with finitely many states), we carry out such computations for the justifi-
able preferences (of Lehrer and Teper (2011)), and for two interesting generalizations
of that model, namely, justifiable variational preferences and justifiable multiplier
preferences. In all of these models, rational core turns out to have a rather natural
structure (enjoying a particularly simple type of expected multi-utility or multi-prior
representation).
Finally, in the context of risk, we provide two applications to applied decision

theory. First, we use the rational core operator to suggest a “new” definition of
risk aversion for a preference relation R on a set of monetary lotteries. The standard
definition would ask for the consistency of R with second order stochastic dominance.
By contrast, we suggest being a bit more demanding than this, and say that the agent
is “risk averse”provided that she is “unconflicted”in declaring that mean-preserving
spreads are not desirable. The latter statement is conceptually appealing, but it is
not formal. Nevertheless, we can readily use the notion of rational core of R to
provide the required formalization, thereby declaring R as risk averse when core(R)
is consistent with second order stochastic dominance. (Of course, whenR satisfies the
standard von Neumann-Morgenstern axioms, the two definitions coincide.) In fact,
to apply this concept in practice, one does not even need to compute the rational
core. It is quite easy to show that R is risk averse in this sense if, and only if, it is
transitive with respect to second order stochastic dominance. Moreover, the rational
core of such R has a particularly convenient integral representation (Section 5.2).
In our second application, we revisit the Preference Reversal (PR) Phenomenon

(Grether and Plott (1979)), and ask if it is possible that this phenomenon may occur
with respect to the rational core of a (potentially nontransitive and nonaffi ne) pref-
erence relation. We find that this is not case, provided that the preferences exhibit
a mild degree of monotonicity. On one hand, this validates our interpretation of the
rational core, and on the other, it shows that the preference reversal phenomenon is
likely to be due to comparisons that an individual is somewhat “unsure”of making.
We conclude the paper with a few concluding remarks and an Appendix that

contains the proofs of the results that are omitted in the body of the text.

2 Nomenclature

As we deal with somewhat nonstandard preference relations in this paper, which
need not be either complete or transitive, we introduce here some terminology that
pertains to the general theory of binary relations. We will use this nomenclature
throughout the paper.

5



Binary Relations. Let X be a nonempty set. By a binary relation R on X, we mean
any nonempty subset of X × X, but, as usual, write x R y instead of (x, y) ∈ R.
Moreover, for any two binary relations R and S on X, we write x R y S z to mean
x R y and y S z, and so on. For any element x of X, the upper and lower sets of x
with respect to R are defined as x↑,R := {y ∈ X : y R x} and x↓,R := {y ∈ X : x
R y}, respectively. When the relation R is understood from the context, we may
simply write x↑ for x↑,R, and x↓ for x↓,R.
The asymmetric part of a binary relation R on X is defined as the binary relation

R> on X with x R> y iff x R y and not y R x, and the symmetric part of R is
defined as R= := R\R>. The composition of two binary relations R and S on X is
defined as R ◦ S := {(x, y) ∈ X ×X : x R z S y for some z ∈ X}. We say that S is
a subrelation of R, and that R is a superrelation of S, if S ⊆ R.
We denote the diagonal of X × X by 4X , that is, 4X = {(x, x) : x ∈ X}. A

binary relationR on X is said to be reflexive if4X ⊆ R, antisymmetric if R= ⊆ 4X ,
transitive if R◦R ⊆ R, and complete if either x R y or y R x holds for every x and y
in X. If R is reflexive and transitive, we refer to it as a preorder on X. (Throughout
the paper, a generic preorder is denoted as %, and as usual, the asymmetric part of
% is denoted as �.) Finally, an antisymmetric preorder on X is said to be a partial
order on X.
All preference relations that we consider in this paper are reflexive. As reflexivity

is a conceptually trivial requirement, this does not restrict the inherent content of
our findings.

Continuity of a Binary Relation. Let X be a topological space and R a binary
relation on X. There are various ways in which we can think of R as continuous. In
particular, R is called closed-continuous if it is a closed subset of X ×X (relative
to the product topology), and it is called open-continuous if R> is an open subset
of X × X. When R is closed-continuous, so is R=, but easy examples show that R
need not be open-continuous. In fact, a famous result of Schmeidler (1971) says that
if X is connected and R is a preorder on X with R> 6= ∅, then R is both closed-
and open-continuous only if it is complete.5 In this paper, we adopt closed-continuity
as the primary notion of continuity, and in what follows, refer to a closed-continuous
binary relation simply as continuous.

3 Concepts of Core for Binary Relations

3.1 The Transitive Core

Transitivity with Respect to another Binary Relation. Our main focus in this paper
is on reflexive, but not necessarily transitive, binary relations. A useful concept in

5Which of these two continuity notions one adopts may have significant consequences in terms
of the representation of a given preorder; see, for instance, Evren (2014).
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the analysis of such binary relations is the notion of transitivity with respect to a
binary relation. Put precisely, given any two reflexive binary relations R and S on
a nonempty set X, we say that R is S-transitive if R ◦ S ⊆ R and S ◦ R ⊆ R,
which means that either x R y S z or x S y R z implies x R z for any x, y and
z in X. This notion generalizes the classical concept of transitivity, for, obviously,
R is R-transitive iff it is transitive. More generally, if R is S-transitive and it is a
subrelation of S, then it must be transitive (but not conversely).

The Transitive Core of a Binary Relation. Let R be a reflexive binary relation
on a nonempty set X. By the transitive core of R, we mean the largest binary
relation S contained in R such that R is S-transitive, and denote this subrelation as
T(R). Put explicitly, T(R) is the subrelation of R such that (i) R ◦ T(R) ⊆ R and
T(R) ◦R ⊆ R, and (ii) if S is a subrelation of R such that R is S-transitive, then
S ⊆ T(R). It is plain that R is transitive iffR = T(R).
It is not self-evident if the transitive core of any given reflexive binary relation

exists. Similarly, it is not obvious if, when it exists, the transitive core of such a
relation is itself transitive. The following result settles both of these issues at one
stroke, and provides a concrete characterization of the transitive core of any reflexive
binary relation.

Proposition 3.1. Let R be a reflexive binary relation on a nonempty set X. Then,
T(R) exists, and it satisfies

x T(R) y iff x↑ ⊆ y↑ and y↓ ⊆ x↓

for every x and y in X.6 In particular, T(R) is a preorder on X.

Proof. Define the binary relation S on X as x S y iff x↑ ⊆ y↑ and y↓ ⊆ x↓. Since
R is reflexive, x ∈ x↑, and it follows that x S y implies x R y, for every x, y ∈ X,
that is, S is a subrelation of R. It is also immediate from the definition of S that
R is S-transitive. Now assume that S′ is another subrelation of R such that R is
S′-transitive. Take any x and y in X with x S′ y. Clearly, if z R x, then z R y by
S′-transitivity of R, and it follows that x↑ ⊆ y↑. Similarly, y↓ ⊆ x↓ holds as well,
and it follows that x S y. Conclusion: S′ ⊆ S. We conclude that S is the largest
subrelation of R such that R is S-transitive, that is, S = T(R). As the second part
of the proposition is a straightforward consequence of its first part, we are done. �

Nishimura (2018) has recently introduced an axiomatic definition of the transitive
core as an operator from the collection of all reflexive binary relations on a given
nonempty set X to that of preorders on X, and has shown that any such operator
which is consistent with his axioms is uniquely identified on the collection of all
complete binary relations on X. For any complete binary relation R on X, the value

6Here, of course, the upper and lower sets of x and y are defined with respect to R.
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of this operator at R is precisely the binary operation S defined in the proof above.
Thus, our definition of the transitive core is in full accord with the axiomatic definition
of Nishimura (2018), at least for complete binary relations.
The following corollary of Proposition 3.1 simplifies the definition of the transitive

core. It shows that the requirement that “T(R) be a subrelation ofR”can be replaced
with “T(R) being a reflexive relation”in that definition.

Corollary 3.2. Let R and S be two reflexive binary relations on a nonempty set X. If
R is S-transitive, then S must be a subrelation of T(R), and hence of R. Thus, T(R)
is the largest reflexive binary relation on X with respect to which R is transitive.

Proof. Suppose that R is S-transitive, and take any x, y ∈ X with x S y. If z ∈ x↑,
then z R x S y, so z R y, that is, z ∈ y↑. Thus, x↑ ⊆ y↑, and we can similarly show
that y↓ ⊆ x↓. By Proposition 3.1, therefore, x T(R) y, establishing our claim. �

Remark 3.1. In mathematical order theory, especially in the context of interval orders,
the relation S that we used in the proof of Proposition 3.1 is sometimes called the
trace of R (cf. Doignon et al. (1986)). And indeed, in that literature, the trace of R
being the largest reflexive binary relation on X with respect to which R is transitive
appears to be a folk result.

3.2 The Affi ne Core

We concentrate in this paper on those binary relations that are defined on a convex
subset of a linear space. For such relations, there is a natural formulation of “linearity”
which leads to an alternative notion of core.

Affi ne Binary Relations. Let R be a reflexive binary relation on a nonempty convex
subset X of a linear space. We say that R is affi ne if

x R y implies λx+ (1− λ)z R λy + (1− λ)z

for every x, y and z in X and every 0 < λ ≤ 1. We note that if R is affi ne, so is
R=, but R> need not be affi ne (even when R is a preorder).7 It is also evident that
if R is a convex subset of X × X (with coordinatewise defined addition and scalar
multiplication operations), then R is affi ne. The converse of this holds when R is
transitive, so we conclude that affi nity of a preorder on X is the same thing as this
preorder being a convex subset of X ×X.
The notion of affi nity that we define here in the abstract is, of course, widely used

in the theory of decision making under risk and uncertainty. Indeed, affi nity of a
preference relation defined on a given (convex) set of lotteries (or Anscombe-Aumann

7To illustrate, take any positive integer n ≥ 2, and let X stand for the (n− 1)-dimensional unit
simplex in Rn. Consider the preorder % on X defined by x % y iffmin{i : xi > 0} ≥ min{i : yi > 0}.
Then, % is affi ne, but � is not.
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acts) means simply that this relation satisfies the von Neumann-Morgenstern Inde-
pendence Axiom (or its pointwise extension to the Anscombe-Aumann framework).
As such, it makes due sense to consider this property as an essential rationality cri-
terion. Similarly, in the context of social choice theory where we would consider R
as representing the aggregated preferences of a group of individuals over, say, a con-
sumption space, the affi nity of R would correspond to a natural additivity property.

The Affi ne Core of a Binary Relation. Let R be a reflexive binary relation on a
nonempty convex subset X of a linear space. By the affi ne core of R, we mean the
largest affi ne subrelation of R, and denote this subrelation as A(R). It is plain that
R is affi ne iffR = A(R). It is also useful to note that, unlike the transitive core, the
affi ne core is a monotonic operator, that is, if S is a reflexive binary relation on X
with S ⊆ R, then A(S) ⊆ A(R). Besides, we will shortly prove that the affi ne core of
any reflexive binary relation exists. Consequently, we may use the monotonicity of A
to conclude that

A (
⋂
R) =

⋂
R∈R

A(R) (2)

for any nonempty collection R of reflexive binary relations on X.8
The following observation shows that the affi ne core of R is sure to exist, and it

provides a concrete characterization for it.

Proposition 3.3. Let R be a reflexive binary relation on a nonempty convex subset
X of a linear space. Then, A(R) exists, and it satisfies

x A(R) y iff λx+ (1− λ)z R λy + (1− λ)z for every z ∈ X and λ ∈ (0, 1]

for any x and y in X. In particular, A(R) is a preorder if so is R.

Proof. Define the binary relation S on X as x S y iff λx+(1−λ)z R λy+(1−λ)z
for every z ∈ X and λ ∈ (0, 1]. Obviously, S is a reflexive subrelation of R. It is also
plain that if R′ is an affi ne subrelation of R, then R′ ⊆ S. It remains to show that S
is affi ne. To this end, take any x and y in X with x S y, and fix an arbitrary (z, λ)
in X × (0, 1]. We wish to show that λx+ (1− λ)z S λy + (1− λ)z, that is,

α(λx+ (1− λ)z) + (1− α)w R α(λy + (1− λ)z) + (1− α)w (3)

for every w ∈ X and α ∈ (0, 1]. Since our claim is trivially true for λ = 1, we assume
λ < 1. Then, we may set

vα,w :=
α(1− λ)

1− αλ z +

(
1− α(1− λ)

1− αλ

)
w,

8Since
⋂
R∈RA(R) is an affi ne subrelation of

⋂
R, the ⊇ part of (2) is immediate. Conversely,

as
⋂
R ⊆ R for each R ∈ R, monotonicity of A entails that A(

⋂
R) ⊆ A(R) for each R ∈ R.
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and write (3) as
αλx+ (1− αλ)vα,w R αλy + (1− αλ)vα,w (4)

for every w ∈ X and α ∈ (0, 1]. Therefore, as x S y, it follows from the definition
of S that (4), and hence (3), holds for every w ∈ X and α ∈ (0, 1]. In view of the
arbitrariness of (z, λ), this shows that S is affi ne. As the second part of the proposition
is a straightforward consequence of its first part, we are done. �

While our formulation here is more general, we should note that the notion of
affi ne core was already studied in the literature on decision making under risk and
uncertainty. In that literature, this concept is sometimes referred to as the “ex-
pected utility core,”and is often defined through the characterization we obtained in
Proposition 3.3.

Remark 3.2. In the context of uncertainty, the notion of affi ne core was first in-
troduced by Ghirardato, Maccheroni and Marinacci (2004) who referred to it as the
“revealed unambiguous preference.”In this context, it was further explored in Cerreia-
Vioglio et al. (2011), inter alia. In the context of risk, this notion was introduced
in Cerreia-Vioglio (2009), and then further explored in Cerreia-Vioglio, Dillenberger
and Ortoleva (2015), and Cerreia-Vioglio, Maccheroni and Marinacci (2017).

3.3 The Rational Core

As we have discussed at some length in the Introduction, our main interest in this
paper is to identify the largest part of a given preference relation R on, say, a space
of lotteries, which arises from the “sure”comparisons of the individual. As such, we
expect the collection of all such comparisons to form a “rational”preference relation
(which is, however, likely to be incomplete). So, in effect, we look for the largest
“rational part”of R. Now, two obvious requirements of being a “rational part”of R
are being a transitive and affi ne subrelation ofR. And there are indeed such relations;
for instance, the reflexive part of R is obviously a transitive and affi ne subrelation
of R. However, it is not diffi cult to give examples to show that the largest such
subrelation of R need not exist. And even when it exists, this subrelation may still
lack some desirable properties. After all, in general, this relation does not show any
coherence with the revealed preference relation R (other than being a subrelation of
it). By contrast, it is quite reasonable that the revealed preference relation R would
recognize the rationality of its rational part and act coherently with it, at least in the
sense of being transitive relative to it. Indeed, when we think of a subrelation S of
the revealed preference relation R as a “rational part”of R, the statement x S y is
interpreted as saying that the agent prefers x over y in complete confidence, and the
statement y R z as saying that it is revealed (to an outside observer) that she likes y
better than z, even though she may well be somewhat insecure about this decision.
But then it stands to reason that the “obvious”superiority of x over y for this agent
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would entail that she would like x better than z, but, of course, it is possible that she
may not be secure in this judgement either.
This discussion leads one to consider the largest (transitive and) affi ne subrelation

ofR with respect to whichR is transitive as a promising formalization of the intuitive
notion of the “largest rational part”of R. We shall see shortly that this formulation
is free of the aforementioned existence issue.

The Rational Core of a Binary Relation. Let R be a reflexive binary relation on
a nonempty convex subset X of a linear space. By the rational core of R, we
mean the largest affi ne subrelation S of R such that R is S-transitive, and denote
this subrelation by core(R). It is plain that R is an affi ne preorder iffR = core(R).
Moreover, core(R) reduces to the affi ne core of R whenever R is a preorder.
The following result shows that the rational core of R is sure to exist, and it is

a preorder on X. In addition, it clarifies exactly how core(R) can be computed by
using the two core concepts we discussed above.

Theorem 3.4. Let R be a reflexive binary relation on a nonempty convex subset X
of a linear space. Then,

core(R) = A(T(R)). (5)

In particular, core(R) is an affi ne preorder on X.

Proof. To prove (5), define % := A(T(R)). Obviously, % is an affi ne subrelation
of T(R), and hence of R. Moreover, % ⊆ T(R), and it follows from this that R is
%-transitive. On the other hand, if S is any affi ne subrelation of R such that R is
S-transitive, then, S ⊆ T(R), and hence S = A(S) ⊆ A(T(R)) = %. Conclusion: %
is the largest affi ne subrelation of R such that R is %-transitive. To prove our second
assertion, note that T(R) is a preorder on X (Proposition 3.1), so Proposition 3.3
entails that % is itself a preorder on X. �

A natural question concerning the representation of the rational core in terms of
the affi ne and transitive cores as in Theorem 3.4 concerns the order of application of
these cores. Indeed, it is not clear if, in general, we have

A(T(R)) = T(A(R)) (6)

for a binary relation R as in Theorem 3.4. It turns out that this equation is not true
universally, but the left-hand side is always contained in the right-hand side.

Proposition 3.5. Let R be a reflexive binary relation on a nonempty convex subset
X of a linear space. Then,

core(R) ⊆ T(A(R)).

Proof. As core(R) is an affi ne subrelation of R, we have core(R) ⊆ A(R). Con-
sequently, by definition of the transitive core, our assertion will be proved if we can
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show that A(R) is core(R)-transitive. To this end, take any x, y and z in X, and
assume that x core(R) y A(R) z. Then, for any w ∈ X and λ ∈ (0, 1], the affi nity of
core(R) and A(R) implies

λx+ (1− λ)w core(R) λy + (1− λ)w A(R) λz + (1− λ)w,

so, as A(R) ⊆ R and R is core(R)-transitive, we find λx+ (1−λ)w R λz+ (1−λ)w,
thereby establishing that x A(R) z (Proposition 3.3). As one can similarly show that
x A(R) y core(R) z implies x A(R) z, we are done. �

The fact that the containment in Proposition 3.5 may hold properly will be proved
in Section 6.2.

Continuity of the Rational Core of a Binary Relation. In our applications to
decision theory, it will be important to know when the rational core of a continuous
binary relation defined on a nonempty convex subset of a topological linear space is
itself continuous. Unfortunately, this is not true universally, precisely because the
transitive core of such a relation need not be continuous.9 However, the diffi culty
disappears under a relatively weak monotonicity condition.
Let R be a reflexive binary relation on a topological space X. We say that R is

locally non-saturated if for any distinct x and y in X with x R y, the following
hold:
(i) For every open neighborhood O of x in X, there are an xO ∈ O and an open

neighborhood U of y in X such that xO R z for every z ∈ U ;
(ii) For every open neighborhood U of y in X, there are a yU ∈ U and an open

neighborhood O of x in X such that z R yU for every z ∈ O.
In words, this property means that if x R y, then we can perturb x marginally

to obtain an alternative better than all the alternatives in a neighborhood of y, and
similarly, we can perturb y marginally to obtain an alternative worse than all the al-
ternatives in a neighborhood of x. As we shall see, many binary relations encountered
in decision theory satisfy this property.10 Furthermore, as we prove in the Appendix,
this property warrants that the transitive core of a reflexive binary relation inherits
the continuity of that relation. But we also prove in the Appendix that the affi ne
core of a continuous binary relation (on a nonempty convex subset of a topological
linear space) is automatically continuous. Putting these two observations together,
and invoking Theorem 3.4, we obtain the following:

9Let X := {0, 1}×{0, 1, 12 ,
1
3 , ...}, and consider the preorder < on X defined by (x1, x2) < (y1, y2)

iff x2 ≥ y2, and put R := < ∪{((0, 0), (0, 1)), ((1, 0), (1, 1))}. As it is the union of two closed subsets
of X × X, R is a continuous reflexive binary relation on X. But we have (0, 1m ) T(R) (1, 1m ) for
every integer m ≥ 2, while (0, 0) and (1, 0) are not comparable with respect to T(R).
10As an immediate example, we note that the usual (coordinatewise) ordering of Rn is certainly

locally non-saturated. Similarly, any preorder on a topological space X that admits a continuous
and injective utility representation is locally non-saturated.
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Theorem 3.6. Let R be a reflexive binary relation on a nonempty convex subset
X of a topological linear space. If R is continuous and locally non-saturated, then
core(R) is continuous.

This result will streamline some of the computations we will perform in the fol-
lowing sections.

3.4 The Strongly Rational Core

Strongly Affi ne Binary Relations. LetR be a reflexive binary relation on a nonempty
convex subset X of a linear space. We say that R is strongly affi ne provided that

x R y if and only if λx+ (1− λ)z R λy + (1− λ)z

for every x, y and z in X and every 0 < λ ≤ 1. Obviously, if R is strongly affi ne, it is
affi ne, but the converse of this is not true in general (even when R is a preorder).11

This stronger notion of affi nity is also used in the theory of decision making under
risk and uncertainty, where it is sometimes referred to as the Strong Independence
Axiom. Indeed, the normative motivation behind the von Neumann-Morgenstern
Independence Axiom as a rationality trait applies to the Strong Independence Axiom
without modification. (In that theory, one often posits only the Independence Axiom
at the outset, only to derive the Strong Independence Axiom by using some form of
continuity.) Consequently, one may wish to require a “rational part”of a preference
over lotteries (or acts) to conform with the Strong Independence Axiom (instead of
merely the Independence Axiom). This leads to a strengthening of our rational core
concept in the following way.

The Strongly Rational Core of a Binary Relation. Let R be a reflexive binary
relation on a nonempty convex subset X of a linear space. By the strongly rational
core of R, we mean the largest strongly affi ne subrelation S of R such that R is
S-transitive, and denote this subrelation as core∗(R). It is plain that, when it exists,
core∗(R) is a subrelation of core(R).
The motivation behind core∗(R) is surely on a par with that of core(R), if not

superior. However, mathematically speaking, the strongly rational core operator is
not as well-behaved as the rational core. Indeed, it is not even clear if core∗(R)
exists for every reflexive binary relation R on X. Fortunately, in a variety of cases
of interest, we get the best of the two worlds, because the strongly rational core and
rational core coincide, as our next result demonstrates.

Proposition 3.7. Let R be a reflexive, continuous, and locally non-saturated bi-
nary relation on a nonempty convex subset X of a topological linear space.12 Then,
core∗(R) = core(R).
11For an example, see footnote 7.
12More generally, it is enough to assume that R is a reflexive binary relation such that T(R) is

continuous.
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In all of the applications we consider in Sections 5 and 6, the strongly rational
core and rational core coincide. This is proved either by directly verifying that the
rational core is strongly affi ne or by using Proposition 3.7. Thus, we will henceforth
focus only on the rational core of preference relations.

3.5 A “Decomposition”of Rationality

We have motivated the rational core as corresponding to the largest rational part of a
(revealed) preference relation R, insofar as rationality is captured by (strong) affi nity
and transitivity of preferences (and transitivity of R with respect to this part). From
this vantage point, Theorem 3.4 may be seen as “decomposing”the largest rational
part of R into these two rationality traits. Moreover, as we show next, if any one
of these traits is already present in one’s preferences, the rational core would indeed
coincide with the remaining rationality trait.

Proposition 3.8. Let R be a reflexive binary relation on a linear space X. If R is
transitive, then core(R) = A(R), and if R is strongly affi ne, then core(R) = T(R).

Proof. If R is transitive, then R = T(R), and hence core(R) = A(R) by Theorem
3.4. Next, suppose that R is strongly affi ne. We wish to show that T(R) is affi ne,
which will complete our proof, because Theorem 3.4 would then yield core(R) =
A(T(R)) = T(R). Take any x, y, z ∈ X and 0 < λ ≤ 1, and assume that x T(R) y.
Now take any w ∈ X with w R λx + (1 − λ)z, and define w′ := 1

λ
(w − (1 − λ)z).

Then, w = λw′ + (1 − λ)z, so by strong affi nity of R, we find w′ R x. Since R is
T(R)-transitive, therefore, w′ R y, and hence, by affi nity of R, w = λw′ + (1 − λ)z
R λy + (1− λ)z. Thus:

(λx+ (1− λ)z)↑ ⊆ (λy + (1− λ)z)↑.

Since we can similarly show that (λx+ (1− λ)z)↓ ⊇ (λy+ (1− λ)z)↓, we may invoke
Proposition 3.1 to find λx + (1 − λ)z T(R) λy + (1 − λ)z. In view of the arbitrary
choice of x, y, z and λ, we conclude that T(R) is affi ne. �

4 Rationalizable Preferences

The literature on choice theory and multi-criteria decision-making provides various
models of choice on the basis of a collection of (rational) preference relations. The
recent work of Cherepanov, Feddersen and Sandroni (2013), for instance, characterizes
those choice functions for which there is a collection of complete preorders such that
a choice from a given set is the maximizer of at least one of those preorders. Put
differently, such a choice function obtains by maximizing a (potentially) nontransitive
reflexive binary relation, namely, the union of a collection of complete and transitive
preference relations. In this section we show that the rational core of this sort of a
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binary relation (on a suitable space) corresponds precisely to the common agreement
between all of the preferences in the collection, provided that there is at least some
agreement between these preferences to begin with. We will derive this result here in
quite an abstract setup, and in Sections 5 and 6, apply it in the context of decision
making under risk and uncertainty.

Rationalizable Preferences. Let X be a nonempty convex subset of a topological
linear space. Let P stand for a nonempty collection of continuous and affi ne complete
preorders on X. We may think of P as representing the set of preferences of a group
of rational individuals. Alternatively, we may think of each element % in P as a
(rational) preference relation of a different “self”of the same individual. (For instance,
the agent may not know which of these relations will be the relevant one at the
time of consumption, so entertains them all before making her choice.) Still another
interpretation is that each % in P tells us how good the elements of X are with
respect to some rationale (or criterion, or attribute). Borrowing the terminology
used by Cherepanov, Feddersen and Sandroni (2013), therefore, we refer to the binary
relation

⋃
P on X as a rationalizable preference on X.

The Rational Core of Rationalizable Preferences. Our main goal in this section is
to show that if there is a minimal agreement between the strict parts of the preference
relations in P , then the rational core of

⋃
P corresponds exactly to

⋂
P .

We will actually prove something a bit more general at first. In what follows, we
refer to a preorder % on X as convex if λx + (1 − λ)y � y for every x, y ∈ X with
x � y and λ ∈ (0, 1].

Proposition 4.1. Let P be a nonempty collection of continuous and convex complete
preorders on a nonempty convex subset X of a topological linear space. Suppose that
for every x ∈ X, either x is a maximum of X with respect to each % ∈ P, or there
is an x∗ ∈ X with x∗ � x for each % ∈ P. Then, T(

⋃
P) =

⋂
P, and

x core(
⋃
P) y iff x A(%) y for every %∈ P

for any x and y in X.

Proof. Let us put R :=
⋃
P and D :=

⋂
P to simplify the notation. Note that R

is D-transitive, so we have T(R) ⊇ D. Conversely, take any x, y ∈ X with x T(R) y,
but, to derive a contradiction, assume that x D y is false, that is, y �′ x for some %′
in P . By hypothesis, there is an x∗ ∈ X such that x∗ � x for each % ∈ P. Clearly, by
continuity of %′, we can choose a large enough λ in (0, 1) such that y �′ λx+(1−λ)x∗.
On the other hand, as x∗ � x for each % in P, and because every % in P is convex,
λx + (1 − λ)x∗ � x for each % in P. Thus, x T(R) y R λx + (1 − λ)x∗ but not
x R λx + (1 − λ)x∗, which means that R is not T(R)-transitive, a contradiction.
Conclusion: T(R) = D. Moreover, combining this finding with Theorem 3.4 yields
core(R) = A(D) . But, by (2), we have A(D) =

⋂
{A(%) : % ∈ P}, and we are done.

�
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As an immediate corollary of this result we obtain the following generalization of
Proposition 4 of Nishimura (2018).

Corollary 4.2. Let P be a nonempty collection of continuous and affi ne complete
preorders on a nonempty convex subset X of a topological linear space. Suppose that
for every x ∈ X, either x is a maximum of X with respect to each % ∈ P, or there
is an x∗ ∈ X with x∗ � x for each % ∈ P. Then,

T(
⋃
P) =

⋂
P = core(

⋃
P).

When all members of the collection P are affi ne (as in Corollary 4.2), we can
actually ensure that core(

⋃
P) =

⋂
P with less restrictive hypotheses, as we show

next.

Proposition 4.3. Let X and P be as in Corollary 4.2. Suppose that there exist two
elements x∗ and x∗ of X such that x∗ � x∗ for every % in P. Then,⋂

P = core(
⋃
P).

Proof. Let us again put R :=
⋃
P and D :=

⋂
P to simplify the notation, and

note that T(R) ⊇ D (because R is D-transitive). As it is plain that D is affi ne, it
follows from the definition of core(R) and Corollary 3.2 that D ⊆ core(R). To prove
the converse containment, suppose that x D y is false. By definition of D, then, there
is a preorder % in P such that y � x. As % is a continuous and complete preorder
on X, the binary relation � is open in X ×X, and hence, thanks to the continuity of
the addition and scalar multiplication operations on X, there exists a large enough
λ in the interval (0, 1) such that λy + (1 − λ)x∗ � λx + (1 − λ)x∗. On the other
hand, as every element of P is affi ne, we have λy + (1 − λ)x∗ �′ λy + (1 − λ)x∗ for
every �′ in P , which means that λy + (1− λ)x∗ R λy + (1− λ)x∗ is false. It follows
from Proposition 3.1 that λx+ (1− λ)x∗ T(R) λy + (1− λ)x∗ is false. But then, by
Proposition 3.3, x is not ranked higher than y by the affi ne core of T(R), which, by
Theorem 3.4, means that x core(R) y is false. Thus: core(R) ⊆ D. �

Remark 4.1. The use of the convex structure of preferences is essential in Proposition
4.1. For, in general, the transitive core of the union of a set P of complete preorders
need not equal the intersection of these orders (although we always have T(

⋃
P) ⊇⋂

P). Indeed, let X := {x, y, z}, %1:= {(x, y), (x, z), (y, z)} ∪4X and %2 := {(y, x),
(x, z), (y, z)} ∪ 4X . Then, %1 ∪ %2 is transitive, so it equals its transitive core. In
particular, this preorder includes both (x, y) and (y, x), but %1 ∩ %2 does not contain
either (x, y) or (y, x).

Remark 4.2. Giarlotta and Greco (2013) study an ordered pair of binary relations
(R1,R2) on a given nonempty set in which R1 is a preorder and R2 is a complete
superrelation of R1. The interpretation is that the agent would always act according
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to R1 so long as this relation applies, and that her choices would never disagree
with R2. In accord with this interpretation, if R2 is R1-transitive and, for any two
alternatives x and y, either xR1 y or y R2 x, Giarlotta and Greco (2013) call (R1,R2)
a necessary and possible (NaP) preference on X, and show that for any such (R1,R2)
there is a collection P of complete preorders onX such thatR1 =

⋂
P andR2 =

⋃
P .

In the context of Proposition 4.3, therefore, we find here that (core(R),R) is a NaP
preference on X for any rationalizable preference R on X.

An Example. Let R be a reflexive binary relation on a nonempty convex subset of
a linear space. If R is transitive, Theorem 3.4 says that core(R) = A(R). If, on the
other hand, R is such that T(R) is affi ne (as in Corollary 4.2), we have core(R) =
T(R). In any one of these cases, therefore, one does not need the combined powers of
the transitive and affi ne cores of R, and the characterization we obtained in Theorem
3.4 becomes somewhat trivial. We now use Proposition 4.1 to provide a concrete
example that shows that this is not a general phenomenon.
Let n be an integer with n ≥ 2, and let ∆n−1 stand for the unit simplex in Rn.13

Fix any σ ∈ ∆n−1 and any nonempty closed and convex subset M of ∆n−1, and
consider the preorders %1 and %2 on Rn defined by

x %1 y iff σ · x ≥ σ · y

and
x %2 y iff min

µ∈M
µ · x ≥ min

µ∈M
µ · y,

for every x, y ∈ Rn, where we use the usual inner product notation on Rn.14 To avoid
trivialities, we assume thatM is not a singleton and it does not contain σ. Finally,
we define R := %1 ∪ %2. We wish to compute the rational core of R, and show that
it is distinct from the transitive and affi ne cores of R.
First, we apply Proposition 4.1 to find that x core(R) y iff x %1 y and x A(%2)

y, for any x, y ∈ Rn. Put more explicitly,

x core(R) y iff µ · x ≥ µ · y for every µ ∈M∪ {σ}.

On the other hand, again by Proposition 4.1, x T(R) y iff x %1 y and x %2 y, for any
x, y ∈ Rn. SinceM is not a singleton, %2 is not affi ne, and this implies that T(R) is
not affi ne. Thus: core(R) 6= T(R).
Now, let us put R∗ := %1 ∪A(%2). Then, R∗ is an affi ne subrelation of R, so we

have R∗ ⊆ A(R) while, in view of the computation above, core(R) ⊆ R∗. Therefore,
if we can show that core(R) is a proper subset of R∗, we may conclude that it is a
proper subset of A(R) as well, establishing that core(R) 6= A(R). In other words, we

13That is, ∆n−1 := {µ ∈ Rn+ : µ1 + · · ·+ µn = 1}.
14One could interpret %2 as corresponding to a Rawlsian aggregation that is made up of a col-

lection of weighted utilitarian social welfare functions. Alternatively, we can think of %2 as Gilboa-
Schmeidler maxmin preferences over monetary Anscombe-Aumann acts.
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wish to show that the intersection of the sets%1 and A(%2) does not equal their union,
that is, %1 and A(%2) are distinct preorders. To this end, we apply the Separating
Hyperplane Theorem to find a nonzero n-vector x and a real number α such that
µ · x ≥ α > σ · x for every µ ∈ M. Then, where %∗ is the preorder on Rn defined
by y %∗ z iff µ · y ≥ µ · z for every µ ∈ M, and α̂ stands for the n-vector (α, ..., α),
we have x %∗ α̂. But it is plain that %∗ is an affi ne subrelation of %2. Thus, %∗ ⊆
A(%2), and it follows that x A(%2) α̂ while α̂ �1 x. Conclusion: %1 and A(%2) are
distinct, and hence, core(R) 6= A(R).

5 Rational Core and Choice under Risk

In this section, we investigate the rational core operator in the setting of decision-
making under risk (leaving the case of uncertainty to the next section). In particular,
our goal is to “compute”the rational core of a number of risk-preference models.
Throughout this section, Z stands for a metric space, which we view as the space

of all riskless alternatives. As is standard, by a lottery on Z, we mean a Borel
probability measure on Z, and denote the collection of all such lotteries by ∆(Z).
The (risk) preferences of an individual are defined over ∆(Z). As usual, we think of
this set as a topological space relative to the topology of weak convergence; as such,
when Z is separable, this space is metrizable.
In what follows, by an expected utility preference on ∆(Z), we mean any

complete preorder % on ∆(Z) for which there is a continuous and bounded (Bernoulli
utility) function u : Z → R such that

p % q if and only if
∫
Z

u dp ≥
∫
Z

u dq

for any p and q in ∆(Z). It is well-known that if Z is separable, and % is a continuous
and affi ne complete preorder on ∆(Z), then % is an expected utility preference. More
generally, a preorder% on∆(Z) is said to be an expected multi-utility preference
on ∆(Z) if there is a nonempty collection U of continuous and bounded (Bernoulli
utility) functions on Z such that

p % q if and only if
∫
Z

u dp ≥
∫
Z

u dq for every u ∈ U (7)

for any p and q in ∆(Z). (In this case, we say that “U is an expected multi-utility
representation for %.”) Such preferences satisfy all axioms of the von Neumann-
Morgenstern theory with the potential exception of the completeness property.

5.1 Representation of the Rational Core under Risk

Let R be a reflexive binary relation on ∆(Z), representing the (observed) pairwise
ranking of lotteries by a decision maker. We allow this ranking procedure to lead
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to indecisiveness and/or cyclic choices, as well as failing the classical Independence
Axiom, thereby allowing for, say, the Allais paradox. That is,R need not be complete,
transitive and/or affi ne. Loosely speaking, Theorem 3.4 says that we can think of the
rational core of R in this setting as an incomplete, but transitive, preference relation
on the lottery space ∆(Z) that satisfies the Independence Axiom. In turn, these
properties entail that the rational core of R has a fairly special structure which we
can identify without knowing anything about the concrete description of R. Indeed,
under some basic regularity conditions, this preference relation admits an expected
multi-utility representation.

Theorem 5.1. Let Z be a compact metric space, and R a reflexive, continuous
and locally non-saturated binary relation on ∆(Z). Then, core(R) is an expected
multi-utility preference on ∆(Z).

Proof. As ∆(Z) is a convex subset of the topological linear space ca(Z), 15 we can
apply Theorems 3.4 and 3.6 to conclude that core(R) is a continuous affi ne preorder
on ∆(Z). Given that Z is compact, therefore, we may apply the Expected Multi-
Utility Theorem of Dubra, Maccheroni and Ok (2004) to complete the proof. �

Continuity and local non-saturation are fairly standard hypotheses for preferences
over risky prospects. Theorem 5.1 thus says that we may think of the rational core of
essentially any type of binary relationR encountered in the theory of decision making
under risk (with a compact prize space) as a unanimity ordering, where the unanimity
is required of a nonempty collection of expected utility preferences. Exactly which
collection is to be used for this purpose depends on the particular structure of R.

5.2 Applications to the Theory of Risk Aversion

While the theory of risk aversion is fairly well-developed in the context of expected and
nonexpected utility theory, there is hardly any work in the literature that investigates
the risk attitudes of nontransitive risk preferences. In this section, our goal is to
demonstrate that one can use the notion of rational core to extend the classical
theory of risk aversion to the context of such preferences.

5.2.1 Monotonic Risk Preferences

Let R be a reflexive binary relation on ∆ := ∆([0, 1]), which we interpret as the risk
preferences of an agent over lotteries with monetary payoffs. Consider the following

15Here ca(Z) stands for the normed linear space of all signed finite Borel measures on Z relative
to the total variation norm. Since Z is compact, this space is isometrically isomorphic to the
topological dual of C(Z) — this is the Radon-Riesz Representation Theorem — and we use this
duality to topologize ca(Z) with the weak∗-topology. (Here C(Z) is the normed linear space of all
continuous real maps on Z relative to the sup-norm.) This makes ca(Z) a Hausdorff topological
linear space such that the subspace topology on ∆(Z) is exactly the topology of weak convergence.
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question: What does it mean for R to be monotonic? This is a meaningful question
because monotonicity is often (and rightly) seen as a trait of rationality that is distinct
from both transitivity and affi nity; there is no reason for a nontransitive and nonaffi ne
R not to rank a monetary lottery over another one if the former is “unambiguously”
better from the payout standpoint. And there seems to be an immediate answer; just
declare R as “monotonic”when ≥FSD ⊆ R, where ≥FSD is the first order stochastic
dominance ordering on ∆. (By definition, ≥FSD is the partial order on ∆ for which
the collection of all continuous and increasing real maps on [0, 1] is an expected
multi-utility representation.)
On the other hand, intuitively speaking, it makes sense to ask an individual to

view the comparison of two ≥FSD-comparable lotteries as an “easy” one (barring,
of course, computational diffi culties which we do not model in this paper). This
suggests that we say R is monotonic if ≥FSD ⊆ core(R), and strictly monotonic
if >FSD ⊆ core(R)> (where >FSD stands for the asymmetric part of ≥FSD). The
following observation provides a characterization of this property that sidesteps the
computation of core(R).

Proposition 5.2. A reflexive binary relation R on ∆([0, 1]) is monotonic if, and only
if, it is ≥FSD-transitive.
Proof. The “if” part follows immediately from the fact that ≥FSD is an affi ne

binary relation on ∆ and the definition of core(R). Since R is core(R)-transitive, the
“only if” part follows from the fact that R is S-transitive for any subrelation S of
core(R). �

While it is trivial, this proposition has conceptual power. Arguably, it shows that
the “correct”generalization of monotonicity to the context of an arbitrary preference
relation on ∆ (which need not satisfy any property other than reflexivity) is not
requiring that R be a superrelation of ≥FSD, but more stringently, that R be ≥FSD-
transitive.
The following proposition, which characterizes the rational core of a (strictly)

monotonic preference relation that satisfies the conditions of Theorem 5.1, gives fur-
ther credence to this argument.

Proposition 5.3. Let R be a reflexive, continuous and locally non-saturated binary
relation on ∆([0, 1]). Then, R is monotonic if, and only if, there is a nonempty
collection U of continuous and increasing real functions on [0, 1] such that

p core(R) q if and only if
∫
[0,1]

u dp ≥
∫
[0,1]

u dq for every u ∈ U (8)

for any p and q in ∆([0, 1]). Moreover, if R is ≥FSD-transitive, and δa R> δb holds
whenever a > b, then R is strictly monotonic, and in this case, we can choose U here
as strictly increasing.16

16For any c ∈ [0, 1], by δc we denote the lottery on [0, 1] that pays c with probability 1. Besides, by
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5.2.2 Risk Aversion

With R being any reflexive binary relation on ∆, we now turn to the following
question: What does it mean forR to be risk averse? SinceR need not satisfy the von
Neumann-Morgenstern Independence Axiom, one needs to make a distinction between
the notions of weak risk aversion and strong risk aversion.17 While these concepts
are identical for monotonic expected utility preferences on ∆, they are distinct in
the context of more general preference structures. Moreover, it is well-known that
strong risk aversion is much better behaved for nonexpected utility preferences. (See,
for instance, Cohen (1995).) Consequently, it seems desirable that the answer to our
question is phrased by means of a property to be imposed on R that would reduce
to strong risk aversion when R is a preorder on ∆. In turn, this suggests that we
should declare R as “risk averse”when ≥SSD ⊆ R, where ≥SSD is the second order
stochastic dominance ordering on ∆. (By definition, ≥SSD is the partial order on ∆
for which the collection of all continuous, increasing and concave real maps on [0, 1]
is an expected multi-utility representation.)
On the other hand, as in the discussion of monotonicity above, it makes sense to

qualify an individual as “risk averse”if there is no doubt in her rational mind that she
prefers p to q for any two lotteries p and q on [0, 1] with p ≥SSD q. In other words, it
may be desirable that we insist her preferences be “unambiguous”about the ranking
of two lotteries that are comparable by ≥SSD; the “irrational”part of the agent, if
any, should not interfere with how such two lotteries are ranked. Of course, when
the preferences in question are transitive and affi ne, this issue does not arise, because
every ranking of lotteries is then “unambiguous,” insofar as rationality is captured
by transitivity and the Independence Axiom. But in the absence of transitivity, this
argument demands that ≥SSD be contained not only in R, but in the rational core of
R. This leads us to the following definition: R is risk averse if ≥SSD⊆ core(R).
Obviously, this definition reduces to asking merely for ≥SSD⊆ R when R is transi-

tive (because in that case core(R) = A(R) while ≥SSD is an affi ne preorder on [0, 1]).
Thus, in particular, our definition is in concert with how (strong) risk aversion is
defined for transitive nonexpected utility preferences. Our next proposition, which
obtains by replacing ≥FSD with ≥SSD in the proof of Proposition 5.2, shows that our
definition is in general more demanding.

Proposition 5.4. A reflexive binary relation R on ∆([0, 1]) is risk averse if, and only
if, it is ≥SSD-transitive.

Again, the upshot of this proposition is conceptual. It suggests that the “correct”
generalization of strong risk aversion to the context of an arbitrary preference relation

U being (strictly) increasing here, we mean simply that every member of U is (strictly) increasing.
17A preorder % on ∆ is said to be weakly risk averse if δe(p) % p for every p ∈ ∆. (Here e(p)

stands for the expectation of p, and δe(p) is the degenerate lottery on [0, 1] that pays e(p) dollars
with probability 1.) By contrast, % is said to be strongly risk averse if it is a superrelation of the
second order stochastic dominance ordering on ∆.
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on ∆ is not requiring that R be a superrelation of ≥SSD, but more stringently, that
R be ≥SSD-transitive.
The following result extends Proposition 5.3 to the context of risk averse prefer-

ences.

Proposition 5.5. Let R be a reflexive, continuous and locally non-saturated binary
relation on ∆([0, 1]). Then, R is risk averse if, and only if, there is a nonempty
collection U of continuous, increasing and concave real functions on [0, 1] such that
(8) holds for any p and q in ∆([0, 1]).

As their proofs in the Appendix demonstrate, Propositions 5.3 and 5.5 remain
valid for any reflexive R on ∆ such that core(R) admits an expected multi-utility
representation. (In that case, one does not need to verify that R is continuous and
locally non-saturated.) This fact may be useful in determining whether or not a given
relation on ∆ is risk averse, even though local non-saturation of the relation may be
diffi cult to check (or may even fail). The following example illustrates.

Example 5.1. (Justifiable Risk Preferences) By a justifiable risk preference on ∆,
we mean a binary relation RU on ∆ such that

p RU q if and only if
∫
[0,1]

u dp ≥
∫
[0,1]

u dq for some u ∈ U ,

where U is a nonempty collection of continuous real maps on [0, 1] such that there
exist some z∗, z∗ ∈ [0, 1] with u(z∗) > u(z∗) for all u ∈ U . Any such relation is affi ne,
but it need not be transitive. The upshot here is that, by Proposition 4.3, U is an
expected multi-utility representation for core(RU). Therefore, not by Propositions 5.3
and 5.5, but by the remark above, we may conclude that RU is monotonic iff U is
increasing, and it is risk averse iff every member of U is increasing and concave. �

5.2.3 Comparative Risk Aversion

The rational core operator provides a natural method of making comparative assess-
ments of risk attitudes of two individuals with possibly nontransitive and nonaffi ne
preferences over monetary lotteries. For any reflexive and strictly monotonic binary
relations R1 and R2 on ∆, we say that R1 is more risk averse than R2 if

p core(R1) δa implies p core(R2) δa (9)

and
δa core(R2) p implies δa core(R1) p (10)

for every p ∈ ∆ and a ∈ [0, 1]. In words, this means that if a person “undoubtedly”
prefers a risky lottery to a riskless lottery, then a less risk averse person would also
do so, and dually, if a person “undoubtedly”prefers a degenerate lottery to a lottery,
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then a more risk averse person would also do so.18 It is plain that this definition
reduces to the standard one in the case where both R1 and R2 admit expected utility
representations.
As in the classical theory, while intuitively appealing, this definition of compar-

ative risk aversion is diffi cult to work with in practice. For this reason, we develop
below a suffi cient condition for our comparative risk aversion ordering to apply. First,
let us agree to say that a continuous real map u on [0, 1] is more (less, resp.) con-
cave than another such map v if u is a strictly increasing, continuous and concave
(convex, resp.) transformation of v (that is, there is a strictly increasing, continuous
and concave (convex, resp.) map f : v([0, 1]) → R with u = f ◦ v). In turn, we say
that a nonempty subset U of C[0, 1] is more concave than another such set V if
(i) for every v ∈ V , there is a u ∈ U that is more concave than v; and (ii) for every
u ∈ U , there is a v ∈ V that is less concave than u.19
The following proposition shows that if two reflexive preferences over ∆ have

rational cores which admit expected multi-utility representations —in particular, when
these preferences are continuous and locally non-saturated —then comparability of the
concavity of these representations is suffi cient to compare the involved risk attitudes.

Proposition 5.6. Let R1 and R2 be two reflexive binary relations on ∆([0, 1]). If
there exist expected multi-utility representations for core(R1) and core(R2) such that
the one for core(R1) is more concave than that for core(R2), then R1 is more risk
averse than R2.

This proposition does not yield a characterization of the “more risk averse than”
relation even when we know that the rational cores of the involved preferences have
expected multi-utility representations. However, in the interesting case where both
preferences are strictly monotonic, and one of them is a standard expected utility
preference, then the result becomes a characterization.

Corollary 5.7. Let R1 and R2 be two reflexive binary relations on ∆([0, 1]) such that
R2 is a (continuous) strictly monotonic expected utility preference. If there exists a

18Even when core(R1) and core(R2) do possess expected multi-utility representations, easy ex-
amples would show that (9) does not imply (10), and conversely, unless, of course, both of these
preordes are complete (in which case the situation reduces to the comparison of two expected utility
preferences).
19It may be useful to give an order-theoretic formulation of this definition to highlight its connec-

tion to the standard notion of concave transformations. For any preorder % on a nonempty set X,
the upper set-ordering %u induced by % on 2X is defined as A %u B iff for every a ∈ A, there is
a b ∈ B with a % b. Similarly, the lower set-ordering %l induced by % on 2X is defined as A %l B
iff for every b ∈ B, there is an a ∈ A with a % b. (Easy examples would show that these preorders
are, in general, distinct.) In turn, we define the set-ordering induced by % as %∗:= %u ∩ %l.
Now consider the preorder %con on C[0, 1] defined by u %con v iff u is an increasing, continuous

and concave transformation of v. Then, the definition above maintains that U is more concave than
V iff U %∗con V.
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strictly increasing expected multi-utility representation U for core(R1), then R1 is
more risk averse than R2 if and only if each u ∈ U is more concave than any Bernoulli
utility for R2.20

Example 5.2. (Justifiable Risk Preferences, Again) Let U and V be two nonempty
collections of strictly increasing and continuous real maps on [0, 1], and consider
the justifiable risk preferences RU and RV on ∆. Again, by Proposition 4.3, U is an
expected multi-utility representation for core(RU), and V for core(RV). Therefore, by
Proposition 5.6, if U is more concave than V, then RU is more risk averse than RV .
And, provided that either U or V is a singleton, this is a complete characterization:
U is more concave than V iffRU is more risk averse than RV .
We can easily illustrate these observations by using the CARA utility functions.

To wit, define uλ ∈ C[0, 1] by uλ(t) := −e−λt/λ for any λ > 0. Next, take two
nonempty closed subsets I and J of R++, and put U := {uλ : λ ∈ I} and V := {uλ :
λ ∈ J}. If sup I ≥ sup J and inf I ≥ inf J, then RU is more risk averse than RV . And
if J is a singleton, say, J := {α}, then RU is more risk averse than RV iff inf I ≥ α.
�

Our final result in this section provides a consistency check between how we defined
above the notions of risk aversion and comparative risk aversion. In its statement, by
the risk neutral preference % on ∆, we mean the complete preorder % with p % q
iff e(p) ≥ e(q), where e(p) and e(q) stand for the expected values of the lotteries p
and q, respectively.

Corollary 5.8. Let R be a reflexive, strictly monotonic, continuous and locally non-
saturated binary relation on ∆([0, 1]). Then, R is risk averse if, and only if, it is more
risk averse than the risk neutral preference on ∆.

5.3 Application: The Preference Reversal Phenomenon, Re-
visited

Among the many experimental observations that refute the basic premises of expected
utility theory, a particularly striking one is the so-called preference reversal (PR)
phenomenon. This phenomenon was first demonstrated by Slovic and Lichtenstein
(1968), and then explored by Grether and Plott (1979) in meticulous detail. Let
us formalize the PR-phenomenon in terms of lotteries on [0, 1]. Let R be a binary
relation on ∆ := ∆([0, 1]) which models the (observable) preferences of an individual
over such lotteries. For any p ∈ ∆, we define

SR(p) := inf{a ∈ [0, 1] : δa R p},
20We can replace the roles of R1 and R2 in this result. That is, if R1 has an expected utility

representation with a strictly increasing and continuous Bernoulli utility function u, and if there
exists a strictly increasing expected multi-utility representation V for core(R2), then R1 is more
risk averse than R2 iff u is more concave than each v ∈ V.
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the minimum selling price of p for the individual. We say that R exhibits
preference reversals if there exist two lotteries p and q in ∆ such that p R q and
yet SR(p) < SR(q).21

It is obvious that a preference relation that exhibits the PR-phenomenon must de-
part from rationality.22 Since we would like to think of the rational core of a preference
relation as representing the rankings that an agent can make with complete confi-
dence, a natural question here is if this core itself may exhibit the PR-phenomenon.
A positive answer would either make our interpretation of the rational core suspect or
it would suggest that the PR-phenomenon is truly fundamental in that it may arise
from the “sure”rankings of a decision maker. Fortunately, under a mild monotonicity
hypothesis, this situation does not arise.
Let us first note that no continuous preorder (affi ne or not) may possibly exhibit

the PR-phenomenon, provided that the minimum selling price with respect to this
preorder is well-defined on ∆.

Lemma 5.9. Let % be a continuous preorder on ∆([0, 1]) such that δ1 % p for every
p ∈ ∆([0, 1]). Then, % does not exhibit preference reversals.
Proof. The hypothesis that δ1 % p ensures S%(p) being well-defined, for every

p ∈ ∆. In turn, continuity of % guarantees that S%(p) = min{a ∈ [0, 1] : δa % p},
and hence δS%(p) % p, for every p ∈ ∆. Consequently, for any p, q ∈ ∆ with p % q, we
have δS%(p) % q, and hence S%(p) ≥ S%(q), by transitivity of %. �

We now show that monotonicity of the preference relation R of a person on ∆,
along with the primitive axioms of reflexivity, continuity and local non-saturation,
rules out the possibility of the rational core ofR being subject to the PR-phenomenon,
while, of course, allowing the observed preferences of the agent, that is, R, to exhibit
preference reversals.

Proposition 5.10. Let R be a reflexive, monotonic, continuous and locally non-
saturated binary relation on ∆([0, 1]). Then, core(R) does not exhibit preference
reversals.

Proof. By Theorems 3.4 and 3.6, core(R) is a continuous preorder on∆. Moreover,
since R is monotonic, ≥FSD ⊆ core(R). But then, since δ1 ≥FSD p for every p ∈ ∆,
we find δ1 core(R) p for every p ∈ ∆. Our claim thus follows from Lemma 5.9. �

We conclude that, as long as the preferences of an individual are monotonic enough
to be transitive with respect to first order stochastic dominance, then preference
21The classical preference reversal phenomenon observed in experiments takes p and q as two-

outcome lotteries with p yielding a “small” positive return with high probability, and q a “large”
return with small probability. We will not need to specialize to this case here, however.
22In passing, we note that this departure may be less excessive than one might initially sus-

pect. Hara, Ok and Riella (2018) have recently shown that the preference reversal phenomenon is
consistent with preferences that are continuous, complete, affi ne, monotone (in the sense of being
consistent with first-order stochastic dominance) and acyclic.
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reversals that these preferences may exhibit cannot arise from their rational part. On
one hand, this validates our interpretation of the rational core, and on the other, it
shows that the preference reversal phenomenon is likely to be due to comparisons
about which the decision maker is somewhat “conflicted.”

5.4 The Rational Core of Rationalizable Risk Preferences

We now go back to our general treatment where lotteries need not be monetary. Let
U be a nonempty collection of non-constant continuous and bounded real functions
on the metric space Z. Suppose that each element of U corresponds to a Bernoulli
utility function on Z, and that there exist two riskless prizes z∗ and z∗ in Z such that
u(z∗) > u(z∗) for every u ∈ U . This amounts to asking only for an extremely weak
agreement among the members of U . In particular, this assumption is much weaker
than requiring that there are a “best”and a “worst” element in Z with respect to
each u ∈ U .
We say that a binary relation R on ∆(Z) is a rationalizable risk preference

on ∆(Z) if there is such a collection U such that

p R q iff
∫
Z

u dp ≥
∫
Z

u dq for some u ∈ U

for any p and q in ∆(Z). (This definition generalizes the one we gave in Example
5.1.) Obviously, this is a particular type of rationalizable preference on ∆(Z), and
we can apply Proposition 4.3 to readily compute its rational core:

Proposition 5.11. For any metric space Z, the rational core of a rationalizable
risk preference on ∆(Z) is an expected multi-utility preference (with the same set of
utilities).

An individual with rationalizable risk preferences on ∆(Z) may be thought of as
saying that a lottery p is better than lottery q if there is at least one rationale for her
(that is, there exists some u ∈ U) with respect to which the expected utility of p is
higher than that of q. In turn, by Proposition 5.11, we see that this individual prefers
p over q “unambiguously”(that is, relative to the rational core of her preferences) iff
p is better for her than q with respect to all of her rationales, an apparently plausible
conclusion.

5.5 The SSB Model

The skew-symmetric bilinear (SSB) model is a generalization of the classical von
Neumann-Morgenstern expected utility model that allows for nontransitive prefer-
ences over risk. This model was first introduced by Kreweras (1961) but did not
make much of an impact on decision theory until the experiments on the preference
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reversal phenomenon were performed. These experiments have pointed to the non-
transitive evaluation of lotteries by the subjects, and has led to the development of
the SSB theory.23

The SSB Model. Let Z be a metric space and ϕ : Z×Z → R a continuous, bounded
and skew-symmetric function. (The skew-symmetry of ϕ means that ϕ(x, y) =
−ϕ(y, x) for every x and y in Z.) The SSB model induced by ϕ is defined as
the binary relation Rϕ on ∆(Z) with

p Rϕ q iff
∫
Z

∫
Z

ϕ dp dq ≥ 0.

It is plain that this relation is complete, but it does not have to be transitive. (When
nontransitive, this relation fails affi nity as well; indeed, an affi ne SSB model is sure
to be an expected utility preference on ∆(Z).24)

The Rational Core of the SSB Model. We have seen in Corollary 4.2 that the ra-
tional core of a rationalizable preference reduces to the transitive core of that relation
under fairly general circumstances. By contrast, we find here that the rational core
of any SSB model reduces to its affi ne core.

Proposition 5.12. Let Z be a metric space and ϕ : Z×Z → R a continuous, bounded
and skew-symmetric function. Then, core(Rϕ) = A(Rϕ), and we have

p core(Rϕ) q iff
∫
Z

ϕ(·, y) dp ≥
∫
Z

ϕ(·, y) dq for every y ∈ Z (11)

for any p and q in ∆(Z).

In the context of the SSB model Rϕ, we can think of ϕ(x, y) as the “relative
utility”of receiving the prize x instead of the prize y. (In other words, ϕ(·, y) acts as
a reference-dependent Bernoulli utility function in this model, where y is the reference
alternative.) Given this interpretation, Rϕ says that lottery p is preferred to lottery
q iff the expectation of the relative utility of every prize in the support of p over
every prize in that of q with respect to the product measure p × q is nonnegative.
In turn, Proposition 5.12 says that the rational core of Rϕ ranks p higher than q —
that is, we may think that the subject individual declares p “unambiguously”better
than q —iff the expected utility of p is higher than that of q with respect to all of
the (reference-dependent) Bernoulli utility functions of the individual. In particular,

23This model was first axiomatized by Fishburn (1982). For excellent overviews of the SSB theory,
see Fishburn (1984a, 1991).
24Indeed, by Proposition 5.12, we have core(R) = A(R). If R is affi ne, then, core(R) = R, that

is, R is a complete, continuous and affi ne preorder on ∆(Z). Conclusion: Every affi ne SSB model
induced by φ is an expected utility preference.

27



we find here that the rational core of the SSB model is also an expected multi-utility
preference on ∆(Z), even though, being nonaffi ne, this model does not belong to the
class of rationalizable risk preferences.

Risk Aversion in the SSB Model. Despite the considerable interest the SSB model
has received in the 1980s, the literature, surprisingly, provides little in the way of
characterizing risk attitudes in the context of this model.25 By contrast, we may
readily appeal to the results of Section 5.2 and obtain such a characterization. To
wit, let ϕ and ψ be two continuous and skew-symmetric real maps on [0, 1]2. Then,
by Proposition 5.6, Rϕ is more risk averse than Rψ if {ϕ(·, y) : y ∈ [0, 1]} is more
concave than {ψ(·, y) : y ∈ [0, 1]}. On the other hand, Corollary 5.7 and Proposition
5.12 say that if ϕ is strictly increasing in the first component and % is an expected
utility preference on ∆([0, 1]), that is, if there is a strictly increasing u ∈ C[0, 1] with
p % q iff the expectation of u relative to p exceeds that relative to q, then Rϕ is
more risk averse than % iff ϕ(·, y) is a strictly increasing, continuous and concave
transformation of u for every y ∈ [0, 1]. In particular, by Proposition 5.5 and the
remark that follows it, Rϕ is risk averse iff ϕ(·, y) is increasing and concave for every
y ∈ [0, 1].

6 Rational Core and Choice under Uncertainty

In this section we continue “computing”the rational cores of various types of decision-
making models, but this time we work in the context of uncertainty. To simplify the
exposition, however, we concentrate only on models with a finite state space and
monetary consequences.
Let n be a positive integer, which will remain fixed throughout this section. We

consider a (Savagean) environment with n many states, labelled as 1, ..., n. Then,
any element x of Rn can be considered as a monetary act which yields a payoff of
xi dollars at state i. Given this interpretation, we may consider Rn as the space of all
Savagean acts on the state space {1, ..., n} with real-valued consequences.26 In turn,
for any x ∈ Rn and µ ∈ ∆n−1, we think of the inner product µ · x as the expectation
of the act x with respect to the prior µ. Thus, any complete preorder on Rn that is
represented by a utility function of the form x 7→ µ · x corresponds to a preference
relation on the monetary act space Rn which admits a (subjective) expected utility
representation with prior µ.27

25Fishburn (1984b) is an exception to this, but that paper is particularly focused on the effect of
cross partials of ϕ on the risk attitudes of Rϕ, and does not say when Rϕ would be considered risk
averse, nor does it discuss comparative risk aversion in the context of the SSB model.
26Alternatively, we can view x as a utility profile as in the Anscombe-Aumann framework (with

n states). Or, in the context of social welfare, we may think of the ith component of an n -vector as
the cardinal utility of person i in an n-person society. In that interpretation, Rn would be regarded
as the set of all (cardinal) utility profiles in the society.
27We restrict our attention to the case of finite state space mainly for expositional purposes. To be

28



On the other hand, we refer to a preorder % on Rn for which there is a nonempty,
closed and convex subsetM of ∆n−1 such that

x % y if and only if µ · x ≥ µ · y for every µ ∈M (12)

for every x, y ∈ Rn, as a Bewley preference (with prior setM) on Rn. Such prefer-
ences were introduced by Bewley (1986) in his formulation of Knightian uncertainty
theory, and are characterized by the set M, which is interpreted as a set of priors
on the state space {1, ..., n}. They correspond to the (incomplete) preferences of a
decision-maker who is unable to pin down his subjective assessment of the relative
likelihoods of the states of nature, and who, therefore, possesses a set M of priors
on the state space. This individual ranks an act x over another act y only when the
expectation of x is higher than that of y with respect to each of her priors.

6.1 Representation of the Rational Core under Uncertainty

We have seen in Theorem 5.1 that the rational core of any reflexive, continuous and
locally non-saturated preference over a lottery space admits an expected multi-utility
representation. In the present context, we can show that the rational core of such
a preference relation enjoys an expected utility representation with multiple priors,
provided that it is monotonic in a suitable sense.

Theorem 6.1. Let R be a reflexive binary relation on Rn. If R is continuous, locally
non-saturated and ≥-transitive, then core(R) is a Bewley preference.

Our proof is based on the following result which relates closely to the main rep-
resentation theorem of Bewley (1986). It is proved, in a more general setting, by
Ghirardato, Maccheroni and Marinacci (2004, Proposition A.1).

Theorem. A preorder % on Rn is continuous, affi ne and monotonic if, and only if, it
is a Bewley preference.

Theorem 6.1 is readily proved by combining our earlier findings on the rational
core with this theorem.

Proof of Theorem 6.1. By Theorem 3.6, core(R) is a continuous binary relation
on Rn. Moreover, by Corollary 3.2, ≥ is an affi ne subrelation of T(R). By Theorem
3.4, therefore, ≥ = A(≥) ⊆ A(T(R)) = core(R). Thus, core(R) is monotonic. Since
core(R) is an affi ne preorder on Rn, applying the theorem above completes our proof.
�
clear, let (Ω,Σ) be a measurable space, and denote by B0(Σ) the set of all Σ-measurable real maps x
on Ω with |x(Ω)| <∞.We view B0(Σ) as a normed linear space relative to the sup-norm, and recall
that the norm-dual of B0(Σ) is ba(Ω,Σ), the set of all bounded and finitely additive set functions on
Σ, which we view as a Hausdorff topological linear space relative to the weak∗-topology. If we replace
Rn with B0(Σ) and ∆n−1 with {µ ∈ ba(Ω,Σ) : µ ≥ 0 and µ(Ω) = 1}, and define µ · x :=

∫
X
x dµ,

then all of the results of this section remain valid.
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6.2 Justifiable Preferences

Justifiable Preferences. Lehrer and Teper (2011) have recently proposed a closely
related model to Bewley’s Knightian uncertainty model. Following that paper, we
refer to a binary relation R on Rn as a justifiable preference (with prior setM)
if there is a nonempty, closed and convex collectionM of probability n-vectors such
that

x R y iff µ · x ≥ µ · y for some µ ∈M
for any x and y in Rn. By contrast to a Bewley preference, a justifiable preference R
is complete, but it need not be transitive (although R> is transitive). Both models
envisage that an agent may not be able to have a precise assessment of the likelihoods
of states of nature, but behaviorally speaking, they are quite different. In particular,
an agent with justifiable preferences is always decisive (because all she needs is to
justify choosing an act over another with respect to one of her priors), but this
decisiveness may lead her to make cyclic choices.28

The Rational Core of Justifiable Preferences. It is plain that Bewley preferences
and justifiable preferences are closely linked, but fleshing out this connection formally
is not a trivial matter. The notion of rational core turns out to be very useful in this
regard. Indeed, as the justifiable preference R is strongly affi ne, it readily follows
from Proposition 3.8 that the rational core of R coincides with its transitive core.
Moreover, obviously, this binary relation is a rationalizable preference on Rn (as
we have defined the term above). Indeed, if, for each µ in M, we write %µ for the
preference relation on Rn represented by the map x 7→ µ·x, thenR =

⋃
{%µ: µ ∈M}.

As each preorder %µ is affi ne here, we may then apply Proposition 4.3 to conclude
that

x core(R) y iff µ · x ≥ µ · y for all µ ∈M
for any x and y in Rn. But this means that the Bewley preferences on Rn induced
by the prior setM is none other than the rational core of the justifiable preferences
induced byM. In other words:

Proposition 6.2. The rational core of a justifiable preference is a Bewley preference
(with the same set of priors).

This result is the counterpart of Proposition 5.11 in the context of uncertainty.
It says that an individual with a justifiable preference on Rn prefers an act x over
another act y in an “unconflicted”manner (that is, relative to the rational core of
her preferences) iff x is better for her than y with respect to all of her priors.

The Rational Core of Justifiable Variational Preferences. By a cost function on
∆n−1, we mean any map c : ∆n−1 → [0,∞] which is grounded, lower semicontinuous

28See Cerreia-Vioglio et al. (2016) for a two-preference model in which the justifiable preferences
and the Knightian uncertainty model are jointly characterized by means of a completion procedure.
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and convex.29 We denote the effective domain of a cost function c on ∆n−1 by
{c <∞}; this is the set of all µ ∈ ∆n−1 with c(µ) <∞.
For any cost function c on ∆n−1, by a justifiable variational preference on Rn

with the cost function c, we mean the binary relation R on Rn with

x R y iff µ · x ≥ µ · y + c(µ) for some µ ∈ ∆n−1 (13)

for any x and y in Rn. In general, by a justifiable variational preference, we mean
a justifiable variational preference on Rn with some cost function c. Such a binary
relation is sure to be complete, but in general, it does not have to be either transitive
or affi ne.
This model is patterned after the formulation of variational preferences by Mac-

cheroni, Marinacci and Rustichini (2006), and it has recently been axiomatized by
Cerreia-Vioglio, et al. (2016). The interpretation is that an agent whose preference
relation R on Rn is represented as in (13) entertains essentially all priors on the state
space. (Put more precisely, the agents uses all priors in cl{µ < ∞}.) But she does
not exhibit the same “trust”on every prior. Intuitively speaking, the model allows
the agent to act on the basis of any prior µ in the evaluation of two acts x and y, but
for her to declare that x is at least as good as y, the expected value of x with respect
to µ must be “suffi ciently higher than”that of y, that is, it must exceed µ · y by an
amount that depends on µ (namely, c(µ)). We may thus think of c(µ) as the “cost”
of using the prior µ in the evaluation of any two acts.
We note that the model of justifiable variational preferences is a rather substantive

generalization of the model of justifiable preferences we have looked at above. Indeed,
any justifiable preference on Rn with prior setM is a justifiable variational preference
with the cost function c, where c(µ) := 0 if µ ∈ M, and c(µ) := ∞, otherwise. (We
will look at another important special case below.)
Our main result in this section characterizes the rational core of justifiable varia-

tional preferences.

Proposition 6.3. Let R be a justifiable variational preference on Rn with the cost
function c. Then,

x core(R) y iff µ · x ≥ µ · y for every µ ∈ cl{c <∞} (14)

for any x and y in Rn.

Theorem 6.1 says that the rational core of a justifiable variational preference with
a cost function c must be a Bewley preference with some prior setM on Rn. In turn,
Proposition 6.3 tells us exactly what that prior set is in terms of the cost function c.
It turns out thatM is precisely the closure of the effective domain of c (which is a
convex set due to convexity of c). We will use this fact to obtain an important insight
about the rational core operator below.

29By groundedness of c, we mean that c(µ) = 0 for at least one µ ∈ ∆n−1.
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Remark 6.1. There are alternative ways of representing the rational core of a justi-
fiable variational preference. In particular, where R and c are as in Proposition 6.3,
and where I : Rn → R is defined as I(z) := max{µ · z − c(µ) : µ ∈ ∆n−1}, we have x
R y iff I(x− y) ≥ 0, and

x core(R) y iff µ · x ≥ µ · y for every µ ∈
⋃

z∈I−1(0)

∂I(z)

for any x and y in Rn. (Here, ∂I(z) stands for the subdifferential of the convex map
I at z.) In turn, using this representation, one can show that the rational core of R
reduces to the transitive core of R in this instance, that is, core(R) = T(R). For
brevity, we omit the proofs of these assertions (which are, of course, available from
the authors upon request).

Remark 6.2. It is easy to compute the affi ne core of a justifiable variational preference.
As we will need it shortly, we provide this computation here. Where R and c are as
in Proposition 6.3, our claim is:

x A(R) y iff µ · x ≥ µ · y for some µ ∈ c−1(0)

for any x and y in Rn. To prove this, define the binary relation D on Rn by x D y iff
µ · x ≥ µ · y for some µ ∈ c−1(0). Since c−1(0) is nonempty (because c is grounded),
D is a subrelation of R. As it is readily checked to be affi ne, therefore, D must be
a subrelation of A(R). Conversely, take any two n-vectors x and y with x A(R) y.
Then, by Proposition 3.3, for every positive integer m, there is a µm ∈ ∆n−1 such
that µm ·

(
1
m
x+

(
1− 1

m

)
y
)
≥ µm · y + c(µm), that is,

µm · x ≥ µm · y +mc(µm) for each m = 1, 2, ... (15)

Since ∆n−1 is a compact subset of Rn, there is a subsequence of (µm) that con-
verges to a point µ ∈ ∆n−1; relabelling if necessary, we denote this subsequence also
as (µm), and thus write µm → µ. Since (15) implies µm · x ≥ µm · y for each
m, we obviously have µ · x ≥ µ · y. On the other hand, (15) also implies that
max{x1, ..., xn} − min{y1, ..., yn} ≥ mc(µm) for every positive integer m, which is
possible only if inf{c(µm) : m ∈ N} = 0. Thus, there is a sequence (mk) in N with
c(µmk

) ↓ 0 (as k ↑ ∞). Then, since c is lower semicontinuous, c(µ) ≤ lim inf c(µmk
) =

0, and we find that c(µ) = 0, that is, µ ∈ c−1(0). This proves that A(R) is a subrela-
tion of D, and we are done.

The Rational Core of Justifiable Multiplier Preferences.We now turn to an impor-
tant special case of justifiable variational preferences. For any (probability) vectors
µ, ν ∈ ∆n−1 such that νi > 0 for each i = 1, ..., n, we recall that the Kullback-Leibler
divergence from ν to µ (also known as the relative entropy of µ with respect to ν) is
defined as

D(µ‖ν) :=

n∑
i=1

µi log

(
µi
νi

)
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(with the convention that 0(−∞) = 0). By Gibbs’Inequality, we have D(µ‖ν) ≥ 0
for every µ ∈ ∆n−1, and D(µ‖ν) = 0 iff µ = ν. Moreover, D(·‖ν) is grounded (since
D(ν‖ν) = 0), continuous and convex. Thus, D(·‖ν) is a (real-valued) cost function
on ∆n−1.
Take any ν ∈ ∆n−1 with νi > 0 for each i = 1, ..., n. We define the justifiable

multiplier preference on Rn with the reference probability ν as the justifiable
variational preference on Rn with the cost function D(·‖ν). This is the binary relation
R on Rn with

x R y iff µ · x ≥ µ · y +D(µ‖ν) for some µ ∈ ∆n−1

for any x and y inRn. The interpretation of this relation parallels that of themultiplier
preferences introduced by Hansen and Sargent (2001). In comparing any two acts,
the individual with this preference relation R has some best guess about the true
likelihoods of states of nature; this is captured by ν. But she does not have full
confidence in ν; instead, she considers all other priors as possible, but regards a prior
less and less plausible as this prior diverges more and more from ν. Thus, for this agent
to view an act x at least as good as another act y, the required gain in expectation
of x over that of y with respect to a prior µ is increasing in the “distance”of µ from
ν.
Now, since D(·‖ν) is real-valued, Proposition 6.3 says that x core(R) y iff µ · x ≥

µ · y for every µ ∈ ∆n−1. But, of course, the latter statement is equivalent to say that
x ≥ y. Thus, we find that the rational core of any justifiable multiplier preference on
Rn (with a strictly positive reference probability vector) is none other than the usual
(coordinatewise) ordering of Rn:

x core(R) y iff x ≥ y

for any x and y in Rn.
This observation allows us to demonstrate that, in general, A(T(R)) 6= T(A(R)).

Indeed, in view of Remark 6.2, and because D(µ‖ν) = 0 iff µ = ν, we have x A(R)
y iff ν · x ≥ ν · y, in the present case. It follows that A(R) is transitive, and hence,
x T(A(R)) y iff ν · x ≥ ν · y. For instance, where ν := ( 1

n
, ..., 1

n
), we have x T(A(R))

y iff 1
n

∑
xi ≥ 1

n

∑
yi. Thus, not only is A(T(R)) is a proper subrelation of T(A(R))

in this case, but there is a rather serious gap between these two preorders. While
A(T(R)) is the coordinatewise ordering of Rn (which is highly incomplete), T(A(R))
is a complete preorder that ranks any n-vector over any other n-vector with smaller
arithmetic mean.

7 Conclusion

In this paper, we have defined, axiomatically, an operator that maps any given re-
flexive binary relation R on a nonempty convex subset of a linear space X to the
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largest transitive and affi ne subrelation of that relation with respect to which R is
transitive. The latter preorder is called the rational core of R, and is denoted by
core(R). We interpret X as a space of alternatives (e.g. a space of risky or uncertain
prospects), and R as a revealed (observed) preference relation which may violate
rationality traits of transitivity and/or affi nity. In turn, we are interested in identify-
ing the largest “rational part”of R which, presumably, arises from the comparisons
of alternatives that the decision maker feels particularly confident about. Of course,
when an individual is “sure”of her preferential rankings, and when she is “conflicted”
about them, is unobservable (unlike R). We thus approach the notion of the largest
“rational part”of R axiomatically, and define it through behavioral properties that
such a subrelation of R would reasonably satisfy. This leads us to propose core(R),
which is observable, as the binary relation that may well capture the essence of the
largest “rational part”of R.
As all axiomatically defined concepts, the use of the notion of rational core would

eventually be determined by its structural properties and amenability for applications.
Our main results in this paper show that in most cases of interest, the rational core
of a binary relation has an appealing structure. Moreover, this concept decomposes
into two other core concepts developed in the earlier literature on decision theory.
We have applied these results to compute the rational cores of a number of well-
known preference models, and in the context of risk, looked at two simple, conceptual
applications.
There are many avenues for further research on the rational core (or its potential

variations). Perhaps most important of these is to develop an optimization theory
for reflexive binary relations through their rational core. Given our interpretation
of things here, it is natural to define an element in a nonempty subset S of X as a
rational maximal in S with respect toR if this element is maximal in S with respect to
core(R). Investigating this optimality notion, and its game-theoretic generalizations
(such as rational Nash equilibrium) looks like an inviting project. Second, it will be
interesting to see how the rational core operator would work in applications. The
general thrust of this kind of research would be to take a result that is known to
hold under the expected utility hypothesis (such as the willingness to pay of a risk
averse agent for actuarially fair risk, and/or portfolio diversification), and examine if
this result continues to hold with respect to the rational core of a given preference
relation which may fail the expected utility hypothesis in a variety of ways. We hope
that our theoretical work here will prove useful in the context of such applications.

APPENDIX: Proofs

This appendix contains the proofs of the results that were omitted in the body of the text.

Proof of Theorem 3.6

The crux of the argument is that the transitive core of a reflexive binary relation on a topological
space inherits the continuity of that relation.
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Lemma A.1. Let R be a reflexive binary relation on a topological space X. If R is continuous and
locally non-saturated, then T(R) is continuous.

Proof. Assume that R is continuous and locally non-saturated, and take any net (xτ , yτ ) in
X ×X with xτ T(R) yτ for each τ . Suppose xτ → x and yτ → y for some x and y in X.We wish to
show that x T(R) y. To this end, take any z ∈ x↑. If z = x, then, since xτ R yτ for each τ (because
T(R) ⊆ R), we get z R y by continuity of R, and we find z ∈ y↑. We thus assume that z and x are
distinct. Let O stand for the set of all open neighborhoods of z, consider it as a (directed) partially
ordered set relative to set inclusion. As R is locally non-saturated, for every O ∈ O, there are a
zO ∈ O and an open neighborhood U of x such that zO R w for every w ∈ U. Then, (zO) is a net in
X with the index set O, and clearly, zO → z. On the other hand, for each O ∈ O, we have zO R xτ
eventually for all τ (because xτ → x). Therefore, for each O ∈ O, we have zO ∈ x↑τ eventually for
all τ , while, by Proposition 3.1, x↑τ ⊆ y↑τ for all τ , and it follows that zO R yτ eventually for all τ .
Since R is continuous, therefore, zO R y for each O ∈ O, and hence using the continuity of R one
more time, we get z R y, that is, z ∈ y↑. In view of the arbitrary choice of z, we may thus conclude
that x↑ ⊆ y↑. As we can similarly verify that y↓ ⊆ x↓, we can use Proposition 3.1 to conclude that
x T(R) y, as we sought. �

Continuity of a reflexive binary relation on a topological linear space is readily inherited by the
affi ne core of that relation.

Lemma A.2. Let R be a reflexive binary relation on a nonempty convex subset X of a topological
linear space. If R is continuous, then A(R) is continuous.

Proof. Assume that R is continuous, and take any net (xτ , yτ ) in X × X such that xτ A(R)
yτ for each τ . Suppose that xτ → x and yτ → y for some x and y in X. We wish to show that x
A(R) y. To this end, take any z ∈ X and λ ∈ (0, 1], and note that λxτ + (1− λ)z R λyτ + (1− λ)z
for every τ by Proposition 3.3. Therefore, by continuity of R and that of the addition and scalar
multiplication operations on X, we have λx+ (1− λ)z R λy+ (1− λ)z. In view of the arbitrariness
of z and λ, and Proposition 3.3, we conclude that x A(R) y, as we sought. �

Proof of Theorem 3.6. Assume that R is a continuous and locally non-saturated reflexive binary
relation on a nonempty convex subset X of a topological linear space. Then, by Lemma A.1 and
Proposition 3.1, T(R) is a continuous preorder on X.We may thus apply Lemma A.2 and Theorem
3.4 to conclude that core(R) is continuous. �

Proof of Proposition 3.7

The argument is based on the following observation.

Lemma A.3. Let % be a continuous preorder on a nonempty convex subset X of a topological linear
space. Then, % is affi ne if, and only if, it is strongly affi ne.

While its setting is slightly different, the proof of this result is identical to that of Lemma 1 of
Dubra, Maccheroni and Ok (2004), so we omit it here.

Proof of Proposition 3.7. By definition, core(R) contains every strongly affi ne subrelation S of
R such that R is S-transitive. But, combining Theorem 3.6 and Lemma A.3 shows that core(R) is
itself a strongly affi ne subrelation of R such that R is core(R)-transitive. It thus follows from the
definition of core∗(R) that core(R) = core∗(R). �

Proof of Proposition 5.3
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The proof of the “if”part of the assertion here is routine, so we focus only on its “only if”part. We
know from Theorem 5.1 that there is a nonempty U ⊆ C[0, 1] such that

p core(R) q if and only if
∫
[0,1]

u dp ≥
∫
[0,1]

u dq for every u ∈ U (16)

for any p and q in ∆ := ∆([0, 1]). For any binary relation S on ∆, let U(S) stand for the set of all
u ∈ C[0, 1] such that

p S q implies
∫
[0,1]

udp ≥
∫
[0,1]

u dq

for every p and q in ∆. By (16), we have ∅ 6= U ⊆ U(core(R)). This implies readily that U(core(R))
is an expected multi-utility representation for core(R). On the other hand, U(≥FSD ) coincides with
the set of all continuous and increasing real maps on [0, 1]. But, since R is monotonic,

p ≥FSD q implies
∫
[0,1]

u dp ≥
∫
[0,1]

udq

for any p and q in ∆ and any u ∈ U(core(R)). Thus: U ⊆ U(core(R)) ⊆ U(≥FSD ). We conclude
that core(R) admits an expected multi-utility representation whose elements are continuous and
increasing real maps on [0, 1].

Now assume that R is ≥FSD -transitive, and we have δa R> δb whenever a > b. By Proposition
5.2, R is monotonic, that is, ≥FSD⊆ core(R). Thus, a > b implies δa core(R) δb. Moreover, if
δb core(R) δa held here, we would have δb R δa, which, by hypothesis, can hold only if b ≥ a.
Conclusion: If either ≥FSD -transitive and δa R> δb whenever a > b, or R is strictly monotonic,
then a > b implies δa core(R)> δb. In what follows, we use just this latter property to show that
core(R) admits a strictly increasing multi-utility representation.

Finally, let U ⊆ C[0, 1] be found as in the first part of the proposition. Combining Theorem 3.6
with Proposition 3 of Dubra, Maccheroni, and Ok (2004), we find a map f ∈ C[0, 1] such that

p core(R) q implies
∫
[0,1]

f dp ≥
∫
[0,1]

f dq

and

p core(R)> q implies
∫
[0,1]

f dp >
∫
[0,1]

f dq.

Since a > b implies δa core(R)> δb, it is clear that f is strictly increasing. To complete the proof,
then, define V := {λf+(1−λ)u : 0 < λ < 1 and u ∈ U}, and note that V is an expected multi-utility
representation of core(R) whose elements are all continuous and strictly increasing. It is also plain
that >FSD⊆ core(R)>. In the case where R is ≥FSD -transitive and δa R> δb whenever a > b, this
implies that R is strictly monotonic.

Proof of Proposition 5.5

The proof obtains by exactly the same argument we gave in the first paragraph of the proof of
Proposition 5.3, and thus omitted.

Proof of Proposition 5.6

For each i ∈ {1, 2}, put %i := core(Ri), and let Ui be a nonempty subset of C[0, 1] such that p %i q
iff
∫
[0,1]

udp ≥
∫
[0,1]

u dq for every u ∈ Ui. Assume that U1 is more concave than U2, and note that
we will be done if we can show that %1 is more risk averse than %2.
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To this end, take an arbitrary p ∈ ∆ and a ∈ [0, 1] such that p %1 δa. It follows that
∫
[0,1]

u dp ≥
u (a) for every u ∈ U1. Next, take any v ∈ U2. By assumption, there exist a u ∈ U1 and a strictly
increasing, continuous, and concave f : v([0, 1]) → u([0, 1]) such that u = f ◦ v. By Jensen’s
Inequality, it follows that

f

(∫
[0,1]

v dp

)
≥
∫
[0,1]

f ◦ v dp =

∫
[0,1]

u dp ≥ u (a) = f(v(a)),

and hence ∫
[0,1]

v dp ≥ v(a)

because f is strictly increasing. In view of the arbitrary choice of v in U2, therefore, we find p %2 δa.
As the analogous argument would show that δa %2 p implies δa %1 p, we conclude that R1 is more
risk averse than R2.

Proof of Corollary 5.7

Let U be a strictly increasing expected multi-utility representation for R1, and v a strictly increasing
Bernoulli utility the expectation of which represents R2. The “if”part of the corollary follows from
Proposition 5.6. To prove the “only if” part, for any strictly increasing w ∈ C[0, 1], define the

certainty equivalent map cew : ∆ → [0, 1] by cew(p) := w−1
(∫

[0,1]
w dp

)
, which is well-defined and

continuous. Now, for any p ∈ ∆, we have v(cev(p)) =
∫
[0,1]

v dp, that is, δcev(p) R2 p. Since R2 is
an expected utility preference, it is equal to its own rational core, and hence δcev(p) core(R2) p for
any p ∈ ∆. Since R1 is more risk averse than R2, therefore, δcev(p) core(R1) p for any p ∈ ∆. In
other words, u(cev(p)) ≥

∫
[0,1]

u dp for every p ∈ ∆ and u ∈ U . Since u is strictly increasing, and∫
[0,1]

udp = u(ceu(p)) for every p ∈ ∆, therefore, we conclude that cev(·) ≥ ceu(·) for each u ∈ U . It
is well-known that this is the same thing as saying that u is more concave than v, for each u ∈ U .

Proof of Corollary 5.8

By Theorem 5.1 and Proposition 5.3, there is a nonempty and strictly increasing subset U of C[0, 1]
such that (8) holds for every p, q ∈ ∆. Recall that the risk neutral binary relation % is the expected
utility preference whose Bernoulli utility function is id[0,1], the identity map on [0, 1]. By Corollary
5.7, therefore, R is more risk averse than % iff U is more concave than the set {id[0,1]} which is the
same thing as saying that each element of U is concave. Thus, by Proposition 5.5, R is more risk
averse than % iffR is risk averse.

Proof of Proposition 5.12

Define Φ : ∆(Z)×∆(Z)→ R by

Φ(p, q) :=

∫
Z

∫
Z

ϕ dp dq,

and notice that an immediate application of Fubini’s Theorem ensures that Φ is skew-symmetric,
that is, Φ(p, q) = −Φ(q, p) for every p, q ∈ ∆(Z). Next, define the binary relation % on ∆(Z) by
p % q iff the right-hand side of (11) holds. Obviously, % is an affi ne preorder. Furthermore, p % q
implies that Φ(p, q) ≥ Φ(q, q) = 0 for any p and q in ∆(Z), so % is a subrelation of Rϕ. Now notice
that, for every p and q in ∆(Z),

p % q iff Φ(p, r) ≥ Φ(q, r) for every r ∈ ∆(Z). (17)

Therefore, p % q Rϕ r implies Φ(p, r) ≥ Φ(q, r) ≥ 0, that is, p Rϕ r. Similarly, if p Rϕ q % r, we
may use (17) (with q playing the role of p, and r that of q) to find Φ(q, p) ≥ Φ(r, p). Then, using the
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skew-symmetry of Φ and p Rϕ q, we obtain 0 ≥ −Φ(p, q) ≥ −Φ(p, r), that is, p Rϕ r. Conclusion:
% is an affi ne subrelation of Rϕ such that Rϕ is %-transitive. Thus: % ⊆ core(Rϕ).

Now, to prove that core(Rϕ) = A(Rϕ), we fix any p and q in ∆(Z), and using the affi nity of Φ
in its first and second arguments, observe that, for any r ∈ ∆(Z) and λ ∈ (0, 1],

Φ(λp+ (1− λ)r, λq + (1− λ)r) = λ2Φ(p, q) + λ(1− λ)Φ(p, r) + (1− λ)λΦ(r, q)

= λ (λΦ(p, q) + (1− λ)(Φ(p, r)− Φ(q, r)) ,

because Φ(r, r) = 0 and Φ(r, q) = −Φ(q, r). Notice that the right-most part of these equations can
be nonnegative for all λ ∈ (0, 1] iff both Φ(p, q) ≥ 0 and Φ(p, r)− Φ(q, r) are nonnegative, whereas,
by (17), Φ(p, r) − Φ(q, r) ≥ 0 for every r ∈ ∆(Z) iff p % q. It follows from Proposition 3.3 that
p A(Rϕ) q iff p Rϕ q and p % q. As % is a subrelation of Rϕ, therefore, p A(Rϕ) q iff p % q.
Thus: A(Rϕ) = % ⊆ core(Rϕ). But as core(Rϕ) is an affi ne subrelation of Rϕ, we obviously have
core(Rϕ) ⊆ A(Rϕ). Conclusion: A(Rϕ) = % = core(Rϕ).

Proof of Proposition 6.3

Let us define the preorder % on Rn by

x % y iff µ · x ≥ µ · y for every µ ∈ cl{c <∞}.

Now take any x, y, z ∈ Rn such that x % y R z. Then, µ · y ≥ µ · z + c(µ) for some µ ∈ ∆n−1.
Obviously, c(µ) <∞, so we have µ · x ≥ µ · y by definition of %. It follows that µ · x ≥ µ · z + c(µ),
that is, x R z. As we can similarly verify that x R y % z implies x R z, we conclude that R is
%-transitive. It then follows from Corollary 3.2 that % is a subrelation of T(R). By Theorem 3.4,
and since % is affi ne, we then have % ⊆ A(T(R)) = core(R). The rest of the proof is geared toward
establishing the converse of this fact.

We begin by noting that R is reflexive (because c−1(0) 6= ∅), and it is easily checked to be a
closed subset ofX×X. Moreover,R is≥-transitive, because if x ≥ y R z, then µ·x ≥ µ·y ≥ µ·z+c(µ)
for some µ ∈ ∆n−1, and hence x R z. (Similarly, x R y ≥ z implies x R z.) Finally, we verify that R
is locally non-saturated. To this end, take any x, y ∈ Rn with xR y so that µ·x ≥ µ·y+c(µ) for some
µ ∈ ∆n−1, and pick any open neighborhood O of x in Rn. Then, there exists an ε > 0 small enough
that x+ ε1 ∈ O, where 1 is the n-vector of 1s. Choose U to be the open ball around y with radius ε
relative to the ‖·‖∞ norm. As z 7→ µ · z is a 1-Lipschitz real map on Rn (relative to the ‖·‖∞ norm),
we have µ ·y ≥ µ ·z−ε for every z ∈ U. But then µ ·(x+ε1) = µ ·x+ε ≥ µ ·y+ε+c(µ) ≥ µ ·z+c(µ),
so x+ε1 R z, for every z ∈ U. As requirement (ii) of being locally non-saturated is similarly verified,
we conclude that R is locally non-saturated.

In view of what we have shown in the previous paragraph, we may apply Theorem 6.1 to find a
nonempty closed and convex subsetM of ∆n−1 such that

x core(R) y iff µ · x ≥ µ · y for every µ ∈M

for any x, y ∈ Rn. Since % ⊆ core(R), we have M ⊆ cl{c < ∞}. Then, clearly, our proof will
be complete if we can show that {c < ∞} ⊆ M. To derive a contradiction, let us suppose that
this is false, and take any µ ∈ ∆n−1\M with c(µ) < ∞. Then, given that M is a compact
subset of Rn, we may apply the Separating Hyperplane Theorem to find an n-vector x such that
µ · x < 0 < minσ∈M σ · x. We then choose an ε > 0 small enough so that

µ · x < −ε < ε < min
σ∈M

σ · x.

On the other hand, since c(µ) < ∞, there is a real number K > 0 large enough that c(µ) < Kε.
Clearly, for the n-vector y := Kε1, we have σ · y = Kε < K(σ · x) for every σ ∈M, so Kx core(R)
y, while

µ ·Kx+ c(µ) < K(−ε) +Kε = 0 = µ · 0,
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so 0 R Kx. (Here 0 stands for the n-vector of 0s.) Since R is core(R)-transitive, therefore, we find
0 R y. But this is impossible, because 0 R y implies 0 = ν · 0 ≥ ν · y + c(ν) ≥ ν · y = Kε > 0 for
some ν ∈ ∆n−1, a contradiction.
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