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Representing Unawareness on State Spaces∗

Satoshi Fukuda†

December 12, 2018

Abstract

I study unawareness by the lack of knowledge on a generalized state space.
In order to understand and contrast properties of unawareness in a non-partitional
standard state space model and a partitional generalized state space model, I
provide a generalized framework that accommodates both models. I ask: when
and how a generalized (in particular, standard) state space model has a sensible
form of unawareness; and how unawareness relates to ignorance and possibility.
First, unawareness can only take two forms: an agent is ignorant of knowing
that she does not know an event; and the agent is ignorant of knowing an
event. In either case, unawareness is also associated with the ignorance of the
possibility of knowing an event. Second, the agent, who is unaware of an event,
is ignorant (but not necessarily unaware) of being unaware of it. Third, the
agent, facing infinitely many objects of knowledge, may know that there is an
event of which she is unaware, while she cannot know that she is unaware of
any particular event. Fourth, getting more information can cause the agent to
become unaware of some event.

JEL Classification: C70, D83
Keywords: Unawareness; Awareness; Knowledge; State Space; Ignorance; Pos-
sibility

1 Introduction

A state space model of knowledge, since Aumann (1976, 1999), has been developed to
model rational agents who reason interactively with each other. One of the subsequent

∗This paper is a substantial revision of the second chapter of my doctoral thesis submitted to the
University of California at Berkeley. I am grateful to my thesis advisors, David Ahn, William Fuchs,
and Chris Shannon for their kind and professional support. I would also like to thank Sarah Auster,
Pierpaolo Battigalli, Jean-Marc Tallon, and the seminar audiences at Bocconi University and the
Paris School of Economics (Bounded Rationality and Behavioral Economics Summer School).
†Department of Decision Sciences and IGIER, Bocconi University, Milan 20136, Italy.
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research agendas has been to accommodate interactive knowledge among “boundedly
rational” agents who lack logical or introspective reasoning abilities. Especially, un-
awareness has been actively investigated in economics since Modica and Rustichini
(1994, 1999): an agent is unaware of a statement if she does not know it and she does
not know that she does not know it.1

Dekel, Lipman, and Rustichini (1998), however, establish the following negative
result. No state space model of knowledge can capture a sensible form of unawareness
if a logical agent satisfies the following three axioms: Plausibility, KU Introspection,
and AU Introspection. Plausibility states that if the agent is unaware of an event,
then she does not know it and she does not know that she does not know it. Under KU
Introspection, the agent does not know that she is unaware of any particular event.
AU Introspection states that if the agent is unaware of an event, then she is unaware
of being unaware of that event. Modica and Rustichini (1994, Theorem) demonstrate
another negative result when unawareness is symmetric (i.e., the unawareness of an
event entails that of its negation). Since then, in order to represent non-trivial forms
of unawareness satisfying desirable features including these three axioms, the research
focus on unawareness has shifted to scrutinizing concepts of unawareness from the lack
of knowledge to the lack of conception on an enhanced structure (e.g., a generalized
state space consisting of multiple sub-spaces).2

This paper, going back to the original idea of capturing unawareness as the lack of
knowledge, studies how state space models can (and cannot) capture a sensible form
of unawareness. I provide a generalized model of unawareness on an enriched state
space which also nests a standard state space model of non-introspective knowledge.
My framework enables one to directly compare unawareness represented on a gener-
alized state space such as Heifetz, Meier, and Schipper (2006) on the one hand and a
standard “non-partitional” state space on the other.

I impose the following conditions on agents’ knowledge and unawareness. First,
agents are assumed to be logical and introspective about their own knowledge. Namely,
each agent’s knowledge satisfies at least the following three properties: (i) Truth Ax-
iom (the agent can only know what is true), (ii) Positive Introspection (if the agent
knows an event then she knows that she knows it), and (iii) Monotonicity (the agent
knows any logical consequence of what she knows). The first property distinguishes
knowledge from belief. While I drop Negative Introspection (if the agent does not
know an event then she knows that she does not know it) as such agent is never
unaware of any event, I assume that agents are “rational” to the extent that they are
introspective about their own knowledge. These properties are assumed in standard
non-partitional (reflexive and transitive) state space models involving boundedly ra-

1Other pioneering papers include Fagin and Halpern (1987) and Pires (1994).
2Pioneering attempts along this line of research include: Board and Chung (2007, 2008), Board,

Chung, and Schipper (2011), Galanis (2011, 2013), Halpern (2001), Halpern and Rêgo (2008, 2009),
Heifetz, Meier, and Schipper (2006, 2008, 2013), Heinsalu (2014), and Li (2009). See Schipper (2015)
for an overview.
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tional agents as well as generalized state space models.3 I do not require Necessitation,
i.e., the knowledge of a tautology.

Second, I define unawareness solely in terms of (the lack of) knowledge. An agent
is kn-unaware of an event if she does not know it, she does not know that she does
not know it, and so forth n times, including the case of n = ∞. Thus, notions of
unawareness are derived from given properties of knowledge and a level of the lack of
knowledge.

I ask the following three strands of questions. First, I ask conditions on knowledge
under which the derived notions of unawareness have a non-trivial (or trivial) form
in state space models. In particular, I aim to answer the question raised by Dekel,
Lipman, and Rustichini (1998) and subsequently studied by Chen, Ely, and Luo
(2012): which of the previous three axioms is to be retained to represent an interesting
form of unawareness in a standard state space model?

Second, I scrutinize how different notions of unawareness as the lack of knowledge
and as the lack of conception (as in Heifetz, Meier, and Schipper (2006, 2008)) relate
with each other. I ask when these notions of unawareness coincide. I also study
distinct implications of unawareness based on these different notions.

Third, I relate the derived notions of unawareness to such notions derived from
knowledge as possibility and ignorance. Following Modica and Rustichini (1999), an
agent considers an event E possible if she does not know its negation ¬E and if she is
aware (not unaware) of E. Thus, unlike a standard state space model, the notion of
possibility depends also on that of (un)awareness. The agent is ignorant of an event
E if she does not know E and she does not know its negation ¬E (e.g., Lehrer and
Samet (2011)). That is, she is ignorant of E if shes does not know “whether” E is
true (e.g., Hintikka (1962) and Hart, Heifetz, and Samet (1996)).

The results are as follows. First, three levels of lack of knowledge imply any higher
level. Thus, the derived notions of unawareness reduce to the two forms: either two
levels of lack of knowledge or infinitely many levels of lack of knowledge. I characterize
each form of unawareness in terms of ignorance and possibility (Proposition 1). I show
that k2-unawareness is equivalent to the ignorance of own knowledge: an agent is k2-
unaware of an event E if and only if (hereafter, iff) she is ignorant of (not) knowing
E. Next, the agent is k∞-unaware of an event E iff she is ignorant of (not) knowing
that she does not know E. Indeed, the agent is k∞-unaware of an event E iff she is k2-
unaware of not knowing E. In either case, I also show that the agent is (kn-)unaware of
an event E iff she is ignorant of the possibility that she knows E. Thus, unawareness
is a particular form of ignorance. I use this result to show that k2-unawareness
coincides with the lack of conception iff it does with k∞-unawareness. In fact, these
two forms of kn-unawareness coincide iff k2-unawareness satisfies AU Introspection
(or still equivalently, Symmetry). Thus, if these two forms of kn-unawareness coincide

3Previous studies on such non-partitional models include: Bacharach (1985), Binmore and Bran-
denburger (1990), Brandenburger, Dekel, and Geanakoplos (1992), Dekel and Gul (1997), Geanako-
plos (1989), Morris (1996), Rubinstein and Wolinsky (1990), Samet (1990, 1992) and Shin (1993).
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in a standard state space model, then unawareness becomes rather degenerate.
Next, I characterize (in Proposition 2) when a state space model is non-trivial.

For example, any properly non-partitional standard state space model can capture a
non-trivial form of k2-unawareness.

What properties of unawareness do state space models satisfy? I show (in Propo-
sition 3) that unawareness satisfies such properties as Plausibility, KU Introspection,
the converse of AU Introspection, and the property which I call JU Introspection
(“J” in JU Introspection refers to the knowing-whether operator in Hart, Heifetz,
and Samet (1996)). The converse of AU introspection states that an agent, who is
unaware of being unaware of an event E, is unaware of E. Under JU Introspection,
an agent, who is unaware of an event E, is ignorant of being unaware of E.

To restate, if agents are logical and introspective and notions of unawareness
are defined in terms of the lack of knowledge, then any state space model satisfies
Plausibility, KU Introspection, and JU Introspection (instead of AU Introspection).
I also examine (in Proposition 4) properties of unawareness (e.g., AU Introspection
and Symmetry) which lead to a degenerate form in a standard state space model.

Finally, I study the following two properties of unawareness that hinge on AU
Introspection, that is, two properties that would differ between a non-partitional
standard state space model and a partitional generalized state space model. First,
recall that, under KU Introspection, there is no state at which an agent knows that
she is unaware of a particular event. Can the agent know her own unawareness? I
define an event that captures whether there is an event of which the agent is unaware
in a simple manner.4 I show (in Proposition 5) that if a given state space model
has an infinite number of objects of knowledge and if the agent’s awareness fails AU
Introspection, then it can be the case that she knows there is an event of which she
is unaware (while she does not know that she is unaware of any particular event). If
the given model has finitely many objects of knowledge or if the agent’s unawareness
satisfies AU Introspection, then the agent does not know that there is an event of
which she is unaware.

Second, while unawareness as the lack of conception is monotonic in knowledge-
ability, unawareness as the lack of knowledge may be non-monotonic in knowledgeabil-
ity. Specifically, I show by example that getting more information can cause an agent
to become unaware of some event in the absence of AU Introspection. I also study
(in Proposition 6 and Corollary 1) possible forms of monotonicity of unawareness.

The paper is organized as follows. Section 2 provides the generalized-state-space-
based framework. Section 3 studies properties of unawareness. Section 3.1 restates un-
awareness in terms of ignorance and possibility. Section 3.2 characterizes non-trivial
unawareness. Section 3.3 investigates the existing axioms of unawareness. Section
4 studies knowledge of self-unawareness (Section 4.1) and (non-)monotonicity of un-

4See also Board and Chung (2007), Halpern and Rêgo (2009), Schipper (2015, Section 3.5), and
the references therein for representing the event that an agent is unaware of something using the
first-order logic.

4



awareness in knowledgeability (Section 4.2). Section 5 provides concluding remarks.
Proofs are relegated to Appendix A.

2 Information Structures

This section presents the framework, which I call an information structure. The infor-
mation structure represents agents’ knowledge and unawareness by their knowledge
operators on a generalized state space. On the one hand, the information structure
generalizes the unawareness structure of Heifetz, Meier, and Schipper (2006) in which
agents’ knowledge operators are induced from generalized possibility correspondences.
On the other hand, the information structure generalizes a non-partitional possibility
correspondence model on a standard state space.

Throughout the paper, let I denote a non-empty set of agents. I introduce an un-
derlying generalized state space of Heifetz, Meier, and Schipper (2006) in an abstract
way.5 A generalized state space 〈(Sα,Dα)α∈A,�, r〉 consists of the following three
primitives. First, (Sα,Dα)α∈A is a non-empty collection of complete algebras of sets
with the following properties. Each Sα ∈ Σ := {Sα}α∈A is non-empty and referred to
as a subspace. The collection Σ is assumed to be disjoint. Each Sα is endowed with
a collection Dα of subsets of Sα (i.e., Dα is a subset of the power set P(Sα)) that is
closed under arbitrary union, arbitrary intersection, and complementation. I follow
the conventions that

⋃
∅ = ∅ ∈ Dα and

⋂
∅ = Sα ∈ Dα. The set of states of the

world is the entire union Ω :=
⋃
α∈A Sα.

Second, 〈Σ,�〉 is a complete lattice. The partial order � ranks subspaces Σ by
amounts of “concepts” or “expressive power.” Third, r := (rS

′
S )S′�S is a collection of

surjective projections rS
′

S : (S ′,D′)→ (S,D) for each pair (S, S ′) ∈ Σ2 with S ′ � S. I
assume that: (i) (rS

′
S )−1(B) ∈ D′ for all B ∈ D; (ii) each rSS is the identity mapping;

and (iii) S ′′ � S ′ � S implies rS
′′

S = rS
′

S ◦ rS
′′

S′ . The generalized state space is standard
if Σ is a singleton, i.e., Σ = {Ω}.

Events are objects of agents’ knowledge and unawareness. Formally, an event is a
pair (B↑, S) ∈ P(Ω)×Σ with B↑ :=

⋃
{(rS′S )−1(B) ∈ P(Ω) | S ′ � S for some S ′ ∈ Σ}

and B ∈ D. Define the domain E as the collection of events. The domain on a
standard state space is identified with the underlying complete algebra on Ω.

Fix an event (B↑, Sα). Call Sα the base space of (B↑, Sα) (or B↑), and denote
S(B↑, Sα) = Sα (or S(B↑) = Sα). Call B the basis of B↑. For an event (E, S), denote

by B(E) the basis of E (i.e., E = B↑(E) := (B(E))↑). Denote B
↑

:= (B↑, S(B↑)) ∈ E
with the convention to denote by ∅

S
the event (∅S, S) := (∅↑, S) = (∅, S) ∈ E .

I introduce the following four operations on E . The first is a partial order 6
on E : E 6 F iff E ⊆ F and S(E) � S(F ). The greatest element is (Ω, inf Σ) =

5The unawareness structure of Heifetz, Meier, and Schipper (2006) is also related to that of
Board and Chung (2008) (see also Board, Chung, and Schipper (2011)) and that of Fagin and
Halpern (1987) (see also Halpern and Rêgo (2008)).
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((inf Σ)↑, inf Σ) while the least element is (∅, sup Σ).
Second, for any collection of events (B↑λ, Sλ)λ∈Λ, define its conjunction as

∧
λ∈Λ

(B↑λ, Sλ) :=

(⋂
λ∈Λ

B↑λ, sup
λ∈Λ

Sλ

)
=

(⋂
λ∈Λ

(r
supλ∈Λ Sλ
Sλ

)−1(Bλ)

)↑
, sup
λ∈Λ

Sλ

 ∈ E .
Since

∧
λ∈Λ(B↑λ, Sλ) is indeed the infimum of events (B↑λ, Sλ)λ∈Λ in a partially ordered

set 〈E ,6〉, it forms a complete lattice.
Third, define the negation of an event (B↑, S) by ¬(B↑, S) := (¬B↑, S) := ((S \

B)↑, S) ∈ E . I have ¬¬(B↑, S) = (B↑, S). By letting ¬∅S := S↑ and ¬S↑ := ∅S, I
can unambiguously write ¬¬B↑ = B↑ for any (B↑, S) ∈ E . As mentioned in Heifetz,
Meier, and Schipper (2006), if S(E) = S(F ), then E ⊆ F iff ¬F ⊆ ¬E.

Fourth, define the disjunction of (B↑λ, Sλ)λ∈Λ as
∨
λ∈Λ(B↑λ, Sλ) := ¬(

∧
λ∈Λ ¬(B↑λ, Sλ)) ∈

E . Note that the disjunction
∨
λ∈Λ(B↑λ, Sλ) is generally different from the supremum

of (B↑λ, Sλ)λ∈Λ in 〈E ,6〉. As in Heifetz, Meier, and Schipper (2006), the following

can be verified: (i) if S = Sλ for all λ ∈ Λ, then
∨
λ∈ΛB

↑
λ =

⋃
λ∈ΛB

↑
λ; and (ii)

(B↑, S) ∨ (¬B↑, S) = (S↑, S).
With these definitions in mind, an information structure (of I) is a tuple S :=

〈〈(Sα,Dα)α∈A,�, r〉, (Ki, Ui)i∈I〉 with the following ingredients. First, 〈(Sα,Dα)α∈A,�
, r〉 is a generalized state space. Let E be the domain. Second, Ki : E → E is an agent
i’s knowledge operator satisfying (at least) the following: (i) S(Ki(E)) = S(E) for
any E ∈ E ; (ii) Truth Axiom: Ki(E) 6 E (for all E ∈ E); (iii) Positive Introspection:
Ki(·) 6 KiKi(·); and (iv) Monotonicity: E 6 F implies Ki(E) 6 Ki(F ). Third,
U i : E → E is i’s unawareness operator with the property that S(U i(E)) = S(E) for
any E ∈ E . Before discussing the assumptions, for ease of notation, I often identify
S := 〈〈(Sα,Dα)α∈A,�, r〉, (Ki, Ui)i∈I〉 with S = 〈E , (Ki, Ui)i∈I〉.

Fix an event (E, S(E)). The pair (Ki(E), S(E)) := Ki(E, S(E)) is the event that
i knows (E, S(E)). The set Ki(E) is interpreted as the set of states at which i knows
(E, S(E)). Likewise, (Ui(E), S(E)) := U i(E, S(E)) is the event that i is unaware of
(E, S(E)), and Ui(E) is the set of states at which i is unaware of (E, S(E)). For both
knowledge and unawareness operators, the knowledge and unawareness of the event
(E, S(E)) reside in the same subspace S(E). In Heifetz, Meier, and Schipper (2006),
this condition is ensured by the assumptions on their possibility correspondences (see
also Grant et al. (2015)). If the underlying state space is standard, I simply denote
the knowledge and unawareness operators by Ki and Ui, respectively. The same
notational convention applies to other operators on the domain.

Truth Axiom distinguishes knowledge from beliefs in that knowledge is truthful.
Positive Introspection allows the agent to know what she knows. Monotonicity renders
the agent a logical inference ability.

I introduce further properties of knowledge. First, Ki satisfies Necessitation if
Ki(Ω, inf Σ) = (Ω, inf Σ). It states that the agent knows a tautology (Ω, inf Σ). Sec-
ond, Ki satisfies Non-empty Conjunction if

∧
λ∈ΛKi(Eλ, Sλ) 6 Ki(

∧
λ∈Λ(Eλ, Sλ))
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for any non-empty index set Λ. Finite Conjunction and Countable Conjunction, re-
spectively, refer to the case in which a non-empty Λ is finite and countable. Note
that Non-empty Conjunction and Necessitation can be jointly regarded as Arbitrary
Conjunction because Necessitation corresponds to the case with Λ = ∅. These con-
junction properties mean the closure of knowledge under conjunction. Third, I define
Negative Introspection of Ki to be (¬Ki)(·) 6 Ki(¬Ki)(·). It means that if the agent
does not know an event then she knows that she does not know it.

Next, I state some of joint postulates on knowledge and unawareness. First,
(Ki, U i) is plausible if U i(·) 6 (¬Ki)(·) ∧ (¬Ki)

2(·). Plausibility says that if the
agent is unaware of an event then she does not know it and she does not know that
she does not know it. If every (Ki, U i) is plausible, S is plausible. Second, (Ki, U i)

satisfies KU Introspection if KiU i(E, S) = ∅
S
. KU Introspection means that, for any

event, there is no state at which the agent knows that she is unaware of it. Third,
(Ki, U i) satisfies AU Introspection if U i(·) 6 U iU i(·). Under AU Introspection, if
the agent is unaware of an event then she is unaware of being unaware of it. These
three properties are proposed in Dekel, Lipman, and Rustichini (1998). Section 3.3
examines other properties.

To conclude the exposition of the framework, consider a standard state space. A
knowledge operator Ki satisfying Monotonicity and Arbitrary Conjunction can equiv-
alently be induced from a possibility correspondence. See, for example, Morris (1996)
when the domain is the power set of an underlying standard state space. If Ki also
satisfies Truth Axiom and Positive Introspection, then the possibility correspondence
is reflexive and transitive (see Footnote 3 for the literature). If Ki additionally sat-
isfies Negative Introspection, then the possibility correspondence forms a partition
(e.g., Aumann (1976, 1999)). If (Ki, Ui) is plausible, however, then Ui(·) = ∅.

2.1 Associated Concepts

I define associated concepts derived from knowledge (and unawareness). In this sub-
section, fix an information structure S of I.

Defining Unawareness from Knowledge. Define unawareness operators from the given
knowledge operator as follows. Let n ∈ N∞2 := {n ∈ N | n ≥ 2} ∪ {∞}. Define the

kn-unawareness operator U
(n)

i (·) :=
∧n
r=1(¬Ki)

r(·). Agent i is (kn-)unaware of an

event (E, S) at a state ω if ω ∈ U (n)
i (E) =

⋂n
r=1(¬Ki)

r(E). Modica and Rustichini

(1994) define unawareness by U
(2)

i (·) = (¬Ki)(·) ∧ (¬Ki)
2(·) while Dekel, Lipman,

and Rustichini (1998) consider U
(∞)

i (·) =
∧
r∈N(¬Ki)

r(·).

Derived Operators. I define the following four operators on E . Fix E ∈ E and
n ∈ N∞2 . First, define the awareness operator by Ai(·) := (¬U i)(·) (Modica and

Rustichini, 1994, 1999). In particular, define the kn-awareness operator by A
(n)

i (·) :=
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(¬U (n)

i )(·). Second, define the possibility operator by Li(E) := (¬Ki)(¬E) ∧ Ai(E)

(Modica and Rustichini, 1999). Also, let L
(n)

i (E) := (¬K)(¬E) ∧ A(n)

i (E). Third,
define the ignorance operator by ∂i(E) := (¬Ki)(E) ∧ (¬Ki)(¬E) (e.g., Lehrer and
Samet (2011)). Fourth, define the knowing-whether operator by J i(E) := (¬∂i)(E)(=
Ki(E) ∨Ki(¬E)) (e.g., Hintikka (1962) and Hart, Heifetz, and Samet (1996)).

First, Ai(E) is the event that i is aware of E in that i is not unaware of E. Second,
Li(E) is the event that i considers E possible in that i does not know its negation ¬E
and i is aware of E. Unlike the standard notion of possibility (e.g., Hintikka (1962))
stating that i considers an event possible when she does not know its negation, I fol-
low Modica and Rustichini (1999) so that, for agent i to consider an event possible,
she has to be aware of the event itself.6 Third, ∂i(E) is the event that i is ignorant
of E in that i does not know E nor ¬E.7 Fourth, J i(E) is the event that i knows
whether E obtains (or not) in that either i knows E or she knows its negation ¬E.

Self-evident Collection. Call an event E ∈ E self-evident to an agent i if E 6 Ki(E)
(i.e., E ⊆ Ki(E)). Call Ji := {E ∈ E | E 6 Ki(E)} agent i’s self-evident col-
lection. The self-evident collection summarizes or recovers Ki in the sense that
Ki(E) = sup{F ∈ E | F ∈ Ji and F 6 E}, where the supremum is taken on 〈E ,6〉.8
Denoting J ∗i := {E ∈ E | ¬E ∈ Ji}, it can be seen that Ki satisfies Negative Intro-
spection iff Ji = J ∗i (i.e., Ji is closed under negation). Also, Ki satisfies Necessitation
iff (Ω, inf Σ) ∈ Ji. Moreover, Ki satisfies Non-empty (or Finite/Countable) Conjunc-
tion iff Ji is closed under non-empty (or non-empty finite/countable) conjunction.
Call an event E ∈ E publicly evident among agents I if it is self-evident to every i ∈ I
(Milgrom, 1981). The collection of publicly-evident events is

⋂
i∈I Ji.

Knowledgeability. Denote by IKi(ω) := {E ∈ E | ω ∈ Ki(E)} the collection of events
that an agent i knows at a state ω.9 Agent i is at least as knowledgeable as agent
j at a state ω if IKj(ω) ⊆ IKi(ω). Agents i and j are equally knowledgeable at ω
if IKj(ω) = IKi(ω). Likewise, i is at least as knowledgeable as j if IKj(·) ⊆ IKi(·).
Agents i and j are equally knowledgeable if IKj = IKi. Note that i is at least as
knowledgeable as j iff Kj(·) 6 Ki(·) iff Jj ⊆ Ji.

Common Knowledge. I define common knowledge (e.g., Aumann (1976) and Friedell
(1969)) among agents I as the knowledge that would be possessed by the most knowl-
edgeable agent who is at least as less knowledgeable as every agent within I. In a

6Note that “L” does not mean the implicit knowledge operator as in Fagin and Halpern (1987).
7I use the symbol “∂” of the boundary operator on a topological space in the sense that Ki

satisfies a part of the properties of the interior operator.
8Fukuda (2018) studies the sense in which an agent’s knowledge is represented by a set algebra

such as a σ-algebra or a topology on a standard state space using a self-evident collection.
9In a standard state space model, this mapping IKi is called a neighborhood system (see, for

example, Pacuit (2017)).
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partitional standard state space model, Aumann (1976) defines common knowledge
from the finest partition which is coarser than every agent’s partition.

Define the common knowledge operator CI : E → E by CI(E) = sup{F ∈ E |
F ∈

⋂
i∈I Ji and F 6 E}. Since ∅

S(E)
6 CI(E) 6 E, it follows that S(CI(E)) =

S(E). Letting CI(E) := (CI(E), S(E)), an event E ∈ E is commonly known (or
common knowledge) among I at a state ω if ω ∈ CI(E). By construction, CI satisfies
Truth Axiom, Positive Introspection, and Monotonicity. Thus, I can treat CI as the
knowledge operator of a (hypothetical) agent. Since CI(·) 6 CICI(·) 6

∧
i∈I KiCI(·),

it follows CI(·) ∈
⋂
i∈I Ji. Then, an event E ∈ E is common knowledge among I at ω

(i.e., ω ∈ CI(E)) iff there is F ∈
⋂
i∈I Ji with ω ∈ F and F 6 E. It can be seen that

CI inherits each of Necessitation, conjunction properties, and Negative Introspection
from the agents’ knowledge operators if every agent’s knowledge satisfies it.

Common knowledge implies mutual knowledge: CI(·) 6 KI(·) :=
∧
i∈I Ki(·),

where KI(E) is the event that everyone in I knows E. Together with Positive Intro-
spection and Monotonicity, if E is commonly known among I at ω, then everyone in I
knows E at ω, everyone knows that everyone knows E at ω, and so forth ad infinitum.
Conversely, if every agent’s knowledge satisfies Countable Conjunction, then CI(·) =∧
n∈NK

n

I (·). This is because
∧
n∈NK

n

I (E) is the maximal publicly evident event satis-

fying
∧
n∈NK

n

I (E) 6 E (observe
∧
n∈NK

n

I (E) 6
∧
n∈NK

n+1

I (E) 6 KI(
∧
n∈NK

n

I (E))).
The formalization of common knowledge here extends, for example, those of Galanis
(2013) and Heifetz, Meier, and Schipper (2006) on their generalized state space mod-
els while requiring weaker assumptions on agents’ knowledge. The formalization of
common knowledge also nests Monderer and Samet (1989) on a standard state space.

2.2 A Standard-State-Space Example

Information structures accommodate both non-partitional standard state space mod-
els and unawareness structures on generalized state spaces by Heifetz, Meier, and
Schipper (2006). This subsection provides an example of an information structure on
a standard state space. The example will be used to examine (non-)trivial forms and
properties of unawareness on a standard state space.

Example 1. Let I = {i1, i2, i3, i4}, and consider a standard state space Ω = {ω1, ω2, ω3}.
Identify the domain with E = P(Ω). Let each Ki be as in Table 1. Agent i1’s knowl-
edge coincides with Dekel, Lipman, and Rustichini (1998, Example 1). Each Ki

satisfies Non-empty Conjunction as well as Truth Axiom, Positive Introspection, and
Monotonicity. Knowledge operators of i1 and i3 also satisfy Necessitation. Each pair
(Ki, U

(n)
i ) satisfies Plausibility and KU Introspection.

Additional remarks are in order. First, Ji1 = {∅, {ω1}, {ω2}, {ω1, ω2},Ω}, Ji2 =
{∅, {ω1}, {ω3}, {ω1, ω3}}, Ji3 = {∅, {ω1},Ω}, and Ji4 = {∅, {ω1}} =

⋂
i∈I Ji. Thus,

agent i1 is at least as knowledgeable as j ∈ {i2, i3, i4}, and agent i4’s knowledge
coincides with common knowledge (i.e., CI = Ki4).
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E Ki1 (¬Ki1) (¬Ki1)2 (¬Ki1)3 (¬Ki1)4 ∂i1 U
(2)
i1

U
(n)
i1

∅ ∅ Ω ∅ Ω ∅ ∅ ∅ ∅
{ω1} {ω1} {ω2, ω3} {ω1, ω3} {ω2, ω3} {ω1, ω3} {ω3} {ω3} {ω3}
{ω2} {ω2} {ω1, ω3} {ω2, ω3} {ω1, ω3} {ω2, ω3} {ω3} {ω3} {ω3}
{ω3} ∅ Ω ∅ Ω ∅ {ω3} ∅ ∅
{ω1, ω2} {ω1, ω2} {ω3} Ω ∅ Ω {ω3} {ω3} ∅
{ω1, ω3} {ω1} {ω2, ω3} {ω1, ω3} {ω2, ω3} {ω1, ω3} {ω3} {ω3} {ω3}
{ω2, ω3} {ω2} {ω1, ω3} {ω2, ω3} {ω1, ω3} {ω2, ω3} {ω3} {ω3} {ω3}

Ω Ω ∅ Ω ∅ Ω ∅ ∅ ∅
E Ki2 (¬Ki2) (¬Ki2)2 (¬Ki2)3 (¬Ki2)4 ∂i2 U

(2)
i2

U
(n)
i2

∅ ∅ Ω {ω2} Ω {ω2} {ω2} {ω2} {ω2}
{ω1} {ω1} {ω2, ω3} {ω1, ω2} {ω2, ω3} {ω1, ω2} {ω2} {ω2} {ω2}
{ω2} ∅ Ω {ω2} Ω {ω2} {ω2} {ω2} {ω2}
{ω3} {ω3} {ω1, ω2} {ω2, ω3} {ω1, ω2} {ω2, ω3} {ω2} {ω2} {ω2}
{ω1, ω2} {ω1} {ω2, ω3} {ω1, ω2} {ω2, ω3} {ω1, ω2} {ω2} {ω2} {ω2}
{ω1, ω3} {ω1, ω3} {ω2} Ω {ω2} Ω {ω2} {ω2} {ω2}
{ω2, ω3} {ω3} {ω1, ω2} {ω2, ω3} {ω1, ω2} {ω2, ω3} {ω2} {ω2} {ω2}

Ω {ω1, ω3} {ω2} Ω {ω2} Ω {ω2} {ω2} {ω2}
E Ki3 (¬Ki3) (¬Ki3)2 (¬Ki3)3 (¬Ki3)4 ∂i3 U

(2)
i3

U
(n)
i3

∅ ∅ Ω ∅ Ω ∅ ∅ ∅ ∅
{ω1} {ω1} {ω2, ω3} Ω ∅ Ω {ω2, ω3} {ω2, ω3} ∅
{ω2} ∅ Ω ∅ Ω ∅ {ω2, ω3} ∅ ∅
{ω3} ∅ Ω ∅ Ω ∅ {ω2, ω3} ∅ ∅
{ω1, ω2} {ω1} {ω2, ω3} Ω ∅ Ω {ω2, ω3} {ω2, ω3} ∅
{ω1, ω3} {ω1} {ω2, ω3} Ω ∅ Ω {ω2, ω3} {ω2, ω3} ∅
{ω2, ω3} ∅ Ω ∅ Ω ∅ {ω2, ω3} ∅ ∅

Ω Ω ∅ Ω ∅ Ω ∅ ∅ ∅
E CI = Ki4 (¬Ki4) (¬Ki4)2 (¬Ki4)3 (¬Ki4)4 ∂i4 U

(2)
i4

U
(n)
i4

∅ ∅ Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3} {ω2, ω3}
{ω1} {ω1} {ω2, ω3} Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3}
{ω2} ∅ Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3} {ω2, ω3}
{ω3} ∅ Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3} {ω2, ω3}
{ω1, ω2} {ω1} {ω2, ω3} Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3}
{ω1, ω3} {ω1} {ω2, ω3} Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3}
{ω2, ω3} ∅ Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3} {ω2, ω3}

Ω {ω1} {ω2, ω3} Ω {ω2, ω3} Ω {ω2, ω3} {ω2, ω3} {ω2, ω3}

Table 1: Agents’ Knowledge and Unawareness in Example 1 (n ≥ 3 or n =∞)

Second, while (Ki, U
(n)
i ) satisfies AU Introspection for each i ∈ {i2, i4}, the other

pairs (Kj, U
(n)
j ) (j ∈ {i1, i3}) do not necessarily satisfy AU introspection. Such j’s

information structure 〈E , (Kj, U
(n)
j )〉 (n ∈ N∞2 ) is considered to be a reflexive and

transitive possibility correspondence model. Indeed, j’s knowledge can be induced
from the possibility correspondence bj : Ω→ D, where bi1(ω1) = {ω1}, bi1(ω2) = {ω2},
and bi1(ω3) = Ω; and bi3(ω1) = {ω1} and bi3(ω2) = bi3(ω3) = Ω. The fact that
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(Kj, U
(n)
j ) does not satisfy AU Introspection is consistent with Dekel, Lipman, and

Rustichini (1998) that there is no non-trivial possibility correspondence model which
satisfies all of Plausibility, KU Introspection, and AU Introspection.

3 Unawareness as Lack of Knowledge

Having defined the basic framework, I now proceed with the main analyses.

3.1 Equivalent Representations

I relate the concepts of ignorance, knowing-whether, and possibility to that of un-
awareness. I also study the relations among kn-unawareness. Throughout the sub-
section, fix an information structure S = 〈E , (K,U)〉 of a single agent.

The first benchmark result is that, under Truth Axiom, Positive Introspection,
and Monotonicity, (¬K)2 = (¬K)2n for all n ∈ N (documented in Lemma A.1 in

Appendix A).10 It implies that U
(∞)

= U
(n)

for all n ≥ 3. In other words, if the
chain of the lack of knowledge holds repeatedly three times, then the chain continues
without an end. Hence, as long as the notions of unawareness are derived from the

lack of knowledge, I can restrict attention to U
(n)

with n ∈ {2,∞}, and I can replace

U
(∞)

with U
(3)

. Note that U
(2)

and U
(∞)

(= U
(3)

) are generally different (e.g., agents

i1 and i3 in Example 1). I will characterize in Proposition 4 when U
(2)

= U
(∞)

holds.
This preliminary result leads to the following restatement of unawareness.

Proposition 1. Fix E ∈ E.

1. U
(∞)

(E) = U
(2)

(¬K)(E). Equivalently, A
(∞)

(E) = A
(2)

(¬K)(E).

2. U
(2)

(E) = ∂K(E) 6 ∂(E). Also, U
(2)

(E) = ∂L
(2)
K(E).

3. U
(∞)

(E) = ∂K(¬K)(E). Also, U
(∞)

(E) = ∂L
(∞)

K(E).

Part (1) of Proposition 1 relates U (∞) and U (2) in that the agent is k∞-unaware
of an event E iff she is k2-unaware of not knowing E. Parts (2) and (3) characterize
k2-unawareness and k∞-unawareness by ignorance and possibility, respectively. The
agent is k2-unaware of an event E iff she does not know whether she knows E (i.e.,
she is ignorant of (not) knowing E). Likewise, the agent is k∞-unaware of E iff she
does not know whether she knows that she does not know E (i.e., she is ignorant of
knowing that she does not know E).

10Mathematically, this property is related to the notion of regularly open/closed sets in general
topology (e.g., Willard (2004)) in the sense that the assumptions on K are related to a part of the
properties of the interior operator on a topological space.
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In either case, the agent is kn-unaware of E iff she is ignorant of the possibility that
she knows E. Also, kn-unawareness implies ignorance: if the agent knows whether E
is true, then she is kn-aware of E.

3.2 Characterization of Non-triviality

An information structure S = 〈E , (K,U)〉 represents a non-trivial form of unaware-

ness (or S is non-trivial) if U(E) 6= ∅
S(E)

(i.e., U(E) 6= ∅) for some E ∈ E . The
information structure S is trivial otherwise. Dekel, Lipman, and Rustichini (1998,
Theorem 1) show that any standard possibility correspondence model is trivial under
Plausibility, KU Introspection, and AU Introspection. Modica and Rustichini (1994)
show that S is trivial under Symmetry (U(E) = U(¬E)).

The following two questions naturally arise. First, when does a state space model
(especially, a standard one) represent a non-trivial form of unawareness? Second,
what properties have to be retained in order to represent a non-trivial form of un-
awareness in a standard state space model (Dekel, Lipman, and Rustichini, 1998, p.
166)?

I examine the above first question by providing a necessary and sufficient con-

dition for an information structure S(n) := 〈E , (K,U (n)
)〉 (with n ∈ {2,∞}) to be

non-trivial. The characterization implies that S(2) on a standard state space is gener-
ically non-trivial even when it is induced from a reflexive and transitive possibility
correspondence.

Proposition 2. 1. (a) For any E ∈ E, U
(2)

(E) 6= ∅
S(E)

iff K(E) ∈ J \ J ∗.
(b) S(2) is non-trivial iff J \ J ∗ 6= ∅ iff J ∗ \ J 6= ∅ iff J ∗4J 6= ∅.

2. (a) For any E ∈ E, U
(∞)

(E) 6= ∅
S(E)

iff K(¬K)(E) ∈ J \ J ∗.
(b) S(∞) is non-trivial iff {F ∈ J \ J ∗ | K(¬F ) ∈ J \ J ∗} 6= ∅.

For the rest of this subsection, consider standard state space models. By Propo-
sition 2, the triviality of a standard partitional information structure follows from
J = J ∗. Recall that Negative Introspection is equivalent to this condition. In con-
trast, S(2) on a standard state space is non-trivial iff J is not closed under negation.
It follows that any standard reflexive and transitive possibility correspondence model
is non-trivial as long as it is not partitional. An underlying intuition for this par-
ticular case is very simple: S(2) is non-trivial iff Negative Introspection fails. Thus,
any (properly) non-partitional model of knowledge represents a non-trivial form of
unawareness.

Consider an information structure S(n) on a standard state space which satisfies
Necessitation. For example, the agent i1 in Example 1 entails a non-trivial form of
unawareness because, for example, {ω2} ∈ Ji1 \ J ∗i1 satisfies K(¬{ω2}) = {ω1} ∈
Ji1 \ J ∗i1 . Noting that K(E) = ∅ implies (¬K)2(E) = ∅, if an agent is (kn-)unaware
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of an event E at some state ω, then she does not know E at ω and she knows E at
another state ω′. If she does not know E at any state, then she knows that she does
not know E at any state, and thus she is not unaware of E at any state. In contrast,
the failure of Necessitation in a standard state space implies the non-triviality because
∅ 6= (¬K)(Ω) ⊆ U (∞)(E) ⊆ U (2)(E) for all E. At any state ω ∈ (¬K)(Ω), an agent
does not know anything and she is unaware of everything. The next subsection

(Proposition 4) shows that AU Introspection is equivalent to A
(n)

(E, S) = K(S
↑
) in

a generalized state space.

3.3 Properties of Unawareness

Consider S(n) with n ∈ {2,∞}. I first examine properties of U
(n)

that hold. Next, I
study properties that lead to a degenerate form of unawareness in a standard state
space.

First, any S(n) satisfies Plausibility by definition. Also, S(∞) satisfies Strong

Plausibility: U
(∞)

(·) 6
∧
r∈N(¬K)r(·) with equality (Heifetz, Meier, and Schipper,

2006, 2008).11 One could regard U
(n)

(·) 6 ∂(·) (i.e., unawareness implies ignorance)
as a plausibility condition.

Second, any S(n) satisfies KU Introspection as Dekel, Lipman, and Rustichini
(1998, Footnote 10) note that Truth Axiom, Monotonicity, and Plausibility yield KU
Introspection. Now, I provide other properties of S(n).

Proposition 3. Any S(n) satisfies the following. Let E = (E, S) ∈ E.

1. A
(n)

(E, S) 6 K(S
↑
). Also, A

(n)
U

(n)
(E, S) = K(S

↑
).

2. Reverse AU Introspection: U
(n)
U

(n)
(E) 6 U

(n)
(E). Also, U

(n)
U

(n)
U

(n)
(E) =

U
(n)
U

(n)
(E).

3. JU Introspection: U
(n)

(E) = ∂U
(n)

(E). Equivalently, A
(n)

(E) = JA
(n)

(E).

4. Weak A-Negative Introspection for n = 2: (¬K)(E) ∧ A(2)
(E) = K(¬K)(E).

5. AK Self-Reflection: A
(n)

(E) = A
(n)
K(E). Equivalently, U

(n)
(E) = U

(n)
K(E).

6. A-Introspection: A
(n)

(E) = KA
(n)

(E). Equivalently, U
(n)

(E) = (¬K)A
(n)

(E).

7. Weak AA Self-Reflection: A
(n)

(E) 6 A
(n)
A

(n)
(E) with equality if n = 2. Also,

A
(n)
A

(n)
(E) = A

(n)
A

(n)
A

(n)
(E).

11I also use other terminologies coined by Heifetz, Meier, and Schipper (2006, 2008) and Schipper
(2015) postulated in Proposition 3 (specifically, Properties 5, 6, and 9).
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8. L
(n)
A

(n)
(E) = A

(n)
A

(n)
(E).

If K satisfies Finite Conjunction, then so does A
(n)

:

9. A-Conjunction: A
(n)

(E) ∧ A(n)
(F ) 6 A

(n)
(E ∧ F ).

Property 1 is a part of Weak Necessitation (A
(n)

(E, S) = K(S
↑
)) originally coined

by Dekel, Lipman, and Rustichini (1998). This part follows from Monotonicity of
K. In a standard state space, Property 1 reduces to A(n)(E) ⊆ K(Ω). Proposition
4 studies the implication of Weak Necessitation. While the entire part of Weak
Necessitation may not necessarily hold, Monotonicity of K and KU Introspection

yield A
(n)
U

(n)
(E, S) = K(S

↑
), i.e., U

(n)
U

(n)
(E, S) = (¬K)(S

↑
).

Property 2 is the “converse” of AU Introspection. Reverse AU Introspection
follows from Property 1 (a part of Weak Necessitation). Similarly, the ignorance
operator satisfies ∂∂(·) 6 ∂(·).

JU Introspection (Property 3) states that if the agent is unaware of an event
then she is ignorant of being unaware of it. Indeed, JU Introspection holds with
equality. Reverse AU Introspection is also seen as a consequence of JU Introspection.
As a remark, I provide an alternative proof of Reverse AU Introspection from JU

Introspection (Property 3) together with U
(n)

(·) 6 ∂(·) (Proposition 1): U
(n)
U

(n)
(·) 6

∂U
(n)

(·) = U
(n)

(·).
Weak A-Negative Introspection (Property 4) is proposed by Li (2009).12 If n =∞,

this is equivalent to Weak Negative Introspection for n = 2: (¬K)(E)∧A(2)
(¬K)(E) =

K(¬K)(E) (Fagin and Halpern (1987) and Halpern (2001)). Weak A-Negative Intro-
spection for n =∞, however, may not hold (i.e., the “6” part may fail). Proposition
4 studies the implication of Weak A-Negative Introspection for n =∞. As a partic-
ular example, consider Example 1: (¬Ki1)({ω1, ω2}) ∩ A(∞)

i1
({ω1, ω2}) = {ω3} 6⊆ ∅ =

Ki1(¬Ki1)({ω1, ω2}). Moreover, (¬Ki1)({ω1, ω2}) ∩ A(∞)
i1

(¬Ki1)({ω1, ω2}) = {ω3}.
Properties 5,6, and 9 are proposed by Modica and Rustichini (1994, 1999). AK

Self-Reflection (Property 5) is equivalent to U
(n)

= U
(n)
K: the agent is unaware of

E iff she is unaware of knowing E. A-Introspection (Property 6) is equivalent to

U
(n)

= (¬K)A
(n)

: the agent is unaware iff she does not know that she is aware.
Property 7 (Weak AA Self-Reflection) is based on AA Self-Reflection (Modica

and Rustichini, 1994, 1999): A
(n)

= A
(n)
A

(n)
. While AA Self-Reflection holds when

n = 2, only this weak form is true when n = ∞. For instance, in Example 1,
A

(∞)
i1

({ω1}) = {ω1, ω2} 6= Ω = A
(∞)
i1

A
(∞)
i1

({ω1}).
Property 8 states that the agent is aware of being aware of an event iff she considers

it possible that she is aware of the event.

12Given an information structure 〈E , (K,U)〉, Plausibility and Weak A-Negative Introspection

induce U = U
(2)

. It would be interesting to ask whether there are other “non-trivial” combinations

of axioms that yield U = U
(2)

given a pair (K,U).
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Property 9 (A-Conjunction) is studied by Modica and Rustichini (1994, 1999).

The converse of A-Conjunction (i.e., A
(n)

(E) ∧ A(n)
(F ) > A

(n)
(E ∧ F )), studied by

Fagin and Halpern (1987), Halpern (2001) and Modica and Rustichini (1999), may

not necessarily hold. In Example 1, A
(n)
i1

({ω1, ω3})∩A(n)
i1

({ω2, ω3}) = {ω1, ω2} ( Ω =

A
(n)
i1

({ω3}). Proposition 4 studies the converse of A-Conjunction.
I return to the question raised by Dekel, Lipman, and Rustichini (1998, p. 166),

which of their three axioms is to be retained in a standard possibility correspon-
dence model so as to capture a non-trivial form of unawareness. One implication of
Proposition 3 is that any information structure satisfies Plausibility (by definition),
KU Introspection, Reverse AU Introspection, and JU Introspection (instead of AU
Introspection). Thus, practically, one could analyze agents’ unawareness involving
these properties in standard state spaces.

I remark on how KU Introspection and AU Introspection lead to a trivial form
of unawareness in a standard state space model with Necessitation. Monotonicity
and Necessitation of K and KU Introspection yield U (n)U (n)(E) = (¬K)(Ω) = ∅.
Intuitively, since KU introspection implies that the agent does not know that she is
unaware of an event E at any state, the statement that the agent does not know that
she is unaware of an event E is a tautology. Hence, the agent knows that she does
not know that she is unaware of an event E at any state. Thus, there is no state
at which she is unaware of being unaware of E. Now, AU introspection implies that
there is no state at which the agent is unaware of an event.

Next, I turn to examining other properties which lead to a degenerate form of
unawareness in a standard state space. More generally, I characterize Weak Ne-
cessitation. On the one hand, these properties lead to trivial unawareness under
Necessitation in a standard state space. This is because Weak Necessitation reduces
to U (n)(·) = (¬K)(Ω) in a standard state space. On the other hand, in a generalized
state space model of Heifetz, Meier, and Schipper (2006, 2008), Weak Necessitation
connects notions of unawareness as the lack of knowledge and the lack of concept.

Proposition 4. Let S(n) be an information structure.

1. Let n = 2. (a)-(i) are all equivalent to Weak Necessitation: U
(2)

(E, S) =

(¬K)(S
↑
) (for all (E, S) ∈ E). Under Finite Conjunction of K, it is also

equivalent to (k).

2. Let n = ∞. (g)-(j) are all equivalent to Weak Necessitation: U
(∞)

(E, S) =

(¬K)(S
↑
). Under Finite Conjunction of K, it is also equivalent to (k).

(a) Subjective Negative Introspection: K(S
↑
)∧(¬K)(E, S) 6 K(K(S

↑
)∧(¬K)(E, S)).

(b) If (E, S) ∈ J then K(S
↑
) ∧ (¬(E, S)) ∈ J .

(c) Negative Non-Introspection: (¬K)(·) ∧ (¬K)2(·) 6 (¬K)3(·).
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(d) U
(2)

= U
(∞)

(i.e., Strong Plausibility of U
(2)

).

(e) Weak A-Negative Introspection for n =∞: (¬K)(·) ∧ A(∞)
(·) = K(¬K)(·).

(f) Symmetry of U
(2)

: U
(2)

(E) = U
(2)

(¬E).

(g) AU introspection of U
(n)

.

(h) LU introspection of U
(n)

: L
(n)
U

(n)
(E, S) = ∅

S
.

(i) Monotonicity of A
(n)

: if E 6 F then A
(n)

(E) 6 A
(n)

(F ).

(j) AA Self Reflection of A
(∞)

: A
(∞)

= A
(∞)

A
(∞)

.

(k) A
(n)

(E) ∧ A(n)
(F ) > A

(n)
(E ∧ F ) (i.e., A-Conjunction with equality).

Remarks on Proposition 4 are in order. First, assume Necessitation and Weak

Necessitation. In a generalized state space, while U
(n)

(·, inf Σ) = ∅
inf Σ

, it is not

necessarily the case that U
(n)

(·, S) = ∅
S

for S 6= inf Σ. Thus, each property in
Proposition 4 distinguishes standard and generalized state space models especially
under Necessitation. If the analysts would like to impose any of the above properties
of unawareness on the agent together with Necessitation, then generalized state space
models could describe a non-trivial form of unawareness.

Second, Proposition 4 suggests that Weak Necessitation holds when awareness
satisfies logical properties such as Symmetry (i.e., (f)) and Monotonicity (i.e., (i)).

Third, compare (b) with Proposition 2 (1a). On the one hand, (b) states that

K(S
↑
) ∧ (¬(E, S)) ∈ J (for all (E, S) ∈ J ) characterizes Weak Necessitation. On

the other, Proposition 2 (1a) states that a given information structure is trivial when
¬(E, S) ∈ J (for all (E, S) ∈ J ).

Fourth, Negative Non-Introspection is coined by Schipper (2015). LU Introspec-
tion states that there is no state at which the agent considers it possible that she
is unaware of any particular event. The equivalence of LU Introspection and AU
Introspection follows from A-Introspection (Proposition 3 (6)).

Fifth, the equivalence between Subjective Negative Introspection and AU Intro-
spection is closely related to Chen, Ely, and Luo (2012), which show the equivalence
of Negative Introspection and AU Introspection in a standard state space with Neces-
sitation. Here, Subjective Negative Introspection reduces to Negative Introspection
under Necessitation.

Sixth, Modica and Rustichini (1994, Theorem) show k2-unawareness is trivial

under Symmetry. While Symmetry of U
(2)

yields a rather degenerate form of un-

awareness, Symmetry of U
(∞)

does not necessarily imply Symmetry of U
(2)

even in a
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standard state space (e.g., agent i1 in Example 1). Similarly, while Weak Necessita-

tion of U
(2)

implies that of U
(∞)

, the converse does not necessarily hold (e.g., agent
i3 in Example 1).

4 Further Properties of Unawareness

In this section, I study properties of unawareness that hinge on whether AU Intro-
spection (or equivalently Weak Necessitation) is satisfied.

4.1 Knowledge of Self-awareness

I ask the knowledge of self-unawareness, i.e., I ask whether there exists a state in which
the agent knows that she is unaware of something, even though KU Introspection
requires that she do not know that she is unaware of any particular event. I define
the event that the agent is unaware of something in an information structure in a
“reduced-form” manner.13

Throughout this subsection, fix S(n) with n ∈ {2,∞}. I formalize the event that
the agent is unaware of something by

U(n)
:= (U(n), sup Σ) :=

⋃
E∈E

(rsup Σ
S(E) )−1(B(U

(n)
(E))), sup Σ

 ∈ E .
By definition, U(n)

=
∨
E∈E U

(n)
(E) and U(n) = {ω ∈ sup Σ | there is E ∈ E such that ω ∈

U (n)(E)}. Thus, S(n) is non-trivial iff U(n) 6= ∅. I study the agent’s knowledge and

awareness of the event U(n)
.

Proposition 5. 1. (a) If S(n) additionally satisfies AU Introspection, then U(n)
=

U
(n)

(sup Σ), K(U(n)
) = ∅

sup Σ
, and A

(n)
(U(n)

) = K(sup Σ).

(b) Assume Finite Conjunction on K. If E is finite, K(U(n)
) = ∅

sup Σ
and

A
(n)

(U(n)
) = K(sup Σ).

(c) If E is infinite, it is possible that K(U(n)
) 6= ∅

sup Σ
.

2. A(U(n)
) 6= ∅

sup Σ
iff K(sup Σ) 6= ∅

sup Σ
.

The first part of Proposition 5 states the following. First, under AU Introspection,
the agent can never know that she is unaware of something. Second, under Finite

13This subsection asks how one can semantically define such an event. For first-order-logic ap-
proaches to self-awareness, see Board and Chung (2007), Halpern and Rêgo (2009), Schipper (2015,
Section 3.5), and the references therein. I leave it open whether and how the first-order-logic ap-
proaches to self-awareness can be translated into semantic (set-theoretical) forms.
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Conjunction, if the domain is finite then the agent never knows that she is unaware
of something. Third, however, if a given domain is infinite and if AU Introspection
fails, it is possible (even in a standard state space) that the agent knows that she
is unaware of something, even though she never knows that she is unaware of any
particular event.

The second part of the proposition implies that there is a state at which the agent is

aware of being unaware of something (i.e., A
(n)

(U(n)
) 6= ∅

sup Σ
) iff her knowledge is not

degenerate in the subspace sup Σ (i.e., K(E, sup Σ) 6= ∅
sup Σ

for some (E, sup Σ) ∈ E).

4.2 (Non-)monotonicity of Unawareness in Knowledge

Under Weak Necessitation, awareness is monotonic in knowledgeability . As Proposi-
tion 2 shows that non-trivial unawareness hinges on the qualitative feature of knowl-
edge (e.g., whether the lack of knowledge is self-evident), however, generally awareness
may not be monotone in knowledgeability. That is, the fact that Kj(·) 6 Ki(·) does

not necessarily imply U
(n)

i (·) 6 U
(n)

j (·). In Example 1, while agents (i, j) = (i1, i4)
satisfy this relation, agents (i, j) = (i1, i3) do not.

The intuition behind non-monotonicity is that, while an increase in knowledge
enhances awareness through knowledge itself, a decrease in knowledge also enhances
awareness through the knowledge of the lack of knowledge. In an extreme case,
consider an agent i∗ with her self-evident collection Ji∗ = {∅,Ω} on a standard state
space (i.e., Ki∗(E) = ∅ for all E ∈ E \ {Ω} and Ki∗(Ω) = Ω). She is aware of every
event (recall Proposition 2). This is because she always knows that she does not know
any non-tautological event. Such agent knows her own ignorance.

One can compare agents’ knowledge and unawareness as one agent’s knowledge
and unawareness over time. Let a state space be given by Ω = {ω1, ω2, ω3} as in
Example 1. Denote an agent i’s knowledge at time t by i(t). Specifically, let i(0) = i4,
i(1) = i1, and i(2) = i∗. At time 1, getting more information causes agent i to get
aware of some event at each realized state. At time 2, on the other hand, she “forgets”
some events, and this may make her aware of some events at some states.

Also, the entire discussion applies to common knowledge. It is possible that if some
event is not commonly known then it is commonly known that this is not common
knowledge. When each agent receives some events, on the contrary, it may become
possible that it is not common knowledge that this is not common knowledge.

Now, I move on to examining possible forms of monotonicity of unawareness in
knowledgeability. The key observation is that the knowledge and ignorance operators
are monotonic in knowledgeability. Let j be at least as knowledgeable as i. Then,

KU Introspection of (Kj, U
(n)

j ) yields KiU
(n)

j (E) = ∅
S(E)

. Ignorance is “decreasing”

in knowledge because ignorance of an event E is expressed in terms of the lack of
knowledge of E and its negation ¬E. Thus, for any event E, if j is ignorant of E then
so is i. Monotonicity of these operators in knowledgeability implies the following.
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Proposition 6. Let j be at least as knowledgeable as i. Fix n ∈ {2,∞} and E ∈ E.

1. (a) ∂jKi(E) 6 U
(2)

i (E). Equivalently, A
(2)

i (E) 6 J jKi(E).

(b) ∂jKi(¬Ki)(E) 6 U
(∞)

i (E). Equivalently, A
(∞)

i (E) 6 J jKi(¬Ki)(E).

(c) ∂jL
(n)

i Ki(E) 6 U
(n)

i (E). Equivalently, A
(n)

i (E) 6 J jL
(n)

i Ki(E).

(d) U
(n)

j U
(n)

i (E) 6 ∂jU
(n)

i (E) 6 U
(n)

i (E).

2. (a) U
(2)

j (E) 6 ∂iKj(E). Equivalently, J iKj(E) 6 A
(2)

j (E).

(b) U
(∞)

j (E) 6 ∂iKj(¬Kj)(E). Equivalently, J iKj(¬Kj)(E) 6 A
(∞)

j (E).

(c) U
(n)

j (E) 6 ∂iL
(n)

j Kj(E). Equivalently, J iL
(n)

j Kj(E) 6 A
(n)

j (E).

(d) U
(n)

j (E) 6 ∂iU
(n)

j (E)

3. A
(n)

i (E) = KjA
(n)

i (E) 6 A
(n)

j A
(n)

i (E).

Suppose that agent j is at least as knowledgeable as i. The first two statements
are comparative statics of unawareness with respect to ignorance. First, (1a) states
that if j is ignorant of i knowing E then i is (k2-)unaware of E. Second, on the
contrary, (2a) states that if j is (k2-)unaware of E then i is ignorant of j knowing E.
The similar relation holds between the other parts (e.g., (1b) and (2b)).

The third statement says that i’s awareness of an event is self-evident to j and
that i’s awareness of an event E implies j’s awareness of i’s awareness of E.

Observing that any event E that is commonly known among a group of agents
is known by any agent in the group, Proposition 6 applies to an individual agent’s
knowledge and common knowledge operators. I examine the implications of the first
two statements of Proposition 6.

Corollary 1. Fix i ∈ I and E ∈ E.

1. (a) ∂iCI(E) 6 (¬CI)(E) ∧ (¬CI)
2(E).

(b) ∂iCI(¬CI)(E) 6
∧∞
r=1(¬CI)

r(E).

2. (a) U
(2)

i (E) 6 (¬CI)Ki(E) ∧ (¬CI)(¬Ki)(E).

(b) U
(∞)

i (E) 6 (¬CI)Ki(¬Ki)(E) ∧ (¬CI)(¬Ki)
2(E).

Corollary 1 (1a) means that if agent i is ignorant of the common knowledge of
an event E then the event E is not common knowledge and the event that E is not
common knowledge is not common knowledge. Corollary 1 (1b) states that if agent
i is ignorant of the common knowledge that E is not common knowledge then this
chain of the negation of common knowledge continues ad infinitum. Corollary 1 (2a)
means the following: suppose that agent i is k2-unaware of an event E. Then, it is
not common knowledge that i knows E, and it is not common knowledge that i does
not know E. Corollary 1 (2b) studies the implication of agent i’s k∞-unawareness.
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5 Conclusion

This paper studied unawareness from the lack of knowledge in a generalized state
space model which nests standard non-partitional and generalized partitional state
space models. Unawareness can only take two forms: (i) the ignorance of own knowl-
edge and (ii) the ignorance of the knowledge of the lack of knowledge. For either form,
an agent is unaware of an event iff she is unaware of the possibility that she knows the
event. This paper characterized when unawareness is non-trivial; which properties of
unawareness hold and do not hold in a standard or generalized state space model.
For example, the agent is unaware of an event iff she is ignorant of being unaware
of it. The paper also provided a notion of self-awareness, and showed that an agent
may know that she is unaware of something if the objects of knowledge are infinite
and if the agent’s unawareness fails AU Introspection. The paper also studied non-
monotonicity and possible forms of monotonicity of unawareness in knowledgeability.
When unawareness is determined by the lack of knowledge, getting more information
may cause the agent to become unaware of a new event. One interesting avenue for
future research would be to incorporate agents’ probabilistic beliefs in the framework
of this paper to capture knowledge, probabilistic beliefs, and unawareness in a single
coherent framework.

A Appendix

In order to prove Proposition 1, I establish the following lemma.

Lemma A.1. Fix E ∈ E. Then, K(E) 6 (¬K)2(E) = (¬K)2n(E) 6 (¬K)(¬E).
Also, K(¬E) 6 (¬K)2(¬E) 6 (¬K)2n+1(E) = (¬K)3(E) 6 (¬K)(E).

Proof of Lemma A.1. I only show the first statement. By Truth Axiom and Mono-
tonicity, K(E) 6 (¬K)2(E) 6 (¬K)(¬E). It suffices to show (¬K)2 = (¬K)4. Since
Truth Axiom implies K(E) 6 (¬K)2(E), Positive Introspection and Monotonicity
imply K(E) 6 KK(E) 6 K(¬K)2(E). By Monotonicity, (¬K)2(E) 6 (¬K)4(E).
Conversely, by Truth Axiom, K(¬K)2(E) 6 (¬K)2(E), i.e., K(¬K)(E) 6 (¬K)3(E).
Monotonicity and Positive Introspection imply (¬K)4(E) 6 (¬K)2(E).

Proof of Proposition 1. 1. By Lemma A.1, U
(∞)

(E) = U
(3)

(E) = (¬K)2(E) ∧
(¬K)3(E) = U

(2)
(¬K)(E).

2. First, U
(2)

(E) = (¬K)K(E) ∧ (¬K)(¬K)(E) = ∂K(E). Second, ∂K(E) =

U
(2)

(E) = (¬K)(E) ∧ (¬K)(¬K)(E) 6 (¬K)(E) ∧ (¬K)(¬E) = ∂(E). Third,

to obtain ∂L
(2)
K = U

(2)
= ∂K, I show L

(2)
K = K:

L
(2)
K(E) = (¬K)2(E) ∧ A(2)

K(E) = (¬K)2(E) ∧
(
K(E) ∨K(¬K)(E)

)
= K(E).
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3. First, U
(∞)

= U
(2)

(¬K) = U
(2)

(¬K)2 = ∂K(¬K)2. Second, I show L
(∞)

K =
K(¬K)2:

L
(∞)

K(E) = (¬K)2(E) ∧ A(∞)
K(E)

= (¬K)2(E) ∧
(
K(¬K)(E) ∨K(¬K)2(E)

)
= K(¬K)2(E).

Then, I get ∂L
(∞)

K(E) = U
(∞)

(E).

The following proposition provides further properties of unawareness. The first
statement will be used in establishing Proposition 4 in Section 3.3.

Proposition A.1. Fix E ∈ E. First, U
(2)

(E) ∧ U (2)
(¬E) 6 U

(∞)
(E). Second,

U
(2)

(E) ∨ U (2)
(¬E) 6 U

(2)
J(E), where the equality holds if K satisfies Finite Con-

junction.

Proof of Proposition A.1. The first assertion follows from Lemma A.1:

U
(2)

(E) ∧ U (2)
(¬E) = (¬K)(E) ∧ (¬K)2(E) ∧ (¬K)(¬E) ∧ (¬K)2(¬E)

6 (¬K)(E) ∧ (¬K)2(E) ∧ (¬K)3(E) = U
(∞)

(E).

For the second assertion, observing KJ = J , I have

U
(2)
J(E) = (¬K)J(E) ∧ (¬K)2J(E) = ∂(E) ∧ (¬K)∂(E)

= ∂(E) ∧ (¬K)((¬K)(E) ∧ (¬K)(¬E))

> ∂(E) ∧ ¬(K(¬K)(E) ∧K(¬K)(¬E))

= (∂(E) ∧ (¬K)2(E)) ∨ (∂(E) ∧ (¬K)2(¬E)).

Since ∂(E) = ∂(¬E) and since Lemma A.1 implies that

∂(E) ∧ (¬K)2(E) = (¬K)(E) ∧ (¬K)2(E) ∧ (¬K)(¬E) = U
(2)

(E),

I obtain U
(2)
J(E) > U

(2)
(E) ∨ U (2)

(¬E). The equality holds when K satisfies Finite
Conjunction.

Proof of Proposition 2. 1. (a) If ∅
S(E)
6= U

(2)
(E) for some E ∈ E , then K(E) 6=

(¬K)2(E). Thus, K(E) ∈ J \J ∗. Conversely, if K(E) ∈ J \J ∗ for some

E ∈ E , then ∅ 6= (¬K)2(E) \K(E) = U (2)(E). Thus, U
(2)

(E) 6= ∅
S(E)

.

(b) If S(2) is non-trivial, then U
(2)

(E) 6= ∅
S(E)

for some E ∈ E . By (1a),
K(E) ∈ J \ J ∗, i.e., J \ J ∗ 6= ∅. Conversely, if J \ J ∗ 6= ∅, then there is

K(E) = E ∈ J \ J ∗, and hence U
(2)

(E) 6= ∅
S(E)

, i.e., S(2) is non-trivial.
The rest follows because E ∈ J \ J ∗ iff ¬E ∈ J ∗ \ J .
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2. (a) The assertion follows from part (1a) and U
(∞)

= U
(2)

(¬K).

(b) By part (1) and U
(∞)

= U
(2)

(¬K), S(∞) is non-trivial iff there is E ∈ E
such that K(¬K)(E) ∈ J \ J ∗. Let S(∞) be non-trivial, and let F :=
K(¬K)(E) ∈ J \J ∗. It is enough to showK(¬F ) = K(¬K)2(E) ∈ J \J ∗.
Suppose to the contrary that K(¬K)2(E) ∈ J ∗. Since K(¬K)3(E) =
(¬K)3(E), it follows that (¬K)2(E) = (¬K)4(E) = K(¬K)2(E) ∈ J .
Hence, F = K(¬K)(E) ∈ J ∗, a contradiction. Conversely, suppose that
there is F ∈ J \ J ∗ such that K(¬F ) ∈ J \ J ∗. Since K(F ) = F , it
follows that K(¬K)(F ) ∈ J \ J ∗. Thus, S(∞) is non-trivial.

To prove (the last statement of) Proposition 3 and Proposition 5, I establish the
following intermediate result.

Lemma A.2. Let K : E → E be an operator satisfying Finite Conjunction and
Monotonicity. For any E,F ∈ E, K(E ∨ F ) ∨ (¬K)(¬F ) 6 K(E) ∨ (¬K)(¬F ).

Proof of Lemma A.2. By Finite Conjunction and Monotonicity, K(E∨F )∧K(¬F ) =
K(E ∧ (¬F )) 6 K(E). Now, K(E ∨ F ) ∨ (¬K)(¬F ) = (K(E ∨ F ) ∧ K(¬F )) ∨
(¬K)(¬F ) 6 K(E) ∨ (¬K)(¬F ).

Proof of Proposition 3. Property 6 (A-Introspection). A-Introspection follows be-

cause A
(n)

(E) =
∨n
r=1K(¬K)r−1(E) is self-evident.

Property 1. First, A
(n)

(E) =
∨n
r=1K(¬K)r−1(E) 6 K(S

↑
). Second, by KU Intro-

spection, K(S
↑
) > A

(n)
U

(n)
(E) > K(¬K)U

(n)
(E) = K(S

↑
).

Property 2 (Reverse AU Introspection). By Property 1, U
(n)
U

(n)
(E) = (¬K)(S

↑
) 6

U
(n)

(E) and U
(n)
U

(n)
U

(n)
(E) = U

(n)
U

(n)
(E).

Property 3 (JU Introspection). JU Introspection follows from KU Introspection and

A-Introspection: ∂U
(n)

(E) = (¬K)U
(n)

(E) ∧ (¬K)A
(n)

(E) = U
(n)

(E).

Property 4 (Weak A-Negative Introspection). Weak A-Negative Introspection follows

from the definition of A
(2)

.

Property 5 (AK Self-Reflection). AK Self-Reflection follows from K = KK.

Property 7 (Weak AA Self-Reflection). Let n = 2. By A-Introspection and KU In-

trospection, U
(2)
A

(2)
(E) = (¬K)A

(2)
(E)∧ (¬K)2A

(2)
(E) = U

(2)
(E)∧ (¬K)U

(2)
(E) =

U
(2)

(E). Then, A
(2)

(E) = A
(2)
A

(2)
(E).
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Next, let n =∞. By A-Introspection, U
(∞)

A
(∞)

(E) 6 (¬K)A
(∞)

(E) = U
(∞)

(E).

Thus, A
(∞)

(E) 6 A
(∞)

A
(∞)

(E). By A-Introspection and KU Introspection, A
(∞)

A
(∞)

(E) =

K(S
↑
). Thus, A

(∞)
A

(∞)
A

(∞)
(E) = A

(∞)
A

(∞)
(E).

Property 8. By KU Introspection, L
(n)
A

(n)
(E) = (¬K)U

(n)
(E) ∧ A(n)

A
(n)

(E) =

A
(n)
A

(n)
(E).

Property 9 (A-Conjunction). Let F be a non-empty finite subset of E . I show that

U
(n)

(
∧
F) 6

∨
E∈F U

(n)
(E). For n = 2, by Finite Conjunction and Monotonicity,

U
(2)

(
∧
F) =

∨
E∈F

(¬K)(E) ∧ (¬K)2(
∧
F) 6

∨
E∈F

(¬K)(E) ∧
∧
F∈F

(¬K)2(F )

=
∨
E∈F

(¬K)(E) ∧
∧
F∈F

(¬K)2(F )

 6
∨
E∈F

((¬K)(E) ∧ (¬K)2(E)) =
∨
E∈F

U
(2)

(E).

Note that the same proof works, for example, for any non-empty subset F of E if S
satisfies Non-empty Conjunction.

Next, consider n =∞. By Finite Conjunction and Monotonicity,

U
(∞)

(
∧
F) = (¬K)2(

∧
F) ∧ (¬K)3(

∧
F) 6

∧
F∈F

(¬K)2(F ) ∧ (¬K)2(
∨
E∈F

(¬K)(E)).

I show
(¬K)2(

∨
E∈F

(¬K)(E)) 6
∨
E∈F

(¬K)3(E). (A.1)

Since

U
(∞)

(
∧
F) 6

∧
F∈F

(¬K)2(F ) ∧
∨
E∈F

(¬K)3(E) =
∨
E∈F

∧
F∈F

(¬K)2(F ) ∧ (¬K)3(E)


6
∨
E∈F

((¬K)2(E) ∧ (¬K)3(E)) =
∨
E∈F

U
(∞)

(E),

it suffices to establish Expression (A.1) for F = {E1, E2}. Let F j := (¬K)(Ej), and
notice that (¬K)(¬F j) = F j for each j. It follows from Lemma A.2 that

K(F 1 ∨ F 2) 6 K(F 1 ∨ F 2) ∨ (¬K)(¬F 2) 6 K(F 1) ∨ (¬K)(¬F 2) 6 (¬K)2(F 1) ∨ F 2.

Then, (¬K)2(F 1 ∨ F 2) 6 (¬K)(¬((¬K)2(F 1) ∨ F 2)) = (¬K)2(F 1) ∨ F 2. By Lemma
A.2, K((¬K)2(F 1)∨F 2) 6 K(F 2)∨(¬K)2(F 1) 6 (¬K)2(F 1)∨(¬K)2(F 2). By Mono-
tonicity and Finite Conjunction, (¬K)2((¬K)2(F 1) ∨ F 2) 6 (¬K)(¬((¬K)2(F 1) ∨
(¬K)2(F 2))) = (¬K)2(F 1) ∨ (¬K)2(F 2). Since (¬K)2 = (¬K)4 (Lemma A.1),

(¬K)2(F 1 ∨ F 2) = (¬K)4(F 1 ∨ F 2) 6 (¬K)2((¬K)2(F 1) ∨ F 2) 6 (¬K)2(F 1) ∨ (¬K)2(F 2),
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which establishes Expression (A.1) as desired.

Proof of Proposition 4. In the proof, I often denote E = (E, S). First, I show that (a)

and (b) are equivalent. (a) implies (b) because K(S
↑
)∧(¬E) = K(S

↑
)∧(¬K)(E) ∈ J

for any E ∈ J . Conversely, if (b) holds then K(E) ∈ J implies (a).

Second, I show that (a) is equivalent to Weak Necessitation of U
(2)

. Suppose

(a). Since K(¬K)(E) > K(K(S
↑
) ∧ (¬K)(E)), I get (¬K)2(E) 6 (¬K)(K(S

↑
) ∧

(¬K)(E)) 6 ¬(K(S
↑
) ∧ (¬K)(E)). Since (¬K)(S

↑
) 6 (¬K)(E), I get U

(2)
(E) 6

(¬K)(S
↑
) 6 U

(2)
(E). Conversely, Weak Necessitation implies K(S

↑
) = K(E) ∨

K(¬K)(E). Then, (a) follows because K(S
↑
) ∧ (¬K)(E) = (K(E) ∨K(¬K)(E)) ∧

(¬K)(E) = K(¬K)(E) ∈ J .

Third, (c) follows from Weak Necessitation of U
(2)

because U
(2)

(E) = (¬K)(S
↑
) 6

(¬K)3(E). Next, (c) is equivalent to (d). Now, I show that (d) implies Weak Neces-

sitation. By (d) and Proposition 3 (7), A
(2)

= A
(2)
A

(2)
= A

(∞)
A

(2)
. By Propositions

1 (1) and 3, A
(∞)

A
(2)

(E) = A
(2)

(¬K)A
(2)

(E) = A
(2)
U

(2)
(E) = K(S

↑
). Thus, I obtain

A
(2)

(E) = K(S
↑
), which is equivalent to Weak Necessitation.

Fourth, (e) follows from (d) and Proposition 3 (4). Conversely, (e) implies U
(2)

(E) =

(¬K)(E) ∧ (¬K)2(E) = (¬K)(E) ∧ (K(E) ∨ U (∞)
(E)) = U

(∞)
(E).

Fifth, (f) follows from Weak Necessitation of U
(2)

. Conversely, by Proposition A.1,

(f) implies U
(2)

(E) = U
(2)

(E) ∧ U (2)
(¬E) 6 U

(∞)
(E) 6 U

(2)
(E), i.e., (d).

Sixth, (g) follows from Weak Necessitation of U
(n)

. Conversely, suppose (g).

Reverse AU Introspection and Proposition 3 (1) yield U
(n)

(E) = U
(n)
U

(n)
(E) =

(¬K)(S
↑
).

Seventh, it follows from A-Introspection (Proposition 3 (6)) that (g) and (h) are

equivalent: L
(n)
U

(n)
(E) = (¬K)(A

(n)
)(E) ∧ A(n)

U
(n)

(E) = U
(n)

(E) ∧ A(n)
U

(n)
(E).

Eighth, I show that (i) follows from Weak Necessitation of U
(n)

. If (E, S(E)) 6

(F, S(F )), then A
(n)

(E, S(E)) = K(S(E)
↑
) 6 K(S(F )

↑
) = A

(n)
(F, S(F )). Con-

versely, suppose (i). Since A
(n)

(∅
S
) = K(S

↑
) follows from K(∅

S
) = ∅

S
, I get

K(S
↑
) = A

(n)
(∅
S
) 6 A

(n)
(E, S) 6 K(S

↑
).

Ninth, (j) follows from Weak Necessitation ofA
(∞)

. Conversely, sinceA
(∞)

A
(∞)

(E) =

K(S
↑
), (j) implies that A

(∞)
(E) = A

(∞)
A

(∞)
(E) = K(S

↑
).

Tenth, I show that (k) follows from Weak Necessitation. Let S := sup(S(E), S(F )).

Then, A
(n)

(E) ∧ A(n)
(F ) = K(S(E)

↑
) ∧ K(S(F )

↑
) = K(S

↑
) = A

(n)
(E ∧ F ). Con-

versely, assume (k). Then, A
(n)

(E) = A
(n)

(E) ∧ A(n)
(∅
S
) = A

(n)
(∅
S
) = K(S

↑
).

Proof of Proposition 5. 1. (a) It is enough to prove the first assertion. By AU
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Introspection,

U(n)
= ¬

∧
E∈E

A
(n)

(E) = ¬
∧
E∈E

K(S(E)
↑
) = ¬K(sup Σ) = U

(n)
(sup Σ).

(b) Since E is assumed to be finite, re-label it by E = {Er}mr=1 so that U(n)
=∨m

r=1 U
(n)

(Er). Let Sr := S(Er) ∈ Σ for each Er ∈ E .

It follows from Lemma A.2 that K(E ∨ F ) 6 K(K(E) ∨ (¬K)(¬F )) for

any E,F ∈ E . Substitute E = U
(n)

(Em) and F =
∨m−1
r=1 U

(n)
(Er) in the

above expression. Since (¬K¬)(
∨m−1
r=1 U

(n)
(Er)) =

∨m−1
r=1 U

(n)
(Er) follows

from Finite Conjunction and Proposition 3 (6), I get

K(U(n)
) 6 K(KU

(n)
(Em) ∨

m−1∨
r=1

U
(n)

(Er)) = K(∅
Sm ∨

m−1∨
r=1

U
(n)

(Er))

6 K(
m−1∨
r=1

U
(n)

(Er)).

By induction, K(U(n)
) 6 ∅

S1
. Since K(U(n)) = ∅, it follows K(U(n)

) =

∅
sup Σ

. Then, A
(n)

(U(n)
) = K(sup Σ).

(c) I provide a counterexample when E is not finite in the context of a standard
state space (one could embed the following standard state space example
into a generalized state space). Let Ω = R and E = P(Ω). Note that any
infinite complete algebra of sets is uncountable, as it is well known that
any infinite σ-algebra is already uncountable. Suppose that the agent’s
knowledge operator is given by the interior operator on the usual Euclidean
topology. Her knowledge satisfies Finite Conjunction and Necessitation as
well as Truth Axiom, Monotonicity, and Positive Introspection. Thus,
U (n) satisfies Plausibility and KU Introspection. It can be seen that U (n)

violates AU Introspection. Now, for any ω ∈ R, let Eω = (ω,+∞). Then,
U (2)(Eω) = ∂KEω = {ω} and U (∞)(Eω) = ∂(¬K)2Eω = {ω}. Thus,

K(
⋃
ω∈Ω U

(n)(Eω)) = K(Ω) = Ω. This implies that K(U
(n)

) = Ω.

2. Since K(sup Σ) > A(U(n)
), it is enough to show the “if” part. If K(U(n)

) =

∅
sup Σ

, thenA
(n)

(U(n)
) = K(sup Σ) 6= ∅

sup Σ
. IfK(U(n)

) 6= ∅
sup Σ

, thenA
(n)

(U(n)
) >

K(U(n)
) 6= ∅

sup Σ
.

Proof of Proposition 6. 1. By Proposition 1, substituting Ki(E), Ki(¬Ki)(E),

and L
(n)

i Ki(E) into ∂j(·) 6 ∂i(·) yields (1a), (1b), and (1c), respectively.
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For (1d), KjKi = Ki implies U
(n)

j U
(n)

i (E) 6 ∂jU
(n)

i (E) = (¬Kj)U
(n)

i (E) ∧
(¬Kj)A

(n)

i (E) 6 (¬Kj)A
(n)

i (E) = U
(n)

i (E).

2. Consider (2a), (2b), and (2c). Recalling Proposition 1, substituting Kj(E),

Kj(¬Kj)(E), and L
(n)

j Kj(E) into ∂j(·) 6 ∂i(·) yields the desired results. For

(2d), ∂iU
(n)

j (E) = (¬Ki)U
(n)

j (E)∧(¬Ki)A
(n)

j (E) > (¬Kj)U
(n)

j (E)∧(¬Ki)A
(n)

j (E) =

(¬Ki)A
(n)

j (E) > (¬Kj)Aj(E) = U
(n)

j (E).

3. By Proposition 1, A
(n)

i (E) = KiA
(n)

i (E) 6 KjA
(n)

i (E) 6 A
(n)

i (E). Then,

A
(n)

i (E) = KjA
(n)

i (E) 6 A
(n)

j A
(n)

i (E).
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