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Abstract

This paper proposes a new approach to factor modeling based
on the long-run equilibrium relation between prices and related
drivers of risk (integrated factors). We show that such relation-
ship reveals an omitted variable in standard factor models for
returns that we label as Equilibrium Correction Term (ECT).
Omission of this term implies misspecification of every factor
model for which the equilibrium (cointegrating) relation holds.
The existence of this term implies short-run mispricing that dis-
appears in the long-run. Such evidence of persistent but sta-
tionary idiosyncratic risk in prices is consistent with deviations
from rational expectations. Its inclusion in a traditional factor
model improves remarkably the performance of the model along
several dimensions. Furthermore, the ECT–being predictive–has
strong implications for risk measurement and portfolio alloca-
tion. A zero-cost investment strategy that consistently exploits
temporary idiosyncratic mispricing earns an average annual ex-
cess return of 6.21%, mostly unspanned by existing factors.
Keywords: Asset Pricing, Asset Returns, Equilibrium Correc-
tion Term, Dynamic Factor Structure
JEL codes: G11, G17
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1 Introduction

In his AFA presidential address, John Cochrane (2011) states “...We
have to answer the central question, what is the source of price variation?
When did our field stop being “asset pricing” and become “asset expected
returning”?...”.

This paper shows that understanding price fluctuations leads to a
remarkable empirical improvement in factor-based asset pricing models.
We propose a novel approach to factor modeling of prices and returns
that naturally leads to the identification of an “Equilibrium Correction
Term”. Our approach allows to capture the long-run equilibrium rela-
tion between prices and related drivers of risk (integrated factors) and
learn from that relation. The newly identified Equilibrium Correction
Term (henceforth ECT) enables to specify an improved dynamic factor
structure for asset returns. Furthermore, the ECT–being predictive–has
strong implications for risk measurement and portfolio allocation.

Factor models are vastly used to reduce the number of parameters
to be estimated for asset allocation and risk measurement of portfolios
including many assets (see, for example, Kolanovic and Wei (2013), Ang
(2014)). Nevertheless, the literature on the relationship between the
choice of factors and the investment horizon has been much less devel-
oped. In particular, factor-based approach to asset allocation and risk
measurement has concentrated almost exclusively on modeling returns
with factors while devoting much less attention to the relationship be-
tween prices (value of buy-and-hold portfolios in any test assets) and risk
drivers (value of buy-and-hold portfolios in factors). Also, the literature
on factor models has traditionally concentrated on factor-representation
of stationary variables and only very recently the factor framework has
been extended to non-stationary cointegrated factors (e.g., Barigozzi
et al. (2015), Banerjee et al. (2017)).

Despite great empirical success of reduced-form models, the inter-
pretation of such models is not trivial. Kozak et al. (2018) point out
that there exists an observational equivalence between “behavioral” and
“rational” asset pricing with regard to factor pricing. The absence of
near-arbitrage opportunities is a sufficient condition to prevent the possi-
bility of discriminating between alternative models of investor beliefs in a
reduced-form factor framework. In fact, even if cross-sectional variation
in expected returns is determined by belief distortions, a parsimonious
factor pricing model can still explain asset returns.

Long-run risk drivers are related to prices just as factors are related
to asset returns. Risk drivers are the cumulative (log) returns of a port-
folio investing in standard factors (e.g., size, value, etc.). Risk drivers
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can explain the long-run buy-and-hold performance of any given port-
folio. As risk drivers and prices of a given portfolio are non-stationary
variables, the validity of a given set of risk drivers to explain portfo-
lio prices is investigated by assessing if there exists a stationary linear
combination of them (i.e., if they are cointegrated).

We show that the analysis of the potential cointegration between risk
drivers and asset prices is more informative for the validation of a factor
model than the analysis between factors and returns. The existence of
cointegration between risk drivers and prices delivers a stationary equi-
librium correction term that captures the gap between asset prices and
their long-run risk drivers. Importantly, the new term reverts to his
mean but slowly, it is stationary but persistent. This fundamental char-
acteristic allows for some relevant predictability. The ECT is omitted
from traditional factor models in asset pricing, and its inclusion in factor
models for returns improves substantially their empirical performance.
Moreover, it is economically and statistically significant in explaining
time-series return dynamics.

The relevance of the ECT is grounded in the literature on the rela-
tionship between cointegrated variables and equilibrium correction mod-
els (see, for example, Engle and Granger (1987), Hendry (1986), Jo-
hansen (1995), Pesaran and Shin (1998)). Since (log) prices and risk
drivers are cointegrated, the ECT represents the extent of disequilib-
rium in their equilibrium relation. Therefore, when cointegration holds,
any factor model for asset returns that does not include the ECT is
misspecified.

The existence of a persistent but stationary deviation of prices from
an equilibrium that depends on their risk drivers can only be explained
by a persistent but stationary idiosyncratic risk component. When the
ECT is stationary, mispricing disappears in the long-run but is crucial
to explain short-run dynamics. The literature on “diagnostic expecta-
tions” in which agents’ over-reaction to news on prices is related to subse-
quent adjustments in the dynamics of returns (e.g., Bordalo et al. (2017),
Gennaioli et al. (2015), Gennaioli and Shleifer (2018)) offers a natural
framework to understand the dynamics of such a component. Temporary
deviations can also be explained by mutual funds flow-induced trading
that significantly affects stock returns and in the short-run drives asset
prices away from equilibrium (e.g., Lou (2012)).

In a very recent paper, Avramov et al. (2019) show that mispricing
occurs across financial distressed firms during periods of high market
sentiment because in these times both retail and institutional investors
are overly optimistic about the likelihood and consequences of financial
distress. The sluggish investors’ response to correct overpricing leads to
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a wide range of anomalies in the cross-section of stocks and bonds. Our
novel approach naturally features these dynamics.

The ECT is predictive by its nature. This characteristic has relevant
consequences for portfolio allocation and risk measurement. For a time
horizon sufficiently long, disequilibrium in the relationship between (log)
prices and risk drivers implies a reaction in the next-period relationship
between asset returns and factors. Our novel approach enables to cap-
ture such equilibrium correction mechanism for which we provide strong
empirical evidence.

In standard factor models, the distribution of returns is largely un-
changeable. In fact, the conditional return distribution is centered around
the unconditional one. It implies that a conditional Value-at-Risk from
a standard model is mostly uninformative even in extreme cases. In-
stead, in a factor model that includes the ECT, a crash moves prices
from above to below their long-run equilibrium, causing a right-shift to
the conditional distribution of returns. We illustrate the implications of
the ECT for risk management focusing on the recent 2008–2009 financial
crisis.

Finally, we show how to implement a zero-cost investment strategy
that consistently exploits information embedded in the ECT. Our ap-
proach leads to a time-varying alpha framework that enables to form
long-short portfolios based on the predicted conditional alpha. Such a
strategy substantially outperforms alternative strategies in the long-run,
earning a statistically significant average annual excess return of 6.21%.
The outperformance of our strategy is also in line with Avramov (2003)
for which conditional models perform better than unconditional models
for asset allocation.

This paper illustrates the importance of cointegration analysis be-
tween risk drivers and prices, the significance of the ECT for the spec-
ification of an appropriate dynamic factor model, and the implications
of this evidence for the derivation of the predictive distribution of re-
turns. We conduct our empirical analysis on annual database for the
25 Fama-French portfolios formed on Size and Book-to-Market and the
Fama-French five-factor model (Fama and French (2015)) augmented
with the momentum factor proposed by Jegadeesh and Titman (1993)
and Carhart (1997).1

1Jegadeesh and Titman (1993) were the first to document the momentum anomaly
that motivated the Fama-French-Carhart model (1997).
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2 From Factors for Asset Returns to Risk Drivers
for Asset Prices

Factor models are extensively used to characterize parsimoniously the
predictive distribution of asset returns. To this end multifactor mod-
els, in which k factors characterize in a lower parametric dimension the
distribution of n asset returns, have the following general form:

rit+1 =αi + β′ift+1 + vit+1 (1)

ft+1 =E (ft+1 | It) + εt+1 (2)

εt+1∼D (0,Σ)

Cov
(
vit+1, v

j
t+1

)
= 0, for each i 6= j

in which ft+1 is a k-dimensional vector of factors at time t + 1, rit+1

is the return on the i-th of the n assets at time t + 1 and the vector
β′i contains the loadings for asset i on the k factors. (1) specifies the
conditional distribution of returns upon factors, while (2) specifies the
predictive distribution for factors at time t+ 1 conditioning on informa-
tion available at time t. The traditional baseline specification for this
system assumes away factors predictability and it implies that the con-
ditional expectations has no variance: E (ft+1 | It) = µ. Returns and
factors are stationary variables.2

For a factor model to effectively characterize the distribution of n
assets it is crucial that vit+1 represent idiosyncratic risks and therefore
they are orthogonal to the factors, serially uncorrelated, and contempo-
raneously uncorrelated across assets. The diagonality of the variance-
covariance matrix of the residuals coming from projecting asset returns
on factors is a necessary–and testable–requirement for the validity of
any factor model. In fact, only in this case the factor structure allows to
reduce the problem of modeling the n-variate distribution of returns (in
which n can be very large) to model the k-variate distribution of factors
(in which k is typically small).3 Testing for the validity of these assump-
tions is crucial to guarantee that any given factor model produces the
valid reduction of dimensionality which is particularly useful for asset
allocation, risk measurement, and risk management.

Further validation of factor models is traditionally based on testing
restrictions on their coefficients. Let’s consider the time-series and the

2The unconditional moments of returns are constant, although the conditional
ones might be time varying.

3Using the joint distribution of returns requires the estimation of n(n+ 1)/2 + n
parameters while using a factor structure requires the estimation of n(k+1)+(k(k+
1))/2 + k parameters.

5



expected return-beta representation of a factor model (e.g., Cochrane
(2005)). Factor loadings can be calculated via n time-series regressions
of the n returns on the k factors

rit+1 = α1 + βi,f1f
1
t+1 + βi,f2 f

2
t+1 + · · ·+ βi,fkf

k
t+1 + vt+1 (3)

and the affine expected return-beta cross-sectional regression is:

E(r) = γ0 + γ1β̂f1 + γ2β̂f2 + · · ·+ γkβ̂fk (4)

In the case in which all factors are excess returns, equation (4) holds
also for the factors, and we have γi = E(f i) where E (f i) is the mean
over time of the factor i.

A cross-sectional test for the validity of the factor model can be run
by regressing the n-variate averaged over time vector of returns on the
cross-section of the estimates of the exposures with length n obtained
from the first step

E(r) = γ0 + γ1β̂f1 + γ2β̂f2...+ γkβ̂fk

and by testing the following null hypothesis:

γ̂0 = r
f
, γ̂i = E

(
f i
)

If both test assets and factors are excess returns, there is no need to
run the cross-sectional test, as the validity of the model can be simply
tested by evaluating the null that all intercepts in the time-series model
are zero (see Gibbons et al. (1989)). Recently, Barillas and Shanken
(2017) have proposed an alternative procedure based on examining the
extent to which each factor models price the factors in alternative mod-
els.

In the case factors are not returns, and the factor risk premia might
be different from the mean value of factors, the time-series tests cannot
be run without the aid of the cross-sectional regression. In fact, by
imposing the restriction E(ri) = β′iγ, we can rewrite the time-series
regression as:

rit+1 = β′iγ + β′i(f
i
t+1 − E(f)) + vt+1 (5)

Therefore the intercept restriction in the time-series specification be-
comes:

αi = β′i(γ − E(f)) (6)
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Interestingly, the focus of the literature on these aspects has some-
what underscored the fact that the standard framework relating asset
returns to stationary factors leaves (log) asset prices undetermined. Our
proposal to overcome this limitation is to extend the framework defin-
ing the mapping of asset returns into factors to include the relationship
between asset prices and risk drivers.

Meucci (2011) introduces the concept of risk drivers of any given se-
curity as a set of random variables that completely specifies the security
price and that follow a stochastic process homogeneous across time. We
define as factor-risk drivers the cumulative log returns on a portfolio
investing in standard factors that have a period (log) return of ft. The
generic risk driver associated to a factor with a (log) period return of ft
evolves according to the following process:

Ft = Ft−1 + ft (7)

Consider now a test asset i that has a (log) period return of rit. The
log price of this asset is defined as:

lnP i
t = lnP i

t−1 + rit (8)

The determination of (log) prices is naturally obtained by considering
the relation between asset prices and factor-risk drivers as the long-run
equivalent of the relationship between returns and factors. Factor-risk
drivers are the non-stationary variables that drive the non-stationary
dynamics of prices. In other words, in a valid empirical model prices
and risk drivers should be cointegrated and the exposure of any given
portfolio P i

t to risk drivers is determined by estimating parameters in
the following model:

lnP i
t = αi0 + αi1t+ β′iFt + uit (9)

For a correct specification of risk drivers, the estimation of (9) should
deliver stationary error terms uit. The residuals uit capture “disequilibria”
in the long-run relationship between prices and factor-risk drivers. The
coefficient α1 measures the systematic long-run component in the relative
performance of portfolios and factor-risk drivers; a positive α1 in the
long-run generates “alpha” in returns.

Stationarity of disequilibrium is a minimal condition to identify a
valid factor model for asset returns. Indeed, in this case the factor model
is capable to replicate fluctuations in prices of any given portfolio up to
stationary residuals. Non-stationary mispricing is a strong argument
to discard any factor model. Note that the omission of a factor whose
associated risk driver is relevant to determine the price dynamics of a
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given portfolio rules out cointegration between portfolio prices and any
set of risk drivers that omits the relevant one.

A cointegrated relation between risk drivers and portfolio prices that
delivers stationary deviations from the long-run equilibrium relation de-
serves some attention. Cointegration between portfolios and risk drivers
has important implications for the specification of a model for asset re-
turns and their associated factors. In fact, when risk drivers explain
portfolio values, cointegration implies that portfolio returns respond to
disequilibrium in the long-run cointegrating relationship identifying a
variable so far omitted in the literature in empirical factor models that
we label as “Equilibrium Correction Term”.

Disequilibrium in the relation between prices and risk drivers is nat-
urally related to the idiosyncratic component of risk of a given portfolio.
Cointegration between prices and risk drivers allows for persistence in
the risk component and–as we shall see in the next section–a statistically
significant degree of persistence is inevitably found in the data when ap-
plying the proposed framework to the 25 Fama-French portfolios. We
have already seen that omitting a relevant factor from the specification
for returns is not compatible with cointegration between (log) portfolio
prices and risk drivers. So persistence is most naturally interpreted as a
property of the idiosyncratic risk component. A possible interpretation
of this evidence is offered by models of belief formation based on rep-
resentativeness heuristic. These models, which imply over-reaction to
news caused by an exaggeration of probability of states that are objec-
tively more likely, do deliver this feature of the data (e.g., Bordalo et al.
(2017)).

The existence of an ECT implies that a positive deviation of prices
from their equilibrium at time t predicts a decline in returns at time
t + 1. Such evidence would closely resemble the findings by La Porta
(1996) that returns on stocks with the most optimistic analyst long-term
earning growth forecasts are substantially lower than those for stocks
with the most pessimistic forecast. Bordalo et al. (2017) rationalize these
findings with the hypothesis of “diagnostic expectations”. According to
the expectations formation mechanism, agents are forward looking but
deviate from rational expectations by over-reacting to news. However,
deviations are temporary and over-reaction subsequently generates an
equilibrium correction adjustment.

The joint distribution of factors, portfolios and risk drivers is de-
scribed as follows:
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lnP i
t+1 =αi0 + αi1t+ β′iF

i
t+1 + uit+1 (10)

uit+1 = ρiu
i
t + vit+1

ft+1 =µ0 + ΠFt + εt+1

lnP i
t = lnP i

t−1 + rit
Ft = Ft−1 + ft

εt+1∼D (0, Σ)

Cov
(
vit+1, v

j
t+1

)
= 0

The vector εt+1 is the vector of invariants that drives, together with
the idiosyncratic term vit+1, the statistical distribution of returns. In the
representative heuristic view, the idiosyncratic term vit+1 may capture
the news orthogonal to risk drivers and factors that ignites the “deviation
from equilibrium”, followed by the mean-reversion driven by ρi.

When uit is stationary, pricing errors disappear in the long-run, and
they are only relevant to determine high-frequency dynamics. Stationar-
ity of the uit is achieved when risk drivers and (log) prices are cointegrated
(i.e., | ρi |< 1). In this case, when 0 < ρi < 1 we have positive persis-
tence in the idiosyncratic term vit+1 and the effect of the “news” on this
term lasts more than one-period, while when ρi < 0 the “news” ignites
an oscillatory, but convergent, effect. News behave like a proper unpre-
dictable shock only when ρi = 0. Note that this evidence, which has
important implications for predictions, does not provide any informa-
tion on the hypothesis of under-reaction versus over-reaction to news. A
precise test of this hypothesis would require identification of news, which
is beyond the scope of this paper.4

Bordalo et al. (2018) show that for an autoregressive process for the
idiosyncratic risk like ours the diagnostic distribution has the following
mean:

Eθ
t (ut+1) = Et (ut+1) + θ [Et (ut+1)− Et−1 (ut+1)]

Diagnostic expectations are then a linear combination of the rational
expectations held at time t and t − 1, and they differ form rational
expectations by a shift in the direction of the information received at
time t. In the case of our process:

Eθ
t (ut+1) = ρ (1 + θ)ut

4In a different context, Bordalo et al. (2017) consider the case of stationary price-
to-earnings that reacts to revisions on a stationary process for earning growth to find
evidence of over-reaction. Coibion and Gorodnichenko (2015) focus instead on the
relationship between ex-post mean forecast errors and ex-ante mean forecast revisions
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and the estimation of a single parameter for the residuals in our
coitegrating specification does not allow to identify ρ and θ. Note, how-
ever, that the evidence of cointegration is consistent with a very low ρ
and a high θ that causes the current shock to idiosyncratic risk to be
extrapolated into the future.

We derive the relationship between returns and factors implied by
our model by taking first differences of equation (10):

rit+1 = αi1 + β′if
i
t+1 + (ρi − 1)uit + vit+1 (11)

where uit is the Equilibrium Correction Term associated with asset i.
If there is cointegration and the time horizon at which asset returns are
defined is sufficiently long to allow for a reaction of returns at time t+1 to
disequilibrium in the relationship between risk drivers and prices at time
t, then the traditional factor specification for returns is augmented by an
Equilibrium Correction Term. The inclusion of this term ensures that
the specification for returns is consistent with the long-run relationship
between risk drivers and portfolio prices. The omission of the ECT leads
to a mis-specification of the factor model that might lead to statistical
rejection of its validity along several dimensions.

In the case of cointegration, the long-run response of prices to the
idiosyncratic term vit+1 is 1

1−ρi . When | ρi |< 0, we have overreaction

with respect to the long-run response, while when 0 <| ρi |< 1, we have
under-reaction with respect to the long-run response.

Interestingly, a traditional factor model would feature non autocorre-
lated residuals whenever risk drivers and (log) prices are not cointegrated
(i.e., when | ρi |= 1). Therefore, the incapability of a given factor struc-
ture of pricing buy-and-hold portfolios might be missed when only the
relationship between returns and factors is specified.

The predictive model for factors is also specified as a VECM allowing
for the existence of cointegration among risk drivers.5 This predictive
model can be interpreted as the reduced-form of a forward-looking rela-
tion. Nevertheless, a backward-looking specification is needed to gener-
ate the predictive distribution of factors and returns at time t+ 1 given
the information available at time t. Note that the predictive relation
linking factors to linear combination of risk drivers identifies useful and
potentially “strong” (in the sense of Stock et al. (2002)) instruments
that could be used to estimate the relevant parameters in the projection
of returns on factors.

5When there is cointegration among risk drivers, Π is reduced rank and we have
Π = γδ′ where γ is the matrix of adjustment coefficients and δ′ is the matrix of
cointegrating parameters.
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It is worth noticing that our specification is designed for low-frequency
asset returns in which a constant volatility specification is adopted and
the dimension of predictability mostly exploited is that of the mean.
Indeed, observations at a lower frequency are needed to better identify
the correction of returns with respect to short-term over-reactions to
price shocks. If the focus is instead at an higher frequency, the interest
would shift from predicting means via VECM specifications to predicting
volatilities using GARCH or stochastic volatility models.

2.1 On the Relevance of the Equilibrium Correc-
tion for Risk Measurement and Asset Alloca-
tion

The Equilibrium Correction Term is asset specific and it has an average
of zero over time by construction. It cannot be considered as a “factor”
in itself because its ability to price the cross-section of returns is zero. We
interpret the ECT as a measure of mispricing with respect to a long-run
equilibrium that is specific to any chosen factor structure. Importantly,
every factor structure that generates cointegration between risk drivers
and prices naturally leads to an Equilibrium Correction Term. The
ECT would not be significant to explain returns only in the case of
no-cointegration between risk drivers and (log) prices.

Whenever the ECT is significant, the empirical model of asset prices
and returns (10) has a distinctive feature with respect to standard factor
asset pricing models: the Equilibrium Correction Term is predictive and
therefore the predicted distribution of returns at time t + 1 is centered
on the (observed) ECT. The existence of this predictive factor is in line
with the evidence reported in La Porta (1996) and Bordalo et al. (2017)
according to which returns on stocks with the most optimistic analysts
long-term earning growth forecasts are substantially lower than those
for stocks with the most pessimistic forecasts. The ECT may capture
agents’ over-reaction to news in prices that are subsequently corrected
in the dynamics of returns.

The presence of the Equilibrium Correction Term detects shifts in
the predictive distribution of returns with relevant implications for risk
measurement and asset allocation. For example, think of a situation in
which a market crash causes a change in the relative position of prices
and risk drivers so that the sign of ut becomes very negative. The move-
ment in ut will shift the distribution of future asset returns to the right
with crucial implications for portfolio allocation and risk management.

The existence of the ECT in our approach for asset allocation and
risk measurement enables to settle the old-fashioned dispute between risk
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managers and portfolio managers after a crisis. In fact, in this situation
typically the portfolio manager complains with the risk manager who
does not allow to take positions geared to exploit the opportunity of
a market crash because they are deemed “too risky”. The presence of
an equilibrium correction mechanism in the model of asset prices and
returns makes the distribution of predicted returns at time t + 1 after
a market crash very different from that of standard factor models for
returns. In particular, after the crash the ECT shifts the predicted
returns distribution to the right decreasing the associated conditional
Value-at-Risk.

Finally, let’s suppose that there exists a market for hedging the fac-
tors. In this case, asset allocation can be based on the predictive distri-
bution of rit+1−γ′if it+1 which is centered around the estimated exposure of
returns to the observable Equilibrium Correction Term. The possibility
of hedging factors would then allow to neutralize the known exposure of
a portfolio to factors within a portable (time-varying) alpha framework.

3 The Empirical Evidence

In our empirical analysis we focus on U.S. annual data made available
from the Kenneth R. French’s Data Library for the sample 1963–2018.6

We consider data on returns for the 25 Portfolios formed on Size and
Book-to-Market (5x5), the Fama-French five factors (EXC MKT, SMB,
HML, RMW, CMA), and momentum (Mom).

In Figure 1 we show the yearly dynamics for the (log) prices and the
risk drivers associated with the Fama-French six factors (FF6, Fama-
French five factors plus Mom). We compute risk drivers and (log) prices
as described in equations (7) and (8). It is noteworthy that the time-
series behavior of risk drivers and prices portends a possibility to model
a common stochastic trend between the two variables for the 25 Fama-
French portfolios.

INSERT FIGURE 1

3.1 The Statistical Evidence on the Equilibrium
Correction Term

Our statistical investigation on the relevance of the Equilibrium Correc-
tion Term begins from the identification of a potential long-run relation-
ship between (log) prices and risk drivers. We estimate the following

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html.
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regression for the long-run relationship between the log prices of the 25
Fama-French portfolios and the six-risk drivers:7

lnP i
t =αi0 + αi1t+ β′iFt + uit i = 1, ..., 25 (12)

F′t =
[
FEXCMKT
t F SMB

t FHML
t FRMW

t FCMA
t FMom

t

]
Figure 2 reports the evidence of tests for stationarity on the 25 resid-

uals from equation (12) based on the augmented Dickey-Fuller (ADF)
and the KPSS tests. The ADF shows rejection of the null hypothesis
of non-stationary of residuals for 17 of the 25 Fama-French portfolios,
and only in two cases the observed statistics is clearly below the critical
value. The KPSS test does not reject the null of (level) stationarity of
residuals for all 25 portfolios.

INSERT FIGURE 2

We proceed to specify a system of 25 equations for the annual returns
of the 25 Fama-French portfolios that includes–beside the standard six-
factors–the Equilibrium Correction Terms derived from the estimation
of the long-run cointegrating relationships:

rit+1 =αi1 + β′ift+1 + δiû
i
t + vit+1 (13)

lnP i
t = lnP i

t−1 + rit
F i
t =F i

t−1 + ft

lnP i
t =αi0 + αi1t+ β′i Ft + uit

F′t =
[
FEXCMKT
t FHML

t F SMB
t FRMW

t FCMA
t FMOM

t

]
where rit+1 is the excess return of test asset i at time t+ 1 and ûit is

the estimated ECT for test asset i.
Figures 4 and 5 report all estimated coefficients with their associated

95% confidence intervals showing clear evidence for a uniform rejection
of the non-significance of each Equilibrium Correction Term.8

7The evidence of cointegration and the estimates of the parameters in the coin-
tegrating relationships are substantially unaltered when a dynamic model specifying
simultaneously long-run and short-run dynamics is considered.

8We also consider heteroskedasticity and autocorrelation consistent (HAC) stan-
dard errors using Newey and West (1987) with automatic bandwidth selection pro-
cedure as proposed by Newey and West (1994). Using these standard errors do
not change our conclusions. In fact, when considering robust standard errors only
Portfolios 42 and 53 are not significant at 5% level of significance.
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INSERT FIGURES 4 and 5

The null hypothesis of joint non-significance of all ECT factors is
strongly rejected by the data. When the null that all the 25 coefficients
on the ECTs is tested after estimating the system of our 25 equations for
the test assets using a Wald test, distributed as a Chi2 with 25 degrees
of freedom, a value of 293 is obtained with an associated probability well
below one per cent. If this null is imposed and a traditional factor model
is considered, then the null that all the 25 intercepts are zero is strongly
rejected with a value for the relevant Wald test, again distributed as a
Chi2 with 25 degrees of freedom, of 73.

When the traditional factor model is augmented allowing for the
ECT, the equivalent of the test that the intercept is zero becomes a
test that α̂i1 + δ̂iû

i
t = 0. We report in Figure 6 the time-series of the

25 terms with their associated 95% confidence intervals. Note that for
each portfolio, zero is always included in the confidence interval. This is
a strong supportive evidence for the ability of the ECT to improve the
standard factor pricing model.

INSERT FIGURE 6

Further statistical evidence on the importance of the ECT is provided
by analyzing the properties of the correlation matrix of the residuals of
different factor models taking as a benchmark the correlation matrix of
the returns on the 25 Fama-French portfolios. The heatmaps reported in
Figure 7 show a progressive success of single-factor (CAPM), traditional
six-factor (FF6), and the six-factor models augmented with the ECT
(FECM) in modeling the strong correlation of returns for the 25 Fama-
French portfolios.

INSERT FIGURE 7

Finally, we gain further insights on the improvement generated by
the FECM specifications by evaluating the evidence on the multivariate
normality of residuals of the progressively more articulated specifica-
tions. Table 1 shows a test for multivariate normality of residuals that
highlights the sizable relative contributions of the ECT in delivering
normally distributed residuals.

14



INSERT TABLE 1

To sum up, the evidence in favor of the inclusion of the 25 ECTs in
the system relating factors and returns is strong and uniform.

3.2 Long-Run Evidence and the Detection of Mis-
Specification in Factor Models

Our integrated approach to modeling asset prices and returns is crucially
relevant to detect mis-specification in factor models. In fact, even a gross
misspecification in modeling buy-and-hold returns with risk drivers is not
easily detected in a model relating returns to factors. When we consider
only the projection of returns on factors–as in the traditional approach
to factor asset pricing models, the unit root in the residuals from the
projection of prices on risk drivers is removed.

Note that our framework cannot be introduced by considering a stan-
dard factor model and by showing that residuals are correlated. In fact,
the joint analysis of prices, returns, factors and risk drivers, shows that a
traditional factor model that is not supported by cointegration between
risk drivers and (log) prices will show no-autocorrelation in its residuals.

To illustrate this phenomenon consider, as an example, a CAPM
specification for the returns of the first Fama-French Portfolio–Small
and Growth–along with the associated relationship between log prices
and risk drivers:

(
r11t+1 − r

rf
t+1

)
=α1 + β1

(
rmt+1 − r

rf
t+1

)
+ u112,t+1 (14)

lnP 11
t+1 =α0 + α1t+ β1F

m
t+1 + (1− β1)F rf

t+1 + u111,t+1

The ADF statistics in Table 2 is of particular interest. Table 2 il-
lustrates for the single-factor model that the null hypothesis of a unit
root in the residuals from the model for buy-and-hold portfolio (no-
cointegration) cannot be rejected though the unit root in the residuals
is removed when the standard CAPM is obtained by differencing. As
a consequence, misspecification is apparent in the model in levels but
much less evident when the standard CAPM specification for asset re-
turns is considered. Figure 3, which shows the time-series of actual and
fitted values for the two specifications, highlights this point.

INSERT TABLE 2 and FIGURE 3

15



3.3 On the Empirical Relevance of the Equilibrium
Correction Term

In this section we motivate and illustrate the relevance of the Equilib-
rium Correction Term for risk management and portfolio allocation. We
show that explicitly modeling the relationship between risk drivers and
asset prices has important consequences for the predictive distributions
of returns, which is relevant both for risk measurement and asset allo-
cation. This happens for two reasons. Firstly, the ECT is a predictive
variable that is observed at time t and is related to the distribution of
returns at time t + 1. Secondly, the equilibrium relationship(s) among
risk drivers have predictive power for factors at time t + 1 in a VECM
specification.

3.3.1 ECT and Risk Measurement

To show the relevance of the ECT specification for risk measurement, we
consider the properties of a traditional six-factor and of the FECM spec-
ifications for the returns of the Fama-French Portfolio Small and Growth
(Port 11). The traditional factor model takes the following specification
in which returns are projected on factors and the unconditional distri-
bution of factors is used for simulations:

r11t+1 =α11
1 + β′11f

11
t+1 + v11t+1 (15)

ft+1 =µ0 + εt+1

εt+1∼D (0, Σ)

f ′t =
[
fEXCMKT
t fHML

t fSMB
t fRMW

t fCMA
t fMOM

t

]
Instead, the FECM approach includes both the predictive Equilib-

rium Correction Term in the equation for returns and the levels of the
risk drivers in the VECM specification for factors:

r11t+1 =α11
1 + β′11f

11
t+1 + δ11û

11
t + v11t+1 (16)

ft+1 =µ0 + ΠFt + εt+1

lnP 11
t = lnP 11

t−1 + r11t
Ft = Ft−1 + ft

lnP 11
t =α11

0 + α11
1 t+ β′11 Ft + u11t

εt+1∼D (0, Σ)

f ′t =
[
fEXCMKT
t fHML

t fSMB
t fRMW

t fCMA
t fMOM

t

]
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The results of the estimation of the FECM specification and of the
VECM for factors are reported in Tables 3 and 4.

INSERT TABLES 3 and 4

Table 3 shows the estimation results for the specifications of returns
for both the long-run cointegrating equation and the short-run factor
error correction model. Interestingly, the specification of a full model for
factors allows to estimate the FECM by Generalized Method of Moments
(GMM), using as instruments for the returns the lagged levels of the risk
drivers. The GMM estimation strongly confirms the significance of the
ECT. Table 4 illustrates the relevance of risk drivers for predicting one-
year ahead factors.

Further supporting evidence for the importance of the ECT for un-
derstanding the time-series dynamics of returns is provided by the anal-
ysis of the semi-partial R2. We show the results for the semi-partial R2

associated to each factor in the last column of Table 3. Importantly, the
ECT is the fourth most relevant factor in explaining the total variance
of returns.

Finally, we use the standard and the FECM specifications to predict
the distributions for one-year ahead returns for 2008 and 2009 for Port-
folio Small and Growth. The two models are fitted on the sample up to
2007, then the out-of-sample predicted return distributions are obtained
by bootstrapping the correlated residuals εt+1 and the idiosyncratic error
v11t+1.

9

The predictive distributions resulting from the traditional factor model
are reported in Figure 8 which highlights the immutability of the distri-
butions that do not change despite the crash of 2008. Differently, the
predictive distributions from the FECM specification, reported in Figure
9, shows an evident shift after the crisis. This is due to the fact that the
crash of 2008 brought the prices from above the long-run equilibrium to
below the long-run equilibrium, causing a shift in the mean of the pre-
dictive distribution. Importantly, the one-year ahead 10% VaR from the
FECM goes from −0.367 for 2008 to −0.067 for 2009, as a consequence
of the crash, while the VaR from the standard model–reflecting the un-
conditional distribution of assets returns and factors–remains mostly
unchanged.

INSERT FIGURES 8 and 9

9A remarkable stability of the parameters emerges for the FECM specification
estimated on the full sample and estimated only up to 2007.

17



3.3.2 ECT and Asset Allocation

Investors want to maximize risk-adjusted expected returns. In our frame-
work, expected returns are time-varying and predictable, thus we can
use implied conditional information to implement a tradable investment
strategy. Let’s consider equation (13). We can rewrite the equation as

rit+1 =αit+1 + β′ift+1 + vit+1 (17)

where αit+1 = αi1 + δiu
i
t is a time-varying intercept. Note that we

model time-varying alphas, but betas are constant over time, as in
Avramov (2003). Predictability in our framework is mainly related to
time-variation in expected returns.10

The fact that the intercept in our framework is time-varying allows
to construct a long-short portfolio based on the alpha. In particular, we
exploit the information conveyed by the ECT at time t to implement a
zero-cost strategy at time t+ 1.

The ECT measures the temporary deviation of a specific asset price
from the long-run equilibrium relation between the price and related
priced risks. Our approach allows for a strategy based on the condi-
tional alpha that consistently takes advantage of short-run idiosyncratic
mispricing.

We illustrate how the strategy works for the 25 Fama-French portfo-
lios. For every year t, we sort the 25 portfolios based on α̂i1 + δ̂iu

i
t−1, we

go long on the 5 portfolios with the highest α̂t and short the 5 portfolios
with the lowest α̂t. The long-short portfolio is held for one year. We
label this strategy as High-Minus-Low alpha (HMLα).

Figure 10 shows the performances of the HMLα strategy in the sam-
ple period from 1965 to 2018. The cumulative returns for the strategy
over the whole period are in Panel (b). The strategy has an average
excess return of 6.21% per year, with a robust t-stat of 5.05. Annual
average percentage returns for portfolios sorted by time-varying alpha
with respective robust standard errors are in Table 5.

Interestingly, average returns for each portfolio sorted by conditional
alpha are economically and statistically significant. Most importantly,
from Port 1 (portfolio associated with the lowest alpha) to Port 5 (port-
folio associated with the highest alpha) returns are monotonically in-
creasing. This evidence strongly supports the ability of our approach to
consistently exploit temporary mispricing for asset allocation.

10Ferson and Harvey (1991) show that predictability is primarily driven by changes
in risk premium, while the impact of beta variation is less relevant.
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INSERT TABLE 5 and FIGURE 10

4 Robustness

In this section we address three main points. Firstly, we test for the
significance of the new Equilibrium Correction Term to different speci-
fications. Then, we provide a better understanding of the HMLα per-
formance in terms of other factors. Finally, we implement a Principal
Component Analysis on time-varying alphas.

4.1 Significance of ECT

According to standard asset pricing theory, two assets exposed to the
same sort of systematic risk should have the same expected return.
When it is not the case, the difference between the two expected returns
is called “anomaly”. The proliferation of anomalies is evident: Har-
vey et al. (2016) document more than 200 stocks cross-sectional anoma-
lies. Furthermore, Asness et al. (2013) report that value and momentum
anomalies have pervasive features across different asset classes.

In a recent paper, Stambaugh and Yuan (2016) propose two new
measures of mispricing constructed by averaging on stocks’ anomaly
rankings. The main intuition motivating their approach is that anoma-
lies partially reflect common mispricing components across stocks. The
two mispricing factors considered are management (MGMT) and perfor-
mance (PERF), resulting from clustering anomalies potentially related
to firms’ management and performance.11

We want to test whether our ECT is related to commonalities in
stocks anomalies. We add the two mispricing factors MGMT and PERF
to regression (13), and look at the significance of the ECTs across the 25
Fama-French portfolios. Figure 11 shows the results of our test.12 Even
when we add MGMT and PERF to the regression, each ECT coefficient
is statistically significant at 5% level of significance, providing support-
ive evidence that the Equilibrium Correction Term does not contain
systematic mispricing elements.

Most interestingly, results are not surprising. In fact, the ECT is
asset specific, as it measures the deviation of any asset from his long-run

11 Monthly time series for the two factors are available on Stambaugh’s website.
12When we consider a factor model with only market and size combined with the

two mispricing factors–as in the original Stambaugh and Yuan (2016) paper–plus the
ECT, results are the same.
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equilibrium relation with factor-risk drivers. This finding is also consis-
tent with Daniel and Titman (1997) who points out that when expected
returns reflect both compensation for systematic risks and mispricing,
some of the mispricing is asset specific. The ECT conveys such informa-
tion.

INSERT FIGURE 11

Ang et al. (2006) show that aggregate volatility is a priced factor
in the cross-section of stock returns. In particular, aggregate volatility
represents a systematic factor because leads to changes in the investment
opportunity set of the marginal investor. Therefore, stocks that are more
exposed to innovations in volatility earns a premium for risk. We include
an idiosyncratic volatility (IVOL) factor in the short-run regression (13)
to address the issue whether the ECT loses his significance when an
asset-specific factor is included.

We compute IVOL for the 25 Fama-French portfolios as the standard
deviation of the residual εit+1 in the regression

rit+1 =αi + β′ift+1 + εit+1 (18)

where f are the FF6 factors. Then, we sort the 25 portfolios at time
t based on IVOL at time t − 1. Excess returns for the zero-investment
strategy long on the portfolio associated with the lowest IVOL and short
on the portfolio associated with the highest IVOL is the IVOL factor.

Figure 12 illustrates the estimated coefficients for IVOL factor and
ECT obtained by running regression (13) when we add also the IVOL
factor. Notice that the ECT does not lose any significance, i.e., the
term remains always statistically significant at 5% level of significance.
Systematic risk associated with idiosyncratic exposure to innovations in
aggregate volatility cannot explain the Equilibrium Correction Term.

INSERT FIGURE 12
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4.2 Factor Spanning Tests

We compare the performance of HMLα to the standard FF6 factors, the
mispricing factors, and the IVOL factor. For this purpose we perform a
factor spanning test. We use excess returns from the HMLα strategy as
dependent variable in equation (18) and look at the loadings associated
with the other factors.

Table 6 illustrates the results from factor spanning tests. In Col-
umn (1) the considered regressors are only the traditional FF6 factors.
Among the factors, HMLα is mostly related to SMB, with a negative
sign. The alpha is economically and statistically strongly significant.
We get similar results when we add the mispricing and the IVOL factors
to the regression.13 Results in Column (2) show that the unique signifi-
cant factor exposure is the one associated with SMB. Most importantly,
also using the full sample of regressors, the constant is the variable most
economically and statistically significant.

Finally, we ask what is the marginal contribution to the overall R2

due to each regressor in Column (2). For this purpose, we perform a
semi-partial R2 analysis. It is noteworthy that only for the alpha the
semi-partial R2 is different from zero.

The analysis of the relation between the HMLα performances and
other factors suggests that the returns associated with the strategy are
poorly explained by existing factors. In fact, the performances of the
time-varying alpha investment strategy are to great extent related to
short-term mispricing.

INSERT TABLE 6

4.3 Principal Component Analysis

We analyze the principal components across the asset-specific time-
varying alphas. The main goal is to better understand how many rele-
vant orthogonal variables contribute to the total variation of the set of
observed conditional alphas.

The analysis is interesting because the ECT is asset-specific thus the
information embedded in the time-varying alphas are mostly specific. It
means that we expect a large number of relevant components resulting
from the Principal Component Analysis (PCA).

13The fact that HMLα is partially explained by SMB is consistent with Avramov
et al. (2019) that show that mispricing is stronger among smaller firms.

21



We perform the PCA on the sample composed by the estimated
time-varying alphas for each portfolio in the 25 Fama-French portfolios
for the period 1964–2018. We find that at least 11 principal components
are needed to explain about 95% of total variation of the set of condi-
tional alphas. This result strongly supports the view that ECT conveys
information specific to each asset.

5 Conclusions

This paper has proposed a novel integrated approach to modeling asset
prices, returns, factors and risk drivers. We have shown that focusing
on the long-run (cointegrating) relation between asset prices and risk
drivers naturally leads to the identification of a new “Equilibrium Cor-
rection Term”. The ECT conveys important information about long-run
disequilibrium that strongly affect short-run dynamics of returns. Fur-
thermore, the existence of the long-run relationship between prices and
associated drivers of risk generate some relevant predictability.

We have mainly focused on the importance of the Equilibrium Cor-
rection Term for determining the predictive distribution of returns, and
its consequences for risk measurement and portfolio allocation. Our em-
pirical analysis has been based on modeling returns and log prices of
the 25 Fama-French portfolios and on capturing the additional effects
of the “Equilibrium Correction Term” on the Fama-French five-factor
model augmented with a momentum factor along several dimensions. It
is noteworthy that our framework can be extended to any set of factors.

We have given less emphasis to the importance of the long-run rela-
tions among risk drivers to predict factors. This is an issue on our agenda
for further research that could be particularly interesting in models based
on the simultaneous utilization of local and global factors to model as-
set returns (Griffin (2002)). Cointegration among local and global risk
drivers has an obvious potential for explaining the dynamics of local fac-
tors as determined by the response to an Equilibrium Correction Term
in which global risk drivers determine local risk drivers.
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Tables and Figures

Table 1: E-Test for Multivariate Normality (Székely and Rizzo
(2005))

CAPM Test Statistic 2.684
p-value 0

FF6 Test Statistic 2.618
p-value 0.08

FECM Test Statistic 2.611
p-value 0.22

Notes: This table reports the E-test for multivariate normality pro-
posed by Székely and Rizzo (2005) on CAPM, FF6, and FECM residuals.
The null hypothesis is multivariate normality.

Table 2: Augmented Dickey-Fuller Tests

Single-Risk Driver (EXC MKT) Model Test Statistic −2.783
p-value 0.259

Single-Factor (CAPM) Model Test Statistic −3.873
p-value 0.022

Notes: This table reports the augmented Dickey-Fuller (ADF) tests
for the single-factor specifications in equation (14) for Portfolio Small
and Growth in the 25 Fama-French portfolios. The null hypothesis is
non-stationarity.
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Table 3: FECM for Portfolio 11

Long-Run FECM (OLS) FECM (GMM) FECM SpR2

Trend −0.059∗∗∗

(0.005)

EXC MKT 1.050∗∗∗ 1.179∗∗∗ 1.263∗∗∗ 0.262
(0.038) (0.041) (0.245)

SMB 1.370∗∗∗ 1.404∗∗∗ 1.673∗∗∗ 0.259
(0.050) (0.087) (0.207)

HML −0.353∗∗∗ −0.634∗∗∗ −1.004∗∗∗ 0.025
(0.092) (0.071) (0.363)

RMW −0.544∗∗∗ −0.273∗∗∗ −0.038 0.005
(0.060) (0.080) (0.315)

CMA −0.396∗∗∗ −0.049 0.582 0
(0.120) (0.092) (0.721)

Mom 0.094∗∗∗ 0.070∗∗ 0.197∗ 0.003
(0.024) (0.012) (0.113)

ECT −0.724∗∗∗ −0.959∗∗∗ 0.018
(0.140) (0.286)

Constant 0.008 −0.075∗∗∗ −0.106∗∗∗

(0.028) (0.007) (0.036)

Observations 55 54 54
Adjusted R2 0.980 0.967 0.940

Notes: This table reports the estimated coefficients for the FECM
specifications (16) for Portfolio Small and Growth in the 25 Fama-French
portfolios. Values in parenthesis are heteroskedasticity and autocorre-
lation consistent (HAC) standard errors using Newey and West (1987)
with automatic bandwidth selection procedure as proposed by Newey
and West (1994). ***, **, and * indicates respectively 1%, 5%, and 10%
level of significance. The sample period is 1964 to 2018.
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Table 4: VECM for Factors as Functions of Risk Drivers

Factor

EXC MKT SMB HML RMW CMA MOM

EXC MKT RD(-1) −0.283∗∗∗ −0.222∗∗ −0.077 0.211∗∗∗ −0.097 0.249∗∗

(0.084) (0.098) (0.102) (0.067) (0.067) (0.095)

SMB RD(-1) 0.011 −0.250∗∗∗ 0.116 0.040 0.015 −0.023
(0.093) (0.089) (0.093) (0.061) (0.061) (0.086)

HML RD(-1) 0.196 −0.202 −0.542∗∗ −0.222 −0.032 0.444∗∗

(0.209) (0.197) (0.204) (0.135) (0.134) (0.190)

RMW RD(-1) 0.435∗∗∗ −0.183 −0.033 −0.584∗∗∗ 0.037 −0.193
(0.147) (0.197) (0.204) (0.135) (0.134) (0.189)

CMA RD(-1) −0.062 0.242 0.208 0.540∗∗∗ −0.418∗∗ −0.302
(0.334) (0.271) (0.281) (0.186) (0.184) (0.261)

Mom RD(-1) −0.063 0.205∗∗ 0.219∗∗ −0.029 0.241∗∗∗ −0.160∗

(0.078) (0.086) (0.089) (0.059) (0.058) (0.083)

Constant 0.015 0.115 −0.019 −0.025 −0.072 0.095
(0.068) (0.071) (0.073) (0.048) (0.048) (0.068)

Observations 42 42 42 42 42 42
Adjusted R2 0.137 0.242 0.191 0.322 0.282 0.172

Notes: This table reports the estimated coefficients for the VECM
specification in equation (16) for factors as functions of the risk drivers
for Portfolio Small and Growth in the 25 Fama-French portfolios. Val-
ues in parenthesis are heteroskedasticity and autocorrelation consistent
(HAC) standard errors using Newey and West (1987) with automatic
bandwidth selection procedure as proposed by Newey and West (1994).
***, **, and * indicates respectively 1%, 5%, and 10% level of signifi-
cance. The sample period is 1964 to 2018.
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Table 5: Portfolios Sorted by Time-Varying Alpha

Port 1 Port 2 Port 3 Port 4 Port 5 Port 1-5

Return (%) 9.176∗∗∗ 7.495∗∗∗ 6.758∗∗∗ 6.007∗∗∗ 2.964∗ 6.212∗∗∗

(1.408) (1.411) (1.493) (1.360) (1.553) (1.230)

Notes: This table reports percentage average annual returns for the
25 Fama-French portfolios sorted by time-varying alpha. Port 1 is the
portfolio associated with the highest alpha, Port 5 is the portfolio asso-
ciated with the lowest alpha. Port 1-5 represents the HMLα portfolio.
Values in parenthesis are heteroskedasticity and autocorrelation consis-
tent (HAC) standard errors using Newey and West (1987) with auto-
matic bandwidth selection procedure as proposed by Newey and West
(1994). ***, **, and * indicates respectively 1%, 5%, and 10% level of
significance. The sample period is 1964 to 2018.
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Table 6: Factor Spanning Tests

HMLα

(1) (2)

EXC MKT −0.175∗ −0.148
(0.104) (0.094)

SMB −0.287∗∗∗ −0.229∗∗

(0.086) (0.095)

HML 0.318∗ 0.240
(0.186) (0.187)

RMW 0.196 0.199
(0.240) (0.131)

CMA 0.054 −0.056
(0.258) (0.248)

Mom 0.015 0.006
(0.029) (0.041)

MGMT 0.293
(0.191)

PERF 0.021
(0.146)

IVOL 0.113
(0.147)

Alpha 6.119∗∗∗ 4.690∗∗∗

(2.023) (1.711)

Observations 52 52
Adjusted R2 0.549 0.554

Notes: This table reports the estimated coefficients for the factor
spanning tests of HMLα on FF6, mispricing, and IVOL factors. Values in
parenthesis are heteroskedasticity and autocorrelation consistent (HAC)
standard errors using Newey and West (1987) with automatic bandwidth
selection procedure as proposed by Newey and West (1994). ***, **,
and * indicates respectively 1%, 5%, and 10% level of significance. The
sample period is 1965 to 2016.
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(a) This figure shows the yearly dynamics for
the six risk drivers associated with FF6 factors.

Time

Lo
g 

P
ric

e

1970 1980 1990 2000 2010 2020

0
2

4
6

8

(b) This figure shows the yearly dynamics for
the log prices for the 25 Fama-French portfolios
formed on Size and Book-to-Market.

Figure 1: Risk Drivers and Log Prices Dynamics
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Figure 2: ADF and KPSS Tests for the Six-Risk Driver Model
Residuals

This figure shows the test statistics for ADF and KPSS tests on
the six-risk driver associated with FF6 model residuals. The (dashed)
red line is the critical value at 5% level of significance. The null
hypothesis for the ADF test is non-stationarity, while for the KPSS test
is (level) stationarity.
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Figure 3: Single- and Six-Factor Specifications for Portfolio
Small and Growth

This figure shows single-risk driver (EXC MKT) model, six-risk
driver (FF6) model, CAPM and FECM for Portfolio Small and Growth
in the 25 Fama-French portfolios. The black lines are actual values,
the dashed blue lines are fitted values. The last figure illustrates the
dynamics of the ECT compared to the portfolio Small and Growth
observed returns.
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Figure 4: Factors Significance for the 25 Fama-French Portfo-
lios (1)

This figure shows the estimated coefficients for EXC MKT, SMB,
HML and Mom obtained by regressing the 25 Fama-French portfolios
excess returns on factors as in equation (13) with respective confidence
intervals at 5% level of significance. The sample period is 1964 to 2018.
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Figure 5: Factors Significance for the 25 Fama-French Portfo-
lios (2)

This figure shows the estimated coefficients for RMW, CMA, al-
phas and ECT obtained by regressing the 25 Fama-French portfolios
excess returns on factors as in equation (13) with respective confidence
intervals at 5% level of significance. The sample period is 1964 to 2018.
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Figure 7: Correlation Matrix Plots

This figure shows the heatmap for the correlation matrix of the
25 Fama-French portfolios returns (a) and the residual of the 25
portfolios returns for the CAPM (b), FF6 (c), and FECM (d). The
sample period is 1964 to 2018.
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Figure 8: Predicted Returns: the Traditional Approach

This figure shows the predicted and observed returns for portfolio
Small and Growth in the 25 Fama-French portfolios during the crash
2007–2009 using the traditional factor model. We estimate the model
in the sample period 1964 to 2007 and we predict the distribution of
returns by bootstrapping. Bootstrapped 10% VaR takes the value of
−0.440 for 2008 and of −0.404 for 2009. The unconditional 10% VaR is
−0.469.
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Figure 9: Predicted Returns: the EC Approach

This figure shows the predicted and observed returns for portfolio
Small and Growth in the 25 Fama-French portfolios during the crash
2007–2009 using the EC model. We estimate the model in the sample
period 1964 to 2007 and we predict the distribution of returns by
bootstrapping. Bootstrapped 10% VaR takes the value of −0.367 for
2008 and of −0.067 for 2009.
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(a) This figure shows the yearly excess returns
for the HMLα strategy implemented on the 25
Fama-French portfolios.
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(b) This figure shows the cumulative returns
for the HMLα strategy implemented on the 25
Fama-French portfolios.

Figure 10: Returns and Cumulative Returns for the HMLα
Strategy
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Figure 11: Mispricing Factors and ECT

This figure shows the estimated coefficients for MGMT, PERF,
and ECT obtained by regressing the 25 Fama-French portfolios excess
returns on factors as in equation (13) with respective confidence
intervals at 5% level of significance. The sample period is 1965 to 2016.
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Figure 12: IVOL Factor and ECT

This figure shows the estimated coefficients for IVOL and ECT
obtained by regressing the 25 Fama-French portfolios excess returns on
factors as in equation (13) with respective confidence intervals at 5%
level of significance. The sample period is 1965 to 2016.
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