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Abstract

We add here another layer to the literature on nonatomic anonymous games started

with the 1973 paper by Schmeidler. More specifically, we define a new notion of equi-

librium which we call ε-estimated equilibrium and prove its existence for any positive

ε. This notion encompasses and brings to nonatomic games recent concepts of equilib-

rium such as self-confirming, peer-confirming, and Berk—Nash. This augmented scope

is our main motivation. At the same time, our approach also resolves some conceptual

problems present in Schmeidler (1973), pointed out by Shapley. In that paper the ex-

istence of pure-strategy Nash equilibria has been proved for any nonatomic game with

a continuum of players, endowed with an atomless countably additive probability. But,

requiring Borel measurability of strategy profiles may impose some limitation on players’

choices and introduce an exogenous dependence among players’actions, which clashes

with the nature of noncooperative game theory. Our suggested solution is to consider

every subset of players as measurable. This leads to a nontrivial purely finitely ad-

ditive component which might prevent the existence of equilibria and requires a novel

mathematical approach to prove the existence of ε-equilibria.

1 Introduction

The original framework of Schmeidler. Games with a continuum of anonymous

players were introduced by Schmeidler in [30] where he also proved the existence of pure-

strategy Nash equilibria for these games.1 At the time, there were models of markets and

cooperative games with infinitely many players, but not of noncooperative games. In [30],

the players’space is modelled to be the unit interval endowed with the Borel σ-algebra and

the Lebesgue measure, where there is a finite set of actions and each player chooses an action

from this set. The utility of each player depends on the distribution of actions across all

players and the action he chooses. The interpretation is that the same game is repeated in

∗Acknowledgments to be added.
1At the end of the paper, we recall how this problem naturally arose.
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each period. The payoff, in utils, is received at the end of the period. At the same time,

because of the anonymity assumption, the strategic complications of repeated games are

meaningless here. A paradigmatic example is that of daily commuters driving downtown (or

back home) and having to choose a bridge (or tunnel) to enter the city. Thus, in each period

they play a one-shot game, analyzed in [30]. Here, the metaphysical assumption of correctly

guessing what other players will do, required for playing a Nash equilibrium strategy in

one-shot games, is mitigated by two factors. The first is minor: each player has to guess

correctly the distribution of the strategy (the same guess for all). The second is major: there

is regularity in the daily traffi c of commuters. Schmeidler [30] formalizes these intuitions.

The limitations of this model are discussed below.

Our motivations. The goal of our paper is to generalize the above finding in several

directions. We are motivated by three main observations:

(i) In recent years, alternative, and perhaps more realistic, notions of equilibrium have

been developed for noncooperative games with finitely many players. At the same

time, these notions have not been considered for nonatomic anonymous games. In

particular, we have in mind equilibrium concepts which allow for beliefs to be not

necessarily correct, but nonetheless consistent with the information possessed by each

player whether it is endogenously or exogenously generated.

(ii) In a personal conversation with Schmeidler (in the early 1970s), Shapley pointed out a

problem with the modelling of a nonatomic population of players as the unit interval

with the Lebesgue measure on Borel sets. As in some mathematical sense there are

more nonmeasurable sets than measurable sets in the unit interval, the game, that is

the payoff function, may not be defined out of equilibrium. In a similar vein, as later

formalized in a general equilibrium framework, Dubey and Shapley [11] raise another

issue with the measurability assumption. The measurability of a strategy profile (and

similarly of the profile of utilities, which is a common assumption) yields its “near”

continuity.2 This in turn clashes with the noncooperative idea of strictly independent

decision-making, since “close players”tend to play “close strategies”.

(iii) In modelling a large population of players in which each agent “has the same negligible

weight”, Schmeidler opted for the infinite set of points in the unit interval endowed

with the Lebesgue measure. At the same time, as noted by Aumann [3], in analyzing

economies with a continuum of traders, “the choice of the unit interval as a model for

the set of [players] is of no particular significance. A planar or spatial region would

2This intuition is based on Lusin’s Theorem which states that for each ε > 0 each measurable function is

continuous when restricted to a suitable compact set which has a measure of at least 1−ε (see, e.g., Aliprantis
and Border [1, Theorem 12.8]).
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have done just as well. In technical terms, [the players’ space] can be any measure

space without atoms.”Thus, for example, one could alternatively model the players’

space as the set of natural numbers endowed with a natural density. More generally,

we suggest using Savage’s structure of nonatomic probabilities defined on the power

set of the space of players (Section 2).

Our contributions. Our second and third motivation bring us to model the players’

space as a set T endowed with a nonatomic probability λ defined on all subsets T . Using a

measure over the power set takes care of both Shapley’s and Aumann’s comments. In par-

ticular, by considering the power set, we allow for the most permissive measurable structure

possible, since any profile of strategies or utilities becomes automatically measurable. Mea-

suring the subsets of players/coalitions according to a nonatomic probability on the power

set is consistent with Savage’s [29] approach and equivalent to having a qualitative probabil-

ity on the players’space, satisfying axiom P6’. However, modelling the players’space in this

generality implies that Nash equilibria might fail to exist (see Example 1 based on Khan,

Qiao, Rath, and Sun [18]).

This naturally brings us to look at ε-equilibria and to our first motivation. We in-

troduce a concept of approximate equilibrium for nonatomic anonymous games, which we

call ε-estimated equilibrium. This notion of ε-equilibrium encompasses several approximate

equilibrium concepts: ε-self-confirming (ε-SCE), ε-peer-confirming (ε-PCE), and ε-Berk—

Nash (ε-BNE). These equilibria and their ε-versions are formally defined and discussed in

the relevant sections, Sections 3.1, 3.2, and 3.3 (see also the related literature below). They

were mostly developed for finite games and, inter alia, in this paper we extend them to

nonatomic games. Nevertheless, the principles behind their definitions in a finite-players

framework naturally translate to a nonatomic setup. The common thread behind ε-SCE,

ε-PCE, and ε-BNE in an anonymous nonatomic game is the following scheme, which is also

the basis for our ε-estimated equilibria:

1. Every player best-responds to his beliefs (optimality);

2. The belief of every player is consistent with what he can observe (ε-discrepancy).3

Where these types of equilibrium differ is how point 2 is formalized, since point 1 is

translated in the same way for all of them. In particular, in SCE, each player receives a

message which is a function of the action he takes and the distribution of actions of the other

players. In equilibrium, almost every player best-responds to a distribution that generates

a message which is ε-close to the message generated by the true distribution of the actions.

In PCE, the message each player receives is the distribution of the actions conditional on

3More precisely, we require points 1 and 2 to hold for every player except a null set of them.
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a subset of players: his peers. Thus, almost all the players best-respond to a distribution

which is ε-close to the true distribution of actions of their peers, not of all the players. In

both ε-SCE and ε-PCE the distributions to which players best-respond are ε-close in terms

of observables to the true one; thus they are endogenously generated. By contrast, in BNE,

each player t entertains an exogenous set of possible distributions of actions, denoted by Qt,

that he believes are accurate in describing other players’behavior. Moreover, he is not willing

to depart from Qt. So in equilibrium, almost every player best-responds to a distribution

which is ε-close to the best estimate in Qt of the true distribution of actions, according to a

statistical measure.

Our notion of ε-estimated equilibrium provides a framework where we can account for all

the three different features described above: that is, the distribution of actions used by each

player in equilibrium is ε-close, whether in statistical terms or proper distance, to the set of

all distributions which are compatible with the true one. This latter set can be exogenously

determined as in BNE or endogenously generated as in SCE or PCE.

In Theorem 1, under mild assumptions, we prove that ε-estimated equilibria always exist.

As particular cases, we obtain the existence of self-confirming ε-equilibria (Corollary 1), peer-

confirming ε-equilibria (Corollary 3), and Berk—Nash ε-equilibria (Corollary 4). Finally,

despite the fact that standard Nash equilibria might fail to exist, we prove that ε-Nash

equilibria do exist (Corollary 2).

Related literature. The seminal contribution of Aumann [3] (in a general equilibrium

framework), followed by Schmeidler [30] (in a game-theoretic framework), initiated a large

literature where the negligibility of agents is modelled via a nonatomic probability players’

space (see, e.g., Khan and Sun [22] for a survey).4 We will next discuss the relevant literature

by connecting it to our three main motivations/contributions.

(i) Our definition of ε-estimated equilibrium seems to be new. At the same time, it en-

compasses three types of equilibrium: self-confirming (SCE), peer-confirming (PCE),

and Berk—Nash (BNE) which were developed almost exclusively for games with finitely

many players, respectively, by Battigalli [6] as well as Fudenberg and Levine [14] (SCE),

Lipnowski and Sadler [23] (PCE), and Esponda and Pouzo [12] (BNE). The only ex-

ceptions seem to be SCE and BNE, which were also studied for population games,

where the latter can be seen as a very special form of nonatomic games. Moreover,

we also consider ε-versions of the above three concepts of equilibrium. In discussing

ε-SCE of course, two approaches are available. The first assumes that: a) players best-

4Many subsequent papers extended Schmeidler’s results to more general players’spaces, but where λ is

always assumed to be countably additive and A is allowed to be infinite: see, e.g., Balder [5], Khan and Sun

[20], Khan, Rath, and Sun [19], Rath [26], and the references therein. The scope of this type of result is

analyzed in Carmona and Podczeck [9].
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respond to their beliefs, but b) beliefs are only ε-consistent with evidence. The second

requires that: a’) players ε-best-respond to their beliefs, but b’) beliefs are perfectly

consistent. For games with finitely many players, the first approach was introduced

by Battigalli [6] and Kalai and Lehrer [16] and [17], while the second was proposed

for pure equilibria by Azrieli [4]. For nonatomic games, other than population games,

the first approach seems to be unexplored, while the second was studied by Azrieli [4].

Using the same setting as Schmeidler, that is, assuming that the players’space is the

unit interval with the Lebesgue measure, Azrieli shows that self-confirming equilibria

exist (that is, when ε = 0), but when utility depends on the entire profile of strategies

and the message feedback is the distribution of actions.5 Moreover, in trying to obtain

the nonatomic games of Schmeidler as a limit of finite-players games which become

arbitrarily large, he shows that self-confirming ε-equilibria eventually exist.6 Finally,

Azrieli limits his analysis to the case where there is nonmanipulable information also

known as own-action independence of feedback. Loosely speaking, this is the case when

the feedback each player receives does not depend on the action taken by the player.

This rules out several interesting cases.

In our work, we opt for a definition of ε-SCE which requires rational optimization on the

players’side, but allows them to entertain ε-consistent beliefs. We do not assume own-

action independence. The assumption of ε being strictly positive is due to two reasons:

one mathematical and one conceptual. Mathematically, by considering players’spaces

which involve finitely additive measures λ, one can show that self-confirming equilibria

might fail to exist (Example 1). Conceptually, we take the point of view of Kalai and

Lehrer [16] and [17]: we impose rational behavior on players, but allow for slightly

inconsistent beliefs. The latter assumption can be justified by interpreting the belief of

each player as the belief entertained after many rounds of play, so that learning yields

approximately correct predictions about observables. At the limit, beliefs would be

perfectly consistent with observations, but before that they might be just ε-consistent.

(ii) The issue of measurability in nonatomic economies and games has been raised and

dealt with by several authors in the past. Khan and Sun [21] proposed to replace the

unit interval with the Lebesgue measure with a generic Loeb space. In this way, play-

ers (resp., coalitions) are represented as hyperreals (resp., sets of hyperreals). Their

approach is mathematically very elegant, but very different from ours. Ours is concep-

tually simpler: we simply remove any measurability constraint by replacing the Borel

σ-algebra with the power set. This comes at a cost: the loss of countable additivity of

λ. This not only complicates the technical analysis, but generates a conceptual loss. In

fact, in an independent paper, Khan, Qiao, Rath, and Sun [18] show that the existence

5 In our specification, this would collaps to a Nash equilibrium.
6For a related concept and result see also Section 5 of Fudenberg and Kamada [13].
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of Nash equilibria for any game with players’space (T, T , λ) is equivalent to the count-

able additivity of λ. Since the existence of Nash equilibria cannot be guaranteed with

mere finite additivity, they study the existence of ε-Nash equilibria, thus overlapping

our Corollary 2.

(iii) The issue of modelling the players’space as a continuum or as a discrete space has also

been discussed by Al-Najjar [2], who considers as competing models the continuum

space [0, 1] versus a dense countable grid of [0, 1]. This paper also shares some of the

motivation coming from the Dubey-Shapley’s remark on measurability (see Dubey and

Shapley [11] as well as Khan and Sun [21]). Thus, in trying to build a link between

these two conceptually equivalent approaches countable additivity is necessarily lost, as

in our case. The main results of Al-Najjar [2] show that, under suitable conditions, the

two approaches to modelling the players’space, that is, a continuum versus a discrete

dense grid, are equivalent. In order to achieve this result, Al-Najjar shows that all

his Nash-type equilibria, for his class of discrete games, can be purified. Compared to

our work, Al-Najjar is not concerned with any other form of equilibrium other than

Nash equilibria. Moreover, he establishes the existence of a form of ε-equilibrium for

those discrete nonatomic games that arise as limits of proper sequences of finite-players

games. Example 2 shows that for our more general class of games these ε-equilibria

are not always guaranteed to exist.

We conclude by mentioning one more work. One of the important papers on nonatomic

games which introduces a novel approach is Mas-Colell [25]. His approach is based on distri-

butions of strategies,7 which allows for not considering strategy profiles. In this way, issues

of measurability can be partially overridden in the proofs. It is an alternative framework

which permits the discussion of players’negligibility. In this framework though, Shapley’s

observation would still apply and the assumption of countable additivity still seems to be

playing a major role. Finally, we are not aware of refinements of and variations on this

distributional concept of equilibrium.

Roadmap. In Sections 2 and 3, we formally introduce nonatomic players’ spaces,

nonatomic games with estimation feedback, and the definition of ε-estimated equilibrium

whose existence is proven in Theorem 1. In Sections 3.1, 3.2, and 3.3, as a by-product, we

obtain the existence of self-confirming, Nash, peer-confirming, and Berk—Nash ε-equilibria.

Proofs are relegated to the appendices. In particular, in Appendix A.1, Lemma 1 generalizes

Theorem 7 of Khan and Sun [20] which deals with the set of distributions induced by all the

selections of a correspondence. In Appendix A.2, we provide a brief summary of how the

7This reformulation is connected to the distributional approach for Bayesian games with a continuum of

types (see [25, Remarks 3 and 4]).
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main proofs are carried out and prove all the results contained in the main text. In Appen-

dix A.3, we conclude the paper with one of the authors explaining the origin of nonatomic

games.

2 Nonatomic players’spaces

A players’ space is a pair (T, λ) where T is a set of players and λ is a (finitely additive)

probability on the power set of T .8 When T = N, a fundamental class of probabilities that
are not countably additive are natural densities, that is, probabilities λ such that

λ (E) = lim
k→∞

|E ∩ {1, ..., k}|
k

whenever the limit exists. As is well known, there are many natural densities and all of them

satisfy the following property:

Strong continuity (Savage’s nonatomicity) For each ε > 0 there exists a finite partition

{F1, F2, ..., Fk} of T such that λ (Fi) < ε for all i = 1, ..., k.

Under strong continuity, any singleton (i.e., any single player) has measure 0 and for

each F ⊆ T and β ∈ (0, 1) there exists E ⊆ F such that λ (E) = βλ (F ).9 This is the class

of probabilities introduced by Savage [29] when he solved De Finetti’s open problem on the

representation of qualitative probabilities (see also Samet and Schmeidler [28]).

3 Nonatomic games and their equilibria

Nonatomic games are games where each single player has no influence on the strategic in-

teraction, but only the aggregate behavior of “large”sets of players can change the players’

payoffs. Formally, a nonatomic (anonymous) game is a tripletG = ((T, λ) , A, u) where (T, λ)

is the players’ space, A is the space of players’actions/strategies and u is their profile of

utilities.10 Below, we discuss in detail these mathematical objects and their interpretations.

• A = {1, ..., n} is the set of pure strategies/actions.

• ∆ =
{
x ∈ Rn+ |

∑n
i=1 xi = 1

}
is the n − 1 dimensional simplex. We denote by d∆

the distance on ∆ induced by the Euclidean norm. This set represents all possible

8Recall that λ is a finitely additive probability if and only if λ is a positive finitely additive set function

such that λ (T ) = 1.
9See Maharam [24, Example 2.1 and Theorem 2] and Bhaskara Rao and Bhaskara Rao [7, Theorem 5.1.6

and Remark 5.1.7]. In this literature, natural densities are called density measures or density charges.
10 In the paper, given a generic set B, we use the term profile to refer to a function from the set of players

T to B. We will denote a profile by either b : T → B or by b = (bt)t∈T . The latter notation will allow us,

with a small abuse, to treat (bt)t∈T also as a set.
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distributions of players’ strategies. Note that an element in ∆ can actually take two

possible interpretations. In fact, given a player t and an element of ∆, this element can

either be interpreted as a subjective belief of player t (in this case, we often denote it

by βt) or be interpreted as an objective distribution of players’strategies (in this case,

we typically denote it by x).

• u = (ut)t∈T is a profile of functions ut : A × ∆ → R. For each t in T , ut (a, βt)

represents the ex-ante utility of player t, when he chooses strategy a, if his belief about

the distribution of opponents’strategies is βt.

As mentioned in the Introduction, nonatomic games were first studied by Schmeidler

[30]. In this paper, we consider a class of games which we term nonatomic games with

estimation feedback. It has a richer structure and nonatomic games can be seen as a specific

parametrization.

Formally, a nonatomic game with estimation feedback is a quintetG = ((T, λ), A, u, (Π, π), f)

where ((T, λ) , A, u) is a nonatomic game defined as above, (Π, π) is a neighborhood struc-

ture, and f is a profile of estimation feedback functions which discipline the beliefs’formation

of agents in equilibrium. Formally, we have that:

• (Π, π) is a neighborhood structure if and only if Π = {Tj}mj=1 is a finite cover of T whose

elements have strictly positive measure and π is a function from T to {1, ...,m}. In
particular, each Tj is a nonempty subset of T such that λ (Tj) > 0 and ∪mj=1Tj = T .

An important example of finite covers are finite partitions of the players’space. We

interpret an element of Π, Tj , as the j-th subpopulation of T and for each t ∈ T the
value π (t) will denote which subpopulation player t observes.11

• f = (ft)t∈T is a profile of (estimation) feedback functions ft : A × ∆ × ∆ → [0,∞).

Each ft is assumed to be such that for each y ∈ ∆ there exists xy ∈ ∆ for which it

holds that

ft (a, xy, y) = 0 ∀a ∈ A (1)

For each t in T , ft (a, βt, x) represents a measure of consistency between the belief βt
(entertained by player t) and the actual distribution of players’strategies x within the

subpopulation observed by player t, with the idea that the larger ft (a, βt, x) is the

greater is the discrepancy between the player’s belief and the subpopulation actions’

distribution x. In line with this interpretation, property (1) says that for each possible

true model x there exists a belief βt such that this discrepancy is minimal, no matter

what action a is chosen by player t. To better understand (1), we next state a stronger

11Despite being a natural requirement, we can dispense with the assumption that t ∈ Tπ(t). In other words,

we do not need to assume that any player t belongs to the subpopulation he observes.
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property which implies (1) and has a more immediate interpretation. In all our spec-

ifications, with the exception of (11), it will be satisfied: for each t ∈ T and for each
a ∈ A

x = y =⇒ ft (a, x, y) = 0 (2)

In words, this latter property says that discrepancy is minimal provided the belief βt
is indeed correct, that is βt = x.12 Under (1) or (2), we deliberately allow for the

possibility that ft (a, βt, x) = 0, but βt 6= x: a belief might be consistent with evidence,

but still incorrect.

Finally, we need three extra mathematical objects:

• Σ = AT is the set of all functions σ from T to A. Each σ ∈ Σ represents a strategy

profile in which the generic player t chooses strategy σ (t).

• Given j ∈ {1, ...,m}, λj denotes the probability on the power set of T defined by

λj (E) =
λ (E ∩ Tj)
λ (Tj)

∀E ⊆ T

In other words, λj is the players’conditional measure in the subpopulation j. Note

that if λ is strongly continuous, so is each λj .

• Given σ ∈ Σ and j ∈ {1, ...,m}, λjσ ∈ ∆ is the distribution of σ on A in the j-th

subpopulation, that is,

λjσ =
(
λj ({t ∈ Tj | σ(t) = a})

)
a∈A

The vector λjσ represents the true distribution of players’ pure strategies in the j-

th subpopulation,13 when they all play according to σ. When Π is trivial, that is,

Π = {T}, then Π contains only one element and λ = λ1. In this case, we write λσ in

place of λ1
σ. Similarly, the vector λσ represents the true distribution of players’pure

strategies in the entire population.

We can now introduce our most general concept of equilibrium. Its interpretation is

postponed to the next three sections where we discuss three particular and important spec-

ifications (see also the Introduction).

12Note that (2) implies (1). Fix t ∈ T . For each y ∈ ∆, set xy = y. By (2), it follows that ft (a, xy, y) = 0

for all a ∈ A.
13By definition of λjσ, note that

λjσ =
(
λj ({t ∈ T | σ(t) = a})

)
a∈A

for all j ∈ {1, ...,m}.
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Definition 1 Let ε ≥ 0. An ε-estimated equilibrium (in pure strategies) for the nonatomic

game with estimation feedback G = ((T, λ) , A, u, (Π, π) , f) is a strategy profile σ ∈ Σ such

that there exists a profile of beliefs β ∈ ∆T satisfying

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
ft

(
σ (t) , β (t) , λ

π(t)
σ

)
≤ ε

})
= 1 (3)

We are ready to state our main result.

Theorem 1 Let G = ((T, λ) , A, u, (Π, π) , f) be a nonatomic game with estimation feedback

and ε > 0. If λ is strongly continuous and f = (ft)t∈T is a family of functions which is

equicontinuous with respect to the third argument,14 then G has an ε-estimated equilibrium.

3.1 Self-confirming and Nash equilibria

An interesting class of nonatomic games with estimation feedback arises when the feedback

function of player t is generated by a message function mt : A × ∆ → M , where M is a

metric space with distance d.15 For each t in T , mt (a, x) represents the message player t

receives when he chooses strategy a and the distribution of players’strategies is x. In games

with finitely many players, typically the message function mt depends on the action chosen

by the player and the profile of actions chosen by the opponents. Nevertheless, given our

underlying assumption of anonimity, it seems natural to replace the latter with the actions’

distribution in the population.

With this in mind, the next type of equilibrium models a situation in which the belief βt
adopted by each agent t in equilibrium is consistent/confirmed with/by the message received.

More formally, βt is such that the expected message mt (σ (t) , βt) is ε-close to the received

message mt (σ (t) , λσ).

We define a nonatomic game with message feedback to be a quartet G = ((T, λ) , A, u,m)

where ((T, λ) , A, u) is a nonatomic game and m = (mt)t∈T is a profile of message functions.

Note that a nonatomic game with message feedback can be mapped into a nonatomic game

with estimation feedback. In fact, it is enough to consider (Π, π) to be trivial, that is

14We say that f = (ft)t∈T is a family of functions which is equicontinuous with respect to the third

argument if and only if for each ε > 0 there exists δε > 0 such that

d∆ (x, y) < δε =⇒ |ft (a, γ, x)− ft (a, γ, y)| < ε ∀t ∈ T,∀a ∈ A,∀γ ∈ ∆

In other words, the family of functions {ft (a, γ, ·)}t∈T,a∈A,γ∈∆ from ∆ to [0,∞) is equicontinuous.
15To simplify notation, we assume that the message space is the same for all players. This is without loss

of generality. We could have equivalently assumed that each player has his own message space Mt, and in

the proofs embed this set into a larger common message space M . Our assumptions of equicontinuity on the

message functions mt (cf. Corollary 1) would seamlessly pass through the embedding as well.
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Π = {T}, and set the profile of feedback functions to be such that:16

ft (a, x, y) = d (mt (a, x) ,mt (a, y)) ∀t ∈ T, ∀a ∈ A,∀x, y ∈ ∆ (4)

It can be seen immediately that each ft satisfies (2), and thus (1). We can define our concept

of self-confirming ε-equilibrium which we discuss below.

Definition 2 Let ε ≥ 0. A self-confirming ε-equilibrium (in pure strategies) for the nonatomic

game with message feedback G = ((T, λ) , A, u,m) is a strategy profile σ ∈ Σ such that there

exists a profile of beliefs β ∈ ∆T satisfying

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d (mt (σ (t) , β (t)) ,mt (σ (t) , λσ)) ≤ ε

})
= 1 (5)

In words, a strategy profile σ ∈ Σ is a self-confirming ε-equilibrium (ε-SCE) if and only

if

1. Almost all players best-respond to their beliefs (optimality);

2. Beliefs are not significantly refuted by what they can observe (ε-confirmation).

As noted in the Introduction, self-confirming equilibria were introduced for games with

finitely many players by Battigalli [6] and Fudenberg and Levine [14], and also ε-confirmation

was introduced by Battigalli [6] and Kalai and Lehrer [16] and [17]. To the best of our

knowledge, the above definition of ε-equilibrium seems to be novel for nonatomic games and

also natural (cf. the related literature section). Furthermore, it encompasses the notions

of self-confirming equilibrium and ε-Nash equilibrium (a fortiori, Nash equilibrium). To see

this, we begin by observing that if ε = 0 and mt : A×∆→ ∆ is such that

mt (a, x) = x ∀t ∈ T, ∀a ∈ A,∀x ∈ ∆ (6)

that is, (M,d) = (∆, d∆) and feedback is (statistically) perfect, then (5) becomes

λ ({t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ) ∀a ∈ A}) = 1

which means that σ is a Nash equilibrium. In this case, beliefs are not only perfectly con-

sistent with observations but also correct. Maintaining the perfect feedback assumption (6),

but allowing for ε > 0, (5) becomes

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆ (β (t) , λσ) ≤ ε

})
= 1

16 In this case, note that π can only take one value.
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Under a suitable assumption of continuity of u (see Corollary 2 and its proof), we can show

that σ is an ε-Nash equilibrium for some suitable ε̂ > 0, that is,

λ ({t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ)− ε̂ ∀a ∈ A}) = 1

The intuition is simple: if beliefs are “close”to the true distribution, players are not far from

objective maximization.

Finally, if we remove perfect feedback but maintain ε = 0, (5) becomes

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
mt (σ (t) , β (t)) = mt (σ (t) , λσ)

})
= 1

which is arguably the nonatomic anonymous games counterpart of the definition of self-

confirming equilibrium (SCE).

Starting with ε-estimated equilibria, most of our analysis deals with the case in which

ε > 0. There are two reasons why we do so. First, conceptually, ε > 0 allows beliefs to be

only imperfectly confirmed, mirroring the fact that players’observations might be noisy and

learning slow. Second, self-confirming equilibria and Nash equilibria might not exist, as the

following examples show. In a nutshell, Example 1 provides an instance where Nash and

SCE equilibria do not exist, but their ε-versions do. Example 2 provides an instance where

ε-uniform Nash equilibria à la Al-Najjar [2] do not exist, but standard ε-Nash equilibria do.

Example 1 The next example builds on Khan, Qiao, Rath, and Sun [18].17 Consider T = N
and let λ be a natural density. Consider two strategies, that is, A = {1, 2}. Assume that for
each t ∈ T

ut (a, x) =

{
1
t − x1 a = 1

x1 − 1
t a = 2

∀x ∈ ∆

Let mt = ut for all t ∈ T . This amounts to the standard assumption of mere payoff

observability. Assume that σ ∈ Σ is an SCE, that is, there exists β ∈ ∆T such that

λ ({t ∈ T | ut (σ (t) , λσ) = ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A}) = 1

For ease of notation, set λσ = x and define the set of “optimizing”players by

O = {t ∈ T | ut (σ (t) , λσ) = ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A}

We have two cases:
17The example of Khan, Qiao, Rath, and Sun [18] seems to be the first one in the literature to exhibit a

well-behaved nonatomic game which does not have any Nash equilibrium, be it pure or mixed.
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1. x1 > 0. Since λ is a natural density and O has mass 1, then O is infinite. Thus, there

exists t̄ ∈ N such that 2
t −x1 < 0 for all t ∈ O∩{1, ..., t̄}c. Consider t ∈ O∩{1, ..., t̄}c 6=

∅. By contradiction, assume that σ (t) = 1. The SCE conditions imply that

1

t
− x1 =

1

t
− β (t)1 ≥ β (t)1 −

1

t

yielding that 0 ≤ β (t)1 ≤ 2
t − x1 < 0, a contradiction. Since t was arbitrarily chosen

in O ∩ {1, ..., t̄}c, it follows that σ (t) = 2 for all t ∈ O ∩ {1, ..., t̄}c. Since λ is a natural
density and O and O ∩ {1, ..., t̄}c differ by a finite set λ (O ∩ {1, ..., t̄}c) = 1, we have

that λσ = x is such that x2 = 1, a contradiction with 0 = 1− x2 = x1 > 0.

2. x1 = 0. Consider t ∈ O. By contradiction, assume that σ (t) = 2. The SCE conditions

imply that

x1 −
1

t
= β (t)1 −

1

t
≥ 1

t
− β (t)1

yielding that 0 = x1 = β (t)1 and 0 ≥ 2
t > 0, a contradiction. Since t was arbitrarily

chosen in O, σ (t) = 1 for all t ∈ O, yielding that λσ = x is such that x1 = 1, a

contradiction with x1 = 0.

To sum up, we have just shown that the nonatomic game with message feedback above does

not have any self-confirming equilibrium and, in particular, any Nash equilibrium.18 This

happens despite the fact that the profile of message functions is extremely well-behaved

being m = (mt)t∈T equicontinuous with respect to the second argument (cf. Corollary 1).
19

At the same time, consider ε > 0. Let t̄ ∈ N be such that min {1, ε} > 1
t for all t ∈ N

such that t > t̄. Set ε̄ = min {1, ε}. Consider a strategy profile σ ∈ Σ and a belief profile

β ∈ ∆T such that σ (t) = 2 and β (t)1 =
ε̄+ 1

t
2 ∈

(
1
t , ε̄
)
⊆ (0, 1) for all t ∈ N such that t > t̄.

18Two extra observations are in order:

a. In the nonatomic game above, SCE equilibria and Nash equilibria coincide. This is by chance, as the

next point shows.

b. Khan, Qiao, Rath, and Sun [18] consider T = N and let λ be a natural density. They assume A = {1, 2}
and û to be such that for each t ∈ T

ût (a, x) =

{
1
t
− x1 a = 1

0 a = 2
∀x ∈ ∆

With similar arguments, they prove that the nonatomic game ((T, λ) , A, û) does not have any Nash equilib-

rium. At the same time, if we consider the augmented nonatomic game with message feedback ((T, λ) , A, û,m)

where mt = ût for all t ∈ T , then we can show that there exists an SCE equilibrium. In fact, if σ ∈ Σ is such

that σ (t) = 2 for all t ∈ T , by setting β ∈ ∆T such that β (t)1 = 1 for all t ∈ T , we obtain the result.
19 Indeed, note that for each ε > 0 we can set δε = ε and get

d∆ (x, y) < ε =⇒ |mt (a, x)−mt (a, y)| = |x1 − y1| ≤ d∆ (x, y) < ε ∀t ∈ T,∀a ∈ A
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Since {1, ..., t̄} is finite and λ is a natural density, we have that λσ = x is such that x2 = 1,

that is, x1 = 0. It follows that for each t ∈ {1, ..., t̄}c

|mt (σ (t) , β (t))−mt (σ (t) , λσ)| =
∣∣∣∣∣ ε̄+ 1

t

2
− 1

t
− x1 +

1

t

∣∣∣∣∣ =
ε̄+ 1

t

2
< ε̄ ≤ ε

and

ut (σ (t) , β (t)) = β (t)1 −
1

t
=
ε̄− 1

t

2
> 0 >

1

t
− β (t)1 = ut (1, β (t))

Since {1, ..., t̄}c has mass 1, we can conclude that σ ∈ Σ is an ε-SCE. N

Example 2 Al-Najjar [2] (cf. the Introduction) also deals with the lack of countable addi-
tivity and studies the following equilibrium: a strategy σ ∈ Σ is an Al-Najjar equilibrium

(in pure strategies) if and only if for each ε > 0

λ ({t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ)− ε ∀a ∈ A}) > 1− ε (7)

We next show that also these equilibria might fail to exist. In what follows, it will often be

useful to set

Oε = {t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ)− ε ∀a ∈ A}

Two observations are in order. First, compared to the ε-Nash equilibria we study (Corollary

2), the key difference is that, in our case, σ might depend on the given ε, while in Al-Najjar’s

case, σ must work with any ε. In particular, one can easily show that:20 σ ∈ Σ is an Al-Najjar

equilibrium if and only if for each ε > 0

λ ({t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ)− ε ∀a ∈ A}) = 1

Second, by taking the intersection of the sets O1/n, this allows us to conclude easily that an

Al-Najjar equilibrium is a Nash equilibrium, provided λ is countably additive. We consider

the nonatomic game ((T, λ) , A, ũ) where (T, λ) and A are as in Example 1 and for each t ∈ T

ũt (a, x) =


1
t − x1 a = 1 and x1 > 0

x1 − 1
t a = 2 and x1 > 0

1 a = 1 and x1 = 0
1
t a = 2 and x1 = 0

∀x ∈ ∆

Assume that σ ∈ Σ satisfies (7). For ease of notation, set λσ = x. As before, we have two

cases:
20 It is easy to see that if 0 < ε < ε′, then Oε ⊆ Oε′ , thus

λ (Oε′) ≥ λ (Oε) > 1− ε ∀ε′ > 0, ∀ε ∈
(
0, ε′

)
yielding that λ (Oε′) = 1 for all ε′ > 0.

14



1. x1 > 0. Fix ε > 0. Since λ is a natural density, the set Oε has mass 1, and

λ ({t ∈ T | σ (t) = 1}) > 0, we have that Oε ∩ {t ∈ T | σ (t) = 1} is infinite. Since ε
was arbitrarily chosen, this implies that we can construct a strictly increasing sequence

{tk}k∈N ⊆ N such that tk ∈ O1/k ∩ {t ∈ T | σ (t) = 1} for all k ∈ N. Since tk ∈ O1/k,

σ (tk) = 1, and x1 > 0, we have that for each k ∈ N

1

tk
− x1 ≥ x1 −

1

tk
− 1

k
=⇒ 0 < x1 ≤

1

tk
+

1

2k

By passing to the limit, we obtain that 0 < x1 ≤ 0, a contradiction.

2. x1 = 0. Fix ε > 0. Since λ is a natural density, the set Oε has mass 1, and

λ ({t ∈ T | σ (t) = 2}) > 0, we have that Oε ∩ {t ∈ T | σ (t) = 2} is infinite. Since ε
was arbitrarily chosen, this implies that we can construct a strictly increasing sequence

{tk}k∈N ⊆ N such that tk ∈ O1/k ∩ {t ∈ T | σ (t) = 2} for all k ∈ N. Since tk ∈ O1/k,

σ (tk) = 2, and x1 = 0, we have that for each k ∈ N

1

tk
≥ 1− 1

k

By passing to the limit, we obtain that 0 ≥ 1, a contradiction.

To sum up, we have just shown that the nonatomic game ((T, λ) , A, ũ) does not have any

equilibrium as defined in (7). At the same time, it is not hard to see that this game admits

an ε-Nash equilibrium for every ε > 0. One way to observe this is to consider the augmented

game ((T, λ) , A, ũ,m) in which each player has perfect statistical feedback: that is

mt (a, x) = x ∀t ∈ T, ∀a ∈ A,∀x ∈ ∆

Since m = (mt)t∈T is equicontinuous with respect to the second argument (cf. Corollary 1),

we have that for each ε > 0 there exists an ε-SCE. Given ε ∈ (0, 1), it can immediately be

proved that a strategy profile σ is an ε-SCE if and only if λ ({t ∈ T : σ (t) = 1}) ∈
[
0, ε/
√

2
]
.

Given our choice ofm, following the intuition that “if beliefs are close to the true distribution,

players are not far from objective maximization”, we can prove that, given ε ∈ (0, 1), if σ

is an ε
2
√

2
-SCE and λ ({t ∈ T : σ (t) = 1}) > 0, then σ is an ε-Nash equilibrium. In other

words, ((T, λ) , A, ũ) does not have any equilibrium as defined in (7), but for each ε > 0 it

has an ε-Nash equilibrium.21 N

We are ready to state the main results of this section.

21Since λ is strongly continuous, note that, given ε ∈ (0, 1), we can always find σ ∈ Σ such that

λ ({t ∈ T : σ (t) = 1}) ∈ (0, ε/4]. In other words, in light of the above characterization, we can always find a

strategy profile σ which is an ε

2
√

2
-SCE such that λ ({t ∈ T : σ (t) = 1}) > 0.
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Corollary 1 Let G = ((T, λ) , A, u,m) be a nonatomic game with message feedback and

ε > 0. If λ is strongly continuous and m = (mt)t∈T is a family of functions which is equicon-

tinuous with respect to the second argument,22 then G has an ε-SCE.

In particular, under the assumption of payoff observability, that is, mt (a, x) = ut (a, x)

for all t ∈ T, a ∈ A, x ∈ ∆, Corollary 1 yields that if λ is strongly continuous and u = (ut)t∈T
is a family of functions which is equicontinuous with respect to the second argument, then

there exists an ε-SCE strategy profile σ ∈ Σ such that

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
|ut (σ (t) , β (t))− ut (σ (t) , λσ)| ≤ ε

})
= 1

where β ∈ ∆T . In this case, the objective observed payoff substantially matches the expected

one. Building on Corollary 1 and following a similar intuition, we also obtain the existence

of ε-Nash equilibria.

Corollary 2 Let G = ((T, λ) , A, u) be a nonatomic game and ε > 0. If λ is strongly con-

tinuous and u = (ut)t∈T is a family of functions which is equicontinuous with respect to the

second argument,23 then G has an ε-Nash equilibrium, that is, there exists a strategy profile

σ ∈ Σ such that

λ ({t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ)− ε ∀a ∈ A}) = 1

At this point, the reader might wonder how restrictive are our assumptions of equiconti-

nuity.24 At first sight, it might appear that the degree of similarity among players, imposed

by a measurable structure as in the original framework of Schmeidler, is here replaced by

equicontinuity. The following example should clarify that this is far from being the case.

Example 3 Assume that players have expected-utility like preferences, namely, for each
t ∈ T

ut (a, x) =
∑
b∈A

vt (a, b)xb ∀a ∈ A,∀x ∈ ∆

22We say that m = (mt)t∈T is a family of functions which is equicontinuous with respect to the second

argument if and only if for each ε > 0 there exists δε > 0 such that

d∆ (x, y) < δε =⇒ d (mt (a, x) ,mt (a, y)) < ε ∀t ∈ T,∀a ∈ A

23We say that u = (ut)t∈T is a family of functions which is equicontinuous with respect to the second

argument if and only if for each ε > 0 there exists δε > 0 such that

d∆ (x, y) < δε =⇒ |ut (a, x)− ut (a, y)| < ε ∀t ∈ T,∀a ∈ A

24See also the discussion following Corollary 3.
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where vt : A × A → R. As is well known, each vt can be normalized to be taking values in
[0, 1], without altering the player’s preferences. In light of this, an immediate application of

the Cauchy-Schwarz inequality yields that

|ut (a, x)− ut (a, y)| ≤
√
nd∆ (x, y) ∀t ∈ T, ∀a ∈ A

proving that u = (ut)t∈T is a family of functions which is equicontinuous with respect to the

second argument. Thus, preferences can be extremely different within the above class and

yet satisfy equicontinuity. N

As mentioned in the Introduction, Khan, Qiao, Rath, and Sun [18] showed that in the

absence of countable additivity the existence of Nash equilibria is not guaranteed. They also

reported an independent result of existence of an ε-Nash equilibrium. Their definition is

weaker than ours. In their case, a strategy profile σ ∈ Σ is an ε-equilibrium if and only if

λ ({t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ)− ε ∀a ∈ A}) ≥ 1− ε

3.2 Peer-confirming equilibria

Lipnowski and Sadler [23] propose a notion of equilibrium in which players best-respond to

beliefs which are required to be correct only when it comes to the behavior of opponents

who belong to the same neighborhood. Moreover, they further require that this is correctly

and commonly believed by players. Formally, the collection of neighborhoods is a partition

of the players in terms of the connected components of an underlying undirected network.

They study games with finitely many players. For simultaneous-move games, peer-confirming

equilibrium is an example of rationalizable self-confirming equilibrium (see also Rubinstein

and Wolinsky [27] as well as Fudenberg and Kamada [13]). In what follows, we dispense

with the assumption of correct and common belief. Moreover, given anonimity, we require

that players’observations are only about the actions’distributions in the subpopulation they

face.

We define a nonatomic game with a neighborhood structure to be a quartetG = ((T, λ) , A, u, (Π, π))

where ((T, λ) , A, u) is a nonatomic game and (Π, π) is a neighborhood structure. Note that a

nonatomic game with a neighborhood structure can be mapped into a nonatomic game with

estimation feedback. In fact, it is enough to set the profile of feedback functions to be such

that

ft (a, x, y) = d∆ (x, y) ∀t ∈ T, ∀a ∈ A,∀x, y ∈ ∆ (8)

It can be seen immediately that each ft satisfies (2), and thus (1). We can define the version

of peer-confirming ε-equilibrium that we analyze below.

Definition 3 Let ε ≥ 0. A peer-confirming ε-equilibrium (in pure strategies) for the

nonatomic game with a neighborhood structure G = ((T, λ) , A, u, (Π, π)) is a strategy profile
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σ ∈ Σ such that there exists a profile of beliefs β ∈ ∆T satisfying

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆

(
β (t) , λ

π(t)
σ

)
≤ ε

})
= 1 (9)

In words, a strategy profile σ ∈ Σ is a peer-confirming ε-equilibrium (ε-PCE) if and only

if

1. Almost all players best-respond to their beliefs (optimality);

2. Beliefs are almost correct in terms of the subpopulation observed (ε-neighborhood

confirmation).

Corollary 3 Let G = ((T, λ) , A, u, (Π, π)) be a nonatomic game with a neighborhood struc-

ture and ε > 0. If λ is strongly continuous, then G has an ε-PCE.

It is important to note how the corollary above does not require any extra property of

continuity. For, in such a case feedback is perfect, when restricted to each subpopulation,

and action independent, automatically satisfying the requirement of equicontinuity in The-

orem 1. Conceptually, this confirms that, in contrast with measurability assumptions, our

properties of equicontinuity do not impose automatically that “close players”have similar

preferences/behavior (cf. Example 3).

3.3 Berk—Nash equilibria

Esponda and Pouzo [12] propose a notion of equilibrium that allows for players’beliefs to

be possibly misspecified. It is a different way, compared to self-confirming equilibria, to

allow for potentially incorrect beliefs in equilibrium. They term their notion of equilibrium

Berk—Nash. Berk—Nash equilibria are based on the assumption that each player has a set of

probabilistic models over the payoff-relevant features, in our case {Qt}t∈T ⊆ ∆o,25 and:

1. All players best-respond to their beliefs (optimality);

2. Each player’s belief is restricted to be the best fit (in terms of Kullback—Leibler dis-

tance) among the set of beliefs he considers possible.

In our setup, this would mean that each player t has a (possibly misspecified) set of

models Qt ⊆ ∆o. A strategy profile σ ∈ Σ is a Berk—Nash equilibrium if and only if there

25As usual, ∆o denotes the set

{x ∈ ∆ | xi > 0 ∀i ∈ {1, ..., n}}

In other words, ∆o is the relative interior of ∆.
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exists a profile of beliefs β ∈ ∆T such that the set of all players that satisfy the following

two conditions has full measure:26

1. ut (σ (t) , β (t)) ≥ ut (a, β (t)) for all a ∈ A;

2. β (t) ∈ argminz∈Qt K (λσ||z) (where K is the Kullback—Leibler distance).

In what follows, we offer a more general version for nonatomic games of the above equi-

librium. In order to do so, we define a nonatomic game with model misspecification to be a

quintet G = ((T, λ) , A, u,Q, D) where

a. ((T, λ) , A, u) is a nonatomic game;

b. Q = (Qt)t∈T is a profile of sets of actions’distributions, that is, Qt is a nonempty,

compact, and convex subset of ∆o for all t ∈ T ;

c. D : ∆×∆o → [0,∞) is a statistical divergence, that is, a jointly convex and continuous

function such that for each x, y ∈ ∆o

x = y ⇐⇒ D (x||y) = 0. (10)

The next example describes a class of widely used statistical divergences.

Example 4 The most classic statistical divergences are φ-divergences which have the form

Dφ (x||z) =
n∑
i=1

ziφ

(
xi
zi

)
where φ is a positive, continuous, strictly convex function on R+ such that φ (1) = 0. For

example, for φ (s) = s log s − s + 1,27 Dφ is the Kullback—Leibler distance, for φ (s) =

(s− 1)2 /2, Dφ is the χ2-distance, and for φ (s) = (
√
s− 1)

2, Dφ is the Hellinger distance.

In all these specifications, Dφ satisfies (10) and it is jointly convex and continuous. N

Note that a nonatomic game withmodel misspecification can be mapped into a nonatomic

game with estimation feedback. In fact, it is enough to consider (Π, π) to be trivial, that is

Π = {T}, and set the profile of feedback functions to be such that:28

ft (a, x, y) = d∆

(
x, argminz∈Qt D (y||z)

)
∀t ∈ T, ∀a ∈ A,∀x, y ∈ ∆ (11)

26Compared to Esponda and Pouzo [12], we do not assume that players’are expected utility and have a

prior µ over argminz∈Qt K (λσ||z). In other words, players are only allowed to consider degenerate priors. A
priori, this makes it more diffi cult to obtain an existence result. Moreover, we are also not considering any

extra form of feedback.
27Here, it is assumed implicitly that φ (0) = 1 which is obtained by taking the limit for s→ 0.
28 In this case, note that π can only take one value. Moreover, when x ∈ ∆ and Y is a nonempty subset of

∆, d∆ (x, Y ) denotes the distance of x from the set Y , that is,

d∆ (x, Y ) = inf
y∈Y

d∆ (x, y)

In our case, Y = argminz∈Qt D (y||z).
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It is not hard to show that each ft satisfies (1), but might fail to satisfy (2). We can define

our version of Berk—Nash ε-equilibrium which we discuss below.

Definition 4 Let ε ≥ 0. A Berk—Nash ε-equilibrium (in pure strategies) for the nonatomic

game with model misspecification G = ((T, λ) , A, u,Q, D) is a strategy profile σ ∈ Σ such

that there exists a profile of beliefs β ∈ ∆T satisfying

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆

(
β (t) , argminz∈Qt D (λσ||z)

)
≤ ε

})
= 1 (12)

Note that a strategy profile σ ∈ Σ is a Berk—Nash ε-equilibrium (ε-BNE) if and only if

1. Almost all players best-respond to their beliefs (optimality);

2. Beliefs are ε-close to the set of probabilistic models which are the best fit in the primitive

set Qt of the realized distribution (ε-fit).

Although prima facie they might appear similar, the notion of ε-BNE is conceptually

and formally very different from that of ε-SCE.29 The next result proves that, under suitable

conditions, the former type of equilibria always exists. To do so, we need a last piece of

notation. Given δ > 0, we denote

∆δ = {x ∈ ∆ | xi ≥ δ ∀i ∈ {1, .., n}}

In words, ∆δ is the set of all actions’distributions which are uniformly bounded away from

zero by δ.

Corollary 4 Let G = ((T, λ) , A, u,Q, D) be a nonatomic game with model misspecification

and ε > 0. If λ is strongly continuous, D is strictly convex in the second argument, and there

exists δ > 0 such that Qt ⊆ ∆δ for all t ∈ T , then G has an ε-BNE.

Remark 1 Three observations are in order:

1. In Definition 4, we allow each player’s equilibrium belief β (t) to be possibly outside the

set Qt. This could be interpreted as allowing for the possibility that each player fears

model misspecification and willingly considers probability models that are outside his

posited set Qt (see Cerreia-Vioglio, Hansen, Maccheroni, and Marinacci [10]). At the

same time, we could have considered the following more stringent definition of ε-BNE

where this is not allowed. In this case, σ ∈ Σ would be an ε-BNE if and only if there

exists a profile of beliefs β ∈ ∆T satisfying

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆

(
β (t) , argminz∈Qt D (λσ||z)

)
≤ ε and β (t) ∈ Qt

})
= 1

29The two equilibrium notions are distinct, but share some overlap (see Esponda and Pouzo [12]).
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Under the same exact assumptions of Corollary 4, we can show that also these ε-

equilibria exist.

2. Our results do not directly apply to the case in whichD is the Kullback—Leibler distance

K. In fact, in this case, K (x||·) might fail to be strictly convex.30 At the same time,
any perturbation κ > 0 of a statistical divergence D, that is D + κd2

∆, is a statistical

divergence and satisfies the condition of strict convexity in Corollary 4.

3. The assumption “there exists δ > 0 such that Qt ⊆ ∆δ for all t ∈ T”is equivalent to
the condition “each Q that belongs to the Hausdorff distance closure of Q is a subset
of ∆o”. In other words, it is an assumption of relative compactness. N

A Appendix

In what follows, we first provide the proofs of the results in the main text and then conclude

with one of the authors explaining the origin of nonatomic games. We begin with Appendix

A.1 where we discuss a result which is key in proving Theorem 1. Appendix A.2 contains the

remaining proofs. In a nutshell, this latter section is divided into two parts. First, we deal

with the proof of existence of ε-estimated equilibria. Second, we prove the existence of ε-

SCE, ε-NE, ε-PCE, and ε-BNE by showing that they are all particular cases or consequence

of the existence of ε-estimated equilibria.

In the appendix, the vector space we use is the cartesian product of m copies of Rn, that
is (Rn)m, where n is given by the cardinality of the space of actions A and m is given by the

cardinality of the neighborhood structure (Π, π). We denote the elements of (Rn)m by bold

letters, that is x and y, while xj will be the vector in Rn which is the j-th component of x.

If m = 1, then we denote x and y simply by x and y. We endow (Rn)m with the topology

induced by the norm ‖x‖ = maxj∈{1,...,m} ‖xj‖2 where ‖ ‖2 is the Euclidean norm. Finally,
we denote the cartesian product of m copies of ∆ by ∆m. Note that ∆m is a nonempty,

convex, and compact subset of (Rn)m and we endow it with the distance induced by ‖ ‖.

A.1 A key general result

The next lemma uses the terminology of Bhaskara Rao and Bhaskara Rao [7]. Before dis-

cussing it, we need a piece of notation which will turn out to be useful in our later analysis.

If T and A are two generic nonempty sets and Γ : T ⇒ A is a (nonempty valued) corre-

spondence, we denote by Sel (Γ) the set of all selections of Γ, that is, the set of all functions

γ : T → A such that γ (t) ∈ Γ (t) for all t ∈ T . Just for this section, T is an arbitrary

σ-algebra of subsets of T .31 Finally, given a T -measurable map γ : T → A and a probability

30 In fact, K (x||·) is strictly convex if x ∈ ∆o, but it might fail to be so if x ∈ ∆\∆o.
31 In the rest of the paper, T is the power set.
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µ : T → [0, 1], recall that

µγ = (µ ({t ∈ T | γ(t) = a}))a∈A

Lemma 1 Let (T, T ) be a measurable space, A a finite set with n elements, and λ =(
λ1, ..., λm

)
a vector of strongly continuous probabilities on T . If Γ : T ⇒ A is a corre-

spondence, then {
λγ =

(
λ1
γ , ..., λ

m
γ

)
| γ ∈ Sel (Γ) and γ is T -measurable

}
is a convex subset of ∆m.

Proof. If φ, γ ∈ Sel (Γ) and are T -measurable, for each α ∈ (0, 1), we want to construct

ψ ∈ Sel (Γ) which is T -measurable and such that λψ = αλφ + (1− α)λγ .

Set Sij = φ−1 (i) ∩ γ−1 (j) for all i, j ∈ A. Then {Sij}i,j∈A forms a partition of T (with
possibly some empty elements) and all its elements belong to T , because φ−1 (i) , γ−1 (j) ∈ T
for all i, j ∈ A.

Since λ1, ..., λm are strongly continuous and T is a σ-algebra, for any i, j ∈ A, there are
Tij , Uij ∈ T such that Sij = Tij t Uij ,32 λ (Tij) = αλ (Sij), and λ (Uij) = (1− α)λ (Sij).

This is trivial if Sij is empty, else set

Tij = T ∩ Sij
λkij (S) = λk (S) ∀S ∈ Tij ,∀k = 1, ...,m

and notice that λ1
ij , ..., λ

m
ij are strongly continuous, positive, and bounded charges on the

σ-algebra Tij . By Bhaskara Rao and Bhaskara Rao [7, Theorem 11.4.9], the set

R (λij) =
{(
λ1
ij (S) , ..., λmij (S)

)
| S ∈ Tij

}
is convex in Rm. Moreover, both 0 =

(
λ1
ij (∅) , ..., λmij (∅)

)
and λij (Sij) =

(
λ1
ij (Sij) , ..., λ

m
ij (Sij)

)
belong to R (λij). By convexity of the latter, there exists Tij ∈ Tij such that λij (Tij) =

αλij (Sij). But then Tij , Uij = Sij \Tij ∈ T , Sij = TijtUij , λ (Tij) = λij (Tij) = αλij (Sij) =

αλ (Sij), and λ (Uij) = (1− α)λ (Sij) by additivity of λ.

The function ψ : T → A defined by

ψ (t) =

{
φ (t) = i if t ∈ Tij
γ (t) = j if t ∈ Uij

32t denotes the disjoint union.
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is well defined and ψ (t) ∈ {φ (t) , γ (t)} ⊆ Γ (t) for all t ∈ T , so that ψ ∈ Sel (Γ). For each

k ∈ A,

ψ−1 (k) = {t ∈ T | ψ (t) = k} =

t ∈
 ⊔
i,j∈A

Tij

 t
 ⊔
i,j∈A

Uij

 | ψ (t) = k


=

 ⊔
i,j∈A

{t ∈ Tij | ψ (t) = k}

 t
 ⊔
i,j∈A

{t ∈ Uij | ψ (t) = k}


=

 ⊔
i,j∈A

{t ∈ Tij | φ (t) = k}

 t
 ⊔
i,j∈A

{t ∈ Uij | γ (t) = k}


but, for all t ∈ Tij , φ (t) = i, then

• if i = k, {t ∈ Tij | φ (t) = k} = Tij ,

• else i 6= k and {t ∈ Tij | φ (t) = k} = ∅,

thus
⊔
i,j∈A

{t ∈ Tij | φ (t) = k} =
⊔

i,j∈A:i=k

Tij =
⊔
j∈A

Tkj ; analogously, for all t ∈ Uij , γ (t) = j;

then

• if j = k, {t ∈ Uij | γ (t) = k} = Uij ,

• else j 6= k and {t ∈ Uij | γ (t) = k} = ∅,

thus
⊔
i,j∈A

{t ∈ Uij | γ (t) = k} =
⊔

i,j∈A:j=k

Uij =
⊔
i∈A

Uik; therefore,

ψ−1 (k) =

⊔
j∈A

Tkj

 t(⊔
i∈A

Uik

)
∈ T

As a consequence, ψ is T -measurable and, for each k ∈ A, and for each l = 1, ...,m,

λl
(
ψ−1 (k)

)
=
∑
j∈A

λl (Tkj) +
∑
i∈A

λl (Uik) =
∑
j∈A

αλl (Skj) +
∑
i∈A

(1− α)λl (Sik)

= αλl

⊔
j∈A

Skj

+ (1− α)λl

(⊔
i∈A

Sik

)

= αλl

⊔
j∈A

(
φ−1 (k) ∩ γ−1 (j)

)+ (1− α)λl

(⊔
i∈A

(
φ−1 (i) ∩ γ−1 (k)

))

= αλl

φ−1 (k) ∩
⊔
j∈A

γ−1 (j)

+ (1− α)λl

(
γ−1 (k) ∩

⊔
i∈A

φ−1 (i)

)

= αλl
(
φ−1 (k) ∩ T

)
+ (1− α)λl

(
γ−1 (k) ∩ T

)
= αλl

(
φ−1 (k)

)
+ (1− α)λl

(
γ−1 (k)

)
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thus λlψ = αλlφ + (1− α)λlγ . Since this is true for each l = 1, ...,m, then λψ = αλφ +

(1− α)λγ , as wanted. �

Building on this lemma, Gilboa, Maccheroni, Marinacci, and Schmeidler [15] prove that,

when m = 1, {λγ | γ ∈ Sel (Γ) and γ is T -measurable} is indeed the core of the belief func-
tion

Bel (I) = λ ({t ∈ T | Γ (t) ⊆ I}) ∀I ⊆ A

and they characterize its extreme points à la Shapley [31].

A.2 Proofs and related material

In what follows and up to the proof of Corollary 1, we consider a nonatomic game with

estimation feedback G = ((T, λ) , A, u, (Π, π) , f). Recall that Π is a collection of nonempty

subsets of T , {Tj}mj=1, such that λ (Tj) > 0 for all j ∈ {1, ...,m} and T = ∪mj=1Tj . The proof

of existence of ε-estimated equilibria rests on two key ideas which we formally develop below:

1. We first consider different correspondences and study their properties. This study

culminates with the correspondence B̃Rf,ε : ∆m ⇒ ∆m defined in (14) below. All of

these correspondences are basically ε-consistent/confirmed best-reply correspondences.

To fix ideas, for the case Π = {T} andm = 1, in words, given x ∈ ∆ and y ∈ B̃Rf,ε (x),

y is a possible distribution of strategies in the population, which arises if the players’

distribution of actions was x and players best-responded to it using a belief which was

ε-consistent with respect to x.

2. We then show that B̃Rf,ε has a fixed point by using Browder’s fixed point theorem.

This will give us the equilibrium in pure strategies that we are after.

Consider ε > 0. First, let BRf,ε : T ×∆m ⇒ A be defined by

BRf,ε (t,x)

=
{
b ∈ A | ∃βt ∈ ∆ s.t. ft

(
b, βt, xπ(t)

)
< ε and ut (b, βt) ≥ ut (a, βt) ∀a ∈ A

}
for all (t,x) ∈ T × ∆m. Clearly, BRf,ε (t,x) is the set of all pure strategies which are a

best-reply of player t to some belief βt where βt is ε-consistent when assuming the true

distribution restricted to the subpopulation Tπ(t) is xπ(t). One can derive several related

“ε-consistent best-reply”correspondences from this basic one. For each x ∈ ∆m, denote the

x-section BRf,ε (·,x) : T ⇒ A of BRf,ε by BRx
f,ε. Next, let Φf,ε : ∆m ⇒ Σ be defined as

Φf,ε(x) = Sel
(
BRx

f,ε

)
for all x ∈ ∆m where Sel

(
BRx

f,ε

)
is the set of all selections of BRx

f,ε.
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Thus, for a strategy profile σ ∈ Σ, we have that

[σ ∈ Φf,ε (x)]

⇐⇒
[
∀t ∈ T, σ(t) ∈ BRx

f,ε (t)
]

⇐⇒ [∀t ∈ T, σ(t) ∈ BRf,ε (t,x)]

⇐⇒
[
∀t ∈ T ∃βt ∈ ∆ s.t. ft

(
σ (t) , βt, xπ(t)

)
< ε and ut (σ(t), βt) ≥ ut (a, βt) ∀a ∈ A

]
Remark 2 If there exists x ∈ ∆m such that σ ∈ Φf,ε (x) and xπ(t) = λ

π(t)
σ for all t ∈ T ,

then σ is an ε-estimated equilibrium. In fact, we have

1. For each t ∈ T there exists βt ∈ ∆ such that ft
(
σ (t) , βt, xπ(t)

)
< ε and ut (σ(t), βt) ≥

ut (a, βt) for all a ∈ A;

2. We can define β : T → ∆ by β (t) = βt for all t ∈ T .

This implies that for each t ∈ T

a) ut (σ(t), β (t)) ≥ ut (a, β (t)) for all a ∈ A (optimality);

b) ft
(
σ (t) , β (t) , λ

π(t)
σ

)
< ε (strict ε-consistency),

that is,

{
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
ft

(
σ (t) , β (t) , λ

π(t)
σ

)
< ε

}
= T . In particular, it holds

that

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
ft

(
σ (t) , β (t) , λ

π(t)
σ

)
≤ ε

})
= 1

N

Next, consider the correspondence Bf,ε : ∆m ⇒ Σ defined by

Bf,ε (x) =

{
σ ∈ Σ | ∃β ∈ ∆T s.t.

ut (σ(t), β (t)) ≥ ut (a, β (t)) ∀a ∈ A,∀t ∈ T
supt∈T ft

(
σ (t) , β (t) , xπ(t)

)
< ε

}
∀x ∈ ∆m

Lemma 2 Bf,ε (x) =
⋃
η∈(0,ε) Φf,η (x) ⊆ Φf,ε (x) for all x ∈ ∆m.

Proof. Fix x ∈ ∆m. Consider σ ∈
⋃
η∈(0,ε) Φf,η (x). It follows that σ ∈ Φf,η (x) for some

η ∈ (0, ε). This implies that σ ∈ Σ and σ (t) ∈ BRf,η(t,x) for all t ∈ T , that is, for each
t ∈ T there exists βt ∈ ∆ such that ft

(
σ (t) , βt, xπ(t)

)
< η and ut (σ(t), βt) ≥ ut (a, βt) for

all a ∈ A. In particular, if we define β ∈ ∆T as β (t) = βt for all t ∈ T , we have that

ut (σ(t), β (t)) ≥ ut (a, β (t)) for all a ∈ A and for all t ∈ T , and

sup
t∈T

ft
(
σ (t) , β (t) , xπ(t)

)
≤ η < ε
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yielding that σ ∈ Bf,ε (x). Vice versa, if σ ∈ Bf,ε (x), then there exists β ∈ ∆T such that

sup
t∈T

ft
(
σ (t) , β (t) , xπ(t)

)
< ε (13)

and ut (σ(t), β (t)) ≥ ut (a, β (t)) for all a ∈ A and for all t ∈ T . It follows that there exists
η̄ ∈ (0, ε) such that (13) holds with η̄ in place of ε. This implies that σ ∈ Φf,η̄ (x) ⊆⋃
η∈(0,ε) Φf,η (x).

Obviously, if 0 < η < η′, then BRf,η (t,x) ⊆ BRf,η′ (t,x) for all t ∈ T and for all x ∈ ∆m

and, in particular, Φf,η (x) ⊆ Φf,η′ (x). This implies that
⋃
η∈(0,ε) Φf,η (x) ⊆ Φf,ε (x). �

Remark 2 above will be useful to justify the following last correspondence: B̃Rf,ε : ∆m ⇒
∆m defined by

B̃Rf,ε (x) =
{
y ∈ ∆m | ∃σ ∈ Bf,ε (x) s.t. λjσ = yj ∀j ∈ {1, ...,m}

}
∀x ∈ ∆m (14)

In other words, B̃Rf,ε (x) is the collection of actions’ distributions y = (yj)
m
j=1 on the

subpopulations of players, which can be induced by the β-optimal choice of strategies σ

where beliefs β = (βt)t∈T are close enough in terms of feedback to x = (xj)
m
j=1. Note that

B̃Rf,ε (x) =
{(
λjσ
)m
j=1
| σ ∈ Bf,ε (x)

}
=

(λjσ)mj=1
| σ ∈

⋃
η∈(0,ε)

Φf,η (x)

 (15)

=
⋃

η∈(0,ε)

{(
λjσ
)m
j=1
| σ ∈ Φf,η (x)

}
=

⋃
η∈(0,ε)

{(
λjσ
)m
j=1
| σ ∈ Sel

(
BRx

f,η

)}
(16)

An immediate implication of definition (14) is the next result.

Lemma 3 If x ∈ B̃Rf,ε(x), then there exists an ε-estimated equilibrium σ such that λjσ = xj

for all j ∈ {1, ..,m}.

Proof. By Lemma 2 and the definition of B̃Rf,ε, if x ∈ B̃Rf,ε(x), then there exists

σ ∈ Bf,ε (x) ⊆ Φf,ε (x) such that λjσ = xj for all j ∈ {1, ...,m}. Remark 2 yields that σ is an
ε-estimated equilibrium. �

Lemma 4 If λ is strongly continuous, then B̃Rf,ε(x) is nonempty and convex for all x ∈
∆m.

Proof. Fix x ∈ ∆m and η ∈ (0, ε). Since f satisfies (1), recall that

∀t ∈ T, ∀z ∈ ∆, ∃γt,z ∈ ∆ s.t. ∀a ∈ A ft (a, γt,z, z) = 0 (17)

Since x is given, define β ∈ ∆T to be such that β (t) = γt,xπ(t)
for all t ∈ T . Note that

β (t) ∈ ∆ satisfies ft
(
a, β (t) , xπ(t)

)
= 0 < η for all a ∈ A and for all t ∈ T . Since A is finite,

26



for each t ∈ T choose σ (t) ∈ A such that ut (σ (t) , β (t)) ≥ ut (a, β (t)) for all a ∈ A. This
defines a function σ : T → A, that is σ ∈ Σ, such that σ ∈ Φf,η (x). By Lemma 2, we have

that σ ∈ Bf,ε (x) and
(
λjσ
)m
j=1
∈ B̃Rf,ε (x). Convexity is a consequence of the following two

observations:

1. By Lemma 1 and since each λj is strongly continuous, recall that {
(
λjσ
)m
j=1
| σ ∈

Sel
(
BRx

f,η

)
} is a convex subset of ∆m for all η ∈ (0, ε).

2. By (16), we have that

B̃Rf,ε (x) =
⋃

η∈(0,ε)

{(
λjσ
)m
j=1
| σ ∈ Sel

(
BRx

f,η

)}

It follows that B̃Rf,ε (x) is the union of a chain of convex sets,33 proving convexity. �

For the next result recall that a) d∆ is the distance on ∆ induced by the Euclidean norm;

b) we say that f = (ft)t∈T is a family of functions which is equicontinuous with respect to

the third argument if and only if for each ε > 0 there exists δε > 0 such that

d∆ (x, y) < δε =⇒ |ft (a, γ, x)− ft (a, γ, y)| < ε ∀t ∈ T, ∀a ∈ A,∀γ ∈ ∆

The intuition behind the proof of the next lemma is that if a strategy σ was β-optimal

and β was ε-consistent, given x, small perturbations of x do not disrupt optimality and

ε-consistency.

Lemma 5 If f = (ft)t∈T is a family of functions which is equicontinuous with respect to the

third argument, then B̃R
−1

f,ε (y) is open for all y ∈ ∆m.

Proof. Fix y ∈ ∆m. Recall that B̃R
−1

f,ε (y) =
{

x ∈ ∆m | y ∈ B̃Rf,ε (x)
}
. Note that

x ∈ B̃R
−1

f,ε (y) ⇐⇒ y ∈ B̃Rf,ε (x)

and B̃R
−1

f,ε (y) is open if and only if “for each x̄ such that y ∈ B̃Rf,ε (x̄), there exists a ball

in ∆m of radius δ and center x̄ such that y ∈ B̃Rf,ε (x) for all x ∈ Bδ (x̄)”.

Now arbitrarily choose x̄ such that y ∈ B̃Rf,ε(x̄). By definition of B̃Rf,ε(x̄), there exist

σ ∈ Bf,ε (x̄) ⊆ Σ and β ∈ ∆T such that

1. λjσ = yj for all j ∈ {1, ...,m};
33Recall that if 0 < η < η′, then

BRf,η (t,x) ⊆ BRf,η′ (t,x) ∀t ∈ T,∀x ∈ ∆m

This implies that Sel
(
BRx

f,η

)
= Φf,η (x) ⊆ Φf,η′ (x) = Sel

(
BRx

f,η′
)
for all x ∈ ∆m.
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2. supt∈T ft
(
σ (t) , β (t) , x̄π(t)

)
< ε;

3. ut (σ(t), β (t)) ≥ ut (a, β (t)) for all a ∈ A and for all t ∈ T .

By point 2, there exists ε̄ ∈ (0, ε) such that

sup
t∈T

ft
(
σ (t) , β (t) , x̄π(t)

)
< ε̄ < ε

Let ε̂ ∈
(
0, ε−ε̄2

)
. Since f = (ft)t∈T is a family of functions which is equicontinuous with

respect to the third argument, there exists δε̂ > 0 such that

d∆ (x, y) < δε̂ =⇒ |ft (a, γ, x)− ft (a, γ, y)| < ε̂ ∀t ∈ T, ∀a ∈ A,∀γ ∈ ∆

For each x ∈ Bδε̂ (x̄) note that d∆ (xj , x̄j) < δε̂ for all j ∈ {1, ...,m}. This implies that for
each t ∈ T and for each x ∈ Bδε̂ (x̄)∣∣ft (σ (t) , β (t) , xπ(t)

)
− ft

(
σ (t) , β (t) , x̄π(t)

)∣∣ < ε̂

Since ft ≥ 0 for all t ∈ T , it follows that for each t ∈ T and for each x ∈ Bδε̂ (x̄)

ft
(
σ (t) , β (t) , xπ(t)

)
=
∣∣ft (σ (t) , β (t) , xπ(t)

)∣∣
≤
∣∣ft (σ (t) , β (t) , x̄π(t)

)∣∣+
∣∣ft (σ (t) , β (t) , xπ(t)

)
− ft

(
σ (t) , β (t) , x̄π(t)

)∣∣
= ft

(
σ (t) , β (t) , x̄π(t)

)
+
∣∣ft (σ (t) , β (t) , xπ(t)

)
− ft

(
σ (t) , β (t) , x̄π(t)

)∣∣
< ε̄+ ε̂

This implies that

sup
t∈T

ft
(
σ (t) , β (t) , xπ(t)

)
≤ ε̄+ ε̂ <

ε̄+ ε

2
< ε ∀x ∈ Bδε̂ (x̄)

In other words, for each x ∈ Bδε̂ (x̄) we have that σ ∈ Σ is such that the same β ∈ ∆T of

above satisfies points 2 and 3, but with x in place of x̄. This yields that σ ∈ Bf,ε (x) for all

x ∈ Bδε̂ (x̄). Since y = (yj)
m
j=1 =

(
λjσ
)m
j=1
, we obtain that y ∈ B̃Rf,ε (x) for all x ∈ Bδε̂ (x̄),

proving the statement. �

Proof of Theorem 1. By Lemma 3, it is enough to show that B̃Rf,ε : ∆m ⇒ ∆m has a

fixed point. Clearly, ∆m ⊆ (Rn)m is nonempty, compact, and convex. By Lemmas 4 and 5,

B̃Rf,ε has nonempty and convex values and B̃R
−1

f,ε (y) is open for all y ∈ ∆m. By Browder’s

Fixed Point Theorem for correspondences (see Theorem 1 of Browder [8]), B̃Rf,ε has a fixed

point. �

We next prove the remaining results of the main text.
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Proof of Corollary 1. It is enough to observe that a nonatomic game with message

feedback can be mapped into a nonatomic game with estimation feedback where f is defined

as in (4) and Π = {T1}.34 With this identification, an ε-estimated equilibrium is a self-

confirming ε-equilibrium. By Theorem 1, it is then enough to show that f = (ft)t∈T is

a family of functions which is equicontinuous with respect to the third argument. Since

m = (mt)t∈T is a family of functions which is equicontinuous with respect to the second

argument, we have that for each ε > 0 there exists δε > 0 such that

d∆ (x, y) < δε =⇒ d (mt (a, x) ,mt (a, y)) < ε ∀t ∈ T, ∀a ∈ A (18)

Since for each t ∈ T we have that ft (a, x, y) = d (mt (a, x) ,mt (a, y)) for all a ∈ A and for

all x, y ∈ ∆, observe that

|ft (a, γ, x)− ft (a, γ, y)| = |d (mt (a, γ) ,mt (a, x))− d (mt (a, γ) ,mt (a, y))|
≤ d (mt (a, x) ,mt (a, y)) ∀t ∈ T, ∀a ∈ A,∀x, y, γ ∈ ∆

By (18), we can conclude that for each ε > 0 there exists δε > 0 such that

d∆ (x, y) < δε =⇒
|ft (a, γ, x)− ft (a, γ, y)| ≤ d (mt (a, x) ,mt (a, y)) < ε ∀t ∈ T, ∀a ∈ A,∀γ ∈ ∆

proving equicontinuity with respect to the third argument of f . �

Proof of Corollary 2. Consider the nonatomic game G = ((T, λ) , A, u) and ε > 0. Since

u = (ut)t∈T is a family of functions which is equicontinuous with respect to the second

argument, we have that for each ε̂ > 0 there exists δε̂ > 0 such that

d∆ (x, y) < δε̂ =⇒ |ut (a, x)− ut (a, y)| < ε̂ ∀t ∈ T, ∀a ∈ A (19)

Consider the profile m = (mt)t∈T of message functions such that each mt : A × ∆ → ∆ is

defined to be such that

mt (a, x) = x ∀a ∈ A,∀x ∈ ∆

Note that in this case (M,d) = (∆, d∆). Clearly, m = (mt)t∈T is a family of functions which

is equicontinuous with respect to the second argument. Given ε > 0, consider δε/2 > 0 as in

(19). By Corollary 1, we have that there exists a self-confirming δε/2/2-equilibrium σ ∈ Σ,

that is, there exists β ∈ ∆T such that

1 = λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d (mt (σ (t) , β (t)) ,mt (σ (t) , λσ)) ≤ δε/2/2

})

= λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆ (β (t) , λσ) ≤ δε/2/2

})
34Thus, m = 1, T1 = T , and π (t) = 1 for all t ∈ T .
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Define by O the set of “optimizing”players

O =

{
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆ (β (t) , λσ) ≤ δε/2/2

}
Since u satisfies (19), note that if t ∈ O, then we have that d∆ (β (t) , λσ) ≤ δε/2/2 < δε/2

which implies that for each a ∈ A

|ut (σ (t) , β (t))− ut (σ (t) , λσ)| < ε

2
and |ut (a, β (t))− ut (a, λσ)| < ε

2

Since t ∈ O, we can conclude that

ut (σ (t) , λσ) > ut (σ (t) , β (t))− ε

2
≥ ut (a, β (t))− ε

2

> ut (a, λσ)− ε

2
− ε

2
= ut (a, λσ)− ε ∀a ∈ A

Since t was arbitrarily chosen in O, we have that

O ⊆ {t ∈ T | ut (σ (t) , λσ) ≥ ut (a, λσ)− ε ∀a ∈ A}

Since O has mass 1, it follows that σ ∈ Σ is an ε-Nash equilibrium. �

Proof of Corollary 3. It is enough to observe that a nonatomic game with a neighbor-
hood structure can be mapped into a nonatomic game with estimation feedback where f is

defined as in (8). With this identification, an ε-estimated equilibrium is a peer-confirming

ε-equilibrium. By Theorem 1, it is then enough to show that f = (ft)t∈T is a family of

functions which is equicontinuous with respect to the third argument. But, note that

|ft (a, γ, x)− ft (a, γ, y)| = |d∆ (γ, x)− d∆ (γ, y)| ≤ d∆ (x, y) ∀t ∈ T, ∀a ∈ A, ∀γ ∈ ∆

trivially proving equicontinuity with respect to the third argument of f . �

We conclude by proving Corollary 4. But, before doing so, we need to make an interme-

diate observation. Consider a statistical divergence D. Recall that D : ∆×∆o → [0,∞) is a

jointly convex and continuous function. Denote by K the collection of all nonempty compact
sets of ∆. We endow K with the Hausdorff distance (see, e.g., Aliprantis and Border [1,

Chapter 3, Sections 16 and 17]). We denote by Q̄ a compact set of K such that each Q ∈ Q̄
is a nonempty, convex, and compact subset of ∆o. Given x ∈ ∆ and Q ∈ Q̄, consider the
minimization problem

minD (x||y) sub to y ∈ Q

Define µ : ∆×Q̄⇒ ∆ to be the solution correspondence of this minimization problem, that

is, for each x ∈ ∆ and for each Q ∈ Q̄,

µ (x,Q) =

{
z ∈ ∆ : z ∈ Q and D (x||z) = min

y∈Q
D (x||y)

}
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By Berge’s maximum theorem, note that µ is upper hemicontinuous when ∆×Q̄ is endowed
with the product topology. In particular, if D is strictly convex with respect to the second

argument, µ is single-valued, that is, µ is a continuous function. Finally, define the map

g : ∆×∆× Q̄ → [0,∞) by

g (β, x,Q) = d∆ (β, µ (x,Q)) ∀β, x ∈ ∆,∀Q ∈ Q̄

Since µ is a continuous function, it follows that g is continuous when ∆×∆× Q̄ is endowed
with the product topology. By Aliprantis and Border [1, Corollary 3.31] and since ∆×∆×Q̄
is a compact metric space, g is uniformly continuous.

Proof of Corollary 4. Set Q̄ = clQ. By point 3 of Remark 1, note that Q̄ is a compact
subset of K such that each Q ∈ Q̄ is a nonempty, convex, and compact subset of ∆o. For

each t ∈ T define ft : A×∆×∆→ [0,∞) by

ft (a, γ, x) = g (γ, x,Qt) ∀a ∈ A,∀γ, x ∈ ∆ (20)

It is then enough to observe that a nonatomic game with model misspecification can be

mapped into a nonatomic game with estimation feedback where f is defined as in (20) and

Π = {T1}.35 With this identification, an ε-estimated equilibrium is an ε-BNE. By Theorem

1, it is then enough to show that f = (ft)t∈T is a family of functions which is equicontinuous

with respect to the third argument. Since g is uniformly continuous, the statement is trivially

true. �

The proof of the last two points of Remark 1 is routine. Thus, we conclude by only

proving point 1.

Proof of point 1 of Remark 1. Set Q̄ = clQ. Note that Q̄ is a compact subset of K such
that each Q ∈ Q̄ is a nonempty, convex, and compact subset of ∆o. For each t ∈ T define
ft : A×∆×∆→ [0,∞) as in the proof of Corollary 4, that is,

ft (a, γ, x) = g (γ, x,Qt) ∀t ∈ T, ∀a ∈ A,∀γ, x ∈ ∆

Since g is continuous and ∆×∆×Q̄ is compact, observe that g ≥ 0 takes a maximum value

M ≥ 0. Define the profile of feedback functions f̃ to be such that for each t ∈ T

f̃t (a, γ, x) =

{
ft (a, γ, x) γ ∈ Qt
M + 1 γ 6∈ Qt

∀a ∈ A, ∀γ, x ∈ ∆

Note that each f̃t satisfies (1). By the proof of Corollary 4, f = (ft)t∈T is a family of

functions which is equicontinuous with respect to the third argument. It follows that for

each ε > 0 there exists δε > 0 such that

d∆ (x, y) < δε =⇒ |ft (a, γ, x)− ft (a, γ, y)| < ε ∀t ∈ T, ∀a ∈ A,∀γ ∈ ∆

35Thus, m = 1, T1 = T , and π (t) = 1 for all t ∈ T .
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Consider x, y ∈ ∆ such that d∆ (x, y) < δε and consider t ∈ T , a ∈ A, and γ ∈ ∆. We

have two cases, either γ ∈ Qt or γ 6∈ Qt. In the first case,
∣∣∣f̃t (a, γ, x)− f̃t (a, γ, y)

∣∣∣ =

|ft (a, γ, x)− ft (a, γ, y)| < ε, while in the second case
∣∣∣f̃t (a, γ, x)− f̃t (a, γ, y)

∣∣∣ = |M + 1− (M + 1)| =

0 < ε. Since t, a, and γ were chosen arbitrarily, it follows that f̃ =
(
f̃t

)
t∈T

is a family of

functions which is equicontinuous with respect to the third argument. Next, we can consider

the nonatomic game with estimation feedback
(

(T, λ) , A, u, (Π, π) , f̃
)
, where Π = {T1}.36

By Theorem 1, we have that for each ε̃ > 0 there exists an ε̃-estimated equilibrium σ for this

game, that is, there exists β ∈ ∆T such that

λ

({
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
f̃t (σ (t) , β (t) , λσ) ≤ ε̃

})
= 1

If given ε > 0 we define ε̃ = min{M+1,ε}
2 > 0, since ε̃ < M + 1, ε, then we have that{

t ∈ T
∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
f̃t (σ (t) , β (t) , λσ) ≤ ε̃

}

⊆
{
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
ft (σ (t) , β (t) , λσ) ≤ ε̃ and β (t) ∈ Qt

}

⊆
{
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆

(
β (t) , argminz∈Qt D (λσ||z)

)
≤ ε̃ and β (t) ∈ Qt

}

⊆
{
t ∈ T

∣∣∣∣∣ ut (σ (t) , β (t)) ≥ ut (a, β (t)) ∀a ∈ A
d∆

(
β (t) , argminz∈Qt D (λσ||z)

)
≤ ε and β (t) ∈ Qt

}

yielding the statement. �

A.3 A comment by David Schmeidler: How I arrived at the congestion
model

During the late sixties while working on my PhD thesis I found that the research/teaching

assistant grant did not satisfy my material needs and soon found a moonlighting job as

a member of a team advising on transportation. There I was exposed (mainly in the Tel

Aviv area) to the daily traffi c commuters congestion (and bottlenecks), and to the fact

that transportation experts techniques were restricted to optimization and almost all were

unaware of noncooperative equilibria and disregarded the possibilities of ineffi cient equilibria.

It occurred to me that a model with a nonatomic continuum of players and finitely many

pure strategies may describe the daily commuter’s game. At the time there were cooperative

games and general equilibrium models with such a set of players, but no noncooperative

games with infinitely many players. I needed a fourth paper to complete my thesis so I

36Thus, m = 1, T1 = T , and π (t) = 1 for all t ∈ T .
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constructed the model. It had to be submitted in Hebrew so this was the first and last

research work I wrote in Hebrew. I translated the previously completed three papers and

submitted my thesis. It was approved before the summer of 1969. I translated this work into

English and submitted it for publication during 1970/71. The only difference between the

English and the Hebrew version was that the latter was slightly more general. In the latter

there was a finite set of linear functionals instead of the unique expectation functional in

the published version.37 Finally, when teaching noncooperative games to math students or

graduates, the congestion example was most helpful and made the Nash or Harsanyi-Nash

equilibrium a less metaphysical concept.
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