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Abstract

We use a recently developed right-tail variation of the Augmented Dickey-Fuller unit root test to

identify and date-stamp periods of mildly explosive behavior in the weekly time series of eight U.S. fixed

income yield spreads between September 2002 and April 2018. We find statistically significant evidence

of mildly explosive dynamics in six of these spreads, two of which are short/medium-term mortgage-

related spreads. We show that the time intervals characterized by instability that we estimate from

these yield spreads capture known episodes of financial and economic distress in the U.S. economy. Mild

explosiveness migrates from short-term funding markets to medium- and long-term markets during the

Great Financial Crisis of 2007-09. Furthermore, we statistically validate the conjecture that the initial

panic of 2007 migrated from segments of the ABX market to other U.S. fixed income markets in the

early phases of the financial crisis.
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1 Introduction

Researchers and practitioners view U.S. fixed income markets as the epicenter of the Great Financial

Crisis of 2007-09. Security yields in these markets are generally used to construct yield spreads that are

widely adopted in theoretical and empirical modeling in macroeconomics and finance and as measures

of risk in asset management. Often, yield spreads offer investors a clearer picture of the underlying

risk-return trade-offs than the individual yields (interest rates) that are used to construct them. Yield

spreads can be especially informative of the channels through which asset prices affect (or are related

to) the real economy, as their magnitude tends to vary following or anticipating the business cycle.1

As extensively documented in the empirical literature, many spreads tend to suddenly spike at times of

financial distress.2 Consequently, understanding the dynamics of risk and of the risk premia incorporated

in the prices of bonds and in the corresponding spreads has practical implications for policymakers,

finance practitioners, and investors. The ability to identify the particular market segments in which risk

premia exhibit unstable dynamic behavior at times of crisis may allow policy makers to better target

and calibrate their interventions, and may complement traditional early-warning indicators of impending

recessions (Huang et al., 2017). By possibly understanding and forecasting how such unstable dynamics

may migrate across markets and sectors of the economy, policymakers would be able to evaluate the

degree of insulation of individual markets from aggregate and systemic shocks. Moreover, changes in

the evolution of risk premia may suggest to investors alternative diversification approaches. All these

considerations explain the recent interest of economists, econometricians, and applied mathematicians in

forecasting the dynamics of yield spreads.

Animated by such considerations, we describe a recent statistical methodology that can be used to

detect unstable dynamics in a time series of interest and to statistically test the occurrence of migration

of these dynamics from a time series to another. As an application, we propose an empirical exercise

characterized by a twofold objective: (i) the identification of the segments in the U.S. fixed income

markets that were the core ground of the Great Financial Crisis – i.e., the segments where financial

distress appeared first; and (ii) the description of how the 2007 financial turmoil developed and spread

across markets in the subsequent two years. We do so by examining the weekly time series of eight yield

spreads derived from a variety of risky instruments traded in U.S. fixed income markets – which we treat

1Gourio (2014) shows that there is a high correlation between bond spreads and real investments. Faust et al. (2013)
report that some credit spreads improve the forecast accuracy of real-time economic activity. Hollander and Liu (2016)
document significant widening of several credit spreads during the most recent U.S. recessions. Recchioni and Tedeschi
(2017) discuss the relationship between government bond yields and the macroeconomy. Fanelli (2017) shows the relevance
of credit spreads volatilities for interest rate curve modeling and asset pricing.

2See Muir (2017) and Krishnamurty and Muir (2017) for a cross-country perspective, and Guidolin and Tam (2013) for
a specific view on the Great Financial Crisis in the U.S.

1



as distinct asset classes – between the second half of 2002 and April 2018. The traded yields include the

3-month London interbank offered rate (LIBOR) on unsecured deposits, the 3-month unsecured financial

and asset-backed commercial paper (ABCP) rate, the 1-year yield on adjustable-rate mortgages (1-year

ARM), the 5-year 5/1 hybrid adjustable-rate mortgages (5-year ARM), the 5-year Aaa private-label

commercial mortgage-backed securities (CMBS) rate, the yields on 20-year Moody’s Baa-rated and Aaa-

rated corporate bonds, the 20-year Bloomberg Fair Value U.S. Dollar Composite Bbb-rated and Aa-rated

corporate bond rates, and the 30-year conventional fixed-rate mortgage-backed securities (MBS) yield.

Considering the relevance of the U.S. mortgage market in the 2007-09 crisis (Gorton, 2009a), we include

four series from which mortgage-related risk premia are typically constructed. Given that each spread

is derived as the difference of two yields of the same maturity (3 months; 1, 5, 20, and 30 years), risk

premia associated with mismatched durations of the underlying assets are not embedded in the dataset.

This paper builds upon two strands of literature. The first strand consists of recent empirical work

conducted on U.S. yield spreads and their relation with macroeconomic fluctuations (see, for example,

Guidolin and Tam, 2013; Contessi et al., 2014; Hollander and Liu, 2016; Del Negro et al., 2017; Clark and

Baccar, 2018). The second strand relates to research on optimal methods developed to detect episodes

of contagion and/or bubbles in asset price data and to studies about their transmission across sectors,

industries, or economies (see Forbes and Rigobon, 2001, 2002; Dungey et al., 2005; Pesaran and Pick, 2007;

Hayford and Malliaris, 2005; Longstaff, 2010; Kürüm et al., 2018).3 From a methodological perspective,

most of the literature about contagion is based on the application of a range of statistical techniques that

are built upon the analysis of first and second conditional moments. As we describe later, we outline and

then apply a near-explosive detection algorithm which, on the contrary, is founded on the analysis of tail

behavior in the distribution of a variables of interest which offers interesting operational research insights.

Furthermore, most applications of related techniques have focused on stock markets and real estate data

as, for example, in Longstaff (2010) and Phillips and Yu (2011). Our work is, instead, related to fixed

income markets. The set of yield spreads that, despite some significant data limitations, we select is as

representative as possible of the many segments of this part of the U.S. financial system. After detecting

distress episodes, we explore phenomena of contagion and transmission that are crucial to understand

the spread of the 2007-09 Great Financial Crisis.

We adopt a testing and date-stamping technique, initially formulated by Phillips and Yu (2011) and

3There are interesting attempts at merging the two strands of literature. For instance, Recchioni and Tedeschi (2017)
develop a simple and analytically tractable common stochastic, mean-reverting volatility model in continuous time that
captures yield dynamics. They exploit the empirically high correlation between the estimated volatility parameters and the
instability in bond yields to build an early-warning indicator of significant instabilities, similar in spirit to what we apply in
our work. They report that their indicator identifies three bubbles that anticipate three major episodes of instability – i.e.,
the sub-prime mortgage crisis, the collapse of Lehman Brothers, and the European sovereign debt crisis.
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later refined in Phillips et al. (2015), to identify the periods over which the eight yield spreads in our

sample exhibit unstable dynamics – i.e., what we shall formally define as mildly explosive behavior. From

a statistical point of view, this approach is based on detecting variations in the recursive, rolling right-tail

implementation of the Augmented Dickey-Fuller (ADF ) unit root test by which, under the alternative

hypothesis, the time-series process under investigation exhibits (at least locally) a root larger than one.

In its original formulation, such a testing algorithm allows for the detection (and the date-stamping of

both origination and termination) of bubbles in the time series of the prices of an asset of interest. For

example, Phillips and Yu (2011) interpret the Baa-Aaa corporate yield spread as a measure of the price

of risk in bond markets. To the extent to which this interpretation is reasonable, a period of mildly

explosive behavior in the time series of such a spread, if associated with a widening spread, can be viewed

as a bubble in the price of the underlying market. Also depending on the specific context of application,

this strategy can be used to identify episodes of exuberance and impending collapse, as well as structural

breaks, periods of regime change, or instances of panic and turmoil in a given market.

A comprehensive examination of how the different segments of U.S. fixed income markets have been

affected by distress and of its evolution is still missing. In the application that we propose, our prior

expectation is to find widespread evidence of turbulence and contagion in such markets, especially during

the most recent financial crisis. However, apart from specific channels, such as those linking the asset-

backed securities market to the general financial system, as in Longstaff (2010), the exact identification of

such a connection has proven elusive. We show that the mildly explosive behavior that we detect in the

yield spreads in our sample, especially in the sub-samples in which the spreads exhibit an upward-sloping

trajectory, corresponds to well-known episodes of turmoil in U.S. markets, which therefore – using the

techniques illustrated in this paper – could have been detected, monitored, and partially predicted in real

time (see Huang et al., 2017). Additionally, we find evidence of mildly explosive behavior in six out of

the eight yield spreads under investigation. Two of these six spreads are short/medium-term mortgage-

related spreads. We demonstrate that the strength of such unstable dynamics peaked between August

2007 and January 2009 and occurred, sequentially, first in short-term funding and later in medium- and

long-term markets, which represents a clear and plausible migration pattern.

Furthermore, we formally investigate the conjecture, originally proposed by Gorton (2009a,b), that

the collapse of the synthetic collateralized debt market based on sub-prime residential mortgages could

have been one of the main reaction chambers of the Great Financial Crisis – i.e., the epicenter of a

panic/turmoil episode that triggered a chain reaction that spread across U.S. fixed income markets.4

4Some recent literature in financial economics has investigated contagion and systemic risk with applications to bond
yields (see Recchioni and Tedeschi, 2017) and the European sovereign debt crisis (see Guidolin and Pedio, 2017).
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We use statistical methods to explore the possibility that the financial panic of 2007 initially migrated

from specific segments of the market for sharing and allocating (correlation) risks in sub-prime loans

(through the trading of ABX indices) to other fixed income markets. Seen through the lens of a model of

bank/financial runs with sunspot equilibria, the drop in the ABX indices that occurred in 2007 may have

acted as a focal shock that favored the emergence of a (shadow) bank-run equilibrium consistent with

the financial run mechanism described in Diamond and Dybig (1983). We provide statistical support to

Gorton (2009a,b)’s conjecture through the identification of a panic transmission pattern that goes from

the market of sub-prime residential mortgages to some other key U.S. fixed income yields.

This paper is structured as follows. Section 2 summarizes the empirical methodologies. Section 3

describes the data. Section 4 discusses empirical application and results. Section 5 concludes.

2 Research Methodologies

Failing to recognize unstable dynamics in time-series data, in real, or almost real, time, has potentially

serious implications for both policy making and investment strategies. Despite the frequent discussions

on the difficulties in the identification of asset bubbles (Bernanke, 2002), policy makers often advocate

increasing interest rates to curb excessive growth of asset prices or, more generally, to prevent financial

instability (Esther, 2016). In fact, since the Great Financial Crisis, several central banks followed the lead

of the Federal Reserve and started developing systems of monitoring for financial markets, as documented

in Adrian et al. (2015). Despite the fact that the identification of bubbles is, in general, not an easy task to

accomplish, the recent studies that we follow have developed tests for the empirical detection of bubbles

in price data based on a combination of theoretical predictions and time-series estimation techniques.

Derived from asset pricing theory, their main idea is that, if a bubble develops in an asset market, prices

should inherit and exhibit, at least locally and for a limited time, an explosive dynamic behavior.

Bubble detection strategies are recently described, for example, in Phillips and Yu (2011) and Phillips

et al. (2015). Their econometric methodology can detect bubbles in the data and date-stamp their

occurrence. Their tests use recursive and rolling right-tail variations of the ADF unit root test in which,

under the null hypothesis, the time series of interest has a unit root and, under the alternative hypothesis,

the observed time series has, at least locally, a root larger than one – i.e., technically, it is a mildly

explosive stochastic process. If the null hypothesis of their tests is rejected, one can then estimate the

origination and termination of a bubble or of multiple bubbles. Phillips et al. (2015) show that a specific

version of their procedure (based on recursive and flexible windows) can be used, under general regularity

conditions, as a date-stamping strategy able to consistently estimate the origination and termination of
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bubbles in long historical time series. Through Monte Carlo simulations, they demonstrate that their

strategy outperforms the approach initially proposed in Phillips and Yu (2011). In particular, they argue

that their test significantly improves the discriminatory power and leads to non-negligible power gains

when multiple bubbles are present in the data. The bubble detection algorithm is complemented by a test

of transmission of mild explosiveness across time series based on a simple regression analysis framework.

These statistical tools offer at least two advantages. First, unlike alternative techniques, they are able

to detect the occurrence of multiple bubbles, potentially in real time, as distress unfolds in a given market.

Second, at least to some extent, they help better understand the causal dynamics across yields through

an empirical analysis. In principle, only theoretical models and/or solid economic reasoning can provide

a justification for any conjectured direction of causality between (pairs of) variables and inform empirical

testing strategies of causality links. In our application, we face a scarcity of detailed theoretical models,

but we can refer to a vast empirical literature that – with reference to the Great Financial Crisis – has

isolated in a few specific fixed income markets (e.g., subprime asset-backed securities and junk corporate

bonds) the origins of the severe and pervasive market impairments between 2007 and 2009. One can see

our empirical investigation as a rigorous, statistically grounded testing exercise for a number of claims

that had been previously made about the origins of the 2007-09 market panic (see Gorton, 2009a,b).

Figure 1 illustrates the steps in the procedure that we adopt to (i) detect and date-stamp periods of

mildly explosive behavior in the yield spreads in the sample and (ii) to describe its transmission across

markets. Specific details are given in the following subsections.

2.1 Testing for the Presence of Mildly Explosive Behavior

The first step of the procedure is a test used to detect mild explosiveness in a time series of interest, yt.

(a) The testing strategy is based on the estimation of the following reduced-form equation,

yt = µ+ δyt−1 +

p∑
i=1

φi∆yt−i + εt, (1)

where µ is an intercept, p is the maximum number of lags, and εt is the error term.

(b) We follow Phillips et al. (2015) and consider the hypotheses, H0 : δ = 1 vs H1 : δ > 1. We normalize

the original sample interval of T observations to the compact [0, 1]. The δ coefficient, estimated

by ordinary least squares over the (normalized) sample [r1, r2] ⊆ [0, 1], and its corresponding ADF

test statistic are denoted by δr1,r2 and ADFr1,r2 , respectively. We define the (fractional) window

size of the regression as rw = r2 − r1. The Generalized Supremum Augmented Dickey-Fuller

(GSADF ) test is derived from a recursive procedure in which the ADF test statistic is calculated

over (overlapping) rolling windows of increasing sizes and moving starting points (i.e., over a forward
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rolling and expanding sample). Each estimation in this recursive approach produces an ADF test

statistic. The GSADF test statistic is the supremum ADFr1,r2 statistic over all possible windows,

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADFr1,r2} , (2)

where r0 is the smallest sample window width fraction (which initializes the computation of the test

statistic, in our paper set to 10%) and 1 is the largest window width fraction (corresponding to the

full sample size) in the recursion. The recursion mechanism is represented graphically in Figure 2.

(c) The relevant critical values are then simulated as follows. We generate a random sample of T

observations based on a null model, which, as in Phillips et al. (2015), is a random walk process

with an asymptotically negligible drift and a normal error term, et,

yt = dT−η + θyt−1 + et, et ∼ N
(
0, σ2

)
, θ = d = η = 1, (3)

where η is a localizing coefficient that controls the magnitude of the drift as T −→∞.

(d) Using the recursion that we describe in Figure 2, we estimate equation (1) by ordinary least squares

over the sample generated by the null model, and then store the resulting GSADF test statistic.

(e) We repeat first and second steps 1, 000 times.

(f) We calculate the 90% quantile of the distribution of the GSADF test statistic produced from these

1,000 simulations. This quantile is used to test the null of a unit root against the alternative of a

mildly explosive process. The simulation output includes the p-value for the computed test statistic,

p (τ̂) =
1

1, 000

1,000∑
j=1

I (τj > τ̂) , (4)

where τ̂ is the sample GSADF test statistic, I (·) is an indicator function such that

I (τj > τ̂) =

 1 if τj > τ̂

0 if τj 6 τ̂
, (5)

and {τj}1,000j=1 is the sequence of simulated GSADF test statistics.

2.2 Date-Stamping Periods of Mildly Explosive Behavior

The procedure outlined in Figure 1 then proceeds to date-stamp periods of mildly explosive behavior.

(g) If the null hypothesis of the GSADF test is rejected, a similar procedure as in the previous subsec-

tion can be used, under general regularity conditions, as a date-stamping strategy to consistently

estimate origination and termination of periods of mildly explosive behavior. We implement a re-

cursive Supremum ADF test on backward expanding samples, using an algorithm specular to the

one that we have described in the previous subsection. The end point, which now moves backwards,

of each sample is fixed at r2 and the start point is allowed to vary from 0 to r2− r0. For each r2, we

obtain a sequence of ADF test statistics, {ADFr1,r2}r1∈[0,r2−r0], and a Backward Supremum ADF
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test statistic, defined as the supremum value of the ADF test statistic sequence over this interval,

BSADFr2 (r0) = sup
r1∈[0,r2−r0]

{ADFr1,r2} . (6)

(h) Based on the sequence of test statistics, estimates of beginning (r̂e) and termination (r̂f ) of a period

of mildly explosive behavior (as fractions of the full sample) are given by

r̂e = inf
r2∈[0,1]

{
r2 : BSADFr2 (r0) > cvβTr2

}
(7)

and

r̂f = inf
r2∈[r̂e,1]

{
r2 : BSADFr2 (r0) < cvβTr2

}
, (8)

where cvβTr2 is the 100 (1− βT ) % critical value of the BSADF test statistic based on Tr2 obser-

vations and βT is a real number between 0 and 1 indicating the level of significance of the test.

In other words, the origination date is the observation at which the BSADF statistic exceeds the

critical value of the BSADF statistic. Similarly, the termination date is the observation at which

the BSADF statistic falls below the critical value of the BSADF statistic. The GSADF test and

the BSADF test statistics are related to each other – i.e.,

GSADF (r0) = sup
r2∈[r0,1]

{BSADFr2 (r0)} . (9)

2.3 Migration of Mildly Explosive Behavior

The steps in Figure 1 are finally completed here. The reduced-form algorithm to test migration of mildly

explosive behavior from one series Xt to another series Yt is originally described in Phillips and Yu (2011).

(i) Let θX (τ) be the coefficient of an autoregressive model with an intercept term, for the time series

{Xt}τ=Trt=1 with r ∈ [r0, 1]. θX (τ) can be estimated by ordinary least squares as θ̂X (τ) over a

recursively increasing window with a fixed starting date that occurs as early as practically feasible

in the sample. We define θY (τ) and θ̂Y (τ) similarly. By allowing for time variation in θX (τ), we

try to capture possible structural changes in the coefficient(s) originating from episodes of turmoil,

panic, or market exuberance. Our goal is to test the presence of migratory effects in the dynamics

of a second time series, Yt. The intuition is that, when mild explosiveness reaches its peak in Xt (a

local maximum in the sequence of BSADF test statistics), we can test for its transmission to Yt.

Under the alternative of migration, mildly explosive behavior emerges in Yt as it fades away in Xt.

From a modeling point of view, the null generating mechanism of Yt has a recursive autoregressive

coefficient, θY (τ), that transitions from a unit root to a mildly explosive root and that is negatively

associated with the corresponding recursive autoregressive coefficient for Xt, θX (τ).

(j) Suppose that the date-stamping procedure that we have described has identified mildly explosive

behavior in Xt between τ̂eX = T r̂eX and τ̂fX = T r̂fX and in Yt between τ̂eY = T r̂eY and τ̂fY =
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T r̂fY . Also assume that the two sequences of BSADF statistics for Xt and Yt peak at times

τ̂ρX = T r̂ρX and τ̂ρY = T r̂ρY , respectively, and that r̂ρY > r̂ρX . Let m = τ̂ρY − τ̂ρX = T r̂ρY −T r̂ρX

be the number of observations in the interval (τ̂ρX , τ̂ρY ]. Phillips and Yu (2011) show that the

notion of migration that we have described can be detected by first estimating the regression,[
θ̂Y (τ)− 1

]
= β0 + β1

[
θ̂X (τ)− 1

] τ − τ̂ρX
m

+ error, with τ = T r̂ρX + 1, ..., T r̂ρY , (10)

over a sample covering the period of collapse in Xt and the coincident emergence of explosiveness in

Yt, and then by testing H0 : β1 = 0 vs H1 : β1 < 0. An asymptotically conservative and consistent

test for this hypothesis is based on the standard normally distributed test statistic,

Zβ =
β̂1

L (m)
, where

1

L (m)
+
L (m)

T ε
−→ 0, as T −→∞ for any ε > 0, (11)

for some slowly varying function L (m), such as a log10 (m), with a > 0 and m = O (T ).

3 Data

The empirical methods described in the previous section are applied to the identification of periods of

explosive behavior in the time series in our sample. The objective is to determine the beginning and the

end of episodes of unstable dynamics, and to test for their migration across U.S. fixed income markets,

using data concerning eight interest rate spreads of interest and ABX indices. The series are collected

from Bloomberg and organized in a sample of weekly observations, as typical in the literature. We

consider a sample that spans the period between the week of September 20, 2002 and the week of April

20, 2018, for a total of 814 weekly observations. However, some spreads and the ABX indices cover

different sub-samples, depending on data availability (see Table 1).5

Spread 1 (3-Month LIBOR-OIS): 3-month LIBOR on unsecured deposits relative to the overnight

indexed swap (OIS) rate. The 3-month LIBOR is the interest rate that banks face when they borrow

unsecured funds on the interbank market with a 3-month maturity. The OIS rate is the fixed interest

rate that a bank receives in 3-month swaps between a fixed rate and a compound interest payment on

a notional amount to be determined with reference to the effective federal funds rate. The LIBOR-OIS

spread is widely perceived as an indicator of tensions in money markets, a measure of health of the

banking system, and as an index of risk and liquidity in the money market.

Spread 2 (3-Month ABCP-Treasury): 3-month ABCP relative to Treasury Bills of the same

maturity. ABCP experienced a dramatic drop in transaction volumes during the financial crisis, a shortage

that made this spread particularly reflective of both liquidity and credit risk.

Spread 3 and Spread 4 (1-Year ARM-Treasury and 5-Year ARM-Treasury): 1-year ARM

5An extended description of the data is provided in an online Appendix.
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Average relative to Treasury Bills and 5-year 5/1 Hybrid ARM relative to Treasury Notes, respectively.

They are representative of sub-prime rates charged on mortgage contracts and capture strains more

directly associated to the real estate market. They are proxies of mortgage default risk premia.

Spread 5 (5-Year Aaa Private-Label CMBS-Treasury): 5-year Aaa private-label CMBS rel-

ative to Treasury Bonds. It represents the risk premium on private-label securitized mortgages. In our

paper, it is used to capture the freezing of the underlying spot market between mid-2007 and early 2009

(Gorton, 2009b), partially reversed by the Term Asset-Backed Securities Loan Facility (TALF) program.

Spread 6 (20-Year Moody’s Baa-Aaa-Rated Corporate): 20-year Moody’s Baa-rated corporate

bonds relative to the Aaa-rated corporate rate. It is a traditional indicator of credit risk, discussed in

the literature also because of its forecasting power for many asset returns (Bianchi and Guidolin, 2014).

Spread 7 (20-Year Bloomberg Fair Value U.S. Dollar Composite Bbb-Aa-Rated Corpo-

rate): 20-year Moody’s Bbb-rated corporate relative to Aa-rated corporate bond yield (a junk spread).

It is similar to Spread 6, but it refers to riskier bonds and was rarely directly affected by policy interven-

tions in the United States. Both Spread 6 and Spread 7 provide information about the cost of funding

for businesses and therefore represent a direct measure of strains in the private non-financial sector.

Spread 8 (30-Year Freddie Mac Conventional Fixed-Rate MBS-Treasury): 30-year Freddie

Mac conventional fixed-rate MBS relative to Treasury Bonds. It captures the credit risk of conventional

mortgage products and is representative of the premium on agency mortgage-backed securities.

Because they are mostly computed from Treasury or corporate yields on assets with low risk, these

spreads reflect credit-risk and (il)liquidity factors in fixed income markets. Thus, the application of our

research design on these spreads allows us to study and characterize any explosive behaviors in the price of

credit risk plus the cost of illiquidity in each market.6 Generally positive and large skewness is associated

with a sizable divergence between mean and median in most spreads. Large excess kurtosis appears in

all spreads, but Spreads 3 and 8. Spreads 1-8 are plotted in the lower panels of Figure 3.

A feature common to all spreads in our dataset is a substantial and synchronized increase approxi-

mately located in the middle of the sample. All spreads peak around September 2008. Such a simultaneous

increase likely depends on a common factor and is, broadly speaking, the reflection of turbulence in fi-

nancial markets, which would later become the Great Financial Crisis. Except for Spread 3, all spreads

remain relatively flat between the beginning of the sample and 2007. Many of them are, in fact, close to

their historical means (Spreads 2, 4, 6, and 7) or generally fluctuate either slightly above (Spread 8) or

slightly below (Spreads 1, 3, and 5) their respective means. All spreads start widening in 2007, during

6For convenience, a synthetic description of each spread is provided in Table C1. Their empirical distributions are reported
in Figure C1. Table C1 and Figure C1 are both available in an online Appendix.
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the initial stages of the Great Financial Crisis, when the economic and financial turmoil only appeared

to affect markets directly connected to the sub-prime real estate industry (see Aı̈t-Sahalia et al., 2012).

The eight interest rate spreads start rising well before Fall 2008 – i.e., the period often considered (maybe

incorrectly) to mark the official beginning of the Great Financial Crisis. During the crisis, the relative

increases in the spreads versus their pre-crisis levels range wildly. However, proportionally, they tend

to be milder for spreads with longer maturities. As observed in an unreported investigation of several

subperiods, variances and interquartile ranges show remarkable increments during the Great Financial

Crisis and return close to pre-crisis levels in the months after June 2009.

ABX Indices. An ABX index is representative of a credit default swap (CDS) contract that pools

lists of exposures to mortgage-backed securities. The ABX.HE is a set of indices that track credit default

swaps on U.S. residential mortgage-backed securities (see Reserve Bank of Australia, 2008; Fender and

Scheicher, 2009; Gorton, 2009a,b, for more detailed discussions). Four groups of ABX indices were issued

every six months between January 2006 and 2008. Each index tracks credit default swaps on a fixed

sample of twenty residential mortgage-backed securities, based on sub-prime mortgages issued in the

previous six months. Each group of indices includes five sub-indices corresponding to different rating

classes of residential mortgage-backed securities, namely AAA, AA, A, BBB, and BBB-. Classes BBB

and BBB- are the ratings for the riskiest sub-prime mortgage loans. As of 2007, these sub-indices became

closely monitored barometers for changes in U.S. sub-prime debt markets and soon came to represent a

focal point for all market participants.7 ABX.HE.06-1 indices are the first issuance of this kind of CDS

and refer to tranches of twenty residential mortgage-backed securities issued in the second half of 2005.

4 Application of the Methodologies and Empirical Results

We apply the methodologies described above to (i) identify periods of mild explosiveness in the eight

yield spreads in the sample; (ii) describe how mild explosiveness migrates from market to market; and

(iii) test the empirical validity of Gorton (2009a,b)’s conjecture.

4.1 Periods of Mild Explosiveness

Table 2 reports the individual outcomes of the recursive right-tail ADF tests. We resort to the Schwartz

Information Criterion to select the optimal lag length in all test regressions. In each case, we allow for a

maximum of 13 lags, – i.e., about three months of weekly observations.8

7We plot these five sub-indices for each group in the four charts of Figure C2 in an online Appendix.
8The time series of Spreads 1 and 2 have the same length in the sample. As such, they share the same simulated critical

values. The same applies to Spreads 3 and 4, as well as Spreads 6 and 8. The tests on Spreads 5 and 7 are based on different
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We find evidence of mildly explosive behavior in all spreads but Spread 4 (5-Year ARM-Treasury)

and Spread 8 (30-Year Freddie Mac Conventional Fixed-Rate MBS-Treasury). The periods of explosive

dynamics (represented by conventional grey bars) are graphically depicted in Figure 3, in Figure 4, and,

using a slightly different graphical representation, in Figure 5. In the upper panels of Figure 3, we plot

the sequences of spread-specific BSADF test statistics and the corresponding sequences of critical values.

Some of the periods of mild explosiveness that we estimate are associated with generally increasing yield

spreads (i.e., the price of the risky asset is declining relative to the price of the safer asset in the spread);

some other periods are, instead, associated with generally decreasing yield spreads (i.e., the price of the

risky asset is rising relative to the price of the safer asset used to compute the spread). The identified

periods of instability are summarized in Table 3, where we also report an indicator of the general behavior

of each spread – an increasing (I) or decreasing (D) pattern – in each estimated time frame.

To the extent to which it is possible to identify such periods in real time, the information generated

from the detection of mildly explosive behavior might be used to devise optimal investment strategies. For

example, a very simple strategy could be developed along the following lines. When a period of mildly

explosive behavior is detected in a yield spread and that period is associated with a generally rising

spread, a risk-averse investor may take a short position in the risky(ier) leg (bond) of the spread and,

at the same time, a long position in the safe(r) bond. Conversely, when a period of mild explosiveness

occurs as a yield spread declines, a risk-averse investor may want to take a long position in the risky(ier)

bond and a short position in the safe(r) bond of that spread. Of course, any investment strategy should

be formally compared to different and, possibly, more sophisticated approaches in a carefully-structured

empirical exercise. However, this strategy (or variations of it) could prove superior to many alternatives

in several circumstances, as verified, for instance, in Milunovich et al. (2019) in their study of how to use

bubble date-stamping techniques to design trading strategies applied to sectoral U.S. equity indices.

Figure 4 shows the evolution of the individual interest rates from which the yield spreads in the sample

are derived. The peaks of instability in the dynamics of each spread, which occur in correspondence of the

global maxima in the sequences of BSADF test statistics, all appear in periods during which yield spreads

tend to increase, as emphasized in Figure 5: August 31, 2007 (Spread 1, 3-Month LIBOR-OIS); October

19, 2007 (Spread 2, 3-Month ABCP-Treasury); March 21, 2008 (Spread 3, 1-Year ARM-Treasury); March

7, 2008 (Spread 5, 5-Year Aaa Private-Label CMBS-Treasury); November 21, 2008 (Spread 6, 20-Year

Moody’s Baa-Aaa-Rated Corporate); and December 19, 2008 (Spread 7, 20-Year Moody’s Bbb-Aa-Rated

Corporate). In other words, unstable dynamics peak in the U.S. fixed income markets between August

2007 and December 2008. These peaks move sequentially from short-term funding markets to medium-

and spread-specific critical values, as their corresponding time series span shorter periods of time.
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and long-term markets during the crisis period. Note that peaks of instability as we have defined them

and peaks in the levels of the yield spreads do not have to (and, in fact, do not) correspond.

According to Contessi et al. (2014), the Great Financial Crisis started in the summer of 2007 (during

the week ending on August 3, 2007) and ended in the early summer of 2009 (during the week ending on

June 26, 2009). Concordance between the appearance of explosive dynamics associated with generally

rising spreads (around July/August 2007) and the initial period of the crisis is evident in the cases of

Spreads 1, 2, 3, and 5 – i.e., the short- and medium-term spreads. Such episodes of statistically unstable

dynamics in these spreads can possibly be seen as evidence of distress in the underlying markets. Isolated

spells of explosive behavior associated with generally decreasing spreads are also detected, for prolonged

periods, between 2004 and 2006 and between 2010 and 2012, at least as far as Spread 3 (1-Year ARM-

Treasury) is concerned. Furthermore, short periods of quick or sudden adjustment are found during the

first halves of 2004 and 2015 in Spread 6 (20-Year Moody’s Baa-Aaa-Rated Corporate).

The empirical methodology seems to identify the beginning of the financial crisis in the summer of

2007, when the 3-Month LIBOR-OIS spread (Spread 1) experienced a large increase. Brigo et al. (2017)

point out that, prior to the financial crisis, institutions used to ignore the credit risk of highly-rated

counterparties in valuing and hedging contingent claims traded over-the-counter (OTC). However, when

this specific, explosive bout of the crisis hit (i.e., the sudden increase in the LIBOR-OIS spread), dealers

and financial institutions immediately reassessed the valuation of OTC claims and readjusted their book

values, as a consequence of the spiking credit and liquidity risk in the interbank market. Incidentally, in

June and July 2007, Standard & Poor’s and Moody’s Investor Services downgraded over a hundred bonds

backed by second-lien sub-prime mortgages, and later put 612 securities backed by sub-prime residential

mortgages on a credit watch. Around the same time, Bear Stearns informed investors that it would

suspend redemptions from its High-Grade Structured Credit Strategies Enhanced Leverage Fund. At

the end of July, Countrywide Financial Corporation filed a Securities and Exchange Commission (SEC)

warning signaling “difficult conditions” and Bear Stearns liquidated two hedge funds that had invested

in various types of mortgage-backed securities. These events, which caused turmoil in financial markets,

correspond to the first episode of mild explosiveness identified in Spread 1. The following episode of

disruption in the 3-Month LIBOR-OIS spread occurs between September 19, 2008 and November 14,

2008, a period characterized by the bankruptcy filing of Lehman Brothers and the first massive wave

of U.S. government interventions in the form of the Troubled Asset Relief Program (TARP), a program

to purchase toxic assets from financial institutions to bolster the financial sector. A third episode of

mildly explosive behavior in Spread 1, again associated with a generally increasing spread, is found more

recently, between the end of July 2016 and the end of October of the same year.
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Our date-stamping technique captures a spell of disruption and mildly explosive behavior between

August 17, 2007 and March 14, 2008 in the time series of the second short-term spread in the sample

(Spread 2, or 3-Month ABCP-Treasury spread). Fitch Ratings downgraded Countrywide Financial Cor-

poration to BBB+ on August 16, 2007. By that time, Countrywide had entirely borrowed the $11.5

billion available in credit lines with other banks. During the same week, the Federal Reserve Board

voted to reduce the primary credit rate by 50 basis points to 5.75%, thus narrowing the difference with

the Federal Open Market Committee (FOMC)’s federal funds rate target to only 50 basis points. The

Board of Governors of the Federal Reserve also increased the maximum term of the primary credit bor-

rowing to 30 days, in a move to facilitate access to liquidity by qualifying banks. Despite the fact that

the date-stamping technique formally limits the mildly explosive behavior in Spread 2 to the middle of

March 2008, a visual inspection of the yields that we use to construct it (Figure 4) suggests that the

adjustment period in the underlying markets might have, instead, ended much later, in mid-2009. In

fact, as Figure 3 shows, the sequence of BSADF test statistics for Spread 2 exceeds the corresponding

sequence of critical values between the end of 2008 and the first half of 2009, a period during which the

spread is particularly large. However, the BSADF statistic fails to remain above the sequence of critical

values for long enough to allow a formal detection of explosiveness, which, instead, appears again between

August 12, 2016 and October 7, 2016. Incidentally, this last spell of mildly explosive behavior in Spread

2 is basically coincident with the last spell detected in Spread 1.

Two of the three spreads that most accurately track the short/medium-term economic dynamics in

the real estate market (Spreads 3, 4, and 5) are affected by several episodes of turbulence. The 1-Year

ARM-Treasury spread (Spread 3) exhibits one long episode of explosive behavior associated with an

upward-sloping trajectory. This episode covers the entire period of turmoil in the housing market, as it

starts in mid-August 2007 and ends in the second half of January 2010. Three spells of explosive behavior

associated with a downward-sloping time evolution of Spread 3 are also detected. First, we identify the

period between September 24, 2004 and March 24, 2006, which is characterized by progressive increases

in the Federal Funds Rate.9 The evolution of Spread 3 over this time frame is consistent with the general

behavior of financial variables during development of the housing bubble. Levitin and Wachter (2012) and

Justiniano et al. (2017) argue that a disproportionate increase in the supply of housing finance between

2004 and 2006 kept mortgage interest rates particularly low relative to their risk and to other interest

rates, such as those associated with safe assets. Second, we find mild explosiveness in the periods June 25,

2010 - July 29, 2011 and February 24, 2012 - March 9, 2012. Arguably, given that Spread 3, on average,

9The Federal Reserve began raising the target policy rate in the fall of 2004, after a prolonged period of accommodating
monetary policy that followed the recession of 2001.
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fell during these two time periods, such dynamics can be interpreted as sharp adjustment following the

Great Financial Crisis. In particular, the beginning of the period from June 2010 to July 2011 occurs

just a few months after the Federal Reserve Board increased slightly the discount rate from 0.5% to

0.75%, shortened the maximum maturity for discount window loans, and, citing continued improvement

in financial market conditions, held its final Term Auction Facility (TAF) auction (March 8, 2010).10

The date-stamping algorithm also identifies a period of turbulence in the market of commercial

mortgage-backed securities, represented in our sample by Spread 5 – i.e., the 5-Year Aaa private-label

CMBS-Treasury spread. The period covering the spell of mild explosiveness that we estimate (July 20,

2007 - March 27, 2009) is associated with a long and persistent spread increase. Mild explosiveness also

characterizes the 20-Year Moody’s Baa-Aaa-Rated Corporate spread (Spread 6) during a short spell in

the first half of 2004. These weeks are associated with a generally downward-sloping trajectory of Spread

6. Furthermore, mildly explosive behavior is detected in Spread 6 during a long period associated with an

increasing spread, between March 7, 2008 (just before the collapse of Bear Stearns) and April 10, 2009,

which is approximately at the end of the overall disruption in funding markets. More recently, spells of

mildly explosive dynamics are detected at the beginning of 2015, a period during which Spread 6 tends

to decrease; and between July 2015 and March 2016, a period during which Spread 6 tends to rise.

Spread 7 (20-Year BFV USD Bbb-Aa-Rated Corporate, or junk, spread) starts exhibiting instability

around the end of 2008, arguably at the peak of the financial crisis, after the bankruptcy of Lehman

Brothers, as the financial panic spread from interbank markets and the shadow banking system to the

funding markets for corporations – i.e., to the “real economy.” In the case of this spread, short periods

of turbulence are also found between April and May 2015 and in June 2011.

While we fail to detect any mildly explosive behavior in Spread 4 (5-Year ARM-Treasury) and Spread 8

(30-Year Freddie Mac Conventional Fixed-Rate MBS-Treasury), (i) the sequence ofBSADF test statistics

for Spread 4 exceeds the appropriate sequence of critical values between the summer of 2007 and the

beginning of 2009; and (ii) the sequence of BSADF test statistics for Spread 8 exceeds critical values

between the beginning of 2005 and the beginning of 2006. In both cases, these periods are associated

with generally rising yield spreads. See Figure 3 for details.

10Under the TAF, the Federal Reserve auctioned term funds to depository institutions that were already eligible to borrow
under the primary credit program. All advances were fully collateralized. Each TAF auction was for a fixed amount with a
rate to be determined through the auction process, subject to a minimum bid rate.
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4.2 Migration of Mild Explosiveness

We investigate the possibility of migration of explosive behavior from market to market, from a peak

of instability to another, by implementing the testing strategy discussed in Section 2. All results are

reported in Table 4. The global peaks in the sequences of BSADF statistics for each individual spread

are reported in the notes underneath the table. We do not report a global peak for Spread 4 (5-Year

ARM-Treasury) nor for Spread 8 (30-Year Freddie Mac Conventional Fixed-Rate MBS-Treasury), given

that, in these two cases, we fail to detect any statistically significant explosive behavior. Based on the

previously described chronological appearance of these peaks, we test for migration from Spread 1 (3-

Month LIBOR-OIS) to Spreads 2-3 and 5-7, for migration from Spread 2 (3-Month ABCP-Treasury) to

Spreads 3 and 5-7, for migration from Spread 3 (1-Year ARM-Treasury) to Spreads 6-7, for migration

from Spread 5 (5-Year Aaa Private-Label CMBS-Treasury) to Spreads 3 and 6-7, and for migration from

Spread 6 (20-Year Moody’s Baa-Aaa-Rated Corporate) to Spread 7. Variable m in the table represents

the number of weekly observations between the peak in the sequence of BSADF test statistics for the

spread from which we conjecture migration and the peak in the sequence of BSADF statistics for the

spread towards which migration might be occurring.11 Starting from the fourth column in the table,

we report (i) the estimated slope coefficient of each test regression (as described in Section 2.3), (ii) the

associated standard error and t-statistic, and (iii) the numerical value of L (m) and Zβ computed for

different values of the parameter a, here allowed to vary discretely between 1/10 and 1/3.

We detect statistically significant migration from Spread 1 (3-Month LIBOR-OIS) to Spread 3 (1-

Year ARM-Treasury) and Spread 5 (5-Year Aaa Private-Label CMBS-Treasury); and from Spread 2

(3-Month ABCP-Treasury) to Spread 3 (1-Year ARM-Treasury), Spread 5 (5-Year Aaa Private-Label

CMBS-Treasury), Spread 6 (20-Year Moody’s Baa-Aaa-Rated Corporate), and Spread 7 (20-Year BFV

USD Bbb-Aa-Rated Corporate). These findings support the notion that the tensions and turmoil that

emerged in the short-term funding markets in the second half of 2007 transmitted to the medium- and

long-term real estate derivatives market and corporate junk bond market as the financial crisis unfolded.

This evidence is consistent with the patterns in the peaks of instability described early on, as they occur

sequentially and move from short-term funding markets to medium- and long-term markets between

August 2007 and December 2008, arguably the most turbulent months of the Great Financial Crisis.

11When we test for migration from Spread 1 to Spread 2, from Spread 5 to Spread 3, and from Spread 6 to Spread 7, m
is likely too small (equal to 7, 2, and 4, respectively) to produce meaningfully estimated test regression coefficients.
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4.3 The Panic of 2007 Revisited

We investigate Gorton (2009a,b)’s conjecture that the collapse of the ABX indices in 2007 triggered a

reaction in other U.S. financial markets, including fixed income markets. Such a reaction was likely

determined by a signaling mechanism about the state of the market of mortgage-backed securities. We

test for the migration of financial distress from the ABX to fixed income markets using data from the first

roll of ABX indices, which provides the longest time series. In particular, we apply the testing algorithm

only on the BBB index, namely the ABX.HE.BBB.06-1 series. As explained in Section 2, the application

of the recursive methodology requires an initial window of observations to initialize the algorithm. As we

use a 10% initial window and given that the index data only span a period from the week of January 19,

2006 through the week of May 15, 2015 (488 observations), the implementation of the technique would

consume weekly ABX.HE.BBB.06-1 index data well through the second half of 2007. For such index, we

then collect daily data between January 19, 2006 and May 18, 2015 (a total of 2,321 observations), apply

the right-tail ADF test, and find significant evidence of mildly explosive behavior at the 1% level. When

the index starts collapsing at the beginning of 2007, mild explosiveness peaks for the first time (a local

maximum of 6.685 in the sequence of BSADF test statistics) on February 12, 2007 and for the second

time (a local maximum of 7.242, the third largest in the sample,) just a few months later, on July 26,

2007. The days that Gorton (2009a) identifies as the beginning of the panic in the ABX market are also

located in the last week of July 2007. Therefore, we use this initial week to test for panic transmission.

Going back to weekly series, we test for panic transmission to the fixed income markets represented by

the yield spreads that exhibit peaks in the sequence of BSADF statistics after the week of July 27, 2007.

Empirical findings (Table 5) show evidence of transmission from the ABX.HE.BBB.06-1 index to Spreads

2, 5, 6, and 7 (maybe Spread 1, too), thus statistically validating Gorton (2009a,b)’s argument. Instability

transmitted directly to short and medium/long segments of U.S. fixed income markets, including some

of the mortgage-related and risky corporate bond markets in the sample. Panic and a mechanism of

propagation are, therefore, formally detected at the onset of the Great Financial Crisis.

In an online Appendix, we sketch the details and results of an alternative test of transmission from

ABX markets to fixed income markets based on the battery of Granger causality tests implemented

in Longstaff (2010). We argue that the main advantage of the approach that we present is that we

are able to eliminate most arbitrariness from the empirical investigation. The samples over which we

test transmission and contagion, unlike Longstaff (2010), are endogenously and clearly determined by

a recursive methodology. More specifically, (i) we search for mildly explosive behavior in a set of time

series and explore to what extent such behavior sequentially migrates from a time series to another; (ii)
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the technique that we use is concerned with and analyzes the tail behavior in the distribution of relevant

statistical quantities; (iii) in the framework that we describe, contagion and transmission are notions

related to how tail behaviors in the distributions of two or more time series are associated to each other;

(iv) a Granger causality test fails to reflect tail behavior; rather, it can only give information as to whether

conditional means are associated to each other.

5 Conclusions

This study contributes to the understanding of the time-series behavior of yield spreads in U.S. fixed

income markets between 2002 and 2018. We give special emphasis to the turbulent years of the Great

Financial Crisis. Using U.S. weekly data, we construct a panel of eight spreads from a variety of traded

instruments and yields and identify periods of mildly explosive behavior in their dynamics. Six out

of these eight spreads are characterized by spells of statistically significant mild explosiveness, which,

depending on the context, can be interpreted either as periods of financial turmoil and distress or periods

of quick readjustment and shock absorption. As a matter of fact, from a temporal point of view, the

spells that we identify exhibit noticeable concordance with the timeline of the Great Financial Crisis of

2007-09.12 Such dating consistency is particularly evident in the case of short-term spreads and in the

case of those spreads in the sample that, more specifically, capture the risk(s) associated with the U.S.

real estate market. We also find evidence of statistical instability (possibly financial or economic distress)

and migration of such instability across markets. During the Great Financial Crisis, mildly explosive

dynamics migrate from markets associated with short-term funding to markets represented by spreads

implicit in medium- and long-term fixed income securities.

Moreover, we investigate Gorton (2009a,b)’s conjecture that ABX indices may have provided critical

information about the development of real estate markets just before the beginning of the crisis in 2007

and that this information may have triggered a panic that spread across financial markets. We test for

migration from a spell of mildly explosive behavior in the ABX market to the segments of fixed income

markets represented by the yield spreads in our sample. Indeed, between July 2007 and December

2008, we find statistical evidence of instability migration towards the markets that have been found to

be affected by spells of mild explosiveness. This finding suggests that there probably exist avenues of

migration of financial distress that might be amenable to policy intervention, at least to the extent to

which that distress could be detected early in the data, as the described methods offer a promise to.

Of course, avenues of further extension of both methods and application would be fruitful and deserve

12See, for example, https://www.stlouisfed.org/financial-crisis/full-timeline.
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careful exploration. In this paper, we have looked for evidence of explosiveness in the time series of yield

spreads. Statistical moments are affected, in case explosive dynamics actually occur, but we have not

paid any specific attention to the informational content of, for example, conditional volatilities. Although,

statistically, mild explosiveness will also be reflected in the dynamics of volatility, volatility may, by itself,

contain useful and additional early-warning information that could be optimally exploited. For instance,

Recchioni and Tedeschi (2017) note that in their multivariate, common stochastic volatility model there is

a strong correlation between estimated volatilities and instability in government bond yields. This finding

might provide the basis fo the construction of an early-warning indicator of significant instabilities that

complements the one that we adopt in this paper. Kürüm et al. (2018) combine a number of mathematical

tools to generate early-warning signals of financial bubbles that exploit trading volume data. They show

that their index effectively declines as a bubble-burst moment approaches. In this paper, we have ignored

volume data altogether, but it would be interesting to extend our analysis in this direction.
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Kürüm, E., Weber, G.-W., and Iyigun, C. (2018). Early Warning on Stock Market Bubbles via Methods
of Optimization, Clustering and Inverse Problems. Annals of Operations Research, 260(1):293–320.

19

https://www.kansascityfed.org/~/media/files/publicat/speeches/2016/2016-george-york-04-07.pdf


Levitin, A. and Wachter, S. M. (2012). Explaining the Housing Bubble. Georgetown Law Journal,
100(4):1177–1258.

Longstaff, F. (2010). The Subprime Credit Crisis and Contagion in Financial Markets. Journal of
Financial Economics, 97(3):436–450.

Milunovich, G., Shi, S., and Tan, D. (2019). Bubble Detection and Sector Trading in Real Time. Quan-
titative Finance, 19(2):247–263.

Muir, T. (2017). Financial Crises and Risk Premia. The Quarterly Journal of Economics, 132(2):765–809.

Pesaran, M. H. and Pick, A. (2007). Econometric Issues in the Analysis of Contagion. Journal of
Economic Dynamics and Control, 31:1245–1277.

Phillips, P. C. B., Shi, S., and Yu, J. (2015). Testing for Multiple Bubbles: Historical Episodes of
Exuberance and Collapse in the S&P 500. International Economic Review, 56:1043–1078.

Phillips, P. C. B. and Yu, J. (2011). Dating the Timeline of Financial Bubbles during the Subprime
Crisis. Quantitative Economics, 2(3):455–491.

Recchioni, M. C. and Tedeschi, G. (2017). From Bond Yield to Macroeconomic Instability: A Parsimo-
nious Affine Model. European Journal of Operational Research, 262(3):1116 – 1135.

Reserve Bank of Australia (2008). The ABX.HE Credit Default Swap Indices. In Financial Stability
Report, chapter Box B.

20



A Tables and Figures

Table 1: Description of Yield Spreads

Variable Upper Yield Description Lower Yield Description Sample
Number of

Weekly 
Observations

Spread 1 3-Month LIBOR 3-Month London Interbank Offered Rate: 
Based on U.S. $

3-Month OIS 3-Month U.S. Overnight Index Swap 09/20/2002 - 04/20/2018 814

Spread 2 3-Month ABCP 90-Day AA Unsecured Financial Asset-
Backed Commercial Paper

3-Month T-bill 3-Month Treasury Bond Yield 09/20/2002 - 04/20/2018 814

Spread 3 1-Year ARM 1-Year Adjustable Rate Mortgage Average in 
the United States (Discontinued on 
01/01/2016)

1-Year T-bill 1-Year Treasury Note Yield at Constant 
Maturity

09/20/2002 - 01/01/2016 694

Spread 4 5-Year ARM 5/1 Hybrid Adjustable Rate Mortgages: U.S. 5-Year Treasury 5-Year Treasury Note Yield at Constant 
Maturity

01/07/2005 - 04/20/2018 694

Spread 5 5-Year Aaa Private-Label 
CMBS

Morgan Stanley U.S. Fixed Rate CMBS 
Conduit Aaa Avg Life 5-Year (Discontinued 
on 07/19/2013)

5-Year Treasury 5-Year Treasury Note Yield at Constant 
Maturity

09/20/2002 - 07/19/2013 566

Spread 6 20-Year Moody's Baa-
Rated Corporate

Moody's Baa Corporate Bonds Yields, Based 
on Corporate Bonds with Remaining 
Maturities of at Least 20 Years 
(Discontinued on 10/07/2016)

20-Year Moody's Aaa-
Rated Corporate

Moody's Aaa Corporate Bonds Yields, Based 
on Corporate Bonds with Remaining 
Maturities of at Least 20 Years 
(Discontinued on 10/07/2016)

09/20/2002 - 10/07/2016 734

Spread 7 20-Year Bloomberg Fair 
Value U.S. Dollar 
Composite Bbb-Rated 
Corporate

BFV USD Composite Bbb 20 Year 20-Year Bloomberg Fair 
Value U.S. Dollar 
Composite Aa-Rated 
Corporate

BFV USD Composite Aa 20 Year 
(Discontinued on 03/30/2012)

09/20/2002 - 03/30/2012 498

Spread 8 30-Year Freddie Mac 
Conventional Fixed-Rate 
MBS

Contract Interest Rates on Commitments for 
Fixed-Rate 30-Year Mortgages 
(Discontinued on 10/07/2016)

30-Year Treasury 30-Year Treasury Note Yield at Constant 
Maturity

09/20/2002 - 10/07/2016 734

Notes. In this table, we describe how each spread is constructed and also provide spread-specific sample information.
Each spread is derived as the difference between an upper yield and a lower yield.
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Table 3: Periods of Mildly Explosive Behavior

Spread 1 August 3, 2007 - December 14, 2007 I
(3-Month LIBOR-OIS) September 19, 2008 - November 14, 2008 I

July 22, 2016 - October 28, 2016 I

Spread 2 August 17, 2007 - March 14, 2008 I
(3-Month ABCP-Treasury) August 12, 2016 - October 7, 2016 I

Spread 3 September 24, 2004 - March 24, 2006 D
(1-Year ARM-Treasury) August 17, 2007 - January 22, 2010 I

June 25, 2010 - July 29, 2011 D
February 24, 2012 - March 9, 2012 D

Spread 5 July 20, 2007 - March 27, 2009 I
(5-Year Aaa Private-Label CMBS-Treasury)

Spread 6 February 6, 2004 - May 21, 2004 D
(20-Year Moody’s Baa-Aaa-Rated Corporate) March 7, 2008 - April 18, 2008 I

July 4, 2008 - January 2, 2009 I
March 27, 2009 - April 10, 2009 I
January 23, 2015 - February 6, 2015 D
July 17, 2015 - March 4, 2016 I

Spread 7 April 15, 2005 - May 27, 2005 I
(20-Year BFV USD Bbb-Aa-Rated Corporate) November 7, 2008 - June 5, 2009 I

June 3, 2011 - June 24, 2011 I

Notes. In this table, we report the periods of mildly explosive behavior that we estimate for each spread. Fur-
thermore, we indicate whether those estimated time intervals are associated with generally increasing or generally
decreasing yield spreads. I: generally increasing yield spread. D: generally decreasing yield spread. Peaks of mildly
explosive behavior: Spread 1, 08/31/2007; Spread 2, 10/19/2007; Spread 3, 03/21/2008; Spread 5, 03/7/2008;
Spread 6, 11/21/2008; Spread 7, 12/19/2008.
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Figure 1: Mild Explosiveness, Date-Stamping, and Migration - A Diagram of the Statistical Procedure
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Figure 2: Recursive Mechanism for GSADF Test Statistic
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Figure 3: Yield Spreads, Sequences of BSADF Test Statistics, Sequences of Critical Values, and Periods
of Mild Explosiveness

‐4.00

‐2.50

‐1.00

0.50

2.00

3.50

5.00 CV 90%
BSADF

‐0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75 Spread 1 (3‐Month LIBOR‐OIS)

‐5.00

‐3.50

‐2.00

‐0.50

1.00

2.50

4.00 CV 90%

BSADF

‐0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

4.25 Spread 2 (3‐Month ABCP‐Treasury)

‐3.50

‐2.00

‐0.50

1.00

2.50

4.00

5.50 CV 90%

BSADF

‐0.25

0.75

1.75

2.75

3.75

4.75 Spread 3 (1‐Year ARM‐Treasury)

‐3.50

‐2.00

‐0.50

1.00
CV 90%

BSADF

‐0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

4.25 Spread 4 (5‐Year ARM‐Treasury)

‐3.00
‐1.50
0.00
1.50
3.00
4.50
6.00
7.50
9.00

CV 90%

BSADF

‐0.25

1.75

3.75

5.75

7.75

9.75

11.75

13.75

15.75

17.75 Spread 5 (5‐Year Aaa Private‐Label CMBS‐Treasury)

‐2.50

‐1.00

0.50

2.00

3.50

5.00 CV 90%

BSADF

‐0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75 Spread 6 (20‐Year Moody's Baa‐Aaa‐Rated Corporate)

‐3.50

‐2.00

‐0.50

1.00

2.50

4.00
CV 90%

BSADF

‐0.25

0.25

0.75

1.25

1.75

2.25

2.75
Spread 7 (20‐Year BFV Composite Bbb‐Aa‐Rated Corporate)

‐3.50

‐2.00

‐0.50

1.00
CV 90%

BSADF

‐0.25

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

4.25 Spread 8 (30‐Year Freddie Mac Conventional Fixed‐Rate MBS‐Treasury)

Notes. Shaded areas represent periods of mildly explosive behavior.

27



Figure 4: Individual Yields for Yield Spreads Construction and Periods of Mild Explosiveness
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B Online Appendix - Data (Not for Publication)

The empirical methods described in the previous section are applied to the identification, if any, of

periods of explosive behavior in the eight time series in our sample. The objective is to determine the

beginning and the end of episodes of unstable dynamics, and to test for their migration across U.S. fixed

income markets, using data concerning eight interest rate spreads of interest. The series are collected

from Bloomberg and organized in a sample of weekly observations, as typical in the literature. We

consider a sample that spans between the week of September 20, 2002 and the week of April 20, 2018,

for a total of 814 weekly observations. However, as we describe later, some spreads may cover different

time periods between these two dates, depending on data availability. These eight spreads exhibit some

degree of heterogeneity that depends on the fixed income markets to which they refer, the maturity of

the underlying securities, and whether or not they were affected by specific policy measures implemented

by the Federal Reserve Bank, the United States Treasury, or the Federal Deposit Insurance Corporation;

or by other policy interventions that occurred during the Great Financial Crisis. We will refer to these

spreads using a number and a descriptor, both reported in bold in the next paragraphs.

Spread 1 (3-Month LIBOR-OIS) is the 3-month LIBOR on unsecured deposits relative to the

overnight indexed swap (OIS) rate. The 3-month LIBOR is the interest rate that banks face when they

borrow unsecured funds on the interbank market with a 3-month maturity. The OIS rate is the fixed

interest rate that a bank receives in 3-month swaps between a fixed rate and a compound interest payment

on a notional amount to be determined with reference to the effective federal funds rate. The LIBOR-

OIS spread is widely perceived as an indicator of tensions in money markets, a measure of health of the

banking system, and as an index of risk and liquidity in the money market. It is a standard indicator

of liquidity premium of widespread use and was possibly affected by swap arrangements among central

banks during the Great Financial Crisis. While there are legitimate concerns that, after the LIBOR

scandal emerged in 2008, the use of the LIBOR for analysis may require caution, recent research suggests

that LIBOR rates still remain a good measure of financial distress.13

Spread 2 (3-Month ABCP-Treasury) is the yield on 3-month ABCP relative to Treasury Bills

of the same maturity. ABCP experienced a dramatic drop in transaction volumes during the financial

crisis, a shortage that made this spread particularly reflective of both liquidity and credit risk. Later on,

still during the crisis, this spread became a direct target of the Asset-Backed Commercial Paper Money

13On the one hand, some authors have compared the LIBOR with other short-term borrowing rates between January
2007 and May 2008 and reported some anomalous individual quotes, eventually concluding, however, that the evidence is
inconsistent with a material manipulation of the U.S. dollar 1-month LIBOR. On the other hand, other authors have found,
instead, evidence of manipulation. We acknowledge that the evidence is mixed and, in our analysis, limit the use of the
LIBOR to the computation of only one of the eight spreads in the sample.
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Market Mutual Fund Liquidity Facility (which began operations on September 22, 2008, and was closed

on February 1, 2010) and the Commercial Paper Funding Facility (which was announced on October 7,

2008, began purchases of commercial paper on October 27, 2008, and was closed on February 1, 2010).

Spread 3 and Spread 4 (1-Year ARM-Treasury and 5-Year ARM-Treasury) are the 1-year

ARM Average relative to Treasury Bills and the 5-year 5/1 Hybrid ARM relative to Treasury Notes,

respectively. They are representative of sub-prime rates charged on (innovative, before the financial

crisis) mortgage contracts and capture the strains more directly associated to the real estate market.

They can be seen as proxies of a mortgage default risk premium. The sample for Spread 3 spans the

period between the week of September 20, 2002 and the week of January 1, 2016 (a total of 694 weekly

observations). The sample for Spread 4 spans the period between the week of January 7, 2005 and the

week of April 20, 2018 (a total of 694 weekly observations).

Spread 5 (5-Year Aaa Private-Label CMBS-Treasury) is the 5-year Aaa private-label CMBS

relative to Treasury Bonds. In our paper, it is used to capture the freezing of the underlying spot market

between the summer of 2007 and early 2009 (Gorton, 2009b), later reversed, at least partially, by the

Term Asset-Backed Securities Loan Facility (TALF) program (which began operation in March 2009 and

was closed for new loan extensions on June 30, 2010, with the final outstanding TALF loan being repaid

in full in October 2014). It represents the risk premium on private-label securitized mortgages, which

were often blamed as the root of the real estate crisis. However, this spread was not directly affected by

Quantitative Easing or other policy programs. The sample for this spread extends between the week of

September 20, 2002 and the week of July 19, 2013 (a total of 566 weekly observations).

Spread 6 (20-Year Moody’s Baa-Aaa-Rated Corporate) is the 20-year Moody’s Baa-rated

corporate bonds relative to Aaa-rated corporate rate. It is a traditional indicator of credit risk, discussed

extensively in the literature also because of its forecasting power for many asset returns (Bianchi and

Guidolin, 2014). It is a corporate default spread, never directly affected by Quantitative Easing or other

liquidity programs during the Great Financial Crisis. The sample for Spread 6 includes the weeks between

September 20, 2002 and the week of October 7, 2016 (a total of 734 weekly observations).

Spread 7 (20-Year Bloomberg Fair Value U.S. Dollar Composite Bbb-Aa-Rated Cor-

porate) is the 20-year Moody’s Bbb-rated corporate relative to Aa-rated corporate bond yield (a junk

spread). It is similar to Spread 6, but it refers to riskier bonds and was rarely directly affected by policy

interventions in the United States. Both Spread 6 and Spread 7 provide information about the cost of

funding for businesses and therefore represent a direct measure of strains in the private non-financial

sector. The sample for Spread 7 covers the period between the week of September 20, 2002 and the week

of March 30, 2012 (a total of 498 weekly observations).
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Spread 8 (30-Year Freddie Mac Conventional Fixed-Rate MBS-Treasury) is the 30-year

Freddie Mac conventional fixed-rate MBS relative to the Treasury Bonds. It captures the credit risk

of conventional mortgage products and is representative of the premium on agency mortgage-backed

securities. It was affected by the Large-Scale Asset Purchases (with short-term interest rates at nearly

zero, the Federal Reserve made a series of large-scale asset purchases between late 2008 and October

2014) and Quantitative Easing programs during the financial crisis.14 Spread 8 extends between the

week of September 20, 2002 and the week of October 7, 2016 (734 weekly observations).

As they are mostly computed from Treasury or corporate yields on assets with low risk, these spreads

reflect the credit-risk and (il)liquidity factors embedded in fixed income markets. Thus, the application

of our research design on these spreads allows us to study and characterize any explosive behaviors in

the price of credit risk plus the cost of illiquidity in each market.15 Generally positive and large skewness

is associated with a sizable divergence between mean and median in most spreads. Large excess kurtosis

appears in all spreads, but Spreads 3 and 8. Spreads 1-8 are plotted in the lower panels of Figure 3.

A feature common to all spreads in our dataset is a substantial and synchronized increase approxi-

mately located in the middle of the sample. All spreads peak around September 2008. Such a simultaneous

increase likely depends on a common factor and is, broadly speaking, the reflection of turbulence in fi-

nancial markets, which would later become the Great Financial Crisis. Except for Spread 3, all spreads

remain relatively flat between the beginning of the sample and 2007. Many of them are, in fact, close to

their historical means (Spreads 2, 4, 6, and 7) or generally fluctuate either slightly above (Spread 8) or

slightly below (Spreads 1, 3, and 5) their respective means. All spreads start widening in 2007, during

the initial stages of the Great Financial Crisis, when the economic and financial turmoil only appeared

to affect markets directly connected to the sub-prime real estate industry (see Aı̈t-Sahalia et al., 2012).

The eight interest rate spreads start rising well before Fall 2008 – i.e., the period often considered (maybe

incorrectly) to mark the official beginning of the Great Financial Crisis. During the crisis, the relative

increases in the spreads versus their pre-crisis levels range wildly. However, proportionally, they tend

to be milder for spreads with longer maturities. As observed in an unreported investigation of several

subperiods, variances and interquartile ranges show remarkable increments during the Great Financial

Crisis and return close to pre-crisis levels in the months after June 2009.

14We use yield spreads from two portfolios of securities related to real estates for which the construction of sufficiently
long time series is possible. Data for other mortgage rates are also available, among which a 5-year index of private-label
Aaa-rated fixed-rate CMBS yields, computed by Bloomberg/Morgan Stanley; an index of 30-year fixed-rate residential prime
mortgage rates computed by Freddie Mac; and a portfolio index series for lower-rated private-label MBS and CMBS yields.
However, these additional time series are too short to be meaningfully used within the econometric framework that we adopt.

15For convenience, a synthetic description of each spread is provided in Table C1. Their empirical distributions are reported
in Figure C1.

iii



ABX Indices. An ABX index is representative of a credit default swap (CDS) contract that pools

lists of exposures to mortgage-backed securities. The ABX.HE is a set of indices that tracks credit default

swaps on U.S. residential mortgage-backed securities (see Reserve Bank of Australia, 2008; Fender and

Scheicher, 2009; Gorton, 2009a,b, for more detailed discussions). Four groups of ABX indices were issued

every six months between January 2006 and 2008. Each index tracks credit default swaps on a fixed

sample of twenty residential mortgage-backed securities, based on sub-prime mortgages issued in the

previous six months. Each group of indices includes five sub-indices corresponding to different rating

classes of residential mortgage-backed securities, namely AAA, AA, A, BBB, and BBB-. Classes BBB

and BBB- are the ratings for the riskiest sub-prime mortgage loans. As of 2007, these sub-indices became

closely monitored barometers for changes in U.S. sub-prime debt markets and soon came to represent a

focal point for all market participants. We plot these five sub-indices for each group in the four charts of

Figure C2.

ABX.HE.06-1 indices are the first issuance of this kind of CDS and refer to tranches of twenty

residential mortgage-backed securities issued in the second half of 2005. In the rolls that were released

every six months in the subsequent two years, due to the deepening of the sub-prime crisis, the number

of issuances dropped so much that ABX indices could not be constructed any longer, starting from 2008.

While each ABX.HE index contract was issued in a fixed notional amount in which the twenty underlying

tranches were equally weighted, during the life of the contract the notional amount would decline, typically

due to write-downs or pre-payments. In practice, ABX.HE indices functioned like a credit default swap

allowing investors to buy or sell insurance on the underlying tranches of residential mortgage-backed

securities, therefore providing both hedging and trading opportunities.16 Gorton (2009a,b) argue that

ABX.HE indices are a precious source of information regarding the pricing of sub-prime securities in

the initial phases of the Great Financial Crisis. Reportedly, investors used these indices as a reference

to evaluate their holdings of real-estate-related securities. The visible contraction of all these indices

in 2007 prompted several financial institutions to report large credit write-downs on sub-prime related

securities. Gorton (2009a) considers this event the de facto beginning of the 2007-08 panic. Later analysis

rationalized this episode as financial panic akin to bank runs. However, in this particular crisis, panic

affected the shadow banking system in addition to regulated depositary banks.

16As Gorton (2009a,b) point out, given that ABX.HE indices would trade based on price rather than a spread, and given
that the premium rate on each index was fixed at its launch, the market prices of such indices would adjust to reflect changes
either in risk aversion or in the market evaluation of the default risk related to the underlying residential mortgage-backed
securities. A price reduction below par can be interpreted as an increase in the market cost of protection relative to the
same cost at launch of the product.
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C Online Appendix - Tables and Figures (Not for Publication)

Table C1: Summary Statistics for Yield Spreads

Spread 1 Spread 2 Spread 3 Spread 4 Spread 5 Spread 6 Spread 7 Spread 8

Mean 0.2633 0.3642 2.3479 1.7385 2.4024 1.1105 0.9030 0.9725
Median 0.1479 0.2100 2.4300 1.5645 2.1200 0.9800 0.7705 0.9000
Maximum 3.4948 4.2625 4.5900 4.4200 17.7300 3.4700 2.7574 2.5200
Minimum 0.0475 0.0220 0.3900 0.8550 0.4800 0.5400 0.4645 -0.0500
Std. Dev. 0.3317 0.4717 1.0357 0.5765 2.6462 0.4779 0.4772 0.4477
Skewness 4.6011 3.8772 -0.1068 1.6774 2.8376 2.7882 2.2962 0.5684
Kurtosis 32.4369 21.0475 2.6430 6.3635 11.9901 11.9466 7.9682 2.9471

Observations 814 814 694 694 566 734 498 734

Notes. In this table, we report essential summary statistics for the eight spreads over their respective samples:
Sample for Spreads 1 and 2: week of September 20, 2002 to week of April 20, 2018 (a total of 814 weekly obser-
vations). Sample for Spread 3: week of September 20, 2002 to week of January 1, 2016 (a total of 694 weekly
observations). Sample for Spread 4: week of January 7, 2005 to week of April 20, 2018 (a total of 694 weekly
observations). Sample for Spread 5: week of September 20, 2002 to week of July 19, 2013 (a total of 566 weekly
observations). Sample for Spreads 6 and 8: week of September 20, 2002 to week of October 7, 2016 (a total of 734
weekly observations). Sample for Spread 7: week of September 20, 2002 to week of March 30, 2012 (a total of 498
weekly observations).
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Figure C1: Empirical Distributions of Yield Spreads
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Notes. Sample for Spreads 1 and 2: week of September 20, 2002 to week of April 20, 2018 (a total of 814 weekly
observations). Sample for Spread 3: week of September 20, 2002 to week of January 1, 2016 (a total of 694 weekly
observations). Sample for Spread 4: week of January 7, 2005 to week of April 20, 2018 (a total of 694 weekly
observations). Sample for Spread 5: week of September 20, 2002 to week of July 19, 2013 (a total of 566 weekly
observations). Sample for Spreads 6 and 8: week of September 20, 2002 to week of October 7, 2016 (a total of 734
weekly observations). Sample for Spread 7: week of September 20, 2002 to week of March 30, 2012 (a total of 498
weekly observations).
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D Online Appendix - An Alternative Test of Transmission Based on
Longstaff (2010) (Not for Publication)

We describe how the Granger causality approach that is described in Longstaff (2010) can be adapted

to one of the specific applications that we propose in this paper, namely when we test for migration of

mildly explosive behavior from ABX markets to fixed income markets in the United States. We offer an

alternative test of contagion from the ABX market to the fixed income markets in our sample by adopting

the following empirical strategy. First, we estimate the V AR model,

Yt = α+
K∑
k=1

βkYt−k +
4∑
j=1

γj∆%ABXt−j + εt, (1)

where Yt is a vector of dependent/endogenous variables including the eight spreads in the sample and

∆%ABXt−j is a time series of weekly returns computed from the same ABX.HE.BBB.06-1 variable that

we use. This model is initially estimated over an adjusted sample spanning a period between February

17, 2006 and March 30, 2012 – i.e., the longest common sample available for the time series variables in

our dataset. Based on the Bayesian Information Criterion, we select K = 2.

To better understand the dynamics in these markets, we estimate the resulting V AR recursively over

the same sample using a moving window of 52 weekly observations (i.e., one year of data). We take into

account possible autocorrelation and/or heteroskedasticity by computing Newey-West standard errors.

Finally, we recursively apply a Granger causality test of the null hypothesis, H0 : γ1 = γ2 = γ3 = γ4 = 0,

on each equation in the V AR model.

For all eight regressions in the V AR model to be statistically valid, none of the time series in Yt

should contain unit roots. We adopt standard augmented Dickey-Fuller unit root tests to see whether

we may analyze the interest rate spreads in the sample under such assumption. In a few cases, from a

purely statistical point of view, unit roots may represent an issue. However, in economic and/or financial

terms, there is a strong case against the presence of unit roots in any of these spreads. In fact, a spread

containing a unit root will eventually become negative and spend an infinite amount of time providing

negative compensation to credit and liquidity risks. This occurrence makes little logical sense.

Nevertheless, given that Longstaff (2010), in his V AR specification, includes one-period changes in

the only two interest rate spreads that he uses, to be as consistent as possible with his empirical strategy,

we compute the first differences of all eight spreads in our sample and include them in the V AR model,

∆Yt = α+

K∑
k=1

βk∆Yt−k +

4∑
j=1

γj∆%ABXt−j + εt. (2)
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where, based on the Bayesian Information Criterion, we set K = 1.

When the time series of the p-value of a given test falls below the conventional thresholds of 10%,

5%, or 1% (an occurrence that is usually associated with a spike in the time series of the related test

statistic), the immediate implication is the rejection of the null hypothesis over a period of time spanning

the previous 52 weeks. A rejection of the null means that predictability from the ABX index returns for

the corresponding yield spread is statistically significant.

In this appendix, we include the plots of the rolling estimates of each of the eight equations, each

of them corresponding to one of the spreads in the sample, from V AR models (1) and (2). For each

equation, we report the F statistics of the recursive Granger causality tests and the corresponding p-

values; the alternative χ2 (Wald) statistics of the recursive Granger causality tests and the corresponding

p-values; and, for the sake of completeness, the rolling coefficients of determination. What we see is a

set of heterogeneous results that are difficult to interpret and that crucially depend on the time period

under investigation. On the contrary, the statistical strategy that we describe and then apply in our

paper provides, at least in our opinion, a much cleaner set of patterns and empirical outcomes (in our

applications) that turn out to be easier to interpret.

The main advantage of the approach that we present is that we are able to eliminate most arbitrariness

from the empirical investigation. The samples over which we test transmission and contagion, unlike

Longstaff (2010), are endogenously and clearly determined by a recursive methodology. If anything, one

should perhaps prefer and use a recursive or rolling version of the Granger causality test, along the lines

that have been explored and developed in some recent literature.

More specifically, in our paper, (i) we search for mildly explosive behavior in a set of time series and

explore to what extent such behavior sequentially migrates from a time series to another; (ii) the technique

that we use is concerned with and analyzes the tail behavior in the distribution of relevant statistical

quantities; (iii) in the framework that we describe, contagion and transmission are notions related to how

tail behaviors in the distributions of two or more time series are associated to each other; (iv) a Granger

causality test fails to reflect tail behavior; rather, it can only give information as to whether conditional

means are associated to each other.
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